WO2018185839A1 - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- WO2018185839A1 WO2018185839A1 PCT/JP2017/014100 JP2017014100W WO2018185839A1 WO 2018185839 A1 WO2018185839 A1 WO 2018185839A1 JP 2017014100 W JP2017014100 W JP 2017014100W WO 2018185839 A1 WO2018185839 A1 WO 2018185839A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin film
- electrodes
- wiring
- semiconductor device
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
- H01L23/5283—Cross-sectional geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5386—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/315—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
- H01L23/4821—Bridge structure with air gap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
- H01L23/4824—Pads with extended contours, e.g. grid structure, branch structure, finger structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5222—Capacitive arrangements or effects of, or between wiring layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/40—Vertical BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/87—FETs having Schottky gate electrodes, e.g. metal-semiconductor FETs [MESFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/231—Emitter or collector electrodes for bipolar transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/257—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/281—Base electrodes for bipolar transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/764—Air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5221—Crossover interconnections
Definitions
- the present invention relates to a semiconductor device in which a hollow structure sealed with a resin film is formed, and a method for manufacturing the same.
- a high electron mobility transistor (HEMT) made of a compound semiconductor has excellent high frequency characteristics and low noise characteristics, and is therefore applied to microwave and millimeter wave amplifiers.
- HEMT high electron mobility transistor
- transconductance increases and the gate electrode to the improvement of the f T and f max - is the effective means reduction in capacitance between the source electrode.
- Non-Patent Document 1 removing the resin film around the gate electrode is known as a means for preventing the deterioration of the high frequency characteristics (see, for example, Patent Documents 1 to 3).
- Patent Documents 4 and 5 a transistor in which the hollow structure is extended to the periphery of the source and drain electrodes and a manufacturing method thereof have been proposed ( For example, see Patent Documents 4 and 5).
- Japanese Unexamined Patent Publication No. 05-335343 Japanese Unexamined Patent Publication No. 2015-046445 Japanese Unexamined Patent Publication No. 2016-039319 Japanese Unexamined Patent Publication No. 2014-209522 Japanese Unexamined Patent Publication No. 2009-176930
- the present invention has been made to solve the above-described problems, and its purpose is to prevent a chemical from entering a hollow structure, reduce the capacitance, and improve the high-frequency characteristics and The manufacturing method is obtained.
- a semiconductor device covers a semiconductor substrate, a multi-finger transistor having a plurality of control electrodes, a plurality of first electrodes, and a plurality of second electrodes formed on the semiconductor substrate, and the transistor A resin film; and a first wiring that is formed on the resin film and electrically connects the plurality of first electrodes to each other, wherein the resin film includes the first wiring and the plurality of first electrodes. And a first hollow structure sealed with the resin film is formed around the plurality of control electrodes and the plurality of second electrodes.
- a first hollow structure sealed with a resin film is formed around the plurality of control electrodes and the plurality of second electrodes.
- the capacitance of the transistor can be reduced as much as possible as compared with the case where the hollow structure is formed only around the control electrode.
- electrostatic capacity can be made small and a high frequency characteristic can be improved.
- the resin film covers contact portions between the first wiring and the plurality of first electrodes.
- medical agents such as a resist or inorganic aqueous solution used at the process after forming the 1st hollow structure, can prevent entering into the 1st hollow structure.
- FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line II of FIG.
- FIG. 4 is a cross-sectional view taken along the line III-IV in FIG. 1.
- FIG. 14 is a cross-sectional view taken along the line II of FIG.
- FIG. 1 is a plan view showing a semiconductor device according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view taken along the line II of FIG.
- FIG. 3 is a sectional view taken along line III-IV in FIG.
- a multi-finger field effect transistor having a plurality of gate electrodes 2, a plurality of source electrodes 3, and a plurality of drain electrodes 4 is formed on a semiconductor substrate 1.
