WO2018138859A1 - Machine électrique tournante du type à entrefer axial - Google Patents
Machine électrique tournante du type à entrefer axial Download PDFInfo
- Publication number
- WO2018138859A1 WO2018138859A1 PCT/JP2017/002876 JP2017002876W WO2018138859A1 WO 2018138859 A1 WO2018138859 A1 WO 2018138859A1 JP 2017002876 W JP2017002876 W JP 2017002876W WO 2018138859 A1 WO2018138859 A1 WO 2018138859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- coil
- layer
- bobbin
- wound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/04—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings prior to their mounting into the machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/18—Windings for salient poles
Definitions
- the present invention relates to an axial gap type rotating electrical machine, and particularly relates to a coil in which adjacent coils are in phase and electric wires wound around the coil are connected.
- N ⁇ S In the motor gap (the gap between the stator and the rotor), a pair of N ⁇ S or n times as many magnetic poles as N ⁇ S is formed.
- This magnetic pole does not necessarily correspond to the number of stator windings (the number of slots), and is designed to have various values such as 10 slots in 12 slots and 8 poles in 48 slots. .
- the number of poles and the frequency of the current flowing through the winding determine the synchronous speed of the motor, and the rotor rotates at this synchronous speed. In order to realize these magnetic poles, it is necessary to devise how to wind the stator winding.
- stator winding is wound around a bobbin to form a coil
- one stator winding is wound around one bobbin
- one stator winding is wound around two bobbins
- continuous winding An arbitrary number of magnetic poles is realized by using various winding methods such as one in which two stator windings are wound around one bobbin.
- Patent Document 1 As means for creating a continuous bobbin.
- Patent Document 1 includes a stator in which a plurality of core units are arranged on a disk, and a pair of rotors opposed to each other on both sides of the stator via a gap, and each rotor is coaxial with an output shaft that outputs a rotational driving force.
- a structure is disclosed which is fixed to the.
- the core unit constituting this stator is provided with a connecting means, and by connecting the core unit in a straight line, one winding is wound around two bobbins at a time to produce a continuous coil. It is.
- a plurality of core units each having a substantially cylindrical core, a coil wound around the core, a core, and a bobbin disposed between the coils are arranged around the inner periphery of the housing.
- An axial gap type rotating electrical machine comprising: a stator arranged in an annular shape along a plane; and at least one rotor facing a face of an end face of a core via a predetermined air gap in a rotation axis direction.
- the sag of the crossover between the core units wound adjacently is reduced, and the reliability and productivity of the rotating electrical machine are improved.
- FIG. 1 is an axial longitudinal sectional view showing a schematic configuration of a double rotor type axial gap type permanent magnet synchronous motor 100 (hereinafter, simply referred to as “motor 100”) according to a first embodiment to which the present invention is applied. .
- motor 100 a double rotor type axial gap type permanent magnet synchronous motor 100
- the motor 100 is configured such that two disk-shaped rotors 30 sandwich a stator 10 arranged in a donut shape along the inner peripheral surface of the housing 50 via a predetermined air gap in the rotational axis radial direction. They are arranged so as to face each other.
- the center of the disk of the rotor 30 is fixed to the rotating shaft 40.
- the rotating shaft 40 is disposed through the central portion of the stator 10, and both end portions thereof are rotatably fixed to the bracket 60 via bearings 70.
- the end bracket 60 is fixed in the vicinity of both opening ends of the housing 50 having a substantially cylindrical shape.
- the present invention is not limited to this, and can be applied to various types such as a single rotor type and a type including a plurality of stators and a plurality of rotors.
- the rotor 30 includes a permanent magnet 31 on a circular base 33 via a yoke 32.
- the permanent magnet is composed of a plurality of plate-like magnets having a substantially fan-shaped inner periphery centered on the rotation axis, and magnets having different polarities are arranged in the rotation direction.
- a ferrite magnet is applied as the permanent magnet 31, but the present invention is not limited to this.
- the yoke 32 may be omitted.
- the stator 10 is composed of twelve core units 20 arranged along the inner periphery of the housing 30 with the rotation axis A as the central direction.
- One core unit 20 constitutes one slot.
- the core units 20 and the inner peripheral surface of the housing 50 are integrally formed with each other by a resin mold and are fixed to the stator.
- the configuration of the core unit will be described with reference to FIG. 2A is a perspective view of the core unit, and FIG. 2B is a cross-sectional view.
