+

WO2021200776A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2021200776A1
WO2021200776A1 PCT/JP2021/013176 JP2021013176W WO2021200776A1 WO 2021200776 A1 WO2021200776 A1 WO 2021200776A1 JP 2021013176 W JP2021013176 W JP 2021013176W WO 2021200776 A1 WO2021200776 A1 WO 2021200776A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
acid
liquid component
liquid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/013176
Other languages
English (en)
French (fr)
Inventor
慶明 石丸
貴行 松本
青山 達治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022512178A priority Critical patent/JP7734342B2/ja
Priority to CN202180024065.8A priority patent/CN115380343A/zh
Publication of WO2021200776A1 publication Critical patent/WO2021200776A1/ja
Priority to US17/929,724 priority patent/US12431295B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor and a method for manufacturing the same.
  • an electrolytic capacitor As a small, large-capacity, low-ESR capacitor, there is an electrolytic capacitor having an anode foil having a dielectric layer and a cathode body, and having a conductive polymer adhering to the dielectric layer.
  • a hybrid type electrolytic capacitor in which a conductive polymer as a solid electrolyte and a liquid component (electrolyte solution) are used in combination is expected because it can reduce a leakage current (for example, Patent Document 1).
  • the solute component may react with the conductive polymer to reduce the characteristics of the capacitor, or may promote the deterioration of the characteristics of the conductive polymer.
  • One aspect of the present disclosure is a method for manufacturing an electrolytic capacitor including a foil-shaped anode having a dielectric layer on its surface and a foil-shaped cathode body, in which the separator and the separator are opposed to each other.
  • the step (i) of forming a capacitor element precursor by winding or laminating the anode body and the cathode body, and a treatment liquid containing a polyhydric alcohol, a solvent, and a conductive polymer component are applied to the capacitor.
  • the present invention relates to a method for manufacturing an electrolytic capacitor, which comprises a step (iv) of obtaining a capacitor element.
  • an electrolytic capacitor including a capacitor element, wherein the capacitor element includes a separator, a foil-shaped anode and a foil-shaped cathode body facing each other so as to sandwich the separator, and the above-mentioned.
  • the solid electrolyte layer contains a solid electrolyte layer interposed between the anode body and the cathode body and a liquid component, the solid electrolyte layer contains polyhydric alcohols and a conductive polymer, and the solid electrolyte layer is The present invention relates to an electrolytic capacitor having an unevenly distributed portion in which the polyvalent alcohols are unevenly distributed.
  • the manufacturing method of the present disclosure can improve the characteristics of the electrolytic capacitor.
  • the method for manufacturing an electrolytic capacitor is a method for manufacturing an electrolytic capacitor including a foil-shaped anode body having a dielectric layer on the surface and a foil-shaped cathode body, and the following steps ( i) Including (iv): (I) A step of forming a capacitor element precursor by winding or laminating a separator and an anode body and a cathode body facing each other across the separator. (Ii) A step of impregnating a capacitor element precursor with a treatment liquid containing a polyhydric alcohol, a solvent, and a conductive polymer component. (Iii) A step of impregnating the capacitor element precursor that has undergone step (ii) with a liquid component, and (Iv) A process of eluting polyhydric alcohols into a liquid component to obtain a capacitor element.
  • the polyhydric alcohols and the conductive polymer component are attached to the capacitor element precursor, and then the liquid component is attached to the capacitor element precursor in the step (iii).
  • the conductive polymer adheres to the surface of the anode and / or the separator, and an electrolytic capacitor having excellent characteristics can be manufactured.
  • an electrolytic capacitor with low ESR equivalent series resistance
  • deterioration of characteristics in a low temperature environment can be suppressed.
  • Polyhydric alcohols include organic compounds containing a plurality of hydroxyl groups (-OH) bonded to carbon atoms (for example, organic compounds that are not polymers), and include saccharides such as glucose.
  • Other examples of polyhydric alcohols include mannitol, sorbitol, xylitol, volemitol, pentaerythritol, and trimethylolpropane, glycerin, and the like.
  • mannitol, sorbitol, xylitol, volemitol, pentaerythritol and the like are also called sugar alcohols.
  • a compound having three or more hydroxy groups may be used.
  • the capacitor element precursor is impregnated with a treatment liquid containing polyhydric alcohols, a solvent, and a conductive polymer component, and then the solvent is removed by drying, so that the conductive polymer becomes an anode and a separator. Established in. As a result, the conductive polymer adheres to the anode body, and the ESR of the electrolytic capacitor can be reduced.
  • the elution of polyhydric alcohols in the liquid component lowers the melting point of the liquid component due to the freezing point depression, and the viscosity of the liquid component can be kept low even in a low temperature environment. This improves the low temperature characteristics.
  • the polyhydric alcohols are contained in the range of 0.1% by mass or more and 1% by mass or less with respect to the total of the liquid components.
  • the polyhydric alcohols adhere so as to be taken into the conductive polymer layer and may be unevenly distributed in the vicinity of the conductive polymer.
  • a layer of conductive polymer (solid electrolyte layer) may be formed between the anode or cathode and the separator.
  • Some of the polyhydric alcohols may be unevenly distributed in the conductive polymer layer without elution even after impregnation with the liquid component. It is considered that the polyhydric alcohols are unevenly distributed in the conductive polymer layer in a dispersed state.
  • the solid electrolyte layer is not dense and has a hollow portion such as a sponge, and it is considered that polyhydric alcohols are precipitated in the hollow portion, and the hollow portion is hollow even after the step (iv).
  • Liquid components and polyhydric alcohols may be unevenly distributed in the portion. With such a structure, the characteristics of the electrolytic capacitor can be improved.
  • the treatment liquid may contain an acid component in addition to the polyhydric alcohols.
  • the base component may be contained in the treatment liquid. That is, in step (ii), the acid component may be contained in the treatment liquid in the form of a salt with the base component.
  • the acid component contained in the electrolytic capacitor has the effect of supplying oxygen to the damaged part and repairing the damaged part when the oxide film constituting the dielectric layer is damaged.
  • damage caused to the dielectric layer can be repaired, the leakage current (LC) can be lowered, and the withstand voltage can be maintained high.
  • the acid component contained in the liquid component is excessive, the acid component is precipitated in a low temperature environment, which tends to cause deterioration of the characteristics.
  • ESR equivalent series resistance
  • the acid component in the treatment liquid of step (ii), can be unevenly distributed in the vicinity of the conductive polymer as in the case of polyhydric alcohols.
  • a part of the acid component is eluted into the liquid component, but a part is unevenly distributed in the vicinity of the conductive polymer and in the vicinity of the anode body.
  • a high repair effect of the dielectric layer can be obtained while limiting the amount of the acid component contained in the liquid component.
  • the acid component may also have an effect of suppressing deterioration due to desorption of the dopant contained in the conductive polymer. Therefore, since the liquid component contains the acid component, the decrease in conductivity due to the dedoping of the conductive polymer is suppressed, and the ESR can be maintained low even in long-term use. In addition, the withstand voltage is improved.
  • the liquid component may contain an aprotic solvent or a protic solvent. While the aprotic solvent easily dissolves the acid component, it is difficult to dissolve the polyhydric alcohols. Therefore, the acid component can be selectively eluted into the liquid component with respect to the polyhydric alcohols. As a result, deterioration due to dedoping of the conductive polymer is suppressed, and the ESR can be kept low.
  • the protic solvent is difficult to dissolve the acid component, while it is easy to dissolve the polyhydric alcohols. Therefore, polyhydric alcohols can be selectively eluted into the liquid component with respect to the acid component.
  • the acid component is unevenly distributed in the vicinity of the anode body, the repair effect of the dielectric layer can be enhanced, and the effect of suppressing an increase in leakage current is excellent.
  • the effect of improving low temperature characteristics by polyhydric alcohols can be enhanced.
  • the liquid component may also contain a non-polar solvent.
  • the proportions of the aprotic solvent, the protic solvent, and the non-polar solvent in the liquid component can be appropriately adjusted according to the characteristics of the required electrolytic capacitor.
  • the protic solvent means a solvent having a solubility parameter (SP value) of 14 or more according to Hildebrand.
  • the aprotic solvent means a solvent having the solubility parameter (SP value) of 5 or more and less than 14.
  • a capacitor element precursor is formed by winding or laminating a separator and an anode body and a cathode body facing each other with the separator interposed therebetween.
  • the capacitor element precursor is an element before the electrolyte layer is formed.
  • the foil-shaped anode may be formed by a known method. For example, first, a metal foil as a raw material for an anode body is prepared, and the surface of the metal foil is roughened. The roughening can be performed by, for example, etching by a DC electrolysis method or an AC electrolysis method. Next, a dielectric layer is formed on the surface of the roughened metal foil. The dielectric layer can be formed, for example, by chemical conversion treatment of a metal foil. The surface of the metal foil is oxidized by the chemical conversion treatment of the metal foil, whereby a dielectric layer which is an oxide film is formed. In this way, the anode body is formed.
  • lead terminals for making electrical connections are connected to the anode body and the cathode body.
  • a capacitor element precursor can be formed by winding a foil-shaped anode body, a foil-shaped cathode body, and a separator together. At this time, they are wound so that the separators are arranged between the anode body and the cathode body.
  • a capacitor element precursor can be formed by bending a foil-shaped anode body, a foil-shaped cathode body, and a separator together in a zigzag pattern. At this time, they are bent so that the separators are arranged between the anode body and the cathode body.
  • the capacitor element precursor is impregnated with a treatment liquid containing a polyhydric alcohol, a solvent, and a conductive polymer component.
  • the solvent may be water, a mixture of water and a non-aqueous solvent, or a non-aqueous solvent.
  • the non-aqueous solvent is not particularly limited, and for example, a protic solvent or an aprotic solvent can be used.
  • the protonic solvent include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol and propylene glycol, ethers such as formaldehyde and 1,4-dioxane.
  • aprotic solvent examples include amides such as N-methylacetamide, N, N-dimethylformamide and N-methyl-2-pyrrolidone, esters such as methyl acetate, and ketones such as methyl ethyl ketone.
  • the polyhydric alcohols preferably have a high melting point. The higher the melting point, the easier it is for polyhydric alcohols to penetrate deep into the pores of the anode having a porous portion in the solvent drying step after impregnation with the treatment liquid. Therefore, in the deep part of the porous portion of the anode body, the hydroxy group of the polyhydric alcohol and the hydroxy group on the surface of the anode body are bonded, and the adhesion of the conductive polymer can be enhanced. Thereby, ESR can be improved.
  • the melting point of the polyhydric alcohol may be 80 ° C. or higher, 100 ° C. or higher, or 150 ° C. or higher.
  • the melting point of glucose is about 146 to 150 ° C.
  • the melting point of mannitol is about 165 to 169 ° C.
  • the melting point of sorbitol is about 93 to 95 ° C.
  • the melting point of xylitol is about 92 to 97 ° C.
  • the melting point of pentaerythritol is about 257 to 260 ° C.
  • the melting point of trimethylolpropane is about 56 to 58 ° C.
  • the melting points of these substances may vary depending on the structure (stereoisomer).
  • the solvent of the treatment liquid may be, for example, water.
  • the impregnation can be performed, for example, by immersing the capacitor element precursor in an aqueous treatment liquid.
  • the aqueous treatment liquid is a treatment liquid containing water.
  • the amount of water contained in the liquid (solvent) constituting the aqueous treatment liquid is, for example, in the range of 50 to 100% by mass.
  • the immersion time is not particularly limited, but may be, for example, 1 minute or more and 20 minutes or less.