- the cross-sectional shape of the gate electrode 2 is T-type or Y-type.
- the plurality of gate electrodes 2 are connected to the gate pad 6 through the gate wiring 5.
- the plurality of source electrodes 3 are connected to the source pad 9 through the source wiring 7 and the connection wiring 8.
- the plurality of drain electrodes 4 are connected to the drain pad 11 through the drain wiring 10.
- the insulating films 12 and 13 and the resin films 14 and 15 cover the transistor.
- the connection wiring 8 is formed on the resin film 15.
- the connection wiring 8 and the source wiring 7 electrically connect the plurality of source electrodes 3 to each other.
- the resin film 14 covers contact portions between the connection wiring 8 and the plurality of source electrodes 3.
- a hollow structure 16 sealed with resin films 14 and 15 is formed around the plurality of gate electrodes 2 and the plurality of drain electrodes 4.
- a hollow structure 17 sealed with resin films 14 and 15 is formed at the intersection of the gate wiring 5 and the connection wiring 8.
- the thickness of the resin films 14 and 15 is 2 to 20 ⁇ m.
- the height of the hollow structures 16 and 17 is 1 to 10 ⁇ m.
- the width and depth of the hollow structures 16 and 17 are several ⁇ m to several hundred ⁇ m.
- the hollow structures 16 and 17 are formed not for the entire chip but for each circuit element such as a transistor and a wiring.
- FIGS. 5 and 7 correspond to the cross-sectional view of FIG.
- a transistor having a gate electrode 2, a source electrode 3, and a drain electrode 4 is formed on a semiconductor substrate 1.
- the lower layer wiring such as the gate wiring 5 is also formed at the same time.
- An insulating film 12 is formed on the entire surface.
- the insulating film 12 is opened at a location where electrical wiring is connected in a later process.
- a resin film 14 which is a photosensitive resin film is formed on the entire surface by a coating method using a spin coater, a laminating method, or an STP (Spin-coating film-Transfer-and-hot-Pressing-technology) method.
- the resin film 14 is patterned by exposure and development so as to cover the source electrode 3 and surround the gate electrode 2 and the drain electrode 4 without covering them. Thus, the resin film 14 can be easily patterned by using the photosensitive resin film. Further, the resin film 14 is opened also in a region on the gate wiring 5 which will be an intersection of the wiring later. Thereafter, a curing process is performed to cure the resin film 14.
- a sheet film of a photosensitive resin film as the resin film 15 is bonded to the upper surface of the resin film 14 by a lamination method or an STP method.
- the hollow structure 16 sealed with the resin films 14 and 15 around the gate electrode 2 and the drain electrode 4 is formed.
- the hollow structure 17 can be formed in the upper region of the gate wiring 5 on the same plane.
- the resin film 15 is exposed and developed to form a through hole 18 on the source electrode 3 and the like. Thereafter, a curing process is performed to cure the resin film 15.
- the resin film 15 may be a non-photosensitive resin. In that case, dry etching is used when the through hole 18 is formed.
- connection wiring 8 connected to the source electrode 3 through the through hole 18 is formed on the resin film 15 by plating or vapor deposition.
- plating after forming a power feeding layer and patterning with a resist, electrolytic plating is performed. Thereafter, the resist and the power feeding layer are removed.
- the vapor deposition method patterning is performed with a resist, a metal film is formed by vapor deposition, and the resist is removed by a lift-off method.
- the insulating film 13 covers the outside of the resin film 14 and the outside of the resin film 15. However, openings necessary for the contact are opened. Thereby, the semiconductor device according to the present embodiment is manufactured.
- a hollow structure 16 sealed with resin films 14 and 15 is formed around the gate electrode 2 and the drain electrode 4.
- the resin film 14 covers a contact portion between the connection wiring 8 and the source electrode 3. Thereby, as shown in FIG. 6, when the resin film 15 is affixed, the hollow structure 16 is completely sealed. For this reason, it is possible to prevent chemicals such as a resist or an inorganic aqueous solution used in the process after forming the hollow structure 16 from entering the hollow structure 16.
