+

WO2018138859A1 - Axial gap-type rotary electric machine - Google Patents

Axial gap-type rotary electric machine Download PDF

Info

Publication number
WO2018138859A1
WO2018138859A1 PCT/JP2017/002876 JP2017002876W WO2018138859A1 WO 2018138859 A1 WO2018138859 A1 WO 2018138859A1 JP 2017002876 W JP2017002876 W JP 2017002876W WO 2018138859 A1 WO2018138859 A1 WO 2018138859A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
coil
layer
bobbin
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2017/002876
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 克之
大輔 倉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to PCT/JP2017/002876 priority Critical patent/WO2018138859A1/en
Priority to CN201780045652.9A priority patent/CN109478813B/en
Priority to JP2018564037A priority patent/JP7025355B2/en
Priority to TW107101391A priority patent/TWI673937B/en
Publication of WO2018138859A1 publication Critical patent/WO2018138859A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings prior to their mounting into the machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles

Definitions

  • the present invention relates to an axial gap type rotating electrical machine, and particularly relates to a coil in which adjacent coils are in phase and electric wires wound around the coil are connected.
  • N ⁇ S In the motor gap (the gap between the stator and the rotor), a pair of N ⁇ S or n times as many magnetic poles as N ⁇ S is formed.
  • This magnetic pole does not necessarily correspond to the number of stator windings (the number of slots), and is designed to have various values such as 10 slots in 12 slots and 8 poles in 48 slots. .
  • the number of poles and the frequency of the current flowing through the winding determine the synchronous speed of the motor, and the rotor rotates at this synchronous speed. In order to realize these magnetic poles, it is necessary to devise how to wind the stator winding.
  • stator winding is wound around a bobbin to form a coil
  • one stator winding is wound around one bobbin
  • one stator winding is wound around two bobbins
  • continuous winding An arbitrary number of magnetic poles is realized by using various winding methods such as one in which two stator windings are wound around one bobbin.
  • Patent Document 1 As means for creating a continuous bobbin.
  • Patent Document 1 includes a stator in which a plurality of core units are arranged on a disk, and a pair of rotors opposed to each other on both sides of the stator via a gap, and each rotor is coaxial with an output shaft that outputs a rotational driving force.
  • a structure is disclosed which is fixed to the.
  • the core unit constituting this stator is provided with a connecting means, and by connecting the core unit in a straight line, one winding is wound around two bobbins at a time to produce a continuous coil. It is.
  • a plurality of core units each having a substantially cylindrical core, a coil wound around the core, a core, and a bobbin disposed between the coils are arranged around the inner periphery of the housing.
  • An axial gap type rotating electrical machine comprising: a stator arranged in an annular shape along a plane; and at least one rotor facing a face of an end face of a core via a predetermined air gap in a rotation axis direction.
  • the sag of the crossover between the core units wound adjacently is reduced, and the reliability and productivity of the rotating electrical machine are improved.
  • FIG. 1 is an axial longitudinal sectional view showing a schematic configuration of a double rotor type axial gap type permanent magnet synchronous motor 100 (hereinafter, simply referred to as “motor 100”) according to a first embodiment to which the present invention is applied. .
  • motor 100 a double rotor type axial gap type permanent magnet synchronous motor 100
  • the motor 100 is configured such that two disk-shaped rotors 30 sandwich a stator 10 arranged in a donut shape along the inner peripheral surface of the housing 50 via a predetermined air gap in the rotational axis radial direction. They are arranged so as to face each other.
  • the center of the disk of the rotor 30 is fixed to the rotating shaft 40.
  • the rotating shaft 40 is disposed through the central portion of the stator 10, and both end portions thereof are rotatably fixed to the bracket 60 via bearings 70.
  • the end bracket 60 is fixed in the vicinity of both opening ends of the housing 50 having a substantially cylindrical shape.
  • the present invention is not limited to this, and can be applied to various types such as a single rotor type and a type including a plurality of stators and a plurality of rotors.
  • the rotor 30 includes a permanent magnet 31 on a circular base 33 via a yoke 32.
  • the permanent magnet is composed of a plurality of plate-like magnets having a substantially fan-shaped inner periphery centered on the rotation axis, and magnets having different polarities are arranged in the rotation direction.
  • a ferrite magnet is applied as the permanent magnet 31, but the present invention is not limited to this.
  • the yoke 32 may be omitted.
  • the stator 10 is composed of twelve core units 20 arranged along the inner periphery of the housing 30 with the rotation axis A as the central direction.
  • One core unit 20 constitutes one slot.
  • the core units 20 and the inner peripheral surface of the housing 50 are integrally formed with each other by a resin mold and are fixed to the stator.
  • the configuration of the core unit will be described with reference to FIG. 2A is a perspective view of the core unit, and FIG. 2B is a cross-sectional view.
  • the core unit 20 includes an iron core (core) 21, a bobbin 22, and a coil 23.
  • the iron core 21 is a laminated iron core made of a columnar body whose end surface facing the rotor 30 has a substantially trapezoidal shape (including a fan shape and a shape equivalent thereto).
  • the laminated iron core is formed by laminating plate-like plates (or belt-like or tape-like shapes) containing a magnetic material, which are gradually increased in width from the rotation axis A toward the housing inner peripheral surface. obtain.