  • the entire capacitor element precursor may be immersed in the aqueous treatment liquid, or only a part of the capacitor element precursor may be immersed in the aqueous treatment liquid. For example, only a portion of 50% or less in the longitudinal direction (axial direction in the case of a wound body) of the capacitor element precursor may be immersed in the aqueous treatment liquid.
  • the treatment liquid may be impregnated at room temperature or at a temperature other than room temperature (for example, a temperature higher than room temperature). Further, the impregnation of the treatment liquid may be carried out under atmospheric pressure, or may be carried out in an environment other than atmospheric pressure (for example, under reduced pressure).
  • the content ratio of polyhydric alcohols contained in the treatment liquid may be 0.1% by mass or more and 10% by mass or less.
  • the content ratio of the polyhydric alcohol is 0.1% by mass or more, the effect of reducing ESR can be obtained.
  • the content ratio of the polyhydric alcohol increases, the viscosity of the treatment liquid increases, which may make it difficult to impregnate the conductive polymer. From the viewpoint of easily impregnating the conductive polymer, the content ratio of the polyhydric alcohol may be 10% by mass or less.
  • the conductive polymer component may be a conductive polymer or a precursor of the conductive polymer. That is, the conductive polymer may be impregnated with the treatment liquid in which the conductive polymer is dispersed to form the conductive polymer layer (solid electrolyte layer) in the space between the anode and the separator, or the conductive polymer may be formed.
  • a solid electrolyte layer may be formed by polymerizing a precursor of a conductive polymer (for example, a raw material monomer) on a dielectric layer of an anode.
  • the solid electrolyte layer may be composed of one layer, or may be composed of two or more layers having different materials by performing the impregnation in a plurality of times. As the material of the conductive polymer, those described later can be used.
  • the concentration of the conductive polymer contained in the treatment liquid (polymer dispersion) in which the conductive polymer is dispersed is preferably 0.5 to 10% by mass.
  • the average particle size D50 of the conductive polymer is preferably 0.01 to 0.5 ⁇ m, for example.
  • the average particle size D50 is the median diameter in the volume particle size distribution obtained by the particle size distribution measuring device by the dynamic light scattering method.
  • the polymer dispersion can be obtained, for example, by a method of dispersing a conductive polymer in a liquid dispersion medium, a method of polymerizing a precursor monomer in a liquid dispersion medium to generate particles of the conductive polymer, or the like.
  • the treatment liquid may contain an acid component in addition to the conductive polymer component and polyhydric alcohols.
  • the acid component has an effect of suppressing dedoping of the conductive polymer.
  • the treatment liquid may further contain a base component.
  • the acid component may include a compound containing an acidic functional group.
  • the acidic functional group include a carboxy group, a hydroxy group, a sulfo group, a phosphoric acid group, a nitro group and an oxo group.
  • the acid component may include carboxylic acid, phosphoric acid, sulfonic acid, boric acid and / or salts thereof. More specifically, the acid component includes maleic acid, phthalic acid, benzoic acid, pyromellitic acid, resorcinic acid, borodisalicylic acid and the like.
  • the compound containing an acidic functional group may be a polycarboxylic acid or a compound having a phenolic hydroxy group.
  • a polycarboxylic acid and a monocarboxylic acid can be used.
  • the polycarboxylic acid include aliphatic polycarboxylic acids ([saturated polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebatic acid, 1,6- Decandicarboxylic acid, 5,6-decandicarboxylic acid]; [unsaturated polycarboxylic acid, eg maleic acid, fumaric acid, icotanic acid]), aromatic polycarboxylic acid (eg phthalic acid, isophthalic acid, terephthalic acid, trimerit) Acids, pyromellitic acids), alicyclic polycarboxylic acids (eg, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid),
  • Examples of the monocarboxylic acid include aliphatic monocarboxylic acids (carbon atoms 1 to 30) ([saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, and capric acid.
  • aliphatic monocarboxylic acids carbon atoms 1 to 30
  • saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, and capric acid.
  • aromatic monocarboxylic acid eg benzoic acid, silicic acid, Naftoeic acid
  • oxycarboxylic acid eg salicylic acid, mandelic acid, resorcynic acid.
  • maleic acid, phthalic acid, benzoic acid, pyromellitic acid, and resorcinic acid are preferably used because they have high conductivity and are thermally stable.
  • Examples of the inorganic acid include carbon compounds, hydrogen compounds, boron compounds, sulfur compounds, nitrogen compounds, and phosphorus compounds.
  • Typical examples of inorganic acids are phosphoric acid, phosphite, hypophosphite, alkyl phosphate ester, boric acid, bohuic acid, boric acid tetrafluoride, phosphoric acid hexafluoride, benzenesulfonic acid, naphthalenesulfonic acid. And so on.
  • a composite compound of an organic acid and an inorganic acid can be used as an acid component.
  • borodiglycolic acid, borodioxalic acid, borodisalicylic acid and the like can be mentioned.
  • the base component may be contained in the treatment liquid.
  • the base component include metal hydroxides such as sodium hydroxide and potassium hydroxide, and nitrogen-containing basic compounds such as aliphatic amines and cyclic amines.
  • metal hydroxides such as sodium hydroxide and potassium hydroxide
  • nitrogen-containing basic compounds such as aliphatic amines and cyclic amines.
  • an imidazole compound, a benzoimidazole compound, and an alicyclic amidine compound pyrimidine compound, imidazoline compound
  • Examples of compounds having an alkyl-substituted amidine group are 1,8-diazabicyclo [5,4,0] undecene-7, 1,5-diazabicyclo [4,3,0] nonen-5,1,2-dimethylimidazole.
  • Linium 1,2,4-trimethylimidazoline, 1-methyl-2-ethyl-imidazoline, 1,4-dimethyl-2-ethylimidazoline, 1-methyl-2-heptylimidazoline, 1-methyl-2- (3) 'Heptyl) imidazoline, 1-methyl-2-dodecylimidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole, 1-methylbenzoimidazole and the like can be mentioned.
  • a quaternary salt of a compound having an alkyl-substituted amidine group may be used as a base component.
  • an imidazole compound quaternized with an alkyl group having 1 to 11 carbon atoms or an arylalkyl group examples thereof include an imidazole compound quaternized with an alkyl group having 1 to 11 carbon atoms or an arylalkyl group, a benzimidazole compound, and an alicyclic amidine compound (pyrimidine compound, imidazoline compound).
  • tertiary amines can also be used as the base component, and trialkylamines (trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyln-propylamine, dimethylisopropylamine, methylethyln-propylamine, methylethylisopropylamine) can also be used.
  • trialkylamines trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyln-propylamine, dimethylisopropylamine, methylethyln-propylamine, methylethylisopropylamine
  • phenyl group-containing amines (dimethylphenylamine, methylethylphenylamine, diethylphenylamine) Etc.).
  • trialkylamines are preferable in terms of high conductivity, and it is more preferable to contain at least one selected from the group consisting of trimethylamine, dimethylethylamine, methyldiethylamine and triethylamine.
  • a secondary amine such as dialkylamines, a primary amine such as monoalkylamine, or ammonia may be used.
  • the base component may be contained in the treatment liquid in the form of a salt with the acid component.
  • Trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-dimethyl-2-phthalate as salts with acid components Ethylimidazolinium and the like can be mentioned.
  • the solvent contained in the treatment liquid is removed by drying to form a solid electrolyte layer between the anode and the separator, and polyvalent alcohols are precipitated, so that at least a part of the polyhydric alcohols is formed. Adheres to the anode, separator and solid electrolyte layer.
  • the treatment liquid contains an acid component or a base component, these components also precipitate and may adhere to the anode, the separator and the solid electrolyte layer.
  • the conductive polymer, polyhydric alcohols, and acid component adhere so as to cover at least a part of the dielectric layer on the surface of the anode, and at least one in the pores of the roughened anode. It can adhere to fill the part.
  • Drying is usually done by heating. Drying may be performed under atmospheric pressure or in an environment other than atmospheric pressure (for example, under reduced pressure).
  • the drying temperature may be a temperature equal to or higher than the melting point of the polyhydric alcohol, and may be a temperature equal to or higher than the boiling point of the solvent under the pressure for drying (for example, 100 ° C. or higher).
  • the drying temperature is a temperature equal to or higher than the boiling point of the solvent under the pressure for drying (for example, 100 ° C. or higher), and is equal to or higher than the melting point of the polyhydric alcohol under the pressure for drying and lower than the boiling point.
  • the permeability of the polyhydric alcohol to the capacitor element precursor can be enhanced.
  • the drying temperature may be, for example, 150 ° C. or higher or 180 ° C. or higher.
  • step (ii) the impregnation of the treatment liquid (step (ii)) and the drying step may be repeated.
  • step (ii) the amount of precipitated polyhydric alcohols and acid components can be increased.
  • the capacitor element precursor is impregnated with a liquid component.
  • the liquid component may be a substance that is liquid at room temperature (25 ° C.) or a substance that is liquid at the temperature at which the electrolytic capacitor is used.
  • the method of impregnating the liquid component is not particularly limited.
  • a method of immersing the capacitor element precursor in the liquid component contained in the container is simple and preferable.
  • the impregnation is preferably carried out under reduced pressure, for example, in an atmosphere of 10 to 100 kPa.
  • the liquid component include the above-mentioned materials.
  • the liquid component contains a solvent that dissolves polyhydric alcohols. If necessary, it may contain other solutes that are soluble in the solvent.
  • the liquid component may contain the above-mentioned acid component and / or base component.
  • the acid component and / or the base component can be selected from the compounds exemplified in the above-mentioned treatment liquid.
  • the liquid component may be a non-aqueous solvent, or may be a mixture (that is, an electrolytic solution) of a non-aqueous solvent and an ionic substance (solute, for example, an organic salt) dissolved therein.
  • the non-aqueous solvent may be an organic solvent or an ionic liquid.
  • a high boiling point solvent is preferable.
  • non-aqueous solvents include polyhydric alcohols such as ethylene glycol (EG) and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as ⁇ -butyrolactone (GBL), N-methylacetamide, and N.
  • N-dimethylformamide N-methyl-2-pyrrolidone
  • esters such as methyl acetate
  • carbonate compounds such as propylene carbonate
  • ethers such as 1,4-dioxane
  • ketones such as methyl ethyl ketone, formaldehyde, etc. Is included.
  • a polymer solvent may be used as the non-aqueous solvent.
  • the polymer solvent include polyalkylene glycols, derivatives of polyalkylene glycols, compounds in which at least one hydroxyl group in a polyhydric alcohol is replaced with polyalkylene glycol (including a derivative), and the like.
  • examples of polymer-based solvents include polyethylene glycol (PEG), polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol sorbitol ether, polypropylene glycol, polypropylene glycol glyceryl ether, and polypropylene glycol diglyceryl ether.
  • Polyethylene glycol sorbitol ether, polybutylene glycol and the like are included.
  • the polymer solvent further include a copolymer of ethylene glycol-propylene glycol, a copolymer of ethylene glycol-butylene glycol, a copolymer of propylene glycol-butylene glycol, and the like.
  • the non-aqueous solvent one type may be used alone, or two or more types may be mixed and used.
  • the pH of the liquid component may be less than 7 or 5 or less.
  • the pH of the liquid component can be adjusted to the above acidity after elution of the acid component after step (iv).
  • the liquid component may be a protic solvent or an aprotic solvent.
  • the protic solvent easily elutes the polyhydric alcohols in the step (iv) described later. Therefore, the low temperature characteristics can be enhanced by the eluted polyhydric alcohols.