- a hollow structure 17 sealed with resin films 14 and 15 is formed at the intersection of the gate wiring 5 and the connection wiring 8. Since the wiring capacity is reduced by forming a hollow structure between the wirings in this way, the characteristic impedance can be increased. For this reason, it is easy to obtain impedance matching and to facilitate circuit design. Note that the hollow structure 17 may be formed at the intersection of the gate wiring 5 and the drain wiring 10.
- FIG. FIG. 9 is a plan view showing a semiconductor device according to the second embodiment of the present invention.
- FIG. 10 is a cross-sectional view taken along the line II of FIG.
- a connection wiring 8 is formed above the plurality of gate electrodes 2 and the plurality of drain electrodes 4 and on the resin film 15 to electrically connect the plurality of source electrodes 3 to each other.
- the connection wiring 8 extends in a direction perpendicular to the longitudinal direction of the drain electrode 4.
- Other configurations are the same as those of the first embodiment, and even in this case, the same effects as those of the first embodiment can be obtained.
- FIG. 11 is a sectional view showing a semiconductor device according to the third embodiment of the present invention.
- a lower layer wiring 19 and an upper layer wiring 20 are formed in a region other than the field effect transistor.
- the lower layer wiring 19 is covered with the resin films 14 and 15, and the upper layer wiring 20 is formed on the resin film 15.
- a hollow structure 17 sealed with resin films 14 and 15 is formed at the intersection of the lower layer wiring 19 and the upper layer wiring 20. Since the wiring capacity is reduced by forming a hollow structure between the wirings in this way, the characteristic impedance can be increased. For this reason, it is easy to obtain impedance matching and to facilitate circuit design. Other configurations and effects are the same as those of the second embodiment.
- FIG. FIG. 12 is a sectional view showing a semiconductor device according to the fourth embodiment of the present invention.
- the hollow structures 16 and 17 support columns 21 that support the resin film 15 on the upper part are formed. Thereby, it is possible to prevent the resin film 15 from sagging and to prevent a process failure.
- the capacitance of the device is increased as compared with the third embodiment, the structure can be stably formed, so that the production stability is improved.
- Other configurations and effects are the same as those of the third embodiment.
- FIG. 13 is a plan view showing a semiconductor device according to the fifth embodiment of the present invention.
- FIG. 14 is a cross-sectional view taken along the line II of FIG.
- a multi-finger bipolar transistor having a plurality of base electrodes 22, a plurality of emitter electrodes 23, and a plurality of collector electrodes 24 is formed on the semiconductor substrate 1.
- the plurality of base electrodes 22 are connected to a base pad 26 via a base wiring 25.
- the plurality of emitter electrodes 23 are connected to the emitter pad 28 via connection wirings 27.
- the plurality of collector electrodes 24 are connected to the collector pad 30 via the collector wiring 29.
- a connection wiring 27 for electrically connecting a plurality of emitter electrodes 23 to each other is formed on the resin film 15.
- the resin film 14 covers the contact portion between the connection wiring 27 and the plurality of emitter electrodes 23.
- a hollow structure 16 hermetically sealed with resin films 14 and 15 is formed around the plurality of base electrodes 22 and the plurality of collector electrodes 24. Even in the case of such a bipolar transistor, the same effect as in the first and second embodiments can be obtained.