  • the iron core 21 is not limited to this, and may be a dust core or a machined one, and may have a T, H, or I-shaped cross section in the rotation axis direction.
  • an amorphous metal shall be applied as a magnetic material, it is not restricted to this.
  • the bobbin 22 is an insulating member made of resin or the like, and has a cylindrical portion having an inner diameter that approximately matches the outer shape of the iron core 21, and a flange portion that extends a predetermined length from the vicinity of both opening ends of the cylindrical portion over the entire circumference in the vertical direction.
  • the predetermined length does not need to be uniform over the entire buttock, and can be set as appropriate according to the specifications.
  • the part located on the left and right of the rotation axis rotation direction (the part facing the oblique side of the trapezoid) and the part located on the inner peripheral side of the housing 50 (the part facing the lower bottom of the trapezoid) are wound.
  • the thickness of the coil 23 is slightly longer than that of the coil 23 so as to insulate the coil 23 of the adjacent core unit and the inner peripheral surface of the housing 50. Moreover, the part extended
  • the coil 23 is wound around the outer peripheral side surface of the cylindrical portion and between the two flange portions.
  • the coil 23 is wound at a high space factor by increasing the winding tension.
  • a round wire is applied to the coil 23.
  • the present invention can also be applied to the case where the diagonal of the square wire is perpendicular to the extending direction of the iron core 21.
  • FIG. 2 (b) shows a radial cross-sectional view of the core unit.
  • the coil 23 is wound by aligned winding, starting from the base portion of the surface of the collar portion on the tube portion side.
  • the coil 23 is wound so that the number of turns per layer is reduced by one turn as the coil is wound around the outside of the bobbin 22 so that the first regions 231 are formed on both sides. It has become.
  • the coil 23 of the first layer is started to be wound from the base of the buttock (upper in the drawing) (23a), and then wound to the base of the other buttock.
  • the second layer is folded and wound so as to be arranged as much as possible between the coils 23 of the second layer.
  • the second-layer coil 23 that is wound back to the buttocks side is a coil 23b and a coil 23c that are wound on the next turn of the first-layer coil 23a.
  • the intermediate winding is turned back to the third layer winding.
  • the fourth layer, the fifth layer, and the sixth layer are each wound by subtracting one turn from the number of turns of the adjacent layers.
  • the coil 23 forms a step winding having an angle ⁇ between the coil 23 and the coil portion.
  • the coil 23 wound to the final layer is wound as it is on the root of the adjacent bobbin collar.
  • FIG. 3 is a perspective view in which the coil 23 is continuously wound around the two bobbins 22 (continuous winding).
  • the two bobbins 22 are fixed to a jig.
  • the two bobbins are inclined with respect to each other about the center of gravity so that the notch 22a of the first bobbin and the notch 22b of the second bobbin approach each other.
  • the two bobbins are wound and rotated.
  • the nozzle that supports the coil is moved in the horizontal direction so that the coil is wound around the cylindrical portion.
  • the nozzle is reciprocated a plurality of times through the cylindrical portion of the first bobbin to form a stepped winding, and then the coil 23 is passed through the notch 22a and the notch 22b of the second bobbin facing thereto.
  • the bobbin is also rotated with respect to the second bobbin to form a corrugated winding.
  • the coil 22 between the bobbins is removed from the notch, and both bobbins are rotated so that the crossover wire 231 passes through the first region of the winding of the second bobbin.
  • continuous coils having different winding directions D are completed.
  • the winding direction is reversed between the first bobbin and the second bobbin.
  • the coil 23 is wound counterclockwise around the first bobbin when viewed from directly above the bobbin, the coil 23 is wound clockwise around the second bobbin to be wound continuously. It will be.
  • the relationship between the first bobbin and the second bobbin may be reversed.
  • Example for implementing this invention is not limited to this.
  • a double rotor type axial gap type motor is taken as an example, but a single rotor type may be used.
  • a generator may be used instead of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

An axial gap-type rotary electric machine is provided with: a stator in which a plurality of core units comprising a core made from an approximately cylindrical body, a coil wound around the core, and a bobbin arranged between the core and the coil are arranged annularly along the inner circumferential surface of a housing with a rotational axis at the center thereof; and at least one rotor facing the end surfaces of the cores with a predetermined air gap therebetween in the direction of the rotational axis. The bobbin comprises a cylinder section for inserting the cores and a flange section that extends to a predetermined length in a direction perpendicular to the outer circumference of the cylinder section in the vicinity of at least one of the two open ends of the cylinder section. The coil is wound around the outer circumference of the cylinder section of the bobbin in an aligned manner, and layers are configured continuously such that the number of turns in layers that are further outward than a layer wound so as to be in contact with the flange section decrease by at least one turn per layer relative to the number of turns of the layer adjacent thereto on the inner side. A crossover wire is arranged as the first layer of the coil of a second core unit adjacent to the innermost circumferential layer of a first core unit.

