Condensed Matter > Materials Science
[Submitted on 21 Nov 2019]
Title:Low damping and microstructural perfection of sub-40nm-thin yttrium iron garnet films grown by liquid phase epitaxy
View PDFAbstract:The field of magnon spintronics is experiencing an increasing interest in the development of solutions for spin-wave-based data transport and processing technologies that are complementary or alternative to modern CMOS architectures. Nanometer-thin yttrium iron garnet (YIG) films have been the gold standard for insulator-based spintronics to date, but a potential process technology that can deliver perfect, homogeneous large-diameter films is still lacking. We report that liquid phase epitaxy (LPE) enables the deposition of nanometer-thin YIG films with low ferromagnetic resonance losses and consistently high magnetic quality down to a thickness of 20 nm. The obtained epitaxial films are characterized by an ideal stoichiometry and perfect film lattices, which show neither significant compositional strain nor geometric mosaicity, but sharp interfaces. Their magneto-static and dynamic behavior is similar to that of single crystalline bulk YIG. We found, that the Gilbert damping coefficient alpha is independent of the film thickness and close to 1 x 10-4, and that together with an inhomogeneous peak-to-peak linewidth broadening of delta H0|| = 0.4 G, these values are among the lowest ever reported for YIG films with a thickness smaller than 40 nm. These results suggest, that nanometer-thin LPE films can be used to fabricate nano- and micro-scaled circuits with the required quality for magnonic devices. The LPE technique is easily scalable to YIG sample diameters of several inches.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.