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ABSTRACT

Persistent topological properties of an image serve as an additional descriptor providing an insight
that might not be discovered by traditional neural networks. The existing research in this area focuses
primarily on efficiently integrating topological properties of the data in the learning process in order
to enhance the performance. However, there is no existing study to demonstrate all possible scenarios
where introducing topological properties can boost or harm the performance. This paper performs
a detailed analysis of the effectiveness of topological properties for image classification in various
training scenarios, defined by: the number of training samples, the complexity of the training data
and the complexity of the backbone network. We identify the scenarios that benefit the most from
topological features, e.g., training simple networks on small datasets. Additionally, we discuss the
problem of topological consistency of the datasets which is one of the major bottlenecks for using
topological features for classification. We further demonstrate how the topological inconsistency can
harm the performance for certain scenarios.

1 INTRODUCTION

Topological Data Analysis (TDA) is a mathematical framework that aims to extract robust geometrical and topological
information from high-dimensional data. Recently TDA has experienced an increasing interest from the machine
learning community and has proven valuable in a broad range of applications, including shape recognition [Hofer
et al.|(2017), graph Carriere et al.|(2020) and image classification |Dey et al.|(2017), adversarial attacks and model
interpretability [Moor et al.| (2020).

One of the most common methods of calculating robust and stable topological features is persistent homology
Edelsbrunner & Harer| (2010), Zomorodian & Carlsson| (2005). In a nutshell, persistent homology monitors the
evolution of the topology of the space throughout a filtration. The output of persistent homology represents a multiset,
that summarizes the life and death of topological invariants of different dimensions (i.e., connected components, holes).

A naive way of integrating topological properties into the machine learning pipeline is to apply persistent homology on
each input sample and approximate the resulting multiset to form a fixed-sized vector |Qaiser et al.|(2019); (Chung et al.
(2018). The drawback of this approach is that the vectorization of the multi-set is non-differentiable, which makes the
topological representations task-agnostic. To overcome this limitation, efficient ways of utilizing topology are proposed
which work by either imposing certain topological priors through the loss function |Clough et al.| (2020); Byrne et al.
(2021)), or by integrating topology as a layer in neural network |Hofer et al.|(2017); Carriere et al.|(2020): the methods of
Clough et al.[(2020); Byrne et al.|(2021)) enforce segmentation masks to have a certain number of connected components
and holes|Clough et al.|(2020); Byrne et al.|(2021); the method of |Gabrielsson et al.|(2020) imposes generated images
to have a predefined topological structure; and proposed recently, the state-of-the-art topological network layer |Hofer
et al. (2017); |Carriere et al.| (2020); Kim et al.[(2020) integrates the topology as a fully differentiable layer which can be
placed in any part of the main network.

The methods that rely on imposing the topological priors are limited in the sense that the ground truth for the topology of
the dataset is not always available in practice, except for some segmentation masks Clough et al.| (2020), or for simplistic
datasets such as MNIST. Moreover, all the existing methods rely on the assumption that the datasets are topologically
consistent. In the context of image classification, this can be translated to a topological inter-class heterogeneity and
intra-class homogeneity. In other words, the images that belong to the same class are assumed to be topologically
similar, while being topologically distinct from the other classes. Topological consistency depends on the correct choice
of the complex and a filtration, which requires a solid understanding of the topological structure of the samples.
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In light of the above discussion, in this paper, we analyse the implications of having a topological invariance and discuss
how to overcome this issue. We extensively study the effect of utilizing topological features for the task of image
classification with respect to the dataset size and complexity, backbone network complexity, and integration method.

In doing so, we make the following contributions:

* We show that the influence of incorporating the topological layer in simple neural network architectures is
bigger compared to the deeper networks, resulting in a noticeable performance improvement for the task of
image classification.

* We analyse the importance of persistent topological features with respect to the dataset size. Demonstrated
by our empirical results, when only a limited number of training samples is available, persistent topological
features can significantly improve the overall performance of the classifier. As more data becomes available,
the influence of the topological features on the main classifier decreases.