Description

アキシャルギャップ型回転電機Axial gap type rotating electrical machine

 本発明は、アキシャルギャップ型回転電機に係り、特に、隣りあって配置されるコイルが同相であり、コイルに巻回される電線がつながっているものに関する。 The present invention relates to an axial gap type rotating electrical machine, and particularly relates to a coil in which adjacent coils are in phase and electric wires wound around the coil are connected.

 電動機のギャップ(固定子と回転子との空隙)において、N・Sの1対、あるいはそのn倍の数の磁極が形成される。この磁極とは必ずしも固定子巻線の数(スロット数)と一致するものではなく、12スロットで10極であったり、48スロットで8極であったりと様々な値に設計されるものである。この極数と、巻線を流れる電流の周波数によって、電動機の同期速度が決まり、回転子はこの同期速度で回転する。これらの磁極を実現するためには、固定子巻線の巻き方に工夫をする必要がある。 In the motor gap (the gap between the stator and the rotor), a pair of N · S or n times as many magnetic poles as N · S is formed. This magnetic pole does not necessarily correspond to the number of stator windings (the number of slots), and is designed to have various values such as 10 slots in 12 slots and 8 poles in 48 slots. . The number of poles and the frequency of the current flowing through the winding determine the synchronous speed of the motor, and the rotor rotates at this synchronous speed. In order to realize these magnetic poles, it is necessary to devise how to wind the stator winding.

 例えば、ボビンに固定子巻線を巻きまわしてコイルを形成する電動機において、1つのボビンに1本の固定子巻線を巻きまわすもの、2つのボビンに1本の固定子巻線を巻きまわすもの(以下、連巻と呼ぶ。)、1つのボビンに2本の固定子巻線を巻きまわすもの、など様々な巻き方を用いて任意の磁極数を実現する。 For example, in an electric motor in which a stator winding is wound around a bobbin to form a coil, one stator winding is wound around one bobbin, and one stator winding is wound around two bobbins (Hereinafter referred to as “continuous winding”) An arbitrary number of magnetic poles is realized by using various winding methods such as one in which two stator windings are wound around one bobbin.

 一般に電動機には、出力軸と同一方向にギャップをもつラジアルギャップ型電動機と、出力軸と垂直方向にギャップをもつアキシャルギャップ型電動機がある。このアキシャルギャップ型電動機において、連巻のボビンを作成する手段として、例えば特許文献1がある。特許文献1には、複数のコアユニットを円盤上に配置したステータと、ステータ両側面にギャップを介して対向する1対のロータを備え、各ロータは回転駆動力を出力する出力軸に同軸的に固定されている構造が開示されている。このステータを構成するコアユニットには連結手段が設けられており、コアユニットを一直線上に連結することで一本の巻線を一度に二つのボビンに巻き回して連巻のコイルを製造するものである。 Generally, there are a radial gap type motor having a gap in the same direction as the output shaft and an axial gap type motor having a gap in a direction perpendicular to the output shaft. In this axial gap type electric motor, there is, for example, Patent Document 1 as means for creating a continuous bobbin. Patent Document 1 includes a stator in which a plurality of core units are arranged on a disk, and a pair of rotors opposed to each other on both sides of the stator via a gap, and each rotor is coaxial with an output shaft that outputs a rotational driving force. A structure is disclosed which is fixed to the. The core unit constituting this stator is provided with a connecting means, and by connecting the core unit in a straight line, one winding is wound around two bobbins at a time to produce a continuous coil. It is.

特開2006-230179号公報JP 2006-230179 A

 特許文献1のようにコイルを連巻する際、巻き始めのコアユニットから隣接するコアユニットへ渡す渡り線を最外周の層から渡してしまうと、巻き回し作業が終わって配列させる際にたるみが発生してしまう虞がある。たるんだ渡り線によって巻き崩れが起きたコアユニットは占積率も下がり、性能が落ちてしまうという課題がある。また、ステータをハウジングにモールドするような構造の電動機の場合には、各コアユニットを配列させてハウジング内に並べる際に渡り線が邪魔になったり、コアユニットの下敷きになって渡り線が傷ついたり、あるいはハウジングと渡り線とが接近し過ぎることで絶縁性能を確保できなくなるという課題もある。 When the coil is wound continuously as in Patent Document 1, if the connecting wire passing from the core unit at the start of winding to the adjacent core unit is passed from the outermost layer, there is a slack when the winding operation is finished and the coils are arranged. There is a risk that it will occur. There is a problem that the core unit that has collapsed due to the slack crossover also has a reduced space factor and performance. In addition, in the case of an electric motor having a structure in which the stator is molded in the housing, the crossover wires get in the way when the core units are arranged and arranged in the housing, or the crossover wires are damaged under the core unit. There is also a problem that insulation performance cannot be ensured when the housing and the crossover wire are too close to each other.

