Condensed Matter > Materials Science
[Submitted on 14 Feb 2019 (v1), last revised 30 Jul 2019 (this version, v2)]
Title:Microscopic non-equilibrium energy transfer dynamics in a photoexcited metal/insulator heterostructure
View PDFAbstract:The element specificity of soft X-ray spectroscopy makes it an ideal tool for analyzing the microscopic origin of ultrafast dynamics induced by localized optical excitation in metal-insulator heterostructures. Using [Fe/MgO]$_n$ as a model system, we perform ultraviolet pump/soft X-ray probe experiments, which are sensitive to all constituents of these heterostructures, to probe both electronic and lattice excitations. Complementary ultrafast electron diffraction experiments independently analyze the lattice dynamics of the Fe constituent, and together with ab initio calculations yield comprehensive insight into the microscopic processes leading to local relaxation within a single constituent or non-local relaxation between two constituents. Besides electronic excitations in Fe, which are monitored at the Fe L$_3$ absorption edge and relax within 1 ps by electron-phonon coupling, soft X-ray analysis identifies a change at the oxygen K absorption edge of the MgO layers which occurs within 0.5 ps. This ultrafast energy transfer across the Fe-MgO interface is mediated by high-frequency, interface vibrational modes, which are excited by hot electrons in Fe and couple to vibrations in MgO in a mode-selective, non-thermal manner. A second, slower timescale is identified at the oxygen K pre-edge and the Fe L$_3$ edge. The slower process represents energy transfer by acoustic phonons and contributes to thermalization of the entire heterostructure. We thus find that the interfacial energy transfer is associated with non-equilibrium behavior in the phonon system. Because our experiments lack signatures of charge transfer across the interface, we conclude that phonon-mediated processes dominate the competition of electronic and lattice excitations in these non-local, non-equilibrium dynamics.
Submission history
From: Andrea Eschenlohr [view email][v1] Thu, 14 Feb 2019 08:54:35 UTC (3,630 KB)
[v2] Tue, 30 Jul 2019 16:25:44 UTC (4,311 KB)
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.