- a second hollow structure may be formed at the intersection of the wirings.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Geometry (AREA)
- Junction Field-Effect Transistors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
図1は、本発明の実施の形態1に係る半導体装置を示す平面図である。図2は図1のI-IIに沿った断面図である。図3は図1のIII-IVに沿った断面図である。半導体基板1の上に、複数のゲート電極2、複数のソース電極3、及び複数のドレイン電極4を有するマルチフィンガーの電界効果トランジスタが形成されている。ゲート電極2の断面形状はT型又はY型である。複数のゲート電極2はゲート配線5を介してゲートパッド6に接続されている。複数のソース電極3はソース配線7及び接続配線8を介してソースパッド9に接続されている。複数のドレイン電極4はドレイン配線10を介してドレインパッド11に接続されている。
図9は、本発明の実施の形態2に係る半導体装置を示す平面図である。図10は図9のI-IIに沿った断面図である。接続配線8が、複数のゲート電極2及び複数のドレイン電極4の上方かつ樹脂膜15の上に形成され、複数のソース電極3を互いに電気的に接続する。接続配線8は、ドレイン電極4の長手方向に対して垂直な方向に延びている。その他の構成は実施の形態1と同様であり、この場合でも実施の形態1と同様の効果を得ることができる。
図11は、本発明の実施の形態3に係る半導体装置を示す断面図である。電界効果トランジスタ以外の領域において下層配線19及び上層配線20が形成されている。下層配線19は樹脂膜14,15で覆われ、上層配線20は樹脂膜15の上に形成されている。下層配線19と上層配線20の交差部分において樹脂膜14,15で密閉された中空構造17が形成されている。このように配線間に中空構造を形成することで配線容量が小さくなるため、特性インピーダンスを大きくできる。このため、インピーダンス整合を取りやすく、回路設計がしやすくなる。その他の構成及び効果は実施の形態2と同様である。
図12は、本発明の実施の形態4に係る半導体装置を示す断面図である。中空構造16,17の内部において、その上部の樹脂膜15を支える支柱21が形成されている。これにより、樹脂膜15が垂れ下がるのを防ぎ、プロセス上の不具合を防ぐことができる。実施の形態3に比べてデバイスの静電容量は増加するものの、構造を安定に形成できるので、生産安定性が向上する。その他の構成及び効果は実施の形態3と同様である。
図13は、本発明の実施の形態5に係る半導体装置を示す平面図である。図14は図13のI-IIに沿った断面図である。半導体基板1の上に、複数のベース電極22、複数のエミッタ電極23、及び複数のコレクタ電極24を有するマルチフィンガーのバイポーラトランジスタが形成されている。複数のベース電極22はベース配線25を介してベースパッド26に接続されている。複数のエミッタ電極23は接続配線27を介してエミッタパッド28に接続されている。複数のコレクタ電極24はコレクタ配線29を介してコレクタパッド30に接続されている。
Claims (6)
- 半導体基板と、
前記半導体基板の上に形成された複数の制御電極、複数の第1電極、及び複数の第2電極を有するマルチフィンガーのトランジスタと、
前記トランジスタを覆う樹脂膜と、
前記樹脂膜の上に形成され、前記複数の第1電極を互いに電気的に接続する第1の配線とを備え、
前記樹脂膜は前記第1の配線と前記複数の第1電極とのコンタクト部分を覆い、
前記複数の制御電極及び前記複数の第2電極の周囲において前記樹脂膜で密閉された第1の中空構造が形成されていることを特徴とする半導体装置。 - 前記半導体基板の上に形成され前記樹脂膜で覆われ、前記複数の制御電極を互いに電気的に接続する第2の配線を更に備え、
前記第1の配線と前記第2の配線の交差部分において前記樹脂膜で密閉された第2の中空構造が形成されていることを特徴とする請求項1に記載の半導体装置。 - 前記第1の配線は、前記複数の制御電極及び前記複数の第2電極の上方に形成されていることを特徴とする請求項1に記載の半導体装置。
- 前記樹脂膜で覆われた下層配線と、
前記樹脂膜の上に形成された上層配線とを備え、
前記下層配線と前記上層配線の交差部分において前記樹脂膜で密閉された第2の中空構造が形成されていることを特徴とする請求項3に記載の半導体装置。 - 前記第2の中空構造の内部において前記樹脂膜を支える支柱が形成されていることを特徴とする請求項4に記載の半導体装置。
- 半導体基板の上に制御電極、第1電極、及び第2電極を有するトランジスタを形成する工程と、
前記半導体基板の上に、前記第1電極を覆いつつ、前記制御電極及び前記第2電極を囲む第1の樹脂膜を形成する工程と、
第2の樹脂膜を前記第1の樹脂膜の上面に接合させて前記制御電極及び前記第2電極の周囲において前記第1及び第2の樹脂膜で密閉された中空構造を形成する工程とを備えることを特徴とする半導体装置の製造方法。
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201780089183.0A CN110476231A (zh) | 2017-04-04 | 2017-04-04 | 半导体装置及其制造方法 |
| US16/472,559 US11088074B2 (en) | 2017-04-04 | 2017-04-04 | Semiconductor device and method for manufacturing same |
| JP2017541730A JP6222419B1 (ja) | 2017-04-04 | 2017-04-04 | 半導体装置及びその製造方法 |