 電動機の生産性を確保しつつ、性能や信頼性を向上させる技術が望まれる。 Technology that improves performance and reliability while securing the productivity of electric motors is desired.

 上述した課題を解決するため、請求の範囲に記載の構成を適用する。一例をあげるならば、概略柱体からなるコア、該コアに巻き回すコイル及びコア並びにコイルとの間に配設されるボビンとを有する複数のコアユニットが、回転軸を中心に、ハウジング内周面に沿って環状に配列されてなる固定子と、回転軸方向に所定のエアギャップを介してコアの端面の面対向する少なくとも一つの回転子とを備えるアキシャルギャップ型回転電機であって、ボビンが、記コアを挿入する筒部と、該筒部の両開口端部の少なくとも一方の近傍に該筒部の外周と鉛直方向に所定長さ延伸する鍔部とを有するものであり、コイルが、ボビンの筒部外周に整列巻で巻き回されるものであり、鍔部に接触して巻き回された層よりも外側に巻き回される層の1層毎のターン数が、隣接する内側のターン数よりも少なくとも1つずつ減少したターン数となる層が連続してなるものであり、第1のコアユニットの最内周層から隣接する第2のコアユニットの一層目のコイルとして渡り線を配置するものである。 In order to solve the above-mentioned problems, the configuration described in the claims is applied. As an example, a plurality of core units each having a substantially cylindrical core, a coil wound around the core, a core, and a bobbin disposed between the coils are arranged around the inner periphery of the housing. An axial gap type rotating electrical machine comprising: a stator arranged in an annular shape along a plane; and at least one rotor facing a face of an end face of a core via a predetermined air gap in a rotation axis direction. Has a cylindrical portion into which the core is inserted, and an outer periphery of the cylindrical portion and a flange portion extending in a vertical direction in the vicinity of at least one of both opening end portions of the cylindrical portion, and the coil , Wound around the outer periphery of the cylindrical part of the bobbin by the aligned winding, and the number of turns per layer of the layer wound outside the layer wound in contact with the collar portion is adjacent to the inner side At least one less than the number of turns Layer serving as the number of turns are those becomes continuously, it is to place the connecting wire as the first layer of the coil of the second core unit adjacent the innermost layer of the first core units.

 本発明の一側面によれば、隣接して連巻されたコアユニット間の渡り線のたるみが軽減し、回転電機の信頼性・生産性が向上する。 According to one aspect of the present invention, the sag of the crossover between the core units wound adjacently is reduced, and the reliability and productivity of the rotating electrical machine are improved.

一般的なアキシャルギャップ型の回転電機の断面図である。It is sectional drawing of a general axial gap type rotary electric machine. 本発明を適用した実施例1のコイルの外観図である。It is an external view of the coil of Example 1 to which this invention is applied. 実施例1のコイルを巻き回す過程の斜視図である。It is a perspective view of the process in which the coil of Example 1 is wound. 実施例1の連続巻きされたコアユニットの斜視図である。It is a perspective view of the core unit by which the continuous winding of Example 1 was carried out.

 以下、図面を用いて本発明を実施するための形態を説明する。図1に、本発明を適用した実施例1によるダブルローター型アキシャルギャップ型永久磁石同期モータ100(以下、単に「モータ100」という場合がある。)の概要構成を表わす軸方向縦断面図を示す。 Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an axial longitudinal sectional view showing a schematic configuration of a double rotor type axial gap type permanent magnet synchronous motor 100 (hereinafter, simply referred to as “motor 100”) according to a first embodiment to which the present invention is applied. .

 モータ100は、ハウジング50の内周面に沿ってドーナツ状に配置された固定子10を、円盤状の2つの回転子30が、回転軸径方向に所定のエアギャップを介して挟むように、夫々面対向して配置される。回転子30は、円盤中央が回転軸40と固定される。回転軸40は、固定子10の中央部分を貫通して配置され、両端部が軸受70を介してブラケット60と回転可能に固定される。エンドブラケット60は、概略円筒形からなるハウジング50の両開口端部付近で固定される。なお、本発明はこれに限定されず、シングルロータ式、複数の固定子と複数の回転子とからなる形式など種々の形式に適用することができる。 The motor 100 is configured such that two disk-shaped rotors 30 sandwich a stator 10 arranged in a donut shape along the inner peripheral surface of the housing 50 via a predetermined air gap in the rotational axis radial direction. They are arranged so as to face each other. The center of the disk of the rotor 30 is fixed to the rotating shaft 40. The rotating shaft 40 is disposed through the central portion of the stator 10, and both end portions thereof are rotatably fixed to the bracket 60 via bearings 70. The end bracket 60 is fixed in the vicinity of both opening ends of the housing 50 having a substantially cylindrical shape. The present invention is not limited to this, and can be applied to various types such as a single rotor type and a type including a plurality of stators and a plurality of rotors.

