WO2018185650A1 - Polyurethane composite - Google Patents
Polyurethane composite Download PDFInfo
- Publication number
- WO2018185650A1 WO2018185650A1 PCT/IB2018/052283 IB2018052283W WO2018185650A1 WO 2018185650 A1 WO2018185650 A1 WO 2018185650A1 IB 2018052283 W IB2018052283 W IB 2018052283W WO 2018185650 A1 WO2018185650 A1 WO 2018185650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diisocyanate
- temperature
- nanoparticles
- functionalized
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2/00—Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
- C08G2/18—Copolymerisation of aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
Definitions
- the invention pertains to the field of composite materials, particularly to synthetic polymer composites of the polyurethane type.
- the present invention relates to a composite comprising functionalized nanoparticles incorporated in a polyurethane matrix and their synthesis process.
- the process comprises melting a diisocyanate in a reactor in an inert gas atmosphere; add a macrodiol controlling temperature and constant stirring until a prepolymer is obtained; add a chain extender and cure the polymer obtained.
- functionalized nanoparticles are incorporated, which are made up of primary particles embedded in a protein matrix.
- FIG. 1 Particle size distribution of calcium carbonate nanoparticles functionalized with protein.
- FIG. 2 Scanning electron micrograph of 50% CaCC calcium carbonate nanoparticles, 50% Sodium caseinate.
- FIG. 3 Scanning electron micrograph of polyurethane-calcium carbonate nanoparticles (0.5% nanoparticles).
- FIG. 4 Scanning electron micrograph of polyurethane-calcium carbonate nanoparticles (2.0% nanoparticles).
- polyurethanes are polyurethanes, polycarbonates and polyesters, given their biocompatibility, biodegradation and adjustable mechanical properties.
- polyurethanes it is It is possible to achieve a wide variation in the mechanical and adhesive properties of the materials obtained, due to the diversity in the chemical composition of the monomers involved in their synthesis (ie isocyanates, alcohols, amines and chain extenders).
- the thermoplastic properties of polyurethanes are associated with the presence of two microfases or microdomains, a hard one that gives it mechanical strength and a soft one that provides flexibility to the material and modular adhesive properties.
- thermoplastic polyurethanes allow their application in the production of biomaterials for the total or partial replacement of tissues that are permanently subjected to compressive, shear or elongation forces. This is how thermoplastic polyurethanes have been used in the repair or replacement of heart muscles, nerves, blood vessels, bones and cartilage.
- thermoplastic polyurethanes like other pure synthetic or natural polymers, have imbalances in their mechanical, adhesive or functional properties. This is why in nature proteins or polysaccharides usually bind to inorganic materials (eg calcium carbonate or phosphate) to generate composite materials or composites, which develop the elasticity of the natural polymer and the biological properties of the inorganic material (eg stimulation of cell growth and adhesion between tissues).
- inorganic materials eg calcium carbonate or phosphate
- Thermoplastic polyurethane composites have been developed for biomedical applications using calcium carbonate as filler material to promote cell growth, due to their better adhesive properties with respect to polyurethanes without added filler material (Ida Dulinska-Molaka, Malgorzata Lekka, Krzysztof J. Kurzydlowski Surface properties of polyurethane composites for biomedical applications Applied Surface Science 270 (2013) 553-560).
- hydroxyapatite nanoparticles have been disclosed as biocompatible support material (La ⁇ s P. Gabriel, Maria Elizabeth M. dos Santos, André L. Jardini, Gilmara NT Bastos, Mé GBT Dias, Thomas J. Webster, Rubens Maciel Filho, Bio -based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites Nanomedicine: Nanotechnology, Biology, and Medicine 13 (2017) 201-208), bone particles or bone substitute materials (eg calcium carbonate, calcium phosphate) for osteoimplants (US20050027033) and for orthopedic applications (US20100112032).
- biocompatible support material La ⁇ s P. Gabriel, Maria Elizabeth M. dos Santos, André L. Jardini, Gilmara NT Bastos, Mé GBT Dias, Thomas J. Webster, Rubens Maciel Filho, Bio -based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticle
- the compound developed by Duliska-Molaka et al. (2013) used calcium carbonate microparticles with sizes between 3.1 and 84.4 micrometers at a concentration of 10%, and incorporated into the macrodiol (ie polycaprolactone diol) during the synthesis process, with the sole purpose of generating adequate adhesion of human cells derived from bone.
- composition developed by Gabriel et al. (2017) used agglomerates of hydroxyapatite nanoparticles (150 nm) obtained by the sol-gel method at a concentration of 20% and incorporated into the polyurethane pre-polymer (obtained from the reaction between a polyol of the fruits of Acai and hexamethylene diisocyanate).
- the composite material was developed for the purpose of improving the adhesive properties of fibroblasts, inhibiting inflammatory reactions in cells and promoting tissue formation functions in cells.
- the present invention relates to a composite or composite material comprising functionalized nanoparticles incorporated in a polymeric polyurethane matrix.
- Composite is understood as a material composed of two or more materials with significantly different physical or chemical properties.
- the functionalized nanoparticles referred to in the present invention are primary particles of inorganic or organic nature embedded in a protein matrix (as shown in patent application WO2012 / 140626 and explained again herein), which form a nanoparticle of multicore type, where the protein matrix in turn acts as a functionalizing agent of the nanoparticle.
- the functionalized nanoparticles are suspended non-aggregated in the aqueous phase and are smaller than 10Onm.
- the functionalized nanoparticles have a particle size between 5 nm and 1000 nm, preferably between 10 nm and 500 nm.
- the functionalized nanoparticles have a particle size between 50nm and 400nm, preferably between 150nm and 300nm. Increasing the particle size above these sizes can reduce the mechanical properties of the material.
- Functionalized nanoparticles are formed by primary particles embedded in a protein matrix.
- the primary particles have particle sizes less than 20nm. In one embodiment, the primary particles have a particle size between 3nm and 18nm. In another embodiment, the primary particles have a particle size between 5nm and lOnm.
- the content of the primary particles in the functionalized nanoparticles is between 5% and 70%. In one embodiment, the content of the primary particles in the functionalized nanoparticles is between 20% and 50% or between 30% and 45%, where the remaining percentage corresponds to the protein matrix.
- the primary particles may be inorganic compounds, minerals, metal oxides, non-metal oxides, iron oxides, zinc oxides, carbonates, phosphates, aluminosilicates.