- the core unit 20 includes an iron core (core) 21, a bobbin 22, and a coil 23.
- the iron core 21 is a laminated iron core made of a columnar body whose end surface facing the rotor 30 has a substantially trapezoidal shape (including a fan shape and a shape equivalent thereto).
- the laminated iron core is formed by laminating plate-like plates (or belt-like or tape-like shapes) containing a magnetic material, which are gradually increased in width from the rotation axis A toward the housing inner peripheral surface. obtain.
- the iron core 21 is not limited to this, and may be a dust core or a machined one, and may have a T, H, or I-shaped cross section in the rotation axis direction.
- an amorphous metal shall be applied as a magnetic material, it is not restricted to this.
- the bobbin 22 is an insulating member made of resin or the like, and has a cylindrical portion having an inner diameter that approximately matches the outer shape of the iron core 21, and a flange portion that extends a predetermined length from the vicinity of both opening ends of the cylindrical portion over the entire circumference in the vertical direction.
- the predetermined length does not need to be uniform over the entire buttock, and can be set as appropriate according to the specifications.
- the part located on the left and right of the rotation axis rotation direction (the part facing the oblique side of the trapezoid) and the part located on the inner peripheral side of the housing 50 (the part facing the lower bottom of the trapezoid) are wound.
- the thickness of the coil 23 is slightly longer than that of the coil 23 so as to insulate the coil 23 of the adjacent core unit and the inner peripheral surface of the housing 50. Moreover, the part extended
- the coil 23 is wound around the outer peripheral side surface of the cylindrical portion and between the two flange portions.
- the coil 23 is wound at a high space factor by increasing the winding tension.
- a round wire is applied to the coil 23.
- the present invention can also be applied to the case where the diagonal of the square wire is perpendicular to the extending direction of the iron core 21.
- FIG. 2 (b) shows a radial cross-sectional view of the core unit.
- the coil 23 is wound by aligned winding, starting from the base portion of the surface of the collar portion on the tube portion side.
- the coil 23 is wound so that the number of turns per layer is reduced by one turn as the coil is wound around the outside of the bobbin 22 so that the first regions 231 are formed on both sides. It has become.
- the coil 23 of the first layer is started to be wound from the base of the buttock (upper in the drawing) (23a), and then wound to the base of the other buttock.
- the second layer is folded and wound so as to be arranged as much as possible between the coils 23 of the second layer.
- the second-layer coil 23 that is wound back to the buttocks side is a coil 23b and a coil 23c that are wound on the next turn of the first-layer coil 23a.
- the intermediate winding is turned back to the third layer winding.
- the fourth layer, the fifth layer, and the sixth layer are each wound by subtracting one turn from the number of turns of the adjacent layers.
- the coil 23 forms a step winding having an angle ⁇ between the coil 23 and the coil portion.
- the coil 23 wound to the final layer is wound as it is on the root of the adjacent bobbin collar.
- FIG. 3 is a perspective view in which the coil 23 is continuously wound around the two bobbins 22 (continuous winding).
- the two bobbins 22 are fixed to a jig.
- the two bobbins are inclined with respect to each other about the center of gravity so that the notch 22a of the first bobbin and the notch 22b of the second bobbin approach each other.
- the two bobbins are wound and rotated.
- the nozzle that supports the coil is moved in the horizontal direction so that the coil is wound around the cylindrical portion.
- the nozzle is reciprocated a plurality of times through the cylindrical portion of the first bobbin to form a stepped winding, and then the coil 23 is passed through the notch 22a and the notch 22b of the second bobbin facing thereto.
- the bobbin is also rotated with respect to the second bobbin to form a corrugated winding.
- the coil 22 between the bobbins is removed from the notch, and both bobbins are rotated so that the crossover wire 231 passes through the first region of the winding of the second bobbin.
- continuous coils having different winding directions D are completed.
- the winding direction is reversed between the first bobbin and the second bobbin.
- the coil 23 is wound counterclockwise around the first bobbin when viewed from directly above the bobbin, the coil 23 is wound clockwise around the second bobbin to be wound continuously. It will be.
- the relationship between the first bobbin and the second bobbin may be reversed.
- Example for implementing this invention is not limited to this.
- a double rotor type axial gap type motor is taken as an example, but a single rotor type may be used.