  • polyhydric alcohols are easily eluted in the step (iv). In this case, the adhesiveness of the conductive polymer to the anode body is improved, and the ESR can be lowered. It is preferable that 50% by mass or more of the total liquid component is an aprotic solvent, and less than 50% by mass is a protic solvent. It is more preferable that 60% by mass or more of the total liquid component is an aprotic solvent, and less than 40% by mass is a protic solvent. You may.
  • the liquid component may or may not be an electrolytic solution.
  • the liquid component does not have to be substantially electrically conductive as it contains substantially no solute.
  • the conductivity X1 of the liquid component is preferably 1 ⁇ S / cm or less.
  • Step (iv) Subsequently, the polyhydric alcohols are eluted into the liquid component. As a result, a capacitor element can be obtained. Step (iv) can be performed simultaneously with or in parallel with step (iii).
  • the conductivity X2 of the liquid component in which the polyhydric alcohol and / or the acid component is eluted is higher than X1 (X2> X1), preferably 500 ⁇ S / cm or less.
  • the conductivity X2 of the liquid component may be 0.1 ⁇ S / cm or more and 500 ⁇ S / cm or less, 0.1 ⁇ S / cm or more and 100 ⁇ S / cm or less, 0.5 ⁇ S / cm or more and 500 ⁇ S / cm or less, or 0.5 ⁇ S /. More preferably, it is cm or more and 100 ⁇ S / cm or less.
  • the acid component can be eluted into the liquid component in step (iv). Due to the eluted acid component, the decrease in conductivity due to the dedoping of the conductive polymer is suppressed, and the ESR can be maintained low even in long-term use. In addition, the withstand voltage is improved. However, if the elution of the acid component is excessive, the ESR may increase and the low temperature characteristics may decrease due to long-term use. In order to suppress the increase in ESR due to long-term use and the decrease in low temperature characteristics, the content ratio of the acid component in the liquid component after step (iv) is 0. It is preferably 01% by mass or more and 2% by mass or less.
  • the base component When a treatment liquid containing a base component is used in step (ii), the base component may elute into the liquid component.
  • the content ratio of the base component in the liquid component after step (iv) is preferably 2% by mass or less with respect to the entire liquid component containing the base component. ..
  • each solute such as acid component, base component, and polyhydric alcohol in the liquid component is measured by extracting the internal liquid component from the electrolytic capacitor with a centrifuge and microscopic FT-IR analysis or liquid chromatography. can do.
  • the liquid component after the step (iv) may contain a solvent (for example, water) of the treatment liquid that was not removed in the drying step after the step (ii). If the amount of water contained in the liquid component is large, the water vaporizes when heat is applied to the electrolytic capacitor in a reflow process or the like, and the airtightness of the case where the electrolytic capacitor is sealed by steam may decrease. .. After the step (iv), the amount of water contained in the liquid component is preferably 5% by mass or less, more preferably 3% by mass or less.
  • An electrolytic capacitor is manufactured using the capacitor element obtained in step (iv).
  • the method for manufacturing an electrolytic capacitor using a capacitor element is not particularly limited, and a known method may be applied.
  • the capacitor element may be placed in a case and sealed.
  • the electrolytic capacitor according to an embodiment of the present invention is an electrolytic capacitor including a capacitor element, and the capacitor element includes a separator and a foil-shaped anode and a foil-shaped cathode body facing each other so as to sandwich the separator. , A solid electrolyte layer interposed between the anode and the cathode, and a liquid component.
  • the solid electrolyte layer contains polyhydric alcohols and a conductive polymer.
  • the solid electrolyte layer has an uneven distribution portion in which polyhydric alcohols are unevenly distributed. Liquid components (electrolytes or solvents) and conductive polymers are used as electrolytes.
  • FIG. 1 is a schematic cross-sectional view of the electrolytic capacitor according to the present embodiment
  • FIG. 2 is a schematic view of a part of the winding body included in the electrolytic capacitor.
  • the electrolytic capacitor covers, for example, the capacitor element 10, the bottomed case 11 accommodating the capacitor element 10, the sealing member 12 that closes the opening of the bottomed case 11, and the sealing member 12.
  • the capacitor element 10 is housed in an outer case together with a liquid component. The vicinity of the open end of the bottomed case 11 is drawn inward, and the open end is curled so as to be crimped to the sealing member 12.
  • the capacitor element 10 is manufactured, for example, by adhering a conductive polymer to a wound body as shown in FIG.
  • the wound body includes an anode body 21 having a dielectric layer, a cathode body 22 containing a first metal having a valve action, and a separator 23 interposed between them.
  • the conductive polymer adheres so as to cover at least a part of the surface of the dielectric layer of the anode body 21 to form a solid electrolyte layer.
  • the capacitor element 10 further includes a lead tab 15A connected to the anode body 21 and a lead tab 15B connected to the cathode body 22.
  • the anode body 21 and the cathode body 22 are wound around the separator 23.
  • the outermost circumference of the winding body is fixed by the winding stop tape 24.
  • FIG. 2 shows a partially unfolded state before stopping the outermost circumference of the winding body.
  • the anode body 21 includes a metal foil whose surface is roughened so as to have irregularities, and a dielectric layer is formed on the main surface of the metal foil having irregularities.
  • the anode has a dielectric layer on its surface.
  • a metal foil having a dielectric layer formed on its surface can be used.
  • the type of metal contained in the metal foil is not particularly limited, but a metal having a valve action such as aluminum, tantalum, niobium, and titanium, and an alloy of the metal having a valve action are used because the dielectric layer can be easily formed. preferable. Of these, elemental metals such as aluminum and alloys such as aluminum alloys are preferable.
  • the surface of the anode body is roughened, and a dielectric layer is formed on the surface of the roughened metal foil.
  • a metal foil can be used for the cathode body.
  • the type of metal contained in the metal foil is not particularly limited, and for example, a metal having a valve action such as aluminum, tantalum, niobium, and titanium, or an alloy of a metal having a valve action can be used.
  • the metal contained in the metal foil may be a simple substance such as aluminum or an alloy such as an aluminum alloy.
  • the surface of the cathode body may or may not be roughened. Further, the surface of the cathode body may be provided with a chemical conversion film, or may be provided with a film of a metal (dissimilar metal) or a non-metal different from the metal constituting the cathode body. Examples of dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon.
  • a sheet-like material that can be impregnated with an electrolyte can be used.
  • a sheet-like material that has insulating properties and can be impregnated with an electrolyte may be used.
  • the separator may be a woven fabric, a non-woven fabric, or a porous membrane.
  • the material of the separator include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, vinylon, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, and glassy substance.
  • conductive polymer examples include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyaniline and the like. These may be used alone, in combination of two or more, or in a copolymer of two or more monomers.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, etc. mean polymers having polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, etc. as basic skeletons, respectively. Therefore, polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene and the like may also contain their respective derivatives.
  • polythiophene includes poly (3,4-ethylenedioxythiophene) (PEDOT) and the like.
  • Dopants may be added to the conductive polymer. From the viewpoint of suppressing dedoping from the conductive polymer, it is desirable to use a polymer dopant.
  • the polymer dopant include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly (2-acrylamide-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, and polyacrylic. Examples include anions such as acids. These may be used alone or in combination of two or more. Further, these may be homopolymers or copolymers of two or more kinds of monomers. Of these, polystyrene sulfonic acid (PSS) is preferable.
  • PSS polystyrene sulfonic acid
  • the weight average molecular weight of the dopant is not particularly limited, but is preferably 1000 to 100,000, for example, in that a homogeneous solid electrolyte layer can be easily formed.
  • the conductive polymer may be poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid.
  • Polyhydric alcohols (not shown) are unevenly distributed in the solid electrolyte layer. Some of the polyhydric alcohols are eluted in the liquid component, but the remaining part is unevenly distributed and precipitated in the solid electrolyte layer.
  • the winding type electrolytic capacitor has been described, but the scope of application of the present invention is not limited to the above, and other electrolytic capacitors, for example, chip type electrolysis using a metal sintered body as an anode body. It can also be applied to a capacitor and a laminated electrolytic capacitor using a metal plate as an anode.
  • Example 1 a wound electrolytic capacitor (diameter 8 mm ⁇ length 12 mm) having a rated voltage of 100 V and a rated capacitance of 18 ⁇ F was produced.
  • the specific manufacturing method of the electrolytic capacitor will be described below.
  • the electrolytic capacitor shown in FIG. 1 was prepared and its characteristics were evaluated in the following manner. (1) Manufacture of capacitor elements
  • An Al foil having a thickness of 120 ⁇ m was prepared.
  • the Al foil was subjected to a direct current etching treatment to roughen the surface.
  • the Al foil was subjected to chemical conversion treatment to form a dielectric layer (thickness: about 70 nm) to obtain an anode body.
  • the dielectric layer was formed by immersing an Al foil in an ammonium adipate solution and performing a chemical conversion treatment at 70 ° C. for 30 minutes while applying a voltage of 180 V to the Al foil.
  • the anode body was cut into a predetermined size to prepare an anode body.
  • An anode lead tab and a cathode lead tab to which a lead wire is connected are connected to the prepared anode body and a cathode body having a conductor layer on the end face, respectively, and the anode body and the cathode body are wound through a separator while involving the lead tab.
  • a winding body was produced by fixing the outer surface with a winding stopper tape, and a capacitor element precursor was obtained. By immersing the capacitor element precursor in an ammonium adipate solution and performing chemical conversion treatment again at 70 ° C. for 60 minutes while applying a voltage of 180 V to the anode body, a dielectric layer is mainly formed on the end face of the anode body. Was formed.
  • a mixed solution was prepared by dissolving 3,4-ethylenedioxythiophene and polystyrene sulfonic acid as a dopant in ion-exchanged water. While stirring the obtained mixed solution, iron (III) sulfate (oxidizing agent) dissolved in ion-exchanged water was added to carry out a polymerization reaction. After the reaction, the obtained reaction solution was dialyzed to remove unreacted monomers and excess oxidizing agent to obtain a polymer dispersion containing polyethylene dioxythiophene doped with about 2% by mass of polystyrene sulfonic acid. ..
  • Mannitol (MAN) as a polyhydric alcohol was added to the polymer dispersion and mixed to obtain a treatment liquid.
  • the amount of mannitol added was adjusted so as to be 5% by mass based on the total amount of the treatment liquid.
  • the capacitor element precursor was immersed in the treatment liquid contained in the predetermined container at room temperature under reduced pressure for 5 minutes. At this time, the capacitor element precursor was immersed in the first aqueous treatment liquid from the side to which the lead tab was not connected. After that, the capacitor element precursor was pulled up from the treatment liquid. Then, the capacitor element precursor impregnated with the treatment liquid was dried in a drying furnace at 180 ° C. for 30 minutes. In this way, polyhydric alcohols and conductive polymers were attached to the capacitor element precursor so as to cover the dielectric layer of the anode.
  • the capacitor element precursor was impregnated with ⁇ -butyrolactone (GBL) as a liquid component at room temperature and under atmospheric pressure.
  • GBL ⁇ -butyrolactone
  • the electrolytic capacitor was completed by sealing the capacitor element impregnated with the liquid component. Then, while applying the rated voltage, the aging treatment was carried out at 130 ° C. for 2 hours.
  • the initial ESR value and low temperature characteristics of the obtained electrolytic capacitor were evaluated by the following procedure. First, the initial ESR value X 1 (m ⁇ ) at a frequency of 100 kHz was measured using an LCR meter for 4-terminal measurement in an environment of 20 ° C.
