Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Jan 2019 (v1), last revised 17 Feb 2023 (this version, v4)]
Title:LiSHT: Non-Parametric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks
View PDFAbstract:The activation function in neural network introduces the non-linearity required to deal with the complex tasks. Several activation/non-linearity functions are developed for deep learning models. However, most of the existing activation functions suffer due to the dying gradient problem and non-utilization of the large negative input values. In this paper, we propose a Linearly Scaled Hyperbolic Tangent (LiSHT) for Neural Networks (NNs) by scaling the Tanh linearly. The proposed LiSHT is non-parametric and tackles the dying gradient problem. We perform the experiments on benchmark datasets of different type, such as vector data, image data and natural language data. We observe the superior performance using Multi-layer Perceptron (MLP), Residual Network (ResNet) and Long-short term memory (LSTM) for data classification, image classification and tweets classification tasks, respectively. The accuracy on CIFAR100 dataset using ResNet model with LiSHT is improved by 9.48, 3.40, 3.16, 4.26, and 1.17\% as compared to Tanh, ReLU, PReLU, LReLU, and Swish, respectively. We also show the qualitative results using loss landscape, weight distribution and activations maps in support of the proposed activation function.
Submission history
From: Shiv Ram Dubey [view email][v1] Tue, 1 Jan 2019 02:24:06 UTC (1,610 KB)
[v2] Thu, 6 Aug 2020 10:51:23 UTC (1,619 KB)
[v3] Wed, 25 May 2022 07:03:45 UTC (1,619 KB)
[v4] Fri, 17 Feb 2023 01:49:12 UTC (889 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.