 回転子30は、円形の基台33に、ヨーク32を介して永久磁石31を備える。永久磁石は、回転軸を中心とする概略扇形の形状の内周を有する複数の平板状の磁石からなり、回転方向に異なる極性の磁石が配置される。なお、本実施例では永久磁石31としてフェライト磁石を適用するものとするが、本発明はこれに限るものではない。例えばヨーク32を省略する構成としてもよい。 The rotor 30 includes a permanent magnet 31 on a circular base 33 via a yoke 32. The permanent magnet is composed of a plurality of plate-like magnets having a substantially fan-shaped inner periphery centered on the rotation axis, and magnets having different polarities are arranged in the rotation direction. In this embodiment, a ferrite magnet is applied as the permanent magnet 31, but the present invention is not limited to this. For example, the yoke 32 may be omitted.

 固定子10は、回転軸心Aを中心方向としてハウジング30の内周に沿って配置された12個のコアユニット20からなる。1つのコアユニット20が、1スロットを構成するようになっている。また、コアユニット20同士及びハウジング50の内周面は、樹脂モールドによって互いに一体的に成形され、また固定子に固定されるようになっている。 The stator 10 is composed of twelve core units 20 arranged along the inner periphery of the housing 30 with the rotation axis A as the central direction. One core unit 20 constitutes one slot. Further, the core units 20 and the inner peripheral surface of the housing 50 are integrally formed with each other by a resin mold and are fixed to the stator.

 図2を用いてコアユニットの構成を説明する。図2(a)はコアユニットの斜視図であり、(b)は断面図である。コアユニット20は、鉄心(コア)21、ボビン22及びコイル23を有する。鉄心21は、回転子30と面対向する端面が概略台形(扇形やそれに準ずる形状を含む)の形状を有する柱体からなる積層鉄心である。積層鉄心は、磁性体材料を含有する板状(あるいは帯状やテープ状を含む。)を、回転軸心Aからハウジング内周面に向かうにつれて、次第に幅が大となる板片を積層することで得る。また、鉄心21は、これに限るものではなく、圧粉鉄心でも削り出しのものでもよく又回転軸方向の断面がT、H若しくはI字型の形状をするものであってもよい。なお、磁性体材料としては、アモルファス金属を適用するものとするが、これに限るものではない。 The configuration of the core unit will be described with reference to FIG. 2A is a perspective view of the core unit, and FIG. 2B is a cross-sectional view. The core unit 20 includes an iron core (core) 21, a bobbin 22, and a coil 23. The iron core 21 is a laminated iron core made of a columnar body whose end surface facing the rotor 30 has a substantially trapezoidal shape (including a fan shape and a shape equivalent thereto). The laminated iron core is formed by laminating plate-like plates (or belt-like or tape-like shapes) containing a magnetic material, which are gradually increased in width from the rotation axis A toward the housing inner peripheral surface. obtain. Further, the iron core 21 is not limited to this, and may be a dust core or a machined one, and may have a T, H, or I-shaped cross section in the rotation axis direction. In addition, although an amorphous metal shall be applied as a magnetic material, it is not restricted to this.

 ボビン22は、樹脂等からなる絶縁部材であり、鉄心21の外形と概略一致する内径を有する筒部と筒部の両開口端部近傍から鉛直方向の全周にわたって所定長さ延伸する鍔部とを有する。所定長さは鍔部全体で一律である必要はなく、仕様に応じて適宜設定可能である。本実施例では、回転軸回転方向の左右に位置する部分(台形の斜辺に対向する部分)及びハウジング50の内周側に位置する部分(台形の下底に対向する部分)は、巻き回されたコイル23の積厚保よりも若干長くなっており、隣接するコアユニットのコイル23やハウジング50の内周面との絶縁を図っている。また、回転軸芯方向に延伸する部分はこれらよりも若干長くなっている。なお、鍔部はコイル積厚以下とする構成も可能である。 The bobbin 22 is an insulating member made of resin or the like, and has a cylindrical portion having an inner diameter that approximately matches the outer shape of the iron core 21, and a flange portion that extends a predetermined length from the vicinity of both opening ends of the cylindrical portion over the entire circumference in the vertical direction. Have The predetermined length does not need to be uniform over the entire buttock, and can be set as appropriate according to the specifications. In the present embodiment, the part located on the left and right of the rotation axis rotation direction (the part facing the oblique side of the trapezoid) and the part located on the inner peripheral side of the housing 50 (the part facing the lower bottom of the trapezoid) are wound. The thickness of the coil 23 is slightly longer than that of the coil 23 so as to insulate the coil 23 of the adjacent core unit and the inner peripheral surface of the housing 50. Moreover, the part extended | stretched in a rotating shaft core direction is a little longer than these. In addition, the structure which makes a collar part below coil thickness is also possible.

 筒部の外周側面であって、両鍔部の間にコイル23が巻きまわされる。コイル23は巻線張力を高くして、高占積率で巻き回される。なお、本実施例ではコイル23に丸線を適用するものとするが、角線の対角線を鉄心21の延伸方向と鉛直にして使用する場合にも本発明を適用することができる。 The coil 23 is wound around the outer peripheral side surface of the cylindrical portion and between the two flange portions. The coil 23 is wound at a high space factor by increasing the winding tension. In this embodiment, a round wire is applied to the coil 23. However, the present invention can also be applied to the case where the diagonal of the square wire is perpendicular to the extending direction of the iron core 21.