» We show that the classification of the images with more topologically diverse structure (e.g. medical images)
can substantially benefit from incorporating topological features, when only a few training samples are
available. This finding is particularly important for classification of rare diseases that have limited number of
samples. In contrast, adding the layer to the main network might become harmful once there is enough data.

2 RELATED WORK

Topological statistics: The first efforts to introduce topological properties of the input samples to neural networks were
in calculating various statistics on the persistence diagram and use them to train a stand-alone machine learning model.
For example, |Chung et al.|(2018) train a SVM on persistence curves and persistence statistics for a skin disease analysis.
Qaiser et al.| (2019) train a Regression Forest on Betti curves. They further design an ensemble strategy to combine the
predictions from the regression forest and a convolutional neural network and apply on patch classification and tumour
segmentation.

The main drawback of topological statistics is that the transformations for their calculation are non-differentiable, and
therefore the network cannot be trained end to end.

Loss function: A more efficient way to benefit from topological information is to enforce some ground truth knowledge
on the receptive space. For example, in image segmentation with one object|Clough et al.| (2020) correct the masks
generated by the autoencoder by combining MSE loss with topological loss, that enforce the mask to have one connected
component and one hole. Byrne et al.|(2021)) similarly use the topological loss to correct segmentation masks for
multi-class cardiac MRI.

A more generalised approach for segmentation correction was proposed by |[Hu et al.|(2019), where the authors reduce
the difference between the topology of the generated mask and those of the ground truth mask by minimizing a modified
Wasserstein distance between their persistence diagrams.

Segmentation correction is not the only task, that can benefit from topological loss. For example,|Moor et al.| (2020)
propose to minimize the difference between the topology of the input and latent spaces of the autoencoders. They argue
that preserving the topology of the latent space helps improving interpretability of the autoencoder.

Finally, topological loss can be used in the context of noise reduction and data regularisation. |Gabrielsson et al.| (2020)
demonstrate that imposing some topological priors helps to improve the reconstruction loss.

The biggest drawback of the topological loss function is that it requires a ground-truth knowledge of the topology
of the receptive space, that is realistically only available for very simplistic datasets |Gabrielsson et al.| (2020) or for
segmentation masks.

Topological layer: The first topological layer is described in detail by Hofer et al|(2019). The authors focus on a
variant of Gaussian transformation on points from persistence diagrams and compare different projection types. The
layer is used for graph classification and 2D and 3D shape recognition. Differently from other works, that construct
Cubical complex for visual input, the authors define a heat-kernel signature of the object’s surface mesh and apply a
height function to create a filtration.

Zhao & Wang|(2019) build a weighted kernel, constructed on persistence images representation and demonstrate its
efficiency on a graph classification task. Kim et al.| (2020) propose to use topological layer to improve the classification
of noisy images. They construct a Cubical complex from input images and use persistence landscapes as a vectorization
method. The main contribution of their work is the use of DTM (Distance to measure) function for creating a filtration.
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Figure 1: The architecture of the Landscape layer. A filtered cubical complex is constructed from the input image.
Persistent homology is further applied to extract topological features, resulting in 0-D and 1-D persistence diagrams.
Then, persistence landscapes are calculated to vectorize the multiset of points from persistence diagrams. The resulting
fixed-sized vectors are separately fed into two Linear layers, each followed by Batch Normalisation and ReLu activation
function. Finally, the output of the layers is concatenated to form the final vector.

Finally, |Carriere et al.| (2020) extend previous works by generalizing various vectorization methods for persistence
diagrams, that they call PersLay. The authors construct a heat Kernel Signatures (HKS) of a graph and use Perslay for
graph classification.

3 BACKGROUND

In this section, we will go through some concepts and definitions of topological data analysis (TDA).

Cubical Complex: Images consist of pixels, that can also be seen as 2D cubes and can thus be represented with a
Cubical complex. It can be defined as follows:

An elementary interval is an interval of the form I = [k, k + 1] or the degenerate interval I = [k, k] for some k € Z.
An elementary cube is a Cartesian product of elementary intervals: @ = I7 X ... X I. A set K is a cubical complex if it
can be written as a finite union of elementary cubes. Naturally, for 2D images each pixel X|[i, j] is filled in with the
elementary cube Q; ; = [i,i + 1] x [§,7 + 1], Qi; € Ko.