- a generator may be used instead of the motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Windings For Motors And Generators (AREA)
Abstract
La présente invention concerne une machine électrique tournante du type à entrefer axial, qui comporte : un stator dans lequel une pluralité d'unités de noyau comprenant un noyau ayant un corps approximativement cylindrique, une bobine enroulée autour du noyau, et un bobinage disposé entre le noyau et la bobine, sont disposées de manière annulaire le long de la surface circonférentielle interne d'un boîtier avec un axe de rotation au centre de celui-ci ; et au moins un rotor faisant face aux surfaces d'extrémité des noyaux avec un entrefer prédéterminé entre eux dans la direction de l'axe de rotation. Le bobinage comprend une section de cylindre pour introduire les noyaux et une section de bride qui s'étend jusqu'à une longueur prédéterminée dans une direction perpendiculaire à la circonférence externe de la section de cylindre au voisinage d'au moins l'une des deux extrémités ouvertes de la section de cylindre. La bobine est enroulée autour de la circonférence externe de la section de cylindre du bobinage d'une manière alignée, et des couches sont configurées de manière continue de telle sorte que le nombre de spires dans les couches qui sont davantage vers l'extérieur qu'une couche enroulée de façon à être en contact avec la section de bride diminue d'au moins une spire par couche par rapport au nombre de spires de la couche adjacente à celle-ci sur le côté interne. Un fil de croisement est disposé en tant que première couche de la bobine d'une seconde unité de noyau adjacente à la couche circonférentielle la plus à l'intérieur d'une première unité de noyau.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/002876 WO2018138859A1 (fr) | 2017-01-27 | 2017-01-27 | Machine électrique tournante du type à entrefer axial |
| CN201780045652.9A CN109478813B (zh) | 2017-01-27 | 2017-01-27 | 轴向间隙型旋转电机 |
| JP2018564037A JP7025355B2 (ja) | 2017-01-27 | 2017-01-27 | アキシャルギャップ型回転電機 |
| TW107101391A TWI673937B (zh) | 2017-01-27 | 2018-01-15 | 軸向間隙型旋轉電機 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/002876 WO2018138859A1 (fr) | 2017-01-27 | 2017-01-27 | Machine électrique tournante du type à entrefer axial |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018138859A1 true WO2018138859A1 (fr) | 2018-08-02 |
Family
ID=62979215
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/002876 Ceased WO2018138859A1 (fr) | 2017-01-27 | 2017-01-27 | Machine électrique tournante du type à entrefer axial |
Country Status (4)
| Country | Link |
|---|---|
| JP (1) | JP7025355B2 (fr) |
| CN (1) | CN109478813B (fr) |
| TW (1) | TWI673937B (fr) |
| WO (1) | WO2018138859A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113572282A (zh) * | 2021-08-09 | 2021-10-29 | 浙江盘毂动力科技有限公司 | 绕组定子结构、定子总成及盘式电机 |
| KR102741752B1 (ko) * | 2024-10-15 | 2024-12-16 | 주식회사 서진캠 | 축방향 자속모터의 고정자용 보빈 및 평각 코일 권취방법 |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113544951B (zh) * | 2019-07-05 | 2024-02-02 | 余仁伟 | 盘式电机多层线圈平板式定子 |
| WO2021225049A1 (fr) * | 2020-05-08 | 2021-11-11 | 住友電気工業株式会社 | Pièce de noyau, noyau statorique, stator, et machine électrique tournante |
| CN114123687B (zh) | 2020-08-28 | 2023-05-26 | 台达电子工业股份有限公司 | 旋转电机的定子排线方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10304604A (ja) * | 1997-04-24 | 1998-11-13 | Toshiba Corp | 直流モータ |