 図2(b)はコアユニットの径方向断面図を示す。コイル23は、鍔部の筒部側の面の付け根部分を巻き始めとして、整列巻によって巻き回されるようになっている。また、コイル23は両鍔部側に第1領域231が形成されるように、ボビン22の外側に巻き回されるコイルほど、1層あたりのターン数が1ターン減じて巻き回されるようになっている。 FIG. 2 (b) shows a radial cross-sectional view of the core unit. The coil 23 is wound by aligned winding, starting from the base portion of the surface of the collar portion on the tube portion side. In addition, the coil 23 is wound so that the number of turns per layer is reduced by one turn as the coil is wound around the outside of the bobbin 22 so that the first regions 231 are formed on both sides. It has become.

 まず1層目のコイル23は(図中上方の)鍔部の付け根から巻き始められ(23a)、その後他方鍔部の付け根部分まで巻き回される。2層目は、2層目のコイル23の間になるべく配置されるように折り返して巻き回すようになっている。 First, the coil 23 of the first layer is started to be wound from the base of the buttock (upper in the drawing) (23a), and then wound to the base of the other buttock. The second layer is folded and wound so as to be arranged as much as possible between the coils 23 of the second layer.

 また、(図中上方の)鍔部側まで折り返し巻き回された2層目のコイル23は、1層目の巻始めのコイル23aの次のターンで巻き回されたコイル23bとコイル23cとの間に巻き回すのを最後に、3層目の巻回しに折り返すようになっている。その後4層目、5層目、6層目は夫々、隣接する層のターン数から1ターン減じて巻き回すようになっている。この結果図2(b)に示す如く、コイル23は鍔部との間で角θをなる段巻を形成する。最終層まで巻き回されたコイル23は隣接するボビン鍔部の根本へそのまま巻き回される。 In addition, the second-layer coil 23 that is wound back to the buttocks side (upper in the drawing) is a coil 23b and a coil 23c that are wound on the next turn of the first-layer coil 23a. Finally, the intermediate winding is turned back to the third layer winding. Thereafter, the fourth layer, the fifth layer, and the sixth layer are each wound by subtracting one turn from the number of turns of the adjacent layers. As a result, as shown in FIG. 2 (b), the coil 23 forms a step winding having an angle θ between the coil 23 and the coil portion. The coil 23 wound to the final layer is wound as it is on the root of the adjacent bobbin collar.

 図3には、二つのボビン22にコイル23を連続して巻き回した(連巻)斜視図を示す。図示しないが、巻き回し時には二つのボビン22を治具に固定する。このとき、切欠き部第1のボビンの切欠き22aと第2のボビンの切欠き22bとが近づくよう、二つのボビンを重心を中心として、互いに傾けて配置する。ボビンを治具で固定した後、二つのボビンを巻き回し方向に回転させる。同時に、コイルを支持するノズルを水平方向に移動させることで、コイルを筒部に巻き回すようになっている。 FIG. 3 is a perspective view in which the coil 23 is continuously wound around the two bobbins 22 (continuous winding). Although not shown, at the time of winding, the two bobbins 22 are fixed to a jig. At this time, the two bobbins are inclined with respect to each other about the center of gravity so that the notch 22a of the first bobbin and the notch 22b of the second bobbin approach each other. After fixing the bobbin with a jig, the two bobbins are wound and rotated. At the same time, the nozzle that supports the coil is moved in the horizontal direction so that the coil is wound around the cylindrical portion.

 本例では、ノズルを第1のボビンの筒部状を複数回往復させて段巻を形成した後、コイル23を切欠き部22aを通し、対向する第2のボビンの切欠き22bに通す。第2のボビンに対してもボビンを回転させて段巻を形成する。巻回し後、図4に示すようにボビン間のコイル22を切欠き部から外し、渡り線231が第2のボビンの巻線の第1領域を通るように両ボビンを回転させる。これにより巻方向Dが異なる連続コイルが完成する。 In this example, the nozzle is reciprocated a plurality of times through the cylindrical portion of the first bobbin to form a stepped winding, and then the coil 23 is passed through the notch 22a and the notch 22b of the second bobbin facing thereto. The bobbin is also rotated with respect to the second bobbin to form a corrugated winding. After winding, as shown in FIG. 4, the coil 22 between the bobbins is removed from the notch, and both bobbins are rotated so that the crossover wire 231 passes through the first region of the winding of the second bobbin. As a result, continuous coils having different winding directions D are completed.

 このように、最内周側から隣接するコアユニット(第2のボビン)に渡り線231を渡すことで、渡り線のたるみが低減され、巻き崩れる虞や絶縁性能を確保できなくなる虞を減らすことができる。 In this way, by passing the crossover wire 231 from the innermost peripheral side to the adjacent core unit (second bobbin), the crossover slack is reduced, and the possibility that the wire may collapse or insulation performance may not be ensured is reduced. Can do.