  • the electrolytic capacitor was charged at the rated voltage for 60 seconds in an environment of 20 ° C., and the current flowing when the rated voltage was applied to the charged electrolytic capacitor was measured and set to the initial leakage current value LC 0 .
  • the electrolytic capacitor was placed in an environment of ⁇ 55 ° C. for 30 minutes. Then, the electrolytic capacitor was placed in an environment of 125 ° C. for 30 minutes. This was set as one cycle and repeated 1000 cycles.
  • the electrolytic capacitor after 1000 cycles was placed in an environment of 20 ° C., and the ESR was measured in the same manner as the initial ESR measurement, and the ESR value X 2 after the evaluation test was obtained. In addition, the ratio X 2 / X 1 of the ESR value after the test to the initial ESR value was evaluated.
  • Example 2 the polyhydric alcohols and the like added to the treatment liquid, the amount thereof added, and the solvent of the liquid component were changed as shown in Table 1.
  • An electrolytic capacitor was prepared in the same manner as in Example 1 except for the above, and evaluated in the same manner as in Example 1.
  • Example 2 a mixed solvent in which ⁇ -butyrolactone (GBL) and sulfolane (SL) were mixed at a mass ratio of 50:50 was used as the liquid component.
  • Example 3 in addition to mannitol, mono (triethylamine) borodisalicylic acid (BSA / TEA) as an acid component was added to the treatment liquid at a ratio of 3% by mass with respect to the entire treatment liquid. Further, as a liquid component, a mixed solvent in which ⁇ -butyrolactone (GBL) and sulfolane (SL) were mixed at a mass ratio of 50:50 was used.
  • BSA / TEA mono (triethylamine) borodisalicylic acid
  • Example 4 ethylene glycol (EG) was used as the liquid component.
  • Example 5 a mixed solvent was used in which ethylene glycol (EG) and polyethylene glycol (PEG) (weight average molecular weight 200) were mixed at a mass ratio of 50:50 as liquid components.
  • EG ethylene glycol
  • PEG polyethylene glycol
  • Example 6 volemitol (VOL) was added to the treatment liquid as a polyhydric alcohol at a ratio of 5% by mass with respect to the whole treatment liquid, and ethylene glycol (EG) was used as a liquid component.
  • Example 7 xylitol (XYL) was added to the treatment liquid as a polyhydric alcohol at a ratio of 5% by mass with respect to the whole treatment liquid, and ethylene glycol (EG) was used as a liquid component.
  • sorbitol (SOR) was added to the treatment liquid as a polyhydric alcohol at a ratio of 5% by mass with respect to the whole treatment liquid, and ethylene glycol (EG) was used as a liquid component.
  • Example 9 a mixed solvent in which ethylene glycol (EG) and ⁇ -butyrolactone (GBL) were mixed at a mass ratio of 30:70 was used as a liquid component.
  • Comparative Examples 1 to 3 No polyhydric alcohol was added to the treatment liquid.
  • a solvent in which ⁇ -butyrolactone (GBL) and mannitol (MAN) were mixed at a mass ratio of 98: 2 was used as the liquid component.
  • GBL ⁇ -butyrolactone
  • MAN mannitol
  • Comparative Example 2 GBL was used as the liquid component as in Example 1.
  • Comparative Example 3 ethylene glycol (EG) was used as the liquid component.
  • An electrolytic capacitor was produced in the same manner as in Example 1 except for the above, and evaluated in the same manner as in Example 1.
  • Example 4 Comparative Example 4
  • polyhydric alcohols were not added to the treatment liquid, and mono (triethylamine) borodisalicylic acid (BSA / TEA) was added as an acid component at a ratio of 3% by mass with respect to the entire treatment liquid.
  • BSA / TEA mono (triethylamine) borodisalicylic acid
  • Example 5 Comparative Example 5
  • an electrolytic capacitor solid electrolytic capacitor was produced without impregnation with a liquid component, and evaluated in the same manner as in Example 1.
  • Table 1 shows the polyhydric alcohols added to the treatment liquid in the electrolytic capacitors of Examples 1 to 9 and Comparative Examples 1 to 5, the acid components and their addition amounts, the composition of the liquid components, and the liquid components after the aging treatment. Shown in the conductivity of.
  • Table 2 shows the evaluation results of the initial ESR and the leakage current in the electrolytic capacitors of Examples 1 to 9 and Comparative Examples 1 to 5.
  • the treatment liquid was impregnated with a treatment liquid containing a conductive polymer and polyhydric alcohols, and then the solvent component of the treatment liquid was removed by drying and impregnated with the liquid component.
  • the electrolytic capacitors of Examples 1 to 9 have a smaller LC 1 / LC 0 than the electrolytic capacitors of Comparative Examples 1 to 5, and the increase in ESR after repeated high temperature environment and low temperature environment is suppressed. Also, the initial ESR is low.
  • an aprotic solvent or a mixed solvent of an aprotic solvent is used as the solvent of the treatment liquid.
  • the polyhydric alcohols are difficult to elute, most of the polyhydric alcohols are unevenly distributed on the surface of the anode and in the conductive polymer layer.
  • the conductive polymer layer solid electrolyte layer
  • the initial ESR is significantly reduced.
  • Examples 4 to 6 a protonic solvent or a mixed solvent of a protonic solvent is used as the solvent of the treatment liquid.
  • the polyhydric alcohols are easily eluted, and the concentration of the polyhydric alcohols present in the liquid component is higher than that in Examples 1 to 3.
  • the amount of change in ESR X 2 / X 1 tends to be smaller than in Examples 1 to 3.
  • the initial ESR and X 2 / X 1 were slightly higher than in Examples 1-6.
  • the reason for this is that the melting points of the polyhydric alcohols used in Examples 7 and 8 (xylitol 94 ° C., sorbitol 95 ° C.) are the melting points of the polyhydric alcohols used in Examples 1 to 6 (mannitol 167 ° C., volemitol 152 ° C.). This is probably because it is lower than °C). It can be said that the melting point of the polyhydric alcohol is preferably 100 ° C. or higher, more preferably 150 ° C. or higher.
  • Example 9 a mixed solvent of a protic solvent and an aprotic solvent is used as the solvent of the treatment liquid.
  • the initial ESR could be lowered and X 2 / X 1 could be lowered.