| PCT/JP2017/014100 WO2018185839A1 (ja) | 2017-04-04 | 2017-04-04 | 半導体装置及びその製造方法 |
| DE112017007395.2T DE112017007395T5 (de) | 2017-04-04 | 2017-04-04 | Halbleitervorrichtung und Verfahren zum Herstellen derselben |
| CN202510165751.7A CN120015740A (zh) | 2017-04-04 | 2017-04-04 | 半导体装置 |
| KR1020197028319A KR102177894B1 (ko) | 2017-04-04 | 2017-04-04 | 반도체 장치 및 그 제조 방법 |
| TW106116429A TWI659506B (zh) | 2017-04-04 | 2017-05-18 | 半導體裝置及其製造方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2017/014100 WO2018185839A1 (ja) | 2017-04-04 | 2017-04-04 | 半導体装置及びその製造方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018185839A1 true WO2018185839A1 (ja) | 2018-10-11 |
Family
ID=60205942
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/014100 Ceased WO2018185839A1 (ja) | 2017-04-04 | 2017-04-04 | 半導体装置及びその製造方法 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11088074B2 (ja) |
| JP (1) | JP6222419B1 (ja) |
| KR (1) | KR102177894B1 (ja) |
| CN (2) | CN110476231A (ja) |
| DE (1) | DE112017007395T5 (ja) |
| TW (1) | TWI659506B (ja) |
| WO (1) | WO2018185839A1 (ja) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4258341A3 (en) * | 2022-03-17 | 2024-01-17 | Analog Devices, Inc. | Sealed cavity embedded in a semiconductor wafer |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11929408B2 (en) * | 2020-05-14 | 2024-03-12 | Macom Technology Solutions Holdings, Inc. | Layout techniques and optimization for power transistors |
| CN111710715A (zh) * | 2020-05-14 | 2020-09-25 | 西安电子科技大学 | 具有空气腔的氮化镓微波毫米波晶体管结构及制备方法 |
| US11302609B2 (en) | 2020-08-31 | 2022-04-12 | Nxp Usa, Inc. | Radio frequency power dies having flip-chip architectures and power amplifier modules containing the same |
| TWI751008B (zh) * | 2021-01-27 | 2021-12-21 | 鴻鎵科技股份有限公司 | 雙電晶體的封裝結構 |
| CN115036308A (zh) * | 2021-03-05 | 2022-09-09 | 住友电工光电子器件创新株式会社 | 半导体装置及其制造方法 |
| FR3121544B1 (fr) | 2021-03-31 | 2023-11-24 | St Microelectronics Crolles 2 Sas | Structure d'isolation thermique et électrique |
| CN118969833B (zh) * | 2024-07-31 | 2025-09-12 | 西安电子科技大学 | 一种适用于宽频带设计的单刀单掷开关器件及其制备方法 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013055126A (ja) * | 2011-09-01 | 2013-03-21 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6195536A (ja) * | 1984-10-16 | 1986-05-14 | Sanken Electric Co Ltd | 樹脂封止型半導体装置の製造方法 |
| US5408742A (en) * | 1991-10-28 | 1995-04-25 | Martin Marietta Corporation | Process for making air bridges for integrated circuits |
| JPH05335343A (ja) | 1992-05-27 | 1993-12-17 | Sony Corp | 電界効果トランジスタ |
| DE19522364C1 (de) * | 1995-06-20 | 1996-07-04 | Siemens Ag | Halbleiter-Bauelement |