Persistent Homology: Let K be a simplicial complex. A sequence of simplicial complexes, such that ) = Ky C
... C K,, = K is called a filtration of K. For a cubical complex the filtration is defined by increasing the threshold
a € [min(X),max(X)] and constructing cubical complexes for each value of « as follows: K, = {Q; ; : X[i,j] >
(1—-a)}

Persistent homology is a method that keeps track of topological structures that persist throughout a filtration. Our input
is 2D, therefore we restrict the analysis to OD and 1D homological features, aka connected components and holes.

Persistence Diagrams: The resulting homology of the filtration is summarised in a persistence diagram D = {Dy, D1 },
where each point (b;, d;) indicates that a topological feature appeared when the threshold o« = 1 — b; and disappeared
when o« = 1 — d;. In other words, the feature was born at scale b; and died at scale d;.

The points from persistence diagrams represent a multi-set and therefore are not directly suitable as an input to a Neural
Network. For this reason they need to be vectorized first.

Diagram Approximation: There exist various diagram approximation methods |Adams et al.|(2017);|Chazal et al.
(2014)). One approach is to discretize the domain into fixed-sized bins and calculate the so called persistence landscape
Bubenik] (2015)).

First, we define the binning interval T= [to, ..., t,] € R of equidistant points: ¢,,41 — ¢, = ¢t Vn € N, where ¢, =
min(a), t, = max(«). Then each point p = (b;, d;) € D of the persistence diagram is mapped via the triangle point
transformation as follows: p — [A,(t0), ..., Ap(tg)]; Ap : t; »max(0,y — |t; — ). Once all the points are mapped to
R4, the values for each interval are sorted and only the k largest values for each binning point are kept. It is denoted as
top-k persistence landscape.
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Figure 2: Topological Neural Network architecture.
The Landscape Layer and the Convolutional Network
are combined into one architecture and trained jointly
by backpropogating through both branches, as the
Landscape Layer is fully differentiable.

Figure 3: Ensemble strategy. The Landscape Network and the
Convolutional Network are trained independently. In inference
time, the predictions from two networks are combined to form
a final prediction.

4 METHODOLOGY

Let X be the input image. The computation of topological features involves three main steps, as follows:
* Constructing a cubical complex from the input image: X — K;

* Applying persistent homology by filtering by grayscale values to extract topological features: K — {Dg, D1 };
« Performing a vectorization of persistence diagrams: {Dg, D1 } — {VF9, V}*9}.

As a result, two fixed-length vectors of size [kq] are obtained (one for each feature dimension), with ¢ being the
number of binning points and k being the the number of landscapes to be kept. ¢ and & are the hyper parameters of the
persistence landscapes that need to be defined in advance.

Landscape Layer. As a result of the aforementioned procedure we obtain two finite vectors that summarize the
topology of the image. They can be further fed to a Neural Network. In contrast to previous approaches |[Hofer et al.
(2019); |Carriere et al.|(2020); Kim et al.|(2020), that concatenate OD and 1D persistence landscapes and use the resulting
vector as an input to a following layer, we construct separate linear layers for each dimension of the persistent features.
This architecture decision is motivated by the difference in the distribution of OD and 1D features and is particularly
beneficial for images with a complex topological structure (e.g., medical patches). The architecture of the Landscape
Layer is shown in Fig[T]

The Landscape Layer is fully differentiable and thus can be trained end-to-end using any gradient-based optimizer,
e.g., Adam or SGD. However, the topological information alone is usually insufficient to make a competitive classifier.
Instead, the topological layer is often used as an addition to the main backbone network.

Integration methods. One way to integrate the layer into a ML pipeline is shown in Fig[2] Here, the input batch is
being passed through the Landscape Layer and a Convolutional Backbone Network, cut after the last convolutional
layer. The output of the two is concatenated and is being further passed to a fully connected layer (FC), that in turn
returns a final prediction. The described topological network, called TopoNet, is trained with a cross-entropy loss, that
backpropogates through both branches.