  • the present invention can be used for a hybrid electrolytic capacitor using a conductive polymer and a liquid component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

表面に誘電体層を有する箔状の陽極体と、箔状の陰極体とを含む電解コンデンサの製造方法であって、セパレータと、セパレータを挟んで対向している陽極体および陰極体とを巻回または積層することによってコンデンサ素子前駆体を形成する工程(i)と、多価アルコール類、溶媒、および導電性高分子成分を含有する処理液をコンデンサ素子前駆体に含浸させる工程(ii)と、工程(ii)を経たコンデンサ素子前駆体に、液状成分を含浸させる工程(iii)と、液状成分に、多価アルコール類を溶出させ、コンデンサ素子を得る工程(iv)と、を有する。

Description

電解コンデンサおよびその製造方法
 本発明は、電解コンデンサおよびその製造方法に関する。
 小型かつ大容量で低ESRのコンデンサとして、誘電体層を有する陽極箔と陰極体とを有し、誘電体層に付着した導電性高分子を備える電解コンデンサがある。なかでも、固体電解質としての導電性高分子と、液状成分(電解液)とを併用したハイブリッド型電解コンデンサは、漏れ電流を低減できることから期待されている(例えば、特許文献1)。
 上記ハイブリッド型電解コンデンサにおいて、誘電体層の修復機能を持たせるためや、耐電圧等の特性向上のために、液状成分に各種の溶質成分(支持塩)を含ませることが試みられている。
特許第4916416号明細書
 しかしながら、電解液に種々の溶質成分(支持塩)を多量に含ませる結果、電解液の保存安定性が悪くなり、特に低温(例えば、氷点下)において溶質成分が析出し易い。結果、長期使用後または低温環境において、コンデンサの特性が低下し易い。また、溶質成分が導電性高分子と反応し、コンデンサの特性を低下させる場合や、導電性高分子の特性低下を促進させる場合もある。
 本開示の一局面は、表面に誘電体層を有する箔状の陽極体と、箔状の陰極体とを含む電解コンデンサの製造方法であって、セパレータと、前記セパレータを挟んで対向している前記陽極体および前記陰極体とを巻回または積層することによってコンデンサ素子前駆体を形成する工程(i)と、多価アルコール類、溶媒、および導電性高分子成分を含有する処理液を前記コンデンサ素子前駆体に含浸させる工程(ii)と、前記工程(ii)を経た前記コンデンサ素子前駆体に、液状成分を含浸させる工程(iii)と、前記液状成分に、前記多価アルコール類を溶出させ、コンデンサ素子を得る工程(iv)と、を有する、電解コンデンサの製造方法に関する。
 本開示の他の局面は、コンデンサ素子を含む電解コンデンサであって、前記コンデンサ素子は、セパレータと、前記セパレータを挟むように対向している箔状の陽極体および箔状の陰極体と、前記陽極体と前記陰極体との間に介在する固体電解質層と、液状成分と、を含み、前記固体電解質層は、多価アルコール類と、導電性高分子とを含有し、前記固体電解質層は、前記多価アルコール類が偏在している偏在部を有する、電解コンデンサに関する。
 本開示の製造方法により、電解コンデンサの特性を向上できる。
本開示の一実施形態に係る電解コンデンサを模式的に示す断面図である。 同電解コンデンサに含まれる巻回体の一部を展開した概略図である。
 本開示の一実施形態に係る電解コンデンサの製造方法は、表面に誘電体層を有する箔状の陽極体と、箔状の陰極体とを含む電解コンデンサの製造方法であって、以下の工程(i)~(iv)を含む:
 (i)セパレータと、セパレータを挟んで対向している陽極体および陰極体とを巻回または積層することによってコンデンサ素子前駆体を形成する工程、
 (ii)多価アルコール類、溶媒、および導電性高分子成分を含有する処理液をコンデンサ素子前駆体に含浸させる工程、
 (iii)工程(ii)を経たコンデンサ素子前駆体に、液状成分を含浸させる工程、および、
 (iv)液状成分に、多価アルコール類を溶出させ、コンデンサ素子を得る工程。
 本実施形態の製造方法によれば、工程(ii)において、多価アルコール類および導電性高分子成分をコンデンサ素子前駆体に付着させた後で、工程(iii)で液状成分をコンデ
ンサ素子前駆体に含浸させることで、導電性高分子が陽極体および/またはセパレータの表面に密着し、特性に優れた電解コンデンサを製造できる。特に、ESR(等価直列抵抗)の低い電解コンデンサを実現できる。また、低温環境における特性の低下を抑制できる。
 多価アルコール類には、炭素原子に結合した複数の水酸基(-OH)を含有する有機化合物(例えばポリマーではない有機化合物)が含まれ、例えばグルコースなどの糖類が含まれるものとする。多価アルコール類の他の例としては、マンニトール、ソルビトール、キシリトール、ボレミトール、ペンタエリトリトール、およびトリメチロールプロパン、グリセリンなどが挙げられる。なお、マンニトール、ソルビトール、キシリトール、ボレミトール、ペンタエリトリトールなどは、糖アルコールとも呼ばれる。多価アルコール類としては、ヒドロキシ基を3つ以上有する化合物を用いてもよい。
 多価アルコール類は、ヒドロキシ基を複数有するため、陽極体およびセパレータの表面に存在するヒドロキシ基と結合し易い。これにより、多価アルコール類、溶媒、および導電性高分子成分を含有する処理液をコンデンサ素子前駆体に含浸させ、その後、溶媒を乾燥により除去することで、導電性高分子が陽極体およびセパレータに定着する。結果、導電性高分子が陽極体に密着し、電解コンデンサのESRを低減できる。
 また、工程(iv)において、液状成分に多価アルコール類が溶出することで、凝固点降下により液状成分の融点が下がり、低温環境においても液状成分の粘度を低く維持できる。これにより、低温特性が改善する。工程(iv)後において、多価アルコール類は、液状成分の全体に対して0.1質量%以上1質量%以下の範囲で含まれる。
 工程(ii)において、多価アルコール類は導電性高分子層内に取り込まれるように付着し、導電性高分子の近傍に偏在し得る。陽極体または陰極体とセパレータの間には導電性高分子の層(固体電解質層)が形成され得る。多価アルコール類の一部は、液状成分の含浸後においても溶出することなく導電性高分子層内に析出した状態で偏在し得る。多価アルコール類は、導電性高分子層内において分散した状態で偏在していると考えられる。すなわち、固体電解質層は緻密ではなく、例えばスポンジのような中空部分を有しており、中空部分に多価アルコール類が析出していると考えられ、工程(iv)を経た後においても、中空部分に液状成分および(液状成分に溶出していない)多価アルコール類が偏在し得る。このような構造により、電解コンデンサの特性を向上できる。
 工程(ii)において、処理液は、多価アルコール類の他に酸成分が含まれていてもよい。多価アルコール類および酸成分に加えて、塩基成分が処理液に含まれていてもよい。すなわち、工程(ii)において、酸成分は塩基成分との塩の形で処理液に含まれていてもよい。
 電解コンデンサに含まれる酸成分は、誘電体層を構成する酸化皮膜に損傷が生じた際に、損傷部分に酸素を供給し、損傷部分を修復する作用を有している。液状成分に酸成分が含まれることで、誘電体層に生じた損傷を修復でき、漏れ電流(LC)を低く、耐圧を高く維持できる。しかしながら、液状成分に含まれる酸成分が過大であると、低温環境において酸成分が析出し、特性の低下を招き易い。また、長期使用によりESR(等価直列抵抗)が上昇し易い。
 本実施形態の製造方法では、工程(ii)の処理液に酸成分を含ませることで、多価アルコール類と同様、酸成分も導電性高分子の近傍に偏在し得る。工程(iv)の後では、酸成分の一部は液状成分に溶出するが、一部は導電性高分子の近傍であって且つ陽極体の近傍に偏在している。これにより、液状成分に含まれる酸成分の量を制限しながら、高い誘電体層の修復効果を得ることができる。結果、低温特性の低下や、長期使用によるESRの上昇を抑制しながら、漏れ電流を低く、且つ、耐圧を高くできる。
 酸成分は、また、導電性高分子に含まれるドーパントが脱離することによる劣化を抑制する作用も有し得る。よって、液状成分に酸成分が含まれていることにより、導電性高分子の脱ドープによる導電性の低下が抑制され、長期使用においてもESRを低く維持できる。また、耐電圧が向上する。
 液状成分は、非プロトン性溶媒を含んでいてもよいし、プロトン性溶媒を含んでいてもよい。非プロトン性溶媒は、酸成分を溶解させ易い一方、多価アルコール類を溶解させ難い。よって、多価アルコール類に対して酸成分を選択的に液状成分に溶出させることができる。これにより、導電性高分子の脱ドープによる劣化が抑制され、ESRを低く維持できる。一方で、プロトン性溶媒は、酸成分を溶解させ難い一方、多価アルコール類を溶解させ易い。よって、酸成分に対して多価アルコール類を選択的に液状成分に溶出させることができる。これにより、酸成分が陽極体の近傍に偏在し、誘電体層の修復効果を高めることができ、漏れ電流の増加の抑制効果に優れる。また、多価アルコール類による低温特性の改善効果を高めることができる。
 液状成分は、また、無極性溶媒を含んでいてもよい。液状成分における非プロトン性溶媒、プロトン性溶媒、および、無極性溶媒の割合は、求められる電解コンデンサの特性に応じて、適宜調整され得る。
 なお、プロトン性溶媒とは、ヒルデブランドによる溶解度パラメータ(SP値)が14以上の溶媒を意味する。非プロトン性溶媒とは、上記溶解度パラメータ(SP値)が5以上14未満の溶媒を意味する。
 以下、適宜図面を参照しながら、本実施形態をより具体的に説明する。ただし、以下の実施形態は本発明を限定するものではない。
(工程(i))
 まず、セパレータと、セパレータを挟んで対向している陽極体および陰極体とを巻回または積層することによってコンデンサ素子前駆体を形成する。コンデンサ素子前駆体は、電解質層が形成される前の素子である。
 箔状の陽極体は、公知の方法で形成してもよい。例えば、まず、陽極体の原料である金属箔を準備し、金属箔の表面を粗面化する。粗面化は、例えば、直流電解法や交流電解法によるエッチングによって行うことができる。次に、粗面化された金属箔の表面に誘電体層を形成する。誘電体層は、例えば、金属箔を化成処理することによって形成できる。金属箔の化成処理によって金属箔の表面が酸化され、それによって酸化物皮膜である誘電体層が形成される。このようにして、陽極体が形成される。
 なお、必要に応じて、陽極体および陰極体には、電気的な接続を行うためのリード端子が接続される。
 電解コンデンサが巻回型のコンデンサである場合には、例えば、箔状の陽極体と箔状の陰極体とセパレータとをまとめて巻回することによって、コンデンサ素子前駆体を形成できる。このとき、陽極体と陰極体との間にセパレータが配置されるように、それらを巻回する。
 電解コンデンサが積層型のコンデンサである場合には、例えば、箔状の陽極体と箔状の陰極体とセパレータとをまとめてジグザグに折り曲げることによって、コンデンサ素子前駆体を形成できる。このとき、陽極体と陰極体との間にセパレータが配置されるように、それらを折り曲げる。
(工程(ii))
 次に、多価アルコール類、溶媒、および導電性高分子成分を含有する処理液をコンデンサ素子前駆体に含浸させる。溶媒は、水でもよく、水と非水溶媒との混合物でもよく、非水溶媒でもよい。非水溶媒は、特に限定されないが、例えば、プロトン性溶媒、非プロトン性溶媒を用いることができる。プロトン性溶媒としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類、ホルムアルデヒド、1,4-ジオキサンなどのエーテル類などが例示できる。非プロトン性溶媒としては、N-メチルアセトアミド,N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類や、酢酸メチルなどのエステル類、メチルエチルケトンなどのケトン類などが例示できる。
 多価アルコール類としては、上述の化合物を利用できる。多価アルコール類は、融点が高いものが好ましい。融点が高いほど、処理液を含浸後の溶媒の乾燥工程において、多価アルコール類は多孔質部を有する陽極体の細孔の奥深くまで侵入し易い。よって、陽極体の多孔質部の深部において、多価アルコール類のヒドロキシ基と陽極体表面のヒドロキシ基が結合し、導電性高分子の密着性を高められる。これにより、ESRを向上できる。多価アルコール類の融点は、80℃以上、100℃以上、もしくは150℃以上であってもよい。なお、上記で挙げた多価アルコール類について、グルコースの融点は146~150℃程度、マンニトールの融点は165~169℃程度、ソルビトールの融点は93~95℃程度、キシリトールの融点は92~97℃程度、ペンタエリトリトールの融点は257~260℃程度、トリメチロールプロパンの融点は56~58℃程度である。なお、これらの物質は、構造(立体異性体)によって融点にばらつきがある場合がある。
 処理液の溶媒は、例えば、水であってもよい。含浸は、例えば、水性処理液に、コンデンサ素子前駆体を浸漬することによって行うことができる。水性処理液は、水を含む処理液である。水性処理液を構成する液体(溶媒)に含まれる水の量は、例えば50~100質量%の範囲にある。
 浸漬の時間は特に限定されないが、例えば、1分以上20分以下であってもよい。コンデンサ素子前駆体の全体を水性処理液に浸漬してもよいし、コンデンサ素子前駆体の一部のみを水性処理液に浸漬してもよい。例えば、コンデンサ素子前駆体の長手方向(巻回体の場合には軸方向)の50%以下の部分だけを水性処理液に浸漬してもよい。
 処理液の含浸は、室温で行ってもよいし、室温以外の温度(例えば室温よりも高い温度)で行ってもよい。また、処理液の含浸は大気圧下で行ってもよいし、大気圧以外の環境下(例えば減圧下)で行ってもよい。
 処理液に含まれる多価アルコール類の含有割合は、0.1質量%以上10質量%以下であってもよい。多価アルコール類の含有割合が0.1質量%以上とすることで、ESRの低減効果が得られる。一方で、多価アルコール類の含有割合を高めるに伴い、処理液の粘度が高くなり、導電性高分子の含浸が困難になる場合がある。導電性高分子の含浸を容易に行う観点から、多価アルコール類の含有割合は10質量%以下としてもよい。