- the primary particles may be, among others, CaCC, CaMg (C03) 2, MgC0 3 , FeC0 3 , CaFe (C0 3 ) 2 , MnC0 3 , FeC0 3 , MgC0 3 , CaMn (C0 3 ) 2 , CaFe (C0 3 ) 2 , CaMg (C0 3 ) 2 , Ca 3 (P0 4 ) 2 , ZnO, Cu 2 0, CuO, CoO, Au 2 0 3 , Ti0 2 , Ni 2 0 3 , Ag 2 0, HgO, CrO, BaO, Cr 2 0 3 , PbO, FeO, Fe 2 0 3 , CaO, Li 2 0, SnO, Sn0 2 , BaS0 4 ,
- the protein matrix is selected from dairy, meat and vegetable proteins.
- the proteins can be whey protein, caseins, caseinate, beta lactalbumine, egg protein such as ovalbumin, sarcoplasmic and myofibrillar meat proteins, vegetable proteins such as soy protein, corn, rice, barley, He sang it, oatmeal, among others, and its combinations.
- the protein matrix is selected from: calcium caseinate, sodium caseinate and whey protein.
- the protein matrix of the functionalized nanoparticles can be in a concentration between 10% and 70% of the functionalized nanoparticle. In one embodiment of the invention, the protein matrix is in a concentration between 10% and 30% of the functionalized nanoparticle. In another embodiment of the invention, the protein matrix is in a concentration between 40% and 60% of the functionalized nanoparticle. In another embodiment, the protein matrix is in a concentration between 45% and 55% of the functionalized nanoparticle. Additionally, the functionalized nanoparticles can encapsulate water soluble active ingredients, which can be chemical or biological compounds susceptible to being encapsulated or associated with the nanoparticle and are selected from the group consisting of drugs, cells and biotechnological products.
- the functionalized nanoparticles referred to in the present invention are incorporated into a polymeric polyurethane matrix, functioning as a reinforcing material.
- the polyurethane is a thermoplastic polyurethane. Incorporating functionalized nanoparticles as reinforcement material to the polymeric material, it gives the material a better performance with respect to the material without reinforcement, because the constituents of a composite material have different chemical structures and compositions, and therefore, different physical properties. The result is a synergy of the properties of the initial materials.
- the percentage of functionalized nanoparticles in the composition may be in the range of 0.1% m / m to 20.0% m / m.
- the amount of functionalized nanoparticles in the composition is in a range of 0.5% m / m to 5.0% m / m.
- the amount of functionalized nanoparticles in the composition is in the range of 0.5% m / m to 2.0% m / m.
- the amount of functionalized nanoparticles in the composition is in the range of 0.6% m / m to 1.0% m / m.
- the first requirement is to avoid aggregation of the nanoparticles; precisely because of the high area-volume ratio they have, the particles tend to aggregation avoiding the optimal interaction between reinforcement and polymer.
- the control of nanoparticle aggregation is achieved by stabilizing the particles electrostatically or sterically during the production process.
- the second requirement is to generate a good dispersion of the nanoparticulate material in the polymer matrix since this leads to an increase in interfacial area, favoring the interaction between the inorganic reinforcing molecules and the organic molecules of the polymer matrix.
- this aspect lies one of the great challenges of materials science, since generating composite materials with nanoparticles well dispersed in the polymer matrix will depend on chemical factors such as the type of polymer and the type of nanoparticulate reinforcement material, as well as factors physical as the method of inclusion of nanoparticles.
- the ratio in percentage by mass of the soft segment between 40 and 60% and that of the rigid segment between 60 and 40%.
- the ratio between the chemical amount of isocyanate groups with respect to the moles of hydroxyl groups is between 0.9 and 1.2, in one embodiment the ratio is between 0.95 and 1.1; in another mode the ratio is between 1.0 and 1.05.
- the percentage of nanoparticles incorporated into the polymer matrix is between 0.1% m / m and 20.0% m / m.
- the synthesis process of the composition of the invention can be carried out by the pre-polymer method, where the addition of the nanoparticles is carried out by mixing them with each of the monomers.
- the synthesis process of the composition of the present invention includes steps a) b) and c).
- a first material where the functionalized nanoparticles are added in a diisocyanate which can be methylene diphenyl diisocyanate (MDI), dicyclohexylmethane diisocyanate (HMDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), butane diisocyanate (BDI) or mixtures thereof.
- MDI methylene diphenyl diisocyanate
- HMDI dicyclohexylmethane diisocyanate
- HDI hexamethylene diisocyanate
- TDI toluene diisocyanate
- BDI butane diisocyanate
- a second material where the functionalized nanoparticles are mixed with a macrodiol which can be polytetramethylene oxide (PTMO), polycaprolactone diol (PCL), hydroxyl polyacrylate polyol; and a third material where the functionalized nanoparticles are added with the chain extender, which can be a low molecular weight diol selected from: ethylene glycol, butane diol (BDO), hexanediol, cyclohexane dimetanol, isosorbide diol.
- BDO butane diol
- hexanediol cyclohexane dimetanol
- isosorbide diol isosorbide diol.
- a diisocyte is initially melted at a temperature between 50 ° C and 80 ° C or at a temperature between 60 ° C and 70 ° C in an atmosphere with inert gas maintaining constant agitation between 150 and 500 rpm
- the inert gas is selected from: nitrogen, helium, neon, argon, krypton, xenon, among others.
- the temperature is increased to a value between 70 ° C and 100 ° C and a macrodiol is added under mechanical stirring at between 100 rpm and 500 rpm or between 200 rpm and 400 rpm until a pre-polymer is obtained.
- an infrared spectroscopy analysis can be performed.
- the temperature is increased to a value between 50 ° C and 80 ° C or to a value between 65 ° C and 70 ° C.
- the reaction After completing the addition of the macrodiol, the reaction is brought to a temperature between 80 ° C and 100 ° C for 60 to 120 minutes with stirring between 200 rpm and 700 rpm or between 400 rpm and 500 rpm. In one embodiment of the process of the invention, once the macrodiol addition is complete, the reaction is brought to a temperature between 100 ° C and 130 ° C. In another embodiment of the process of the invention, the reaction is maintained for 80 to 110 minutes. c) add a chain extender
- the curing stage of the composite can be carried out by any method known in the art.
- the composition is placed on a Teflon sheet, where it is cured at a temperature between 100 ° C and 150 ° C or between 110 ° C and 130 ° C under an inert gas atmosphere.
- the composition of the present invention is characterized as a biocompatible and biostable material.
