Computer Science > Human-Computer Interaction
[Submitted on 5 Mar 2014 (v1), last revised 16 Feb 2016 (this version, v3)]
Title:How to Apply Markov Chains for Modeling Sequential Edit Patterns in Collaborative Ontology-Engineering Projects
View PDFAbstract:With the growing popularity of large-scale collaborative ontology-engineering projects, such as the creation of the 11th revision of the International Classification of Diseases, we need new methods and insights to help project- and community-managers to cope with the constantly growing complexity of such projects. In this paper, we present a novel application of Markov chains to model sequential usage patterns that can be found in the change-logs of collaborative ontology-engineering projects. We provide a detailed presentation of the analysis process, describing all the required steps that are necessary to apply and determine the best fitting Markov chain model. Amongst others, the model and results allow us to identify structural properties and regularities as well as predict future actions based on usage sequences. We are specifically interested in determining the appropriate Markov chain orders which postulate on how many previous actions future ones depend on. To demonstrate the practical usefulness of the extracted Markov chains we conduct sequential pattern analyses on a large-scale collaborative ontology-engineering dataset, the International Classification of Diseases in its 11th revision. To further expand on the usefulness of the presented analysis, we show that the collected sequential patterns provide potentially actionable information for user-interface designers, ontology-engineering tool developers and project-managers to monitor, coordinate and dynamically adapt to the natural development processes that occur when collaboratively engineering an ontology. We hope that presented work will spur a new line of ontology-development tools, evaluation-techniques and new insights, further taking the interactive nature of the collaborative ontology-engineering process into consideration.
Submission history
From: Simon Walk [view email][v1] Wed, 5 Mar 2014 10:39:16 UTC (561 KB)
[v2] Mon, 1 Feb 2016 14:11:00 UTC (2,231 KB)
[v3] Tue, 16 Feb 2016 12:36:34 UTC (2,231 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.