 処理液において、導電性高分子成分は、導電性高分子であってもよく、導電性高分子の前駆体であってもよい。すなわち、導電性高分子が分散した処理液をコンデンサ素子前駆体に含浸させ、導電性高分子の層(固体電解質層)を陽極体とセパレータとの間の空間に形成してもよいし、導電性高分子の前駆体(例えば、原料モノマー)を陽極体の誘電体層上で重合させることによって固体電解質層を形成してもよい。固体電解質層は、1層で構成されてもよいし、含浸を複数回に分けて行うことにより、構成する材料が異なる2層以上で構成されてもよい。導電性高分子の材料としては、後述するものを用いることができる。
 導電性高分子が分散した処理液(高分子分散体)に含まれる導電性高分子の濃度は、0.5~10質量%が好ましい。また、導電性高分子の平均粒径D50は、例えば0.01~0.5μmが好ましい。ここで、平均粒径D50は、動的光散乱法による粒度分布測定装置により求められる体積粒度分布におけるメディアン径である。高分子分散体は、例えば、液状分散媒に導電性高分子を分散させる方法、液状分散媒中で前駆体モノマーを重合させ、導電性高分子の粒子を生成させる方法などにより得ることができる。
 処理液は、導電性高分子成分および多価アルコール類のほか、酸成分を含んでいてもよい。酸成分は、導電性高分子の脱ドープを抑制する作用を有する。処理液には、さらに、塩基成分が含まれていてもよい。
 酸成分は、酸性の官能基を含む化合物を含み得る。酸性の官能基としては、例えば、カルボキシ基、ヒドロキシ基、スルホ基、リン酸基、ニトロ基およびオキソ基が挙げられる。酸成分は、カルボン酸、リン酸、スルホン酸、ホウ酸および/またはこれらの塩を含むものであってもよい。より具体的に、酸成分には、マレイン酸、フタル酸、安息香酸、ピロメリット酸、レゾルシン酸、ボロジサリチル酸などが含まれる。酸性の官能基を含む化合物は、ポリカルボン酸であってもよく、フェノール性のヒドロキシ基を有する化合物であってもよい。
 酸成分としては、ポリカルボン酸およびモノカルボン酸を用いることができる。
 ポリカルボン酸としては、脂肪族ポリカルボン酸([飽和ポリカルボン酸、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバチン酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸];[不飽和ポリカルボン酸、例えばマレイン酸、フマル酸、イコタン酸])、芳香族ポリカルボン酸(例えばフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸)、脂環式ポリカルボン酸(例えばシクロヘキサン-1,2-ジカルボン酸、シクロヘキセン-1,2-ジカルボン酸等)が挙げられる。
 上記モノカルボン酸としては、脂肪族モノカルボン酸(炭素数1~30)([飽和モノカルボン酸、例えばギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、ステアリン酸、ベヘン酸];[不飽和モノカルボン酸、例えばアクリル酸、メタクリル酸、オレイン酸])、芳香族モノカルボン酸(例えば安息香酸、ケイ皮酸、ナフトエ酸)、オキシカルボン酸(例えばサリチル酸、マンデル酸、レゾルシン酸)が挙げられる。
 これらのなかでも、マレイン酸、フタル酸、安息香酸、ピロメリット酸、レゾルシン酸が、伝導度が高く熱的に安定であり、好ましく用いられる。
 無機酸としては、炭素化合物、水素化合物、ホウ素化合物、硫黄化合物、窒素化合物、リン化合物が挙げられる。代表的な無機酸の例として、リン酸、亜リン酸、次亜リン酸、アルキル燐酸エステル、ホウ酸、ホウフッ酸、4フッ化ホウ酸、6フッ化リン酸、ベンゼンスルホン酸、ナフタレンスルホン酸などが挙げられる。
 また、酸成分として有機酸と無機酸の複合化合物を用いることができる。例えば、ボロジグリコール酸、ボロジ蓚酸、ボロジサリチル酸などが挙げられる。
 酸成分に加えて、塩基成分を処理液に含ませてもよい。
 塩基成分としては、水酸化ナトリウム、水酸化カリウムなどの金属水酸化物、脂肪族アミン、環状アミンなどの窒素を含有する塩基性化合物などが挙げられる。なかでも、アルキル置換アミジン基を有する化合物で、イミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物(ピリミジン化合物、イミダゾリン化合物)は、電導度が高く、インピーダンス性能の優れたコンデンサを提供できる。アルキル置換アミジン基を有する化合物の例としては、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、1,2-ジメチルイミダゾリニウム、1,2,4-トリメチルイミダゾリン、1-メチル-2-エチル-イミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-(3’ヘプチル)イミダゾリン、1-メチル-2-ドデシルイミダゾリン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-メチルイミダゾール、1-メチルベンゾイミダゾールなどが挙げられる。塩基成分としてアルキル置換アミジン基を有する化合物の4級塩を用いてもよい。具体的には、炭素数1~11のアルキル基またはアリールアルキル基で4級化されたイミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物(ピリミジン化合物、イミダゾリン化合物)が挙げられる。
 また、塩基成分として三級アミンを用いることもでき、トリアルキルアミン類(トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミン、ジメチルn-プロピルアミン、ジメチルイソプロピルアミン、メチルエチルn-プロピルアミン、メチルエチルイソプロピルアミン、ジエチルn-プロピルアミン、ジエチルイソプロピルアミン、トリn-プロピルアミン、トリイソプロピルアミン、トリn-ブチルアミン、トリtert-ブチルアミンなど)、フェニル基含有アミン(ジメチルフェニルアミン、メチルエチルフェニルアミン、ジエチルフェニルアミンなど)が挙げられる。なかでも、伝導度が高い点でトリアルキルアミン類が好ましく、トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミンからなる群より選択される少なくとも1種を含むことがより好ましい。また、塩基成分として、ジアルキルアミン類などの二級アミン、モノアルキルアミンなどの一級アミン、アンモニアを用いてもよい。
 塩基成分は、酸成分との塩の形で処理液に含ませてもよい。酸成分との塩として、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが挙げられる。
 含浸後、乾燥により処理液に含まれる溶媒を除去することにより、陽極体とセパレータとの間に固体電解質層が形成されるとともに、多価アルコール類が析出し、多価アルコール類の少なくとも一部が陽極体、セパレータおよび固体電解質層に付着する。また、処理液に酸成分や塩基成分が含まれる場合、これらの成分も析出し、陽極体、セパレータおよび固体電解質層に付着し得る。
 導電性高分子、多価アルコール類、および酸成分は、陽極体の表面の誘電体層の少なくとも一部を覆うように付着し、且つ、粗面化された陽極体の細孔内の少なくとも一部を埋めるように付着し得る。
 乾燥は、通常、加熱によって行われる。乾燥は大気圧下で行ってもよいし、大気圧以外の環境下(たとえば減圧下)で行ってもよい。乾燥温度は、多価アルコール類の融点以上の温度であってもよく、さらに、乾燥を行う圧力下における溶媒の沸点以上の温度(たとえば100℃以上)であってもよい。好ましい一例では、乾燥の温度は、乾燥を行う圧力下における溶媒の沸点以上の温度(たとえば100℃以上)であり、且つ、乾燥を行う圧力下における多価アルコール類の融点以上であって沸点未満の温度である。多価アルコール類の融点以上の温度で乾燥させることによって、コンデンサ素子前駆体への多価アルコール類の浸透性を高めることができる。乾燥温度は、例えば、150℃以上もしくは180℃以上であってもよい。
 なお、必要に応じて、処理液の含浸(工程(ii))と、乾燥工程とを繰り返し行ってもよい。工程(ii)を繰り返すことによって、析出する多価アルコール類および酸成分の量を多くすることができる。
(工程(iii))
 続いて、コンデンサ素子前駆体に、液状成分を含浸させる。液状成分は、室温(25℃)において液体である物質であってもよいし、電解コンデンサの使用時の温度において液体である物質であってもよい。
 液状成分を含浸させる方法は特に限定されない。例えば、容器に収容された液状成分にコンデンサ素子前駆体を浸漬させる方法が簡易で好ましい。含浸は、減圧下、例えば10~100kPaの雰囲気で行うことが好ましい。液状成分としては、上述した材料を挙げることができる。
 液状成分は、多価アルコール類を溶解させる溶媒を含む。必要に応じて、溶媒に溶解する他の溶質を含んでいてもよい。液状成分に、上述の酸成分および/または塩基成分を含ませてもよい。酸成分および/または塩基成分については、上述の処理液において例示した化合物から選択できる。
 液状成分は、非水溶媒であってもよく、非水溶媒とこれに溶解させたイオン性物質(溶質、例えば、有機塩)との混合物(つまり、電解液)であってもよい。非水溶媒は、有機溶媒であってもよいし、イオン性液体であってもよい。非水溶媒としては、高沸点溶媒が好ましい。非水溶媒の例には、エチレングリコール(EG)、プロピレングリコールなどの多価アルコール類、スルホラン(SL)などの環状スルホン類、γ-ブチロラクトン(GBL)などのラクトン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、炭酸プロピレンなどのカーボネート化合物、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどが含まれる。
 また、非水溶媒として、高分子系溶媒を用いてもよい。高分子系溶媒の例には、ポリアルキレングリコール、ポリアルキレングリコールの誘導体、多価アルコール中の水酸基の少なくとも1つがポリアルキレングリコール(誘導体を含む)に置換された化合物などが含まれる。具体的には、高分子系溶媒の例には、ポリエチレングリコール(PEG)、ポリエチレングリコールグリセリルエーテル、ポリエチレングリコールジグリセリルエーテル、ポリエチレングリコールソルビトールエーテル、ポリプロピレングリコール、ポリプロピレングリコールグリセリルエーテル、ポリプロピレングリコールジグリセリルエーテル、ポリプロピレングリコールソルビトールエーテル、ポリブチレングリコールなどが含まれる。高分子系溶媒の例には、さらに、エチレングリコール-プロピレングリコールの共重合体、エチレングリコール-ブチレングリコールの共重合体、プロピレングリコール-ブチレングリコールの共重合体などが含まれる。非水溶媒は、一種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 導電性高分子におけるドーパントの脱ドープを抑制するために、液状成分のpHを7未満としてもよく、5以下としてもよい。液状成分のpHは、工程(iv)の後、酸成分の溶出後に上記の酸性度となるように調整され得る。
 液状成分は、プロトン性溶媒であってもよく、非プロトン性溶媒であってもよい。プロトン性溶媒は、後述の工程(iv)において、多価アルコール類分を溶出させ易い。よって、溶出した多価アルコール類により低温特性を高めることができる。一方、非プロトン性溶媒は、工程(iv)において、多価アルコール類が溶出し易い。この場合、導電性高分子の陽極体への固着性が向上し、ESRを低くできる。液状成分の全体のうち50質量%以上が非プロトン性溶媒であり、50質量%未満がプロトン性溶媒であることが好ましい。液状成分の全体のうち60質量%以上が非プロトン性溶媒であり、40質量%未満がプロトン性溶媒であるとさらに好ましい。
てもよい。
 液状成分は、電解液であってもよいし、電解液でなくてもよい。液状成分は、溶質を実質的に含まず、実質的に電気電導性を有さなくてもよい。例えば、工程(iii)において、液状成分の電導度X1は1μS/cm以下が好ましい。
(工程(iv))
 続いて、液状成分に多価アルコール類を溶出させる。これにより、コンデンサ素子が得られる。工程(iv)は、工程(iii)と同時または並行して行われ得る。
 液状成分の含浸により、工程(ii)において析出した多価アルコール類、酸成分および/または塩基成分の少なくとも一部が溶出する。この結果、液状成分の電導度は上昇する。
 工程(iv)後において、多価アルコール類および/または酸成分が溶出した液状成分の電導度X2は、X1より高く(X2>X1)、500μS/cm以下が好ましい。液状成分の電導度X2は、0.1μS/cm以上500μS/cm以下であってもよく、0.1μS/cm以上100μS/cm以下、0.5μS/cm以上500μS/cm以下もしくは0.5μS/cm以上100μS/cm以下がより好ましい。
 工程(ii)において酸成分を含む処理液を用いる場合、工程(iv)において液状成分に酸成分が溶出し得る。溶出した酸成分により、導電性高分子の脱ドープによる導電性の低下が抑制され、長期使用においてもESRを低く維持できる。また、耐電圧が向上する。しかしながら、酸成分の溶出が過大であると、長期使用によりESRが上昇し、また低温特性が低下する場合がある。長期使用によるESR上昇を抑制し、低温特性の低下を抑制するため、工程(iv)後の液状成分中において、酸成分の含有割合は、酸成分を含む記液状成分の全体に対して0.01質量%以上2質量%以下が好ましい。
 工程(ii)において塩基成分を含む処理液を用いる場合、液状成分に塩基成分が溶出し得る。その場合、長期使用によるESR上昇をより抑制するために、工程(iv)後の液状成分中において、塩基成分の含有割合は、塩基成分を含む液状成分の全体に対して2質量%以下が好ましい。
 なお、液状成分に占める酸成分、塩基成分、多価アルコール類などの各溶質の含有量は、電解コンデンサから内部の液状成分を遠心分離器により抽出し、顕微FT-IR分析あるいは液体クロマトグラフィにより測定することができる。
 工程(iv)後の液状成分には、工程(ii)後の乾燥工程で除去されなかった処理液の溶媒(例えば、水)を含み得る。液状成分に含まれる水分量が多いと、リフロー工程などで電解コンデンサに熱が加えられた際に水分が気化し、蒸気により電解コンデンサを封止しているケースの気密性が低下する場合がある。工程(iv)後において、液状成分に含まれる水分量は、5質量%以下が好ましく、3質量%以下がより好ましい。