 巻線を巻く方向は第1のボビンと第2のボビンで逆の向きとなる。例えば、ボビンの真上から見たときに、第1のボビンに反時計回りにコイル23が巻き回されていれば、連巻される第2のボビンは時計回りにコイル23が巻き回されることになる。もちろん第1のボビンと第2のボビンの関係は逆でも構わない。 The winding direction is reversed between the first bobbin and the second bobbin. For example, if the coil 23 is wound counterclockwise around the first bobbin when viewed from directly above the bobbin, the coil 23 is wound clockwise around the second bobbin to be wound continuously. It will be. Of course, the relationship between the first bobbin and the second bobbin may be reversed.

 以上、本発明を実施するための実施例について説明したが、本発明はこれに限定されるものではない。例えば本実施例ではダブルロータ型のアキシャルギャップ型モータを例としたが、シングルロータ型であってもよい。また、モータではなく発電機であってもよい。 As mentioned above, although the Example for implementing this invention was described, this invention is not limited to this. For example, in this embodiment, a double rotor type axial gap type motor is taken as an example, but a single rotor type may be used. Moreover, a generator may be used instead of the motor.

1…電動機
10…ステータ
20…コアユニット
21…コア
23…コイル
22…ボビン
24…樹脂
30…ロータ
31…永久磁石
32…ベース
40…回転軸
50…ハウジング
60…ブラケット
70…軸受。
DESCRIPTION OF SYMBOLS 1 ... Electric motor 10 ... Stator 20 ... Core unit 21 ... Core 23 ... Coil 22 ... Bobbin 24 ... Resin 30 ... Rotor 31 ... Permanent magnet 32 ... Base 40 ... Rotating shaft 50 ... Housing 60 ... Bracket 70 ... Bearing.

Claims (2)

 概略柱体からなるコア、該コアに巻き回すコイル及び前記コア並びにコイルとの間に配設されるボビンとを有する複数のコアユニットが、回転軸を中心に、ハウジング内周面に沿って環状に配列されてなる固定子と、回転軸方向に所定のエアギャップを介して前記コアの端面の面対向する少なくとも一つの回転子とを備えるアキシャルギャップ型回転電機であって、
 前記ボビンが、
 前記コアを挿入する筒部と、該筒部の両開口端部の少なくとも一方の近傍に該筒部の外周と鉛直方向に所定長さ延伸する鍔部とを有するものであり、
 前記コイルが、
 前記ボビンの前記筒部外周に整列巻で巻き回されるものであり、
 前記鍔部に接触して巻き回された層よりも外側に巻き回される層の1層毎のターン数が、隣接する内側のターン数よりも少なくとも1つずつ減少したターン数となる層が連続してなるものであり、
 第1のコアユニットの最内周層から隣接する第2のコアユニットの一層目のコイルとして渡り線を配置するものであるアキシャルギャップ型回転電機。
A plurality of core units each having a substantially columnar core, a coil wound around the core, and the core and a bobbin disposed between the coils are annular along the inner peripheral surface of the housing around the rotation axis An axial gap type rotating electrical machine comprising: a stator arranged in an axis; and at least one rotor facing the end surface of the core via a predetermined air gap in a rotation axis direction,
The bobbin
A cylindrical portion into which the core is inserted, and an outer periphery of the cylindrical portion in the vicinity of at least one of both opening end portions of the cylindrical portion and a flange portion extending a predetermined length in the vertical direction,
The coil is
The bobbin is wound around the outer periphery of the cylindrical portion with aligned winding,
A layer in which the number of turns per layer of the layer wound outside the layer wound in contact with the collar portion is reduced by at least one turn from the number of adjacent inner turns; It is a series of
An axial gap type rotating electrical machine in which a crossover is arranged as a first layer coil of a second core unit adjacent to the innermost peripheral layer of the first core unit.
 請求項1に記載のアキシャルギャップ型回転電機であって、
 前記第1のコアユニットのコイルの巻方向と、前記第2のコアユニットのコイルの巻方向は異なるものであるアキシャルギャップ型回転電機。
The axial gap type rotating electrical machine according to claim 1,
An axial gap type rotating electrical machine in which the winding direction of the coil of the first core unit is different from the winding direction of the coil of the second core unit.
PCT/JP2017/002876 2017-01-27 2017-01-27 Axial gap-type rotary electric machine Ceased WO2018138859A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/002876 WO2018138859A1 (en) 2017-01-27 2017-01-27 Axial gap-type rotary electric machine
CN201780045652.9A CN109478813B (en) 2017-01-27 2017-01-27 Axial gap type rotating electric machine
JP2018564037A JP7025355B2 (en) 2017-01-27 2017-01-27 Axial gap type rotary electric machine
TW107101391A TWI673937B (en) 2017-01-27 2018-01-15 Axial gap type rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002876 WO2018138859A1 (en) 2017-01-27 2017-01-27 Axial gap-type rotary electric machine

Publications (1)

Publication Number Publication Date
WO2018138859A1 true WO2018138859A1 (en) 2018-08-02