| JP2009100572A (ja) * | 2007-10-17 | 2009-05-07 | Mitsuba Corp | インナーロータ式磁石発電機 |
| WO2015011836A1 (fr) * | 2013-07-26 | 2015-01-29 | 株式会社日立製作所 | Moteur à entrefer axial et procédé pour fabriquer son enroulement |
| JP2016506235A (ja) * | 2013-01-31 | 2016-02-25 | ワイエーエスエー モータース リミテッド | 軸方向モータのシュー冷却用間隙 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4527602B2 (ja) * | 2005-05-30 | 2010-08-18 | 日立オートモティブシステムズ株式会社 | ステータコイルの製造方法 |
| JP5548509B2 (ja) * | 2010-04-22 | 2014-07-16 | 三菱電機株式会社 | 電動機および換気扇 |
| JP5959757B2 (ja) * | 2013-10-30 | 2016-08-02 | 三菱電機株式会社 | 電動機及びこれを備えた圧縮機、電動機の製造方法 |
| JP6409424B2 (ja) * | 2013-11-20 | 2018-10-24 | 株式会社デンソー | 電機子及び回転電機 |
| JP6294469B2 (ja) | 2014-04-14 | 2018-03-14 | 株式会社日立産機システム | アキシャルエアギャップ型回転電機 |
| JP2016149930A (ja) * | 2015-02-09 | 2016-08-18 | 住友精化株式会社 | 回転電機、コイル及びコイル装置 |
-
2017
- 2017-01-27 JP JP2018564037A patent/JP7025355B2/ja active Active
- 2017-01-27 CN CN201780045652.9A patent/CN109478813B/zh active Active
- 2017-01-27 WO PCT/JP2017/002876 patent/WO2018138859A1/fr not_active Ceased
-
2018
- 2018-01-15 TW TW107101391A patent/TWI673937B/zh active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10304604A (ja) * | 1997-04-24 | 1998-11-13 | Toshiba Corp | 直流モータ |
| JP2009100572A (ja) * | 2007-10-17 | 2009-05-07 | Mitsuba Corp | インナーロータ式磁石発電機 |
| JP2016506235A (ja) * | 2013-01-31 | 2016-02-25 | ワイエーエスエー モータース リミテッド | 軸方向モータのシュー冷却用間隙 |
| WO2015011836A1 (fr) * | 2013-07-26 | 2015-01-29 | 株式会社日立製作所 | Moteur à entrefer axial et procédé pour fabriquer son enroulement |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113572282A (zh) * | 2021-08-09 | 2021-10-29 | 浙江盘毂动力科技有限公司 | 绕组定子结构、定子总成及盘式电机 |
| KR102741752B1 (ko) * | 2024-10-15 | 2024-12-16 | 주식회사 서진캠 | 축방향 자속모터의 고정자용 보빈 및 평각 코일 권취방법 |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201828573A (zh) | 2018-08-01 |
| CN109478813B (zh) | 2021-04-06 |
| CN109478813A (zh) | 2019-03-15 |
| TWI673937B (zh) | 2019-10-01 |
| JP7025355B2 (ja) | 2022-02-24 |
| JPWO2018138859A1 (ja) | 2019-06-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102801242B (zh) | 旋转电机 | |
| JP4234831B2 (ja) | アキシャルギャップモータ | |
| CN107005103B (zh) | 旋转电机用定子铁芯、旋转电机及旋转电机的制造方法 | |
| JP6220962B2 (ja) | アキシャルエアギャップ型回転電機 | |
| JP7025355B2 (ja) | アキシャルギャップ型回転電機 | |
| JP4655764B2 (ja) | 回転電機 | |
| CN103580312B (zh) | 旋转电机 | |
| US20170093244A1 (en) | Axial-Air-Gap Dynamo-Electric Machine | |
| WO2016017342A1 (fr) | Stator et machine tournante | |
| KR20170035794A (ko) | 단상 영구 자석 모터 | |
| JP2023041924A5 (fr) | ||
| US20190312476A1 (en) | Motor | |
| EP3675327B1 (fr) | Structure d'armature de moteur triphasé | |
| JP5865865B2 (ja) | 電動送風機及び電気掃除機 | |
| JP2009284626A (ja) | 回転機器のステータ及びモータ | |
| JP6771590B2 (ja) | アキシャルギャップ型回転電機 | |
| JP2010011706A (ja) | モータ | |
| WO2018142463A1 (fr) | Machine électrique tournante du type à entrefer axial | |
| JP2017201871A (ja) | トルクの起伏を最小化する寸法比を有する回転電気機械 | |
| JP2006271142A (ja) | 回転機 | |
| JP7258824B2 (ja) | 回転電機 | |
| JP5311877B2 (ja) | ステータのコイル及び回転機器のステータコア | |
| JP7543229B2 (ja) | アキシャルギャップ型回転電機のステータコア、アキシャルギャップ型回転電機のステータ製造方法 | |
| JP2019140757A (ja) | 回転電機、回転電機の製造方法、および送風機 | |
| WO2018142469A1 (fr) | Machine tournante électrique de type à entrefer axial |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17893747 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2018564037 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17893747 Country of ref document: EP Kind code of ref document: A1 |