- the composition of the present invention is characterized in that it has the following properties (Table 1):
- natural articular cartilage has a Young's modulus value of 18 MPa, while the present invention achieves values between 40 and 65 MPa.
- the Surface Free Energy values of the natural cartilage are around 60 mN / m compared to 52 mN / m of the compound of the present invention, indicating a great similarity with the natural cartilage. That compared to the case of ultra high molecular weight polyethylene (used for prostheses) has a Surface Free Energy of 31 mN / m, which represents a value far removed from that measured for natural cartilage.
- composition of the present invention can be used in the repair or replacement of cardiac muscles, nerves, blood vessels, bones, cartilage, fibrocartilage, meniscus, iliac crest, among others.
- the present invention will be presented in detail through the following examples, which are provided for illustrative purposes only and not for the purpose of limiting its scope.
- Example 1 Obtaining functionalized calcium carbonate nanoparticles in the form of dry powder of sodium carbonate and sodium caseinate A solution of 0.1 M sodium carbonate and 2.0% sodium caseinate was prepared. Similarly, a solution of calcium chloride was prepared at a concentration of 0.3 M. The solutions were quickly mixed using a high pressure homogenizer that allows the two solutions to enter the equipment separately to obtain carbonate nanoparticles. of functionalized calcium. The homogenizer working pressure was 28 MPa.
- the multicore-type calcium carbonate nanoparticles and functionalized with protein obtained had an average size in intensity of 180 nm (FIG. 1), with primary particles between 10 and 30 nm (FIG. 2), according to the dynamic light scattering technique and transmission electron microscopy, respectively, with a 50% calcium carbonate and 50% protein content.
- the nanoparticle suspension was subsequently filtered and washed with water twice, then dried at 60 ° C and obtained calcium carbonate nanoparticles as a dry powder.
- Example 2 Obtaining functionalized calcium carbonate nanoparticles in the form of dry powder of calcium carbonate and sodium caseinate
- Example 3 Obtaining functionalized calcium carbonate nanoparticles in the form of dry powder of calcium carbonate and sodium caseinate
- Example 4 Obtaining calcium carbonate nanoparticles in the form of dry powder of calcium carbonate, sodium caseinate and quercetin
- Example 2 Following the procedure of Example 1, functionalized 0.1M calcium carbonate nanoparticles stabilized with 1% sodium caseinate and 0.1% quercetin were obtained, had an average intensity size of 190nm, according to the dynamic light scattering technique , and did not settle for up to three months when measured in an automatic tensiometer equipped with an accessory to determine sedimentation.
- the encapsulation efficiency of quercetin was 60% measured by the UV-Vis spectrophotometry technique.
- BDO 1,4-butanediol
- functionalized calcium functionalized calcium carbonate nanoparticles obtained according to Example 1
- the microstructure of the composite obtained was observed by scanning electron microscopy (FIG. 3).
- BDO 1,4-butanediol
- 2.8 g of calcium carbonate nanoparticles obtained according to Example 1 functionalized with protein and initially dispersed was performed in the BDO.
- the entire system was maintained at the temperature of 85 ° C for 5 minutes.
- the compound was emptied into a Teflon dish and cured at 110 ° C for 4 hours in an oven with nitrogen recirculation.
- the microstructure of the composite was observed by scanning electron microscopy (FIG. 4).
- Example 7 Mechanical properties of the composite obtained by Example 5 and Example 6
- the mechanical properties of composites obtained according to Example 5 and Example 6 were determined in an Instron 4202 universal machine using a load of 5 kN and a velocity of 10 mm / min at 25 ° C, using type IV specimens obtained by injection molding. Shore A hardness was measured using a PCT hardness tester at 25 ° C. Finally, the adhesion work was calculated from the surface-free energies obtained by van Oss theory by measuring the contact angles with diiodometry and water in a K12 tensiometer from Krüss. The results are illustrated in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Dermatology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
COMPOSITO DE POLIURETANO POLYURETHANE COMPOSITE
CAMPO DE LA INVENCIÓN La invención pertenece al campo de los materiales compuestos, particularmente a compositos de polímeros sintéticos del tipo poliuretano. FIELD OF THE INVENTION The invention pertains to the field of composite materials, particularly to synthetic polymer composites of the polyurethane type.
BREVE DESCRIPCIÓN DE LA INVENCIÓN La presente invención está relacionada con un composito que comprende nanopartículas funcionalizadas incorporadas en una matriz de poliuretano y su proceso de síntesis. El proceso comprende fundir un diisocianato en un reactor en una atmósfera de gas inerte; adicionar un macrodiol controlando temperatura y agitación constante hasta obtener un pre -polímero; adicionar un extensor de cadena y curar el polímero obtenido. En cualquiera de las etapas del proceso, se incorporan nanopartículas funcionalizadas, las cuales están conformadas por partículas primarias embebidas en una matriz proteica. BRIEF DESCRIPTION OF THE INVENTION The present invention relates to a composite comprising functionalized nanoparticles incorporated in a polyurethane matrix and their synthesis process. The process comprises melting a diisocyanate in a reactor in an inert gas atmosphere; add a macrodiol controlling temperature and constant stirring until a prepolymer is obtained; add a chain extender and cure the polymer obtained. At any stage of the process, functionalized nanoparticles are incorporated, which are made up of primary particles embedded in a protein matrix.
BREVE DESCRIPCIÓN DE LAS FIGURAS FIG. 1 Distribución de tamaño de partícula de nanopartículas de carbonato de calcio funcionalizadas con proteína. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 Particle size distribution of calcium carbonate nanoparticles functionalized with protein.
FIG. 2 Microfotografía electrónica de barrido de nanopartículas de carbonato de calcio 50% CaCC , 50% Caseinato de sodio. FIG. 2 Scanning electron micrograph of 50% CaCC calcium carbonate nanoparticles, 50% Sodium caseinate.
FIG. 3 Microfotografía electrónica de barrido de composito poliuretano-nanopartículas de carbonato de calcio (0,5% nanopartículas). FIG. 3 Scanning electron micrograph of polyurethane-calcium carbonate nanoparticles (0.5% nanoparticles).
FIG. 4 Microfotografía electrónica de barrido de composito poliuretano-nanopartículas de carbonato de calcio (2,0% nanopartículas). FIG. 4 Scanning electron micrograph of polyurethane-calcium carbonate nanoparticles (2.0% nanoparticles).