 工程(iv)で得られたコンデンサ素子を用いて、電解コンデンサが製造される。コンデンサ素子を用いて電解コンデンサを製造する方法に特に限定はなく、公知の方法を適用してもよい。例えば、コンデンサ素子をケースに入れて封止すればよい。
 以下に、本実施形態の製造方法にて製造される電解コンデンサの構成例について詳細に説明する。
[電解コンデンサ]
 本発明の一実施形態に係る電解コンデンサは、コンデンサ素子を含む電解コンデンサであって、コンデンサ素子は、セパレータと、セパレータを挟むように対向している箔状の陽極体および箔状の陰極体と、陽極体と陰極体との間に介在する固体電解質層と、液状成分と、を含む。固体電解質層は、多価アルコール類と、導電性高分子とを含有する。固体電解質層は、多価アルコール類が偏在している偏在部を有する。液状成分(電解液または溶媒)および導電性高分子は、電解質として用いられる。
 図1は、本実施形態に係る電解コンデンサの断面模式図であり、図2は、同電解コンデンサに含まれる巻回体の一部を展開した概略図である。
 図1に示すように、電解コンデンサは、例えば、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封止部材12と、封止部材12を覆う座板13と、封止部材12から導出され、座板13を貫通するリード線14A、14Bと、リード線とコンデンサ素子10の電極とを接続するリードタブ15A、15Bと、液状成分(図示せず)とを備える。コンデンサ素子10は、液状成分とともに、外装ケースに収容される。有底ケース11の開口端近傍は、内側に絞り加工されており、開口端は封止部材12にかしめるようにカール加工されている。
 コンデンサ素子10は、例えば、図2に示すような巻回体に、導電性高分子を付着させることにより作製される。巻回体は、誘電体層を有する陽極体21と、弁作用を有する第1金属を含む陰極体22と、これらの間に介在するセパレータ23と、を備えている。導電性高分子は、陽極体21の誘電体層の表面の少なくとも一部を覆うように付着し、固体電解質層が形成されている。コンデンサ素子10は、さらに、陽極体21と接続されたリードタブ15Aと、陰極体22に接続されたリードタブ15Bと、を備えている。
 陽極体21および陰極体22は、セパレータ23を介して巻回されている。巻回体の最外周は、巻止めテープ24により固定される。なお、図2は、巻回体の最外周を止める前の、一部が展開された状態を示している。陽極体21は、表面が凹凸を有するように粗面化された金属箔を具備し、凹凸を有する金属箔の主面に誘電体層が形成されている。
 (陽極体)
 陽極体は、表面に誘電体層を有する。陽極体には、表面に誘電体層が形成された金属箔を用いることができる。金属箔に含まれる金属の種類は特に限定されないが、誘電体層の形成が容易である点から、アルミニウム、タンタル、ニオブ、チタンなどの弁作用を有する金属、および弁作用を有する金属の合金が好ましい。なかでも、アルミニウムなどの金属単体、アルミニウム合金などの合金が好ましい。通常、陽極体の表面は粗面化され、粗面化された金属箔の表面には誘電体層が形成されている。
 (陰極体)
 陰極体には、金属箔を用いることができる。金属箔に含まれる金属の種類は特に限定されないが、例えば、アルミニウム、タンタル、ニオブ、チタンなどの弁作用を有する金属、または弁作用を有する金属の合金を用いることができる。金属箔に含まれる金属は、アルミニウムなどの金属単体あるいはアルミニウム合金などの合金であってもよい。陰極体の表面は、粗面化されていてもよいし、粗面化されていなくてもよい。また、陰極体の表面には、化成皮膜が設けられていてもよく、陰極体を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属やカーボンのような非金属などを挙げることができる。
 (セパレータ)
 セパレータには、電解質が含浸されうるシート状物を用いることができ、例えば、絶縁性を有し且つ電解質が含浸されうるシート状物を用いてもよい。セパレータは、織布であってもよいし、不織布であってもよいし、多孔質膜であってもよい。セパレータの材料としては、例えば、セルロース、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ビニロン、ナイロン、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、レーヨン、ガラス質などが挙げられる。
 (導電性高分子)
 導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリアニリンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよく、2種以上のモノマーの共重合体でもよい。導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。
 なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが含まれる。
 導電性高分子には、ドーパントを添加してもよい。導電性高分子からの脱ドープを抑制する観点からは、高分子ドーパントを用いることが望ましい。高分子ドーパントとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などのアニオンが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらは単独重合体であってもよく、2種以上のモノマーの共重合体であってもよい。なかでも、ポリスチレンスルホン酸(PSS)が好ましい。
 ドーパントの重量平均分子量は、特に限定されないが、均質な固体電解質層を形成しやすい点で、例えば1000~100000であることが好ましい。
 導電性高分子は、ポリスチレンスルホン酸がドープされたポリ(3,4-エチレンジオキシチオフェン)であってもよい。
 固体電解質層内には、多価アルコール類(不図示)が偏在している。多価アルコール類は、一部は液状成分に溶出しているが、残りの一部は固体電解質層内に分散した状態で偏在して析出している。
 上記の実施形態では、巻回型の電解コンデンサについて説明したが、本発明の適用範囲は上記に限定されず、他の電解コンデンサ、例えば、陽極体として金属の焼結体を用いるチップ型の電解コンデンサや、金属板を陽極体として用いる積層型の電解コンデンサにも適用することができる。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
 本実施例では、定格電圧100V、定格静電容量18μFの巻回型の電解コンデンサ(直径8mm×長さ12mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
 下記の要領で、図1に示す電解コンデンサを作製し、その特性を評価した。
(1)コンデンサ素子の作製
(陰極体の準備)
 陰極体として、厚さ50μmのAl箔(アルミニウム箔)を用いた。
(陽極体の準備)
 厚さ120μmのAl箔を準備した。このAl箔に直流エッチング処理を行い、表面を粗面化した。次いで、Al箔に化成処理を施して誘電体層(厚み:約70nm)を形成することにより陽極体を得た。誘電体層は、アジピン酸アンモニウム溶液にAl箔を浸漬させ、Al箔に180Vの電圧を印加しながら、70℃で30分間化成処理を行うことにより形成した。その後、陽極体を所定サイズに裁断して、陽極体を準備した。
(巻回体の作製)
 準備した陽極体および端面に導体層を有する陰極体に、リード線が接続された陽極リードタブおよび陰極リードタブをそれぞれ接続し、陽極体と陰極体とを、リードタブを巻き込みながら、セパレータを介して巻回し、外側表面を巻止めテープで固定することで巻回体を作製し、コンデンサ素子前駆体を得た。
 コンデンサ素子前駆体をアジピン酸アンモニウム溶液に浸漬させ、陽極体に対して、180Vの電圧を印加しながら、70℃で60分間再度化成処理を行うことにより、主に陽極体の端面に誘電体層を形成した。
(処理液の調製)
 3,4-エチレンジオキシチオフェンと、ドーパントとしてのポリスチレンスルホン酸とを、イオン交換水に溶かした混合溶液を調製した。得られた混合溶液を撹拌しながら、イオン交換水に溶かした硫酸鉄(III)(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析して、未反応モノマーおよび過剰な酸化剤を除去し、約2質量%のポリスチレンスルホン酸がドープされたポリエチレンジオキシチオフェンを含む高分子分散体を得た。
 高分子分散体に、多価アルコール類としてマンニトール(MAN)を加えて混合し、処理液を得た。マンニトールは、処理液の全体に対して5質量%となるように添加量を調整した。
(処理液の含浸および乾燥)
 続いて、室温で減圧下において、所定容器に収容された処理液にコンデンサ素子前駆体を5分間浸漬した。このとき、リードタブが接続されていない側からコンデンサ素子前駆体を第1の水性処理液に浸漬した。その後、処理液からコンデンサ素子前駆体を引き上げた。
 その後、処理液を含浸したコンデンサ素子前駆体を、180℃の乾燥炉内で30分間乾燥させた。このようにして、陽極体の誘電体層を覆うように、コンデンサ素子前駆体に多価アルコール類および導電性高分子を付着させた。
(液状成分の含浸)
 コンデンサ素子前駆体に、室温で且つ大気圧下において、液状成分としてγ-ブチロラクトン(GBL)を含浸させた。
(コンデンサ素子の封止)
 液状成分を含浸させたコンデンサ素子を封止して、電解コンデンサを完成させた。その後、定格電圧を印加しながら、130℃で2時間エージング処理を行った。
(評価)
 得られた電解コンデンサについて、下記の手順で、初期ESR値および低温特性を評価した。
 先ず、20℃の環境下で、4端子測定用のLCRメータを用いて、周波数100kHzにおける初期ESR値X(mΩ)を測定した。
 次に、20℃の環境下で、電解コンデンサを定格電圧で60秒間充電し、充電後の電解コンデンサに定格電圧を印加したときに流れる電流を測定し、初期の漏れ電流値LCとした。
 続いて、電解コンデンサを30分間、-55℃の環境に置いた。その後、電解コンデンサを30分間、125℃の環境に置いた。これを1サイクルとして1000サイクル繰り返した。1000サイクル後の電解コンデンサを20℃の環境下に置き、初期ESRの測定と同様にしてESRを測定し、評価試験後のESR値Xとした。また、試験後のESR値の、初期ESR値に対する比X/Xを評価した。
《実施例2~7》
 実施例1において、処理液に添加する多価アルコール類等およびその添加量、および、液状成分の溶媒を表1に示す通り変更した。他は実施例1と同様にして、電解コンデンサを作成し、実施例1と同様に評価した。
 実施例2では、液状成分として、γ-ブチロラクトン(GBL)およびスルホラン(SL)を50:50の質量比で混合した混合溶媒を用いた。
 実施例3では、処理液にマンニトールに加えて酸成分としてボロジサリチル酸モノ(トリエチルアミン)(BSA/TEA)を、処理液の全体に対して3質量%の割合で加えた。また、液状成分としてγ-ブチロラクトン(GBL)およびスルホラン(SL)を50:50の質量比で混合した混合溶媒を用いた。
 実施例4では、液状成分としてエチレングリコール(EG)を用いた。
 実施例5では、液状成分としてエチレングリコール(EG)およびポリエチレングリコール(PEG)(重量平均分子量200)を50:50の質量比で混合した混合溶媒を用いた。
 実施例6では、多価アルコール類としてボレミトール(VOL)を、処理液の全体に対して5質量%の割合で処理液に添加し、且つ、液状成分としてエチレングリコール(EG)を用いた。
 実施例7では、多価アルコール類としてキシリトール(XYL)を、処理液の全体に対して5質量%の割合で処理液に添加し、且つ、液状成分としてエチレングリコール(EG)を用いた。
 実施例8では、多価アルコール類としてソルビトール(SOR)を、処理液の全体に対して5質量%の割合で処理液に添加し、且つ、液状成分としてエチレングリコール(EG)を用いた。
 実施例9では、液状成分としてエチレングリコール(EG)およびγ-ブチロラクトン(GBL)を30:70の質量比で混合した混合溶媒を用いた。
《比較例1~3》
 処理液に多価アルコール類を添加しなかった。
 比較例1では、液状成分として、γ-ブチロラクトン(GBL)およびマンニトール(MAN)を98:2の質量比で混合した溶媒を用いた。
 比較例2では、液状成分として実施例1と同様GBLを用いた。
 比較例3では、液状成分としてエチレングリコール(EG)を用いた。
 他は実施例1と同様にして、電解コンデンサを作製し、実施例1と同様に評価した。
《比較例4》
 実施例1において、処理液に多価アルコール類を添加せず、酸成分としてボロジサリチル酸モノ(トリエチルアミン)(BSA/TEA)を、処理液の全体に対して3質量%の割合で加えたものを用いた。
 他は実施例1と同様にして、電解コンデンサを作製し、実施例1と同様に評価した。
《比較例5》
 実施例1において、液状成分を含浸させることなく電解コンデンサ(固体電解コンデンサ)を作製し、実施例1と同様に評価した。
 表1に、実施例1~9、比較例1~5の電解コンデンサにおいて処理液に添加した多価アルコール類、酸成分およびそれらの添加量、液状成分の組成、ならびに、エージング処理後の液状成分の電導度に示す。表2に、実施例1~9、比較例1~5の電解コンデンサにおける初期ESRおよび漏れ電流の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2より、処理液に導電性高分子および多価アルコール類を含む処理液を含浸させた後、処理液の溶媒成分を乾燥により除去し、液状成分を含浸させることで作製した実施例1~9の電解コンデンサは、比較例1~5の電解コンデンサと比べて、LC/LCが小さく、高温環境と低温環境とを繰り返し経た後のESRの上昇が抑制されている。また、初期ESRも低い。
 実施例1~3では、処理液の溶媒として非プロトン性溶媒または非プロトン性溶媒の混合溶媒を用いている。この場合、多価アルコール類は溶出し難いため、多価アルコール類の大部分は陽極体の表面および導電性高分子層内で偏在している。この場合、導電性高分子層(固体電解質層)の陽極体への密着性がよく、初期ESRの低下が顕著である。
 実施例4~6では、処理液の溶媒としてプロトン性溶媒またはプロトン性溶媒の混合溶媒を用いている。この場合、多価アルコール類は溶出し易く、液状成分中に存在する多価アルコール類の濃度が実施例1~3よりも多くなる。この場合、実施例1~3と比べて、ESRの変化量X/Xが小さくなる傾向がみられる。