The other way to use the layer within a ML pipeline is to train the backbone network and the landscape classifier
separately, as shown in Fig[3] At inference time, the predictions from both networks p1, p» are combined into a final
prediction p as follows: p = argmax(softmax(p;) + softmax(p2)). We call this the ensemble strategy.

The influence of the layer is bigger when it is trained jointly with the main network, rather than separately. However,
in some setups the influence of adding the layer to the main architecture might be rather harmful. In these cases, the
ensemble technique is preferred, as TopoNet only affects the predictions it is certain about.

The purpose of this paper is to quantitatively analyse the performance of the Landscape Layer in various conditions. In
particular, we want to evaluate its efficiency with respect to the following factors: (1) Training size; (2) Complexity of
the backbone network; (3) Integration method. These aspects are investigated next.
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Figure 4: A comparison of ConvNet vs TopoConvNet on digits. X axis depicts the number of samples in the training
set, Y axis depicts the test accuracy in percentages.

5 EXPERIMENTS

In this section, we extensively evaluate the impact of the topological properties on the classification task for three image

datasets: MNIST [LeCun et al.| 2010), USPS (1994), and a medical datasetZhang et al.| (2019). For a more detailed

description of the datasets, networks and training hyperparameters, please refer to the extended version of our paper[l

We start our experiments by comparing the influence of adding the topological layer with respect to the backbone
network complexity (Section[5.1). We first study the effect of adding the Landscape Layer to a simple Convolutional
Backbone Network (ConvNet), namely TopoConvNet. We further proceed by taking a more complex backbone network
of ResNet, and observe if it can similarly benefit from the topological features.

The next set of experiments focuses on analysing the impact of using topology with respect to the dataset size (Section
[5.2). We vary the number of samples available during training, and observe if adding the Landscape Layer to the main
network can impact accuracy.

After performing an extensive study on digits datasets with images of a relatively simple topological structure, we
further proceed to analyze the influence of the Landscape Layer on a more complex medical dataset (Section[5.3). The
complexity of the medical dataset is reflected in a high variability of the topological structures of the patches, which
results in significantly bigger influence of the landscape layer.

Finally, we compare the influence of incorporating topology for two integration methods (Section[5.4). We validate our
hypothesis that the ensemble approach is a more reliable, but less efficient method than TopoNet.

'https://arxiv.org/abs/2207.04220
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Dataset | ConvNet | TopoConvNet | ResNet | TopoResNet
MNIST | 86.6£1.0 88.6+0.7 90.6+0.9 | 91.0+£1.2
USPS | 88.1£0.7 89.0+0.5 88.9+1.3 89.8+1.1

Table 1: Performance comparison with regards to the network complexity, and training size of 300 samples. The values
represent the mean and a std of the classification accuracy over 10 folds.

5.1 NETWORK COMPLEXITY

To study the effectiveness of incorporating topology with respect to the complexity of the backbone architecture, we
show the results of adding a Landscape Layer to a simple baseline of ConvNet. For this set of experiments, we set the
training size to the lowest possible number of training samples n = 300, for which we get reasonably stable results in
different runs of the algorithm.

The resulting test accuracy can be found in Table[I] We report the mean and the standard deviation over 10 runs of the
experiment. The results show that for a small dataset, adding the Landscape Layer to ConvNet has a beneficial effect: it
improves the accuracy by 2% on MNIST and by 1% on USPS.

Experiments, described above, demonstrated that the topological layer can significantly enhance the performance of a
simple neural network. However, there is no existing analysis on the influence of using topology in a more complex
deep neural network, such as ResNet, for a topologically simple dataset. Therefore, we perform a set of experiments to
compare the performance of ResNet with its topological counterpart. The results from Table [I]reveal that the impact of
the Landscape Layer is marginal on ResNet in comparison to the ConvNet. This confirms that incorporating topological
information in the training stage helps improving the recognition accuracy, however, such information can become
redundant for more complex backbone networks.

5.2 DATASET SIZE

In this section, we further investigate the influence of incorporating topological information of the dataset in the training
stage with respect to different dataset sizes.