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Entre los polímeros sintéticos más utilizados para aplicaciones biomédicas se encuentran los poliuretanos, los policarbonatos y los poliésteres, dada su biocompatibilidad, biodegradación y propiedades mecánicas ajustables. En el caso de los poliuretanos, es posible lograr una amplia variación en las propiedades mecánicas y adhesivas de los materiales obtenidos, debido a la diversidad en la composición química de los monómeros involucrados en su síntesis (i.e. isocianatos, alcoholes, aminas y extensores de cadena). Las propiedades termoplásticas de los poliuretanos están asociadas a la presencia de dos microfases o microdominios, uno duro que le confiere resistencia mecánica y otro blando que le proporciona flexibilidad al material y propiedades adhesivas modulables. Estas propiedades mecánicas y adhesivas de los poliuretanos termoplásticos permiten su aplicación en la elaboración de biomateriales para el remplazo total o parcial de tejidos que están permanentemente sometidos a fuerzas compresivas, de cizalla o de elongación. Es así como los poliuretanos termoplásticos han sido empleados en la reparación o reemplazo de músculos cardíacos, nervios, vasos sanguíneos, huesos y cartílagos. Among the most commonly used synthetic polymers for biomedical applications are polyurethanes, polycarbonates and polyesters, given their biocompatibility, biodegradation and adjustable mechanical properties. In the case of polyurethanes, it is It is possible to achieve a wide variation in the mechanical and adhesive properties of the materials obtained, due to the diversity in the chemical composition of the monomers involved in their synthesis (ie isocyanates, alcohols, amines and chain extenders). The thermoplastic properties of polyurethanes are associated with the presence of two microfases or microdomains, a hard one that gives it mechanical strength and a soft one that provides flexibility to the material and modular adhesive properties. These mechanical and adhesive properties of thermoplastic polyurethanes allow their application in the production of biomaterials for the total or partial replacement of tissues that are permanently subjected to compressive, shear or elongation forces. This is how thermoplastic polyurethanes have been used in the repair or replacement of heart muscles, nerves, blood vessels, bones and cartilage.
Sin embargo, los poliuretanos termoplásticos al igual que otros polímeros sintéticos o naturales puros, presentan desbalances en sus propiedades mecánicas, adhesivas o funcionales. Es por esto que en la naturaleza las proteínas o polisacáridos usualmente se unen a materiales inorgánicos (v.g. carbonato o fosfato de calcio) para generar materiales compuestos o compositos, que desarrollan la elasticidad del polímero natural y las propiedades biológicas del material inorgánico (v.g. estimulación del crecimiento de células y adhesión entre tejidos). However, thermoplastic polyurethanes, like other pure synthetic or natural polymers, have imbalances in their mechanical, adhesive or functional properties. This is why in nature proteins or polysaccharides usually bind to inorganic materials (eg calcium carbonate or phosphate) to generate composite materials or composites, which develop the elasticity of the natural polymer and the biological properties of the inorganic material (eg stimulation of cell growth and adhesion between tissues).
Se han elaborado compositos de poliuretanos termoplásticos para aplicaciones biomédicas empleando carbonato de calcio como material de relleno para promover el crecimiento celular, debido a sus mejores propiedades adhesivas respecto a poliuretanos sin material de relleno adicionado (Ida Dulinska-Molaka, Malgorzata Lekka, KrzysztofJ. Kurzydlowski. Surface properties of polyurethane composites for biomedical applications. Applied Surface Science 270 (2013) 553- 560). Thermoplastic polyurethane composites have been developed for biomedical applications using calcium carbonate as filler material to promote cell growth, due to their better adhesive properties with respect to polyurethanes without added filler material (Ida Dulinska-Molaka, Malgorzata Lekka, Krzysztof J. Kurzydlowski Surface properties of polyurethane composites for biomedical applications Applied Surface Science 270 (2013) 553-560).
De igual forma, se han divulgado nanopartículas de hidroxiapatita como material de soporte biocompatible (Laís P. Gabriel, Maria ElizabethM. dos Santos, André L. Jardini, Gilmara N. T. Bastos, Carmen G.B. T. Dias, Thomas J. Webster, Rubens Maciel Filho, Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine: Nanotechnology, Biology, and Medicine 13 (2017) 201-208), partículas de hueso o materiales sustitutos de hueso (e.g. carbonato de calcio, fosfato de calcio) para osteoimplantes (US20050027033) y para aplicaciones ortopédicas (US20100112032). Similarly, hydroxyapatite nanoparticles have been disclosed as biocompatible support material (Laís P. Gabriel, Maria Elizabeth M. dos Santos, André L. Jardini, Gilmara NT Bastos, Carmen GBT Dias, Thomas J. Webster, Rubens Maciel Filho, Bio -based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites Nanomedicine: Nanotechnology, Biology, and Medicine 13 (2017) 201-208), bone particles or bone substitute materials (eg calcium carbonate, calcium phosphate) for osteoimplants (US20050027033) and for orthopedic applications (US20100112032).
El composito desarrollado por Duliska-Molaka y colaboradores (2013) empleó micropartículas de carbonato de calcio con tamaños entre 3.1 y 84.4 micrómetros a una concentración de 10%, e incorporadas al macrodiol (i.e. policaprolactona diol) durante el proceso de síntesis, con el único propósito de generar una adecuada adhesión de células humanas derivadas de hueso. The compound developed by Duliska-Molaka et al. (2013) used calcium carbonate microparticles with sizes between 3.1 and 84.4 micrometers at a concentration of 10%, and incorporated into the macrodiol (ie polycaprolactone diol) during the synthesis process, with the sole purpose of generating adequate adhesion of human cells derived from bone.