| US5659267A (en) * | 1995-11-03 | 1997-08-19 | Motorola, Inc. | High gain K-band power amplifier with unconditionally stable MMIC FET cells |
| US5789791A (en) * | 1996-08-27 | 1998-08-04 | National Semiconductor Corporation | Multi-finger MOS transistor with reduced gate resistance |
| KR20020035841A (ko) * | 1999-07-28 | 2002-05-15 | 가나이 쓰토무 | 반도체장치 |
| JP3600544B2 (ja) * | 2001-03-30 | 2004-12-15 | ユーディナデバイス株式会社 | 半導体装置の製造方法 |
| US6724067B2 (en) * | 2001-04-13 | 2004-04-20 | Anadigics, Inc. | Low stress thermal and electrical interconnects for heterojunction bipolar transistors |
| JP2003332508A (ja) * | 2002-05-16 | 2003-11-21 | Renesas Technology Corp | 半導体装置及びその製造方法 |
| TWI288443B (en) * | 2002-05-17 | 2007-10-11 | Semiconductor Energy Lab | SiN film, semiconductor device, and the manufacturing method thereof |
| JP4284639B2 (ja) | 2002-08-29 | 2009-06-24 | 富士通株式会社 | 半導体装置の製造方法 |
| JP4489485B2 (ja) * | 2004-03-31 | 2010-06-23 | 株式会社ルネサステクノロジ | 半導体装置 |
| JP5343301B2 (ja) * | 2005-11-28 | 2013-11-13 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
| TW200913336A (en) * | 2007-08-07 | 2009-03-16 | Panasonic Corp | Semiconductor device, manufacturing method thereof and image display device |
| JP2009176930A (ja) | 2008-01-24 | 2009-08-06 | Toshiba Corp | 半導体装置およびその製造方法 |
| US8907473B2 (en) * | 2009-02-02 | 2014-12-09 | Estivation Properties Llc | Semiconductor device having a diamond substrate heat spreader |
| JP5269045B2 (ja) * | 2010-11-26 | 2013-08-21 | 株式会社東芝 | 電力増幅装置及び連結電力増幅装置 |
| JP5733616B2 (ja) * | 2011-04-21 | 2015-06-10 | 住友電工デバイス・イノベーション株式会社 | 半導体装置 |
| JP2014060245A (ja) * | 2012-09-18 | 2014-04-03 | Mitsubishi Electric Corp | 半導体装置 |
| US8869085B2 (en) * | 2012-10-11 | 2014-10-21 | International Business Machines Corporation | Multi-finger transistor layout for reducing cross-finger electric variations and for fully utilizing available breakdown voltages |
| JP2014209522A (ja) | 2013-04-16 | 2014-11-06 | 富士通株式会社 | 半導体装置及びその製造方法 |
| JP2015046445A (ja) | 2013-08-27 | 2015-03-12 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
| JP6233236B2 (ja) * | 2014-08-08 | 2017-11-22 | 三菱電機株式会社 | 半導体装置の製造方法 |
| JP6299665B2 (ja) * | 2015-04-30 | 2018-03-28 | 三菱電機株式会社 | 電界効果トランジスタ |
| JP6810350B2 (ja) * | 2016-12-28 | 2021-01-06 | 富士通株式会社 | 半導体装置、半導体装置の製造方法及び電子装置 |
-
2017
- 2017-04-04 WO PCT/JP2017/014100 patent/WO2018185839A1/ja not_active Ceased
- 2017-04-04 CN CN201780089183.0A patent/CN110476231A/zh active Pending
- 2017-04-04 CN CN202510165751.7A patent/CN120015740A/zh active Pending
- 2017-04-04 DE DE112017007395.2T patent/DE112017007395T5/de not_active Withdrawn