Family

ID=62979215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002876 Ceased WO2018138859A1 (en) 2017-01-27 2017-01-27 Axial gap-type rotary electric machine

Country Status (4)

Country Link
JP (1) JP7025355B2 (en)
CN (1) CN109478813B (en)
TW (1) TWI673937B (en)
WO (1) WO2018138859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572282A (en) * 2021-08-09 2021-10-29 浙江盘毂动力科技有限公司 Winding stator structure, stator assembly and disc type motor
KR102741752B1 (en) * 2024-10-15 2024-12-16 주식회사 서진캠 Bobbin and flat coil winding method for stator of axial flux motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544951B (en) * 2019-07-05 2024-02-02 余仁伟 Disc motor multi-layer coil flat stator
WO2021225049A1 (en) * 2020-05-08 2021-11-11 住友電気工業株式会社 Core piece, stator core, stator, and rotating electrical machine
CN114123687B (en) 2020-08-28 2023-05-26 台达电子工业股份有限公司 Stator winding displacement method of rotary motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304604A (en) * 1997-04-24 1998-11-13 Toshiba Corp DC motor
JP2009100572A (en) * 2007-10-17 2009-05-07 Mitsuba Corp Inner rotor type magnet generator
WO2015011836A1 (en) * 2013-07-26 2015-01-29 株式会社日立製作所 Axial gap motor and method for manufacturing winding therefor
JP2016506235A (en) * 2013-01-31 2016-02-25 ワイエーエスエー モータース リミテッド Axial motor shoe cooling gap

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527602B2 (en) * 2005-05-30 2010-08-18 日立オートモティブシステムズ株式会社 Method for manufacturing stator coil
JP5548509B2 (en) * 2010-04-22 2014-07-16 三菱電機株式会社 Electric motor and exhaust fan
JP5959757B2 (en) * 2013-10-30 2016-08-02 三菱電機株式会社 Electric motor, compressor provided with the same, and method for manufacturing electric motor
JP6409424B2 (en) * 2013-11-20 2018-10-24 株式会社デンソー Armature and rotating machine
JP6294469B2 (en) 2014-04-14 2018-03-14 株式会社日立産機システム Axial air gap type rotating electrical machine
JP2016149930A (en) * 2015-02-09 2016-08-18 住友精化株式会社 Rotary electric machine, coil and coil device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10304604A (en) * 1997-04-24 1998-11-13 Toshiba Corp DC motor
JP2009100572A (en) * 2007-10-17 2009-05-07 Mitsuba Corp Inner rotor type magnet generator
JP2016506235A (en) * 2013-01-31 2016-02-25 ワイエーエスエー モータース リミテッド Axial motor shoe cooling gap
WO2015011836A1 (en) * 2013-07-26 2015-01-29 株式会社日立製作所 Axial gap motor and method for manufacturing winding therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572282A (en) * 2021-08-09 2021-10-29 浙江盘毂动力科技有限公司 Winding stator structure, stator assembly and disc type motor
KR102741752B1 (en) * 2024-10-15 2024-12-16 주식회사 서진캠 Bobbin and flat coil winding method for stator of axial flux motor

Also Published As

Publication number Publication date
TW201828573A (en) 2018-08-01
CN109478813B (en) 2021-04-06
CN109478813A (en) 2019-03-15
TWI673937B (en) 2019-10-01
JP7025355B2 (en) 2022-02-24
JPWO2018138859A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN102801242B (en) Rotary electric machine
JP4234831B2 (en) Axial gap motor
CN107005103B (en) The manufacturing method of stator for electric rotating machine iron core, electric rotating machine and electric rotating machine
JP6220962B2 (en) Axial air gap type rotating electrical machine
JP7025355B2 (en) Axial gap type rotary electric machine
JP4655764B2 (en) Rotating electric machine
CN103580312B (en) Electric rotating machine
US20170093244A1 (en) Axial-Air-Gap Dynamo-Electric Machine
WO2016017342A1 (en) Stator and rotating machine
KR20170035794A (en) Single phase permanent magnet motor
JP2023041924A5 (en)
US20190312476A1 (en) Motor
EP3675327B1 (en) Armature structure of three-phase motor
JP5865865B2 (en) Electric blower and vacuum cleaner
JP2009284626A (en) Stator of rotating machine and motor
JP6771590B2 (en) Axial gap type rotary electric machine
JP2010011706A (en) Motor
WO2018142463A1 (en) Axial gap-type rotary electrical machine
JP2017201871A (en) Rotary electric machine with ratio of dimension minimizing torque ripple
JP2006271142A (en) Rotating machine
JP7258824B2 (en) Rotating electric machine
JP5311877B2 (en) Coil of stator and stator core of rotating device
JP7543229B2 (en) Stator core for axial gap type rotating electric machine, and method for manufacturing stator for axial gap type rotating electric machine
JP2019140757A (en) Rotary electric machine, method for manufacturing the same, and blower
WO2018142469A1 (en) Axial gap-type rotary electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564037

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893747

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载