El composito desarrollado por Gabriel y colaboradores (2017) empleó aglomerados de nanopartículas de hidroxiapatita (150 nm) obtenidas mediante el método sol-gel a una concentración de 20% e incorporados al pre-polímero de poliuretano (obtenido de la reacción entre un poliol de los frutos del Acaí y el diisocianato de hexametileno). El material compuesto se elaboró con el propósito de mejorar las propiedades adhesivas de los fibroblastos, inhibir reacciones inflamatorias en las células y promover las funciones de formación de tejido en las células. Al emplear material de refuerzo con un tamaño de partícula en el rango micrométrico, es necesario adicionar entre el 10% (m/m) y 50% (m/m) de material de refuerzo para alcanzar los requerimientos necesarios, lo que implica el consumo de grandes cantidades de material de refuerzo, así como la pérdida de otras propiedades del material como la dureza, ductilidad y aspecto del material obtenido como el color. Este efecto comúnmente se denomina propiedad de compensación. Adicionalmente, la interacción material de refuerzo-matriz polimérica tiende a no ser efectiva debido a la baja relación área-volumen que presenta el material de refuerzo. The composition developed by Gabriel et al. (2017) used agglomerates of hydroxyapatite nanoparticles (150 nm) obtained by the sol-gel method at a concentration of 20% and incorporated into the polyurethane pre-polymer (obtained from the reaction between a polyol of the fruits of Acai and hexamethylene diisocyanate). The composite material was developed for the purpose of improving the adhesive properties of fibroblasts, inhibiting inflammatory reactions in cells and promoting tissue formation functions in cells. When using reinforcement material with a particle size in the micrometer range, it is necessary to add between 10% (m / m) and 50% (m / m) of reinforcement material to achieve the necessary requirements, which implies consumption of large amounts of reinforcement material, as well as the loss of other material properties such as hardness, ductility and appearance of the material obtained as the color. This effect is commonly called compensation property. Additionally, the material reinforcement-polymer matrix interaction tends to be ineffective due to the low area-volume ratio of the reinforcement material.
Los sistemas de tipo composito del estado de la técnica no incorporan nanopartículas de minerales u óxidos metálicos tipo multinúcleo funcionalizadas con proteínas, las cuales permiten una fuerte interacción con los segmentos duros y blandos del poliuretano, mejorando así las propiedades mecánicas y adhesivas del material obtenido y su aplicación para la restauración o reemplazo de tejidos. DESCRIPCIÓN DETALLADA Composite type systems of the state of the art do not incorporate nanoparticles of minerals or metal oxides type multinuclear functionalized with proteins, which allow a strong interaction with the hard and soft segments of the polyurethane, thus improving the mechanical and adhesive properties of the material obtained and Its application for tissue restoration or replacement. DETAILED DESCRIPTION
La presente invención se refiere a un material compuesto o composito que comprende nanopartículas funcionalizadas incorporadas en una matriz polimérica de poliuretano. Se entiende por composito a un material compuesto por dos o más materiales con propiedades físicas o químicas significativamente diferentes. The present invention relates to a composite or composite material comprising functionalized nanoparticles incorporated in a polymeric polyurethane matrix. Composite is understood as a material composed of two or more materials with significantly different physical or chemical properties.
Las nanopartículas funcionalizadas a las que hace referencia la presente invención son partículas primarias de naturaleza inorgánica u orgánica embebidas con una matriz proteica (como se muestra en la solicitud de patente WO2012/140626 y se explica nuevamente en este documento), que forman una nanopartícula de tipo multinúcleo, donde la matriz proteica hace a su vez de agente funcionalizante de la nanopartícula. Las nanopartículas funcionalizadas se encuentran suspendidas de forma no-agregada en fase acuosa y tienen un tamaño inferior a lOOOnm. En una modalidad de la invención, las nanopartículas funcionalizadas tienen un tamaño de partícula entre 5 nm y 1000 nm, preferiblemente entre 10 nm y 500 nm. En otra modalidad de la invención, las nanopartículas funcionalizadas tienen un tamaño de partícula entre 50nm y 400nm, preferiblemente entre 150nm y 300nm. El aumentar el tamaño de partícula por encima de estos tamaños puede reducir las propiedades mecánicas del material. The functionalized nanoparticles referred to in the present invention are primary particles of inorganic or organic nature embedded in a protein matrix (as shown in patent application WO2012 / 140626 and explained again herein), which form a nanoparticle of multicore type, where the protein matrix in turn acts as a functionalizing agent of the nanoparticle. The functionalized nanoparticles are suspended non-aggregated in the aqueous phase and are smaller than 10Onm. In one embodiment of the invention, the functionalized nanoparticles have a particle size between 5 nm and 1000 nm, preferably between 10 nm and 500 nm. In another embodiment of the invention, the functionalized nanoparticles have a particle size between 50nm and 400nm, preferably between 150nm and 300nm. Increasing the particle size above these sizes can reduce the mechanical properties of the material.
Las nanopartículas funcionalizadas están formadas por partículas primarias embebidas por una matriz proteica. Las partículas primarias tienen tamaños de partícula inferiores a 20nm. En una modalidad, las partículas primarias tienen un tamaño de partícula entre 3nm y 18nm. En otra modalidad, las partículas primarias tienen un tamaño de partícula entre 5nm y lOnm. El contenido de las partículas primarias en las nanopartículas funcionalizadas está entre 5% y 70%. En una modalidad, el contenido de las partículas primarias en las nanopartículas funcionalizadas está entre 20% y 50% o entre 30% y 45%, donde el porcentaje restante corresponde a la matriz proteica. Functionalized nanoparticles are formed by primary particles embedded in a protein matrix. The primary particles have particle sizes less than 20nm. In one embodiment, the primary particles have a particle size between 3nm and 18nm. In another embodiment, the primary particles have a particle size between 5nm and lOnm. The content of the primary particles in the functionalized nanoparticles is between 5% and 70%. In one embodiment, the content of the primary particles in the functionalized nanoparticles is between 20% and 50% or between 30% and 45%, where the remaining percentage corresponds to the protein matrix.