 実施例7および8では、初期ESRおよびX/Xが実施例1~6と比べて若干上昇した。この理由は、実施例7および8で用いた多価アルコール類の融点(キシリトール94℃、ソルビトール95℃)が、実施例1~6で用いた多価アルコール類の融点(マンニトール167℃、ボレミトール152℃)と比べて低いためと考えられる。多価アルコール類の融点は、100℃以上が好ましく、150℃以上がより好ましいといえる。
 実施例9では、処理液の溶媒としてプロトン性溶媒と非プロトン性溶媒との混合溶媒を用いている。この場合、初期ESRを低くでき、且つ、X/Xを低くできた。
 本発明は、導電性高分子および液状成分を用いるハイブリッド型電解コンデンサに利用することができる。
 10:コンデンサ素子、11:有底ケース、12:封止部材、13:座板、14A,14B:リード線、15A,15B:リードタブ、21:陽極体、22:陰極体、23:セパレータ、24:巻止めテープ

Claims (13)

  1.  表面に誘電体層を有する箔状の陽極体と、箔状の陰極体とを含む電解コンデンサの製造方法であって、
     セパレータと、前記セパレータを挟んで対向している前記陽極体および前記陰極体とを巻回または積層することによってコンデンサ素子前駆体を形成する工程(i)と、
     多価アルコール類、溶媒、および導電性高分子成分を含有する処理液を前記コンデンサ素子前駆体に含浸させる工程(ii)と、
     前記工程(ii)を経た前記コンデンサ素子前駆体に、液状成分を含浸させる工程(iii)と、
     前記液状成分に、前記多価アルコール類を溶出させ、コンデンサ素子を得る工程(iv)と、を有する、電解コンデンサの製造方法。
  2.  前記工程(iv)後の前記液状成分中において、前記多価アルコール類は、前記液状成分の全体に対して0.1質量%以上1質量%以下の範囲で含まれている、請求項1に記載の電解コンデンサの製造方法。
  3.  前記工程(iii)に用いる前記液状成分の電導度X1は1μS/cm以下である、請求項1または2に記載の電解コンデンサの製造方法。
  4.  前記工程(iv)後において、前記多価アルコール類が溶出した前記液状成分の電導度X2は、前記工程(iii)に用いる前記液状成分の電導度X1よりも高く、且つ0.1μS/cm以上500μS/cm以下である、請求項1~3のいずれか1項に記載の電解コンデンサの製造方法。
  5.  前記液状成分は、非プロトン性溶媒を含む、請求項1~4のいずれか1項に記載の電解コンデンサの製造方法。
  6.  前記工程(iii)に用いる前記液状成分に占める前記非プロトン性溶媒の含有割合は、50質量%以上である、請求項5に記載の電解コンデンサの製造方法。
  7.  前記液状成分は、プロトン性溶媒を含む、請求項1~6のいずれか1項に記載の電解コンデンサの製造方法。
  8.  前記工程(iii)に用いる前記液状成分に占める前記プロトン性溶媒の含有割合は、50質量%未満である、請求項7に記載の電解コンデンサの製造方法。
  9.  前記工程(ii)における前記処理液に占める前記多価アルコール類の含有割合は、0.1質量%以上10質量%以下である、請求項1~8のいずれか1項に記載の電解コンデンサの製造方法。
  10.  前記多価アルコール類の融点は150℃以上である、請求項1~9のいずれか1項に記載の電解コンデンサの製造方法。
  11.  前記工程(ii)における前記処理液は、酸成分を含み、
     前記工程(iv)後の前記液状成分中において、前記酸成分は、前記液状成分の全体に対して2質量%以下の範囲で含まれている、請求項1~10のいずれか1項に記載の電解コンデンサの製造方法。
  12.  前記工程(ii)の後であって、前記工程(iii)の前に、前記溶媒を乾燥により除去する工程(v)を有し、
     前記工程(v)における乾燥温度は150℃以上である、請求項1~11のいずれか1項に記載の電解コンデンサの製造方法。
  13.  コンデンサ素子を含む電解コンデンサであって、
     前記コンデンサ素子は、
      セパレータと、
      前記セパレータを挟むように対向している箔状の陽極体および箔状の陰極体と、
      前記陽極体と前記陰極体との間に介在する固体電解質層と、
      液状成分と、を含み、
     前記固体電解質層は、多価アルコール類と、導電性高分子とを含有し、
     前記固体電解質層は、前記多価アルコール類が偏在している偏在部を有する、電解コンデンサ。
PCT/JP2021/013176 2020-03-31 2021-03-29 電解コンデンサおよびその製造方法 Ceased WO2021200776A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022512178A JP7734342B2 (ja) 2020-03-31 2021-03-29 電解コンデンサおよびその製造方法
CN202180024065.8A CN115380343A (zh) 2020-03-31 2021-03-29 电解电容器及其制造方法
US17/929,724 US12431295B2 (en) 2020-03-31 2022-09-05 Electrolytic capacitor with improved equivalent series and resistance and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064945 2020-03-31
JP2020-064945 2020-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/929,724 Continuation US12431295B2 (en) 2020-03-31 2022-09-05 Electrolytic capacitor with improved equivalent series and resistance and production method therefor

Publications (1)

Publication Number Publication Date
WO2021200776A1 true WO2021200776A1 (ja) 2021-10-07

Family

ID=77929465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013176 Ceased WO2021200776A1 (ja) 2020-03-31 2021-03-29 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US12431295B2 (ja)
JP (1) JP7734342B2 (ja)
CN (1) CN115380343A (ja)
WO (1) WO2021200776A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025028069A1 (ja) * 2023-07-28 2025-02-06 パナソニックIpマネジメント株式会社 電解コンデンサおよび電解コンデンサの製造方法
WO2025134724A1 (ja) * 2023-12-18 2025-06-26 パナソニックIpマネジメント株式会社 電解コンデンサ用液状成分、電解コンデンサおよびその製造方法
WO2025134723A1 (ja) * 2023-12-18 2025-06-26 パナソニックIpマネジメント株式会社 電解コンデンサ用液状成分、電解コンデンサおよびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098006A1 (ja) * 2012-12-21 2014-06-26 日本ケミコン株式会社 電解コンデンサ及びその製造方法
WO2015146070A1 (ja) * 2014-03-27 2015-10-01 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2017037950A (ja) * 2015-08-10 2017-02-16 日本ケミコン株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP6535409B1 (ja) * 2018-11-07 2019-06-26 ルビコン株式会社 固体電解コンデンサの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360277B2 (ja) 2004-06-04 2009-11-11 パナソニック株式会社 電解コンデンサ及びその製造方法
CN101057306B (zh) 2004-09-07 2010-09-08 松下电器产业株式会社 电解电容器用电解液及使用其的电解电容器
JP4916416B2 (ja) 2007-10-30 2012-04-11 サン電子工業株式会社 電解コンデンサの製造方法及び電解コンデンサ
CN103460320B (zh) 2011-04-13 2016-10-19 松下知识产权经营株式会社 导电性高分子分散溶液的制造方法和电解电容器
JP6604497B2 (ja) * 2014-06-17 2019-11-13 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
JP2017220679A (ja) 2017-08-22 2017-12-14 日本ケミコン株式会社 電解コンデンサ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098006A1 (ja) * 2012-12-21 2014-06-26 日本ケミコン株式会社 電解コンデンサ及びその製造方法
WO2015146070A1 (ja) * 2014-03-27 2015-10-01 パナソニックIpマネジメント株式会社 電解コンデンサ
JP2017037950A (ja) * 2015-08-10 2017-02-16 日本ケミコン株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP6535409B1 (ja) * 2018-11-07 2019-06-26 ルビコン株式会社 固体電解コンデンサの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025028069A1 (ja) * 2023-07-28 2025-02-06 パナソニックIpマネジメント株式会社 電解コンデンサおよび電解コンデンサの製造方法
WO2025134724A1 (ja) * 2023-12-18 2025-06-26 パナソニックIpマネジメント株式会社 電解コンデンサ用液状成分、電解コンデンサおよびその製造方法
WO2025134723A1 (ja) * 2023-12-18 2025-06-26 パナソニックIpマネジメント株式会社 電解コンデンサ用液状成分、電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
JPWO2021200776A1 (ja) 2021-10-07
US20220415580A1 (en) 2022-12-29
US12431295B2 (en) 2025-09-30
CN115380343A (zh) 2022-11-22
JP7734342B2 (ja) 2025-09-05

Similar Documents

Publication Publication Date Title
JP7245990B2 (ja) 電解コンデンサの製造方法
JP6803519B2 (ja) 電解コンデンサの製造方法
US12431295B2 (en) Electrolytic capacitor with improved equivalent series and resistance and production method therefor
WO2016174807A1 (ja) 電解コンデンサ
JPWO2019065951A1 (ja) 電解コンデンサ
JP7689321B2 (ja) 電解コンデンサおよびその製造方法
WO2015198547A1 (ja) 電解コンデンサの製造方法
JP6868848B2 (ja) 電解コンデンサ
EP3828907A1 (en) Electrolytic capacitor
CN110098057B (zh) 电解电容器的制造方法
JPWO2014132632A1 (ja) 電解コンデンサおよびその製造方法
JPWO2019225523A1 (ja) 電解コンデンサ
JP7641529B2 (ja) 電解コンデンサおよびその製造方法
US12183519B2 (en) Electrolytic capacitor and production method therefor
WO2024181210A1 (ja) 電解コンデンサおよびその製造方法
WO2025028057A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
WO2025028056A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
US20250104926A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
US20250182976A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
WO2024116845A1 (ja) 電解コンデンサの製造方法、電解コンデンサ、第1処理液、および第2処理液
WO2025028055A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
WO2024181212A1 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP2021073720A (ja) 電解コンデンサ
JP2023029570A (ja) 電解コンデンサ
WO2025028070A1 (ja) 電解コンデンサ、電解コンデンサの製造方法、および電解コンデンサ用のシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782229

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载