We vary the number of samples n. € {100, 300, 500, 1000} available during training, and observe that the training size
can significantly affect the performance. For small n, the performance is sensitive not only to the choice of the samples,
but also to the initialization of the network. Therefore, for a fair comparison between the backbone network and its
topological counterpart, we fix the initialisation of their common layers, as well as the data splits. Moreover, to ensure
the stability of the reported results, the samples are drawn randomly 10 times for each training size n. The test set is
always the same throughout these experiments.

To clarify our findings, in Figl{(b,d) we further show the performance improvement with respect to training size as a
pairwise difference between the accuracies of ConvNet vs. TopoConvNet, and ResNet vs. TopoResNet.

The resulting plots for MNIST can be found in Figl{a,b). The biggest improvement for ConvNet is achieved when n
is small: over 2.5% on average for n = 100 and around 2% for n = 300. With increasing training size, the accuracy
improvement of TopoConvNet decreases and falls below 1% for n = 1, 000.

Analogous performance trends are observed while training on USPS as shown in FigHc.d): the biggest accuracy
improvement of 1.6% appears while training ConvNet on small subsets of data (n = 100). Similarly, augmenting
the number of training samples leads to a decline in the influence of the Landscape layer. When n is big enough, the
Landscape Layer does not help the performance of the main classifier, and in certain cases, e.g., when n = 1, 000, it
can even be harmful.

Unsurprisingly, the performance of ResNet and TopoResNet on the smallest n is very poor and even inferior to ConvNet:
it quickly overfits on the training data and does not generalise well on the test data. As the training size increases,
ResNet starts to significantly outperform ConvNet.

Note that, we are more interested in settings where ResNet is better than ConvNet: n >= 300, for MNIST and USPS.
For both datasets, we observe the trend of having a positive effect of the Landscape Layer when n is small. Moreover,
for USPS, when n is big enough, e.g., n = 1, 000, the Landscape Layer does not harm the performance of the ResNet as
much as the ConvNet. This may come from the fact that ResNet by itself produces more confident predictions compared
to the layer. Note that, the influence of the Landscape Layer on ResNet does not have the same linear correlation with
the training size as observed for ConvNet. For example, the average improvement on MNIST for n = 500 is bigger
than for n = 300; similarly, the variance of the improvement on USPS for n = 500 is higher than for n = 300.
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Figure 5: A comparison of ResNet vs TopoResNet, trained
on Medical data. X axis depicts the number of samples in the
training set, Y axis depicts the test accuracy in percentages.

Figure 6: Confusion matrix improvement for MNIST
with 100 training samples, calculated as conf; - conf,,
with conf; being the confusion matrix of ConvNet, and
conf, being the the confusion matrix of TopoConvNet.

Dataset ResNet TopoResNet
MNIST | 97.85+£0.16 | 97.87+0.33

USPS | 95.78+0.37 | 95.79+0.38
Medical | 75.57 £3.75 | 81.25 +2.47

Table 2: Performance comparison with respect to data complexity, and training size of ~ 2K samples. The values
represent the mean and a std of the classification accuracy over 10 folds.

5.3 DATA COMPLEXITY

In the previous sections, the experiments have been performed on the digits datasets, that consist of small images with
simple topological structure. In this section, we report our results on the more topologically diverse medical dataset.

For the medical data, the training size n is defined by the number of Whole Slide Images (WSI) with n € {5, 10, 20, 50}.
Each WSI has annotated regions of different sizes, meaning that the actual number of patches in a training set vary
depending on the training split. For example, 5 WSIs can indicate from 838 to 3,434 patches in the training set.

Since ConvNet is not deep enough to capture the complex structure of the medical images, we perform our experiments
using the ResNet backbone. We compare the performance of ResNet and TopoResNet on the smallest n = 5 WSIs
for the medical dataset. To analyse the effect of incorporating Landscape Layer with respect to data complexity, we
further add the results of ResNet and TopoResNet on the same training size of n = 2, 300 samples for MNIST and
USPS datasets. The results shown in Table 2] demonstrate that for a small training size, the medical dataset significantly
benefits from the additional information provided by the Landscape Layer. Using TopoResNet, we observe a large
performance improvement (5.5%) for medical data in comparison to no improvement for the topologically simple digits
datasets. This finding has a substantial practical application, as some rare diseases have only a few available WSIs.