Las partículas primarias pueden ser compuestos inorgánicos, minerales, óxidos metálicos, óxidos no metálicos, óxidos de hierro, óxidos de zinc, carbonates, fosfatos, aluminosilicatos. Las partículas primaras pueden ser, entre otros, CaCC , CaMg(C03)2, MgC03, FeC03, CaFe(C03)2, MnC03, FeC03, MgC03, CaMn(C03)2, CaFe(C03)2, CaMg(C03)2, Ca3(P04)2, ZnO, Cu20, CuO, CoO, Au203, Ti02, Ni203, Ag20, HgO, CrO, BaO, Cr203, PbO, FeO, Fe203, CaO, Li20, SnO, Sn02, BaS04, La matriz proteica posee actividad dispersante y estabilizante, que permite la formación de nanopartículas tipo multinúcleo y les confiere estabilidad en el tiempo, dado que las proteínas de la matriz proteica pueden actuar como agentes dispersantes, estabilizantes y funcionalizantes de las nanopartículas. La matriz proteica se selecciona de proteínas lácteas, cárnicas y proteínas provenientes de vegetales. En una modalidad de la invención, las proteínas pueden ser proteína de suero lácteo, caseínas, caseinato, beta lactalbumina, proteína de huevo como la ovalbúmina, proteínas cárnicas sarcoplasmáticas y miofibrilares, proteínas vegetales como la proteína de soya, maíz, arroz, cebada, cañóla, avena, entre otras, y sus combinaciones. En una modalidad de la invención, la matriz proteica se selecciona de: caseinato de calcio, caseinato de sodio y proteína de suero lácteo. The primary particles may be inorganic compounds, minerals, metal oxides, non-metal oxides, iron oxides, zinc oxides, carbonates, phosphates, aluminosilicates. The primary particles may be, among others, CaCC, CaMg (C03) 2, MgC0 3 , FeC0 3 , CaFe (C0 3 ) 2 , MnC0 3 , FeC0 3 , MgC0 3 , CaMn (C0 3 ) 2 , CaFe (C0 3 ) 2 , CaMg (C0 3 ) 2 , Ca 3 (P0 4 ) 2 , ZnO, Cu 2 0, CuO, CoO, Au 2 0 3 , Ti0 2 , Ni 2 0 3 , Ag 2 0, HgO, CrO, BaO, Cr 2 0 3 , PbO, FeO, Fe 2 0 3 , CaO, Li 2 0, SnO, Sn0 2 , BaS0 4 , The protein matrix has dispersant and stabilizing activity, which allows the formation of multicore type nanoparticles and gives them stability over time, since proteins in the protein matrix can act as dispersing agents , stabilizers and functionalizers of nanoparticles. The protein matrix is selected from dairy, meat and vegetable proteins. In one embodiment of the invention, the proteins can be whey protein, caseins, caseinate, beta lactalbumine, egg protein such as ovalbumin, sarcoplasmic and myofibrillar meat proteins, vegetable proteins such as soy protein, corn, rice, barley, He sang it, oatmeal, among others, and its combinations. In one embodiment of the invention, the protein matrix is selected from: calcium caseinate, sodium caseinate and whey protein.
La matriz proteica de las nanopartículas funcionalizadas puede estar en una concentración entre el 10% y el 70% de la nanopartícula funcionalizada. En una modalidad de la invención, la matriz proteica está en una concentración entre 10% y 30% de la nanopartícula funcionalizada. En otra modalidad de la invención, la matriz proteica está en una concentración entre 40% y 60% de la nanopartícula funcionalizada. En otra modalidad, la matriz proteica está en una concentración entre 45% y 55% de la nanopartícula funcionalizada. Adicionalmente, las nanopartículas funcionalizadas pueden encapsular principios activos solubles en agua, los cuales pueden ser compuestos químicos o biológicos susceptibles a ser encapsulados o asociados a la nanopartícula y se seleccionan del grupo que consiste de fármacos, células y productos biotecnológicos. Las nanopartículas funcionalizadas a las que hace referencia la presente invención están incorporadas en una matriz polimérica de poliuretano, funcionando como un material de refuerzo. En una modalidad de la invención, el poliuretano es un poliuretano termoplástico. El incorporar nanopartículas funcionalizadas como material de refuerzo al material polimérico, le confiere al material un mejor desempeño con respecto al material sin refuerzo, debido a que los constituyentes de un material compuesto tienen diferentes estructuras y composiciones químicas, y por ende, diferentes propiedades físicas. El resultado es una sinergia de las propiedades de los materiales iniciales. The protein matrix of the functionalized nanoparticles can be in a concentration between 10% and 70% of the functionalized nanoparticle. In one embodiment of the invention, the protein matrix is in a concentration between 10% and 30% of the functionalized nanoparticle. In another embodiment of the invention, the protein matrix is in a concentration between 40% and 60% of the functionalized nanoparticle. In another embodiment, the protein matrix is in a concentration between 45% and 55% of the functionalized nanoparticle. Additionally, the functionalized nanoparticles can encapsulate water soluble active ingredients, which can be chemical or biological compounds susceptible to being encapsulated or associated with the nanoparticle and are selected from the group consisting of drugs, cells and biotechnological products. The functionalized nanoparticles referred to in the present invention are incorporated into a polymeric polyurethane matrix, functioning as a reinforcing material. In one embodiment of the invention, the polyurethane is a thermoplastic polyurethane. Incorporating functionalized nanoparticles as reinforcement material to the polymeric material, it gives the material a better performance with respect to the material without reinforcement, because the constituents of a composite material have different chemical structures and compositions, and therefore, different physical properties. The result is a synergy of the properties of the initial materials.
Por su alta relación área-volumen, las partículas nanométricas (en este caso las nanopartículas funcionalizadas) tienden a interactuar más fácilmente con la matriz polimérica, por lo que la cantidad necesaria para mejorar las propiedades del material es más baja. Así, el porcentaje de nanopartículas funcionalizadas en el composito, puede estar en el rango de 0,1% m/m a 20,0% m/m. En una modalidad de la invención, la cantidad de nanopartículas funcionalizadas en el composito está en un rango de 0,5% m/m a 5,0% m/m. En otra modalidad de la invención, la cantidad de nanopartículas funcionalizadas en el composito está en el rango de 0,5% m/m a 2,0% m/m. En otra modalidad de la invención, la cantidad de nanopartículas funcionalizadas en el composito está en el rango de 0,6% m/m a 1,0% m/m. Because of their high area-volume ratio, the nanometric particles (in this case the functionalized nanoparticles) tend to interact more easily with the polymer matrix, so the amount needed to improve the properties of the material is lower. Thus, the percentage of functionalized nanoparticles in the composition may be in the range of 0.1% m / m to 20.0% m / m. In one embodiment of the invention, the amount of functionalized nanoparticles in the composition is in a range of 0.5% m / m to 5.0% m / m. In another embodiment of the invention, the amount of functionalized nanoparticles in the composition is in the range of 0.5% m / m to 2.0% m / m. In another embodiment of the invention, the amount of functionalized nanoparticles in the composition is in the range of 0.6% m / m to 1.0% m / m.
Para poder explotar esa maximización de la relación área-volumen que tienen las nanopartículas, es necesario cumplir con ciertos requerimientos para que la interacción entre las nanopartículas y el material de refuerzo sea efectiva y se puedan lograr las propiedades mecánicas deseadas. El primer requerimiento es evitar la agregación de las nanopartículas; precisamente debido a la alta relación área-volumen que estas tienen, las partículas tienden a la agregación evitando la interacción óptima entre refuerzo y polímero. El control de la agregación de nanopartículas se logra estabilizando las partículas electrostáticamente o estéricamente durante el proceso de su producción. In order to exploit this maximization of the area-volume relationship that nanoparticles have, it is necessary to meet certain requirements so that the interaction between the nanoparticles and the reinforcement material is effective and the desired mechanical properties can be achieved. The first requirement is to avoid aggregation of the nanoparticles; precisely because of the high area-volume ratio they have, the particles tend to aggregation avoiding the optimal interaction between reinforcement and polymer. The control of nanoparticle aggregation is achieved by stabilizing the particles electrostatically or sterically during the production process.