- 2017-04-04 KR KR1020197028319A patent/KR102177894B1/ko active Active
- 2017-04-04 US US16/472,559 patent/US11088074B2/en active Active
- 2017-04-04 JP JP2017541730A patent/JP6222419B1/ja active Active
- 2017-05-18 TW TW106116429A patent/TWI659506B/zh active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013055126A (ja) * | 2011-09-01 | 2013-03-21 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4258341A3 (en) * | 2022-03-17 | 2024-01-17 | Analog Devices, Inc. | Sealed cavity embedded in a semiconductor wafer |
| US12356698B2 (en) | 2022-03-17 | 2025-07-08 | Analog Devices, Inc. | Method of forming a sealed cavity embedded in a semiconductor wafer |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110476231A (zh) | 2019-11-19 |
| TWI659506B (zh) | 2019-05-11 |
| US20200020632A1 (en) | 2020-01-16 |
| JP6222419B1 (ja) | 2017-11-01 |
| KR102177894B1 (ko) | 2020-11-12 |
| TW201843778A (zh) | 2018-12-16 |
| JPWO2018185839A1 (ja) | 2019-04-11 |
| KR20190117756A (ko) | 2019-10-16 |
| CN120015740A (zh) | 2025-05-16 |
| DE112017007395T5 (de) | 2019-12-12 |
| US11088074B2 (en) | 2021-08-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6222419B1 (ja) | 半導体装置及びその製造方法 | |
| JP6233236B2 (ja) | 半導体装置の製造方法 | |
| TWI609468B (zh) | 封裝體裝置及其製造方法 | |
| KR102497370B1 (ko) | 반도체 장치의 제조 방법 | |
| TWI670810B (zh) | 半導體裝置及其製造方法 | |
| CN102341895B (zh) | 半导体芯片及半导体装置 | |
| JP5162826B2 (ja) | 半導体装置及びその製造方法 | |
| CN115836394A (zh) | 一种半导体器件及其制造方法 | |
| JP2017220608A (ja) | レーザ素子、レーザ素子の製造方法 | |
| JP4907093B2 (ja) | 半導体装置の製造方法 | |
| JP2016012737A (ja) | 半導体装置 | |
| JP6657970B2 (ja) | 半導体装置及びその製造方法、通信装置 | |
| JPS5914906B2 (ja) | 電界効果トランジスタの製造方法 | |
| JP5512639B2 (ja) | 半導体装置の製造方法 | |
| JPS62273755A (ja) | 電界効果トランジスタおよびその製造方法 | |
| CN108346586B (zh) | 封装体装置及其制造方法 | |
| JP5209269B2 (ja) | 電気装置及びその製造方法 | |
| JP2017195341A (ja) | 配線構造及びその製造方法 | |
| JP5483481B2 (ja) | 半導体装置の製造方法 | |
| WO2024257574A1 (ja) | 電子回路装置及びその製造方法 | |
| TW201123363A (en) | Method for selective deposition of dielectric layers on semiconductor structures | |
| JPH04122034A (ja) | 電界効果トランジスタ | |
| TW201330204A (zh) | 具有三維元件之化合物半導體積體電路 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| ENP | Entry into the national phase |
Ref document number: 2017541730 Country of ref document: JP Kind code of ref document: A |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904768 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 20197028319 Country of ref document: KR Kind code of ref document: A |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17904768 Country of ref document: EP Kind code of ref document: A1 |