On medical data, the influence of the Landscape layer, both positive and negative, is significantly larger (Fig[5). The
complexity of the medical data is reflected in a high variability of the topological structures of the patches and thus
results in more confident predictions. The biggest improvement is obtained when the training size is small: 5.7% on
average for n = 5; and 5.3% on average for n = 10. However, when the training size is big enough, n = 50, the
accuracy of TopoResNet drops on average by 3.3% compared to ResNet.

5.4 INTEGRATION METHOD

In this section, we analyze the effect of incorporating topological information in the training stage with respect to the
integration method. When the training size is small, the topological layer trained as a part of the main network, aka
TopoNet, has proven to significantly enhance the main classifier. However, it might become harmful once enough
training samples become available. Such trend is justified by the fact that some of the images belonging to different
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(c) Normal (d) Tumor

Figure 7: Example of medical patches where adding topology helped (top) and harmed (bottom) the performance.
Top: samples correctly classified by TopoResNet and misclassified by ResNet. Bottom: samples correctly classified by
ResNet, but misclassified by TopoResNet.

Dataset | Backbone type Net TopoNet Lanscape Net | Ensemble
USPS ConvNet 92.440.49 | 91.78+0.45 | 49.73£0.77 | 92.740.58
Medical ResNet 90.59 £2.3 | 87.29+£1.94 | 83.26£1.65 | 91.28+1.6

Table 3: Performance comparison with regards to the integration method. The values represent the mean and a std of
the classification accuracy over 10 folds.

classes are topologically equivalent. Therefore, for a relatively efficient classifier, it might be preferable to only correct
the predictions for topologically distinct images. This can be achieved via the Ensemble technique.

We select the setups where TopoNet showed inferior results to Net (i.e., the network without topological layer). For
these setups, we construct the Landscape network, that consists of the Landscape Layer, followed by a fully connected
layer. The Landscape Network is further trained using SGD. In inference time, the predictions from the backbone
network are combined with predictions from the Landscape network, as illustrated in Section[d] The performance of the
resulting Ensemble method is compared with the TopoNet in Table[3] The results demonstrate that unlike TopoNet, the
Ensemble never harms the performance of the main classifier, and achieves slight improvements of around 0.7% for the
medical dataset.

6 DISCUSSION AND FUTURE WORK

MNIST and USPS are composed of digits, distributed among 10 classes. Due to the simplicity of these datasets, we can
infer the ground truth of the topology of each class, valid for the majority of the images. For example, all digits have
only one persistent connected component; digits 1,3,4,5 and 7 have zero holes, digits 0,6,9 have one hole, and digit 8
has two holes. Note that this ground truth is not available during training; it is only used to analyse the results.

The accuracy improvement described in Section [5|comes from the Landscape Layer. In order to validate the origins of
this improvement, we analyze the changes in per-class predictions. FigJ6|depicts the difference between the confusion
matrix of TopoConvNet and the one of ConvNet. It shows that the biggest enhancement is achieved for the digit 8, as it
is the only class with the unique topological signature (one connected component and two holes). The performance
for digits 9, 7 and 5 has also increased. For example, TopoConvNet better recognises digit 9 from digits 4 and 7 as
digit 9 has one hole, while digits 4 and 7 have no holes. On the other hand, digits 0 and 2 have experienced a slight
deterioration in their classification. These experimental results are consistent with the ground truth, described above.

The improvement from adding topology layer to the network trained on the medical dataset comes primarily from
eliminating false positives (Fig[7] a). TopoResNet is more robust to color variations; it successfully detects the connec-
tivity of the cells and recognises tumorous cases with distinct and well-separated formations (Fig[7] b). Concurrently,
TopoResNet tends to confuse some normal patches as being tumorous due to their topological similarity (Fig[7] ¢), and
misclassify patches with low color variation (Fig[7] d).

Overall, we identify the biggest discovered issue to be the topological inconsistency of the datasets. To tackle this
problem, one might design an optimal dataset-specific transformation to extract consistent topological features.
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