El segundo requerimiento es generar una buena dispersión del material nanoparticulado en la matriz polimérica ya que esto conlleva a un aumento en área interfacial, favoreciendo la interacción entre las moléculas de carácter inorgánico el refuerzo y las moléculas orgánicas de la matriz polimérica. En este aspecto radica uno de los grandes retos de la ciencia de los materiales, puesto que generar materiales compuestos con nanopartículas bien dispersas en la matriz polimérica dependerá de factores químicos como el tipo de polímero y el tipo de material de refuerzo nanoparticulado, así como factores físicos como el método de inclusión de las nanopartículas. En el proceso de síntesis del material compuesto de la invención, se mantienen constantes tres parámetros, la relación en porcentaje en masa del segmento suave, la relación entre la cantidad química de grupos isocianatos con respecto a las moles de grupos hidroxilos, y el porcentaje de nanopartículas adicionadas. La relación en porcentaje en masa del segmento suave entre 40 y 60% y la del segmento rígido entre 60 y 40%. Además, la relación entre la cantidad química de grupos isocianatos con respecto a las moles de grupos hidroxilos se encuentra entre 0,9 y 1,2, en una modalidad la relación es entre 0,95 y 1, 1; en otra modalidad la relación se encuentra entre 1,0 y 1,05. Por otro lado, el porcentaje de nanopartículas incorporadas a la matriz polimérica está entre 0, 1% m/m y 20,0% m/m. The second requirement is to generate a good dispersion of the nanoparticulate material in the polymer matrix since this leads to an increase in interfacial area, favoring the interaction between the inorganic reinforcing molecules and the organic molecules of the polymer matrix. In this aspect lies one of the great challenges of materials science, since generating composite materials with nanoparticles well dispersed in the polymer matrix will depend on chemical factors such as the type of polymer and the type of nanoparticulate reinforcement material, as well as factors physical as the method of inclusion of nanoparticles. In the synthesis process of the composite material of the invention, three parameters are kept constant, the ratio in percentage by mass of the soft segment, the ratio between the chemical amount of isocyanate groups with respect to the moles of hydroxyl groups, and the percentage of nanoparticles added. The mass percentage ratio of the soft segment between 40 and 60% and that of the rigid segment between 60 and 40%. In addition, the ratio between the chemical amount of isocyanate groups with respect to the moles of hydroxyl groups is between 0.9 and 1.2, in one embodiment the ratio is between 0.95 and 1.1; in another mode the ratio is between 1.0 and 1.05. On the other hand, the percentage of nanoparticles incorporated into the polymer matrix is between 0.1% m / m and 20.0% m / m.
El proceso de síntesis del composito de la invención se puede llevar a cabo mediante el método del pre-polímero, en donde la adición de las nanopartículas se realiza mezclándolas con cada uno de los monómeros. El proceso de síntesis del composito de la presente invención incluye las etapas a) b) y c). The synthesis process of the composition of the invention can be carried out by the pre-polymer method, where the addition of the nanoparticles is carried out by mixing them with each of the monomers. The synthesis process of the composition of the present invention includes steps a) b) and c).
De esta manera se pueden generar tres materiales compuestos diferentes: un primer material donde las nanopartículas funcionalizadas son adicionadas en un diisocianato, el cual puede ser metileno difenil diisocianato (MDI), diciclohexilmetano diisocianato (HMDI), hexametileno diisocianato (HDI), tolueno diisocianato (TDI), butano diisocianato (BDI) o sus mezclas. Un segundo material donde las nanopartículas funcionalizadas son mezcladas con un macrodiol, el cual puede ser óxido de politetrametileno (PTMO), policaprolactona diol (PCL), hidroxil poliacrilato poliol; y un tercer material donde las nanopartículas funcionalizadas son adicionadas con el extensor de cadena, el cual puede ser un diol de bajo peso molecular seleccionado de: etilenglicol, butano diol (BDO), hexanodiol, ciclohexano dimetanol, isosorbido diol. a) fundir un diisocianato en una atmósfera con gas inerte In this way three different composite materials can be generated: a first material where the functionalized nanoparticles are added in a diisocyanate, which can be methylene diphenyl diisocyanate (MDI), dicyclohexylmethane diisocyanate (HMDI), hexamethylene diisocyanate (HDI), toluene diisocyanate ( TDI), butane diisocyanate (BDI) or mixtures thereof. A second material where the functionalized nanoparticles are mixed with a macrodiol, which can be polytetramethylene oxide (PTMO), polycaprolactone diol (PCL), hydroxyl polyacrylate polyol; and a third material where the functionalized nanoparticles are added with the chain extender, which can be a low molecular weight diol selected from: ethylene glycol, butane diol (BDO), hexanediol, cyclohexane dimetanol, isosorbide diol. a) melting a diisocyanate in an atmosphere with inert gas
En la síntesis del material compuesto de la presente invención se funde inicialmente un diisocianto a una temperatura entre 50°C y 80°C o a una temperatura entre 60°C y 70°C en una atmósfera con gas inerte manteniendo agitación constante entre 150 y 500 rpm. En una modalidad del proceso de la invención, el gas inerte se selecciona de: nitrógeno, helio, neón, argón, kriptón, xenón, entre otros. b) adicionar un macrodiol de manera continua controlando temperatura y agitación hasta obtener un pre-polímero, aumentar nuevamente la temperatura y agitar; In the synthesis of the composite material of the present invention, a diisocyte is initially melted at a temperature between 50 ° C and 80 ° C or at a temperature between 60 ° C and 70 ° C in an atmosphere with inert gas maintaining constant agitation between 150 and 500 rpm In one embodiment of the process of the invention, the inert gas is selected from: nitrogen, helium, neon, argon, krypton, xenon, among others. b) add a macrodiol continuously controlling temperature and stirring until a pre-polymer is obtained, increase the temperature again and stir;
La temperatura se incrementa hasta un valor entre 70°C y 100°C y se adiciona un macrodiol bajo agitación mecánica a entre 100 rpm y 500 rpm o entre 200 rpm y 400 rpm hasta obtener un pre-polímero. Para comprobar que se obtiene un pre-polímero se puede realizar un análisis por espectroscopia infrarroja. En una modalidad del proceso de la invención, la temperatura se incrementa hasta un valor entre 50°C y 80°C o hasta un valor entre 65 °C y 70°C. Después de completar la adición del macrodiol, la reacción se lleva hasta una temperatura entre 80°C y 100°C durante 60 a 120 minutos con agitación entre 200 rpm y 700 rpm o entre 400 rpm y 500 rpm. En una modalidad del proceso de la invención, una vez completada la adición del macrodiol, la reacción se lleva a una temperatura entre 100°C y 130 °C. En otra modalidad del proceso de la invención, la reacción de mantiene durante 80 a 110 minutos. c) adicionar un extensor de cadena The temperature is increased to a value between 70 ° C and 100 ° C and a macrodiol is added under mechanical stirring at between 100 rpm and 500 rpm or between 200 rpm and 400 rpm until a pre-polymer is obtained. To verify that a prepolymer is obtained, an infrared spectroscopy analysis can be performed. In one embodiment of the process of the invention, the temperature is increased to a value between 50 ° C and 80 ° C or to a value between 65 ° C and 70 ° C. After completing the addition of the macrodiol, the reaction is brought to a temperature between 80 ° C and 100 ° C for 60 to 120 minutes with stirring between 200 rpm and 700 rpm or between 400 rpm and 500 rpm. In one embodiment of the process of the invention, once the macrodiol addition is complete, the reaction is brought to a temperature between 100 ° C and 130 ° C. In another embodiment of the process of the invention, the reaction is maintained for 80 to 110 minutes. c) add a chain extender
Finalmente, se adiciona un extensor de cadena al pre-polímero en un solo paso y es agitado durante 3 a 20 minutos o entre 5 y 10 minutos. d) curar el composito Finally, a chain extender is added to the pre-polymer in a single step and stirred for 3 to 20 minutes or between 5 and 10 minutes. d) cure the compound
La etapa de curado del composito se puede llevar a cabo mediante cualquier método conocido en la técnica. En una modalidad del proceso de la invención, el composito se dispone sobre una lámina de teflón, donde es curado a una temperatura entre 100°C y 150°C o entre 110°C y 130°C bajo una atmosfera de gas inerte. El composito de la presente invención se caracteriza por ser un material biocompatible y bioestable. El composito de la presente invención está caracterizado porque tiene las siguientes propiedades (Tabla 1): The curing stage of the composite can be carried out by any method known in the art. In one embodiment of the process of the invention, the composition is placed on a Teflon sheet, where it is cured at a temperature between 100 ° C and 150 ° C or between 110 ° C and 130 ° C under an inert gas atmosphere. The composition of the present invention is characterized as a biocompatible and biostable material. The composition of the present invention is characterized in that it has the following properties (Table 1):
Tabla 1 Table 1
La incorporación de nanopartículas de minerales u óxidos metálicos tipo multinúcleo funcionalizadas con proteínas, permite una fuerte interacción con los segmentos duros y blandos del poliuretano, con lo que se mejoran las propiedades mecánicas y adhesivas del composito de la invención, ampliando su aplicación a la restauración y/o reemplazo de tejidos. The incorporation of nanoparticles of minerals or metallic oxides type multinucleus functionalized with proteins, allows a strong interaction with the hard and soft segments of the polyurethane, which improves the mechanical and adhesive properties of the composition of the invention, extending its application to the restoration and / or tissue replacement.
Así, por Ejemplo, el cartílago articular natural presenta un valor de módulo de Young de 18 MPa, mientras que la presente invención logra obtener valores entre 40 y 65 MPa. Por otro lado, los valores de Energía Libre de Superficie del cartílago natural están alrededor de 60 mN/m comparado con 52 mN/m del composito de la presente invención, lo que indica una gran similitud con el cartílago natural. Que comparado con el caso del polietileno de ultra alto peso molecular (empleado para prótesis) tiene una Energía Libre de Superficie de 31 mN/m, lo que representa un valor muy alejado del medido para el cartílago natural. Thus, for example, natural articular cartilage has a Young's modulus value of 18 MPa, while the present invention achieves values between 40 and 65 MPa. On the other hand, the Surface Free Energy values of the natural cartilage are around 60 mN / m compared to 52 mN / m of the compound of the present invention, indicating a great similarity with the natural cartilage. That compared to the case of ultra high molecular weight polyethylene (used for prostheses) has a Surface Free Energy of 31 mN / m, which represents a value far removed from that measured for natural cartilage.
El composito de la presente invención puede ser empleado en la reparación o reemplazo de músculos cardíacos, nervios, vasos sanguíneos, huesos, cartílagos, fibrocartílagos, meniscos, cresta iliaca, entre otros. La presente invención será presentada en detalle a través de los siguientes ejemplos, los cuales son suministrados solamente con propósitos ilustrativos y no con el objetivo de limitar su alcance. EJEMPLOS The composition of the present invention can be used in the repair or replacement of cardiac muscles, nerves, blood vessels, bones, cartilage, fibrocartilage, meniscus, iliac crest, among others. The present invention will be presented in detail through the following examples, which are provided for illustrative purposes only and not for the purpose of limiting its scope. EXAMPLES
Ejemplo 1. Obtención de nanopartículas funcionalizadas de carbonato de calcio en forma de polvo seco de carbonato de sodio y caseinato de sodio Se preparó una solución de carbonato de sodio 0, 1 M y 2,0% caseinato de sodio. De igual forma, se preparó una solución de cloruro de calcio a una concentración de 0,3 M. Las soluciones fueron mezcladas rápidamente empleando un homogenizador de alta presión que permite el ingreso por separado al equipo de las dos soluciones, para obtener nanopartículas de carbonato de calcio funcionalizadas. La presión de trabajo del homogenizador fue de 28 MPa. Example 1. Obtaining functionalized calcium carbonate nanoparticles in the form of dry powder of sodium carbonate and sodium caseinate A solution of 0.1 M sodium carbonate and 2.0% sodium caseinate was prepared. Similarly, a solution of calcium chloride was prepared at a concentration of 0.3 M. The solutions were quickly mixed using a high pressure homogenizer that allows the two solutions to enter the equipment separately to obtain carbonate nanoparticles. of functionalized calcium. The homogenizer working pressure was 28 MPa.
Las nanopartículas de carbonato de calcio tipo multinúcleo y funcionalizadas con proteína obtenidas presentaron un tamaño promedio en intensidad de 180 nm (FIG. 1), con partículas primarias entre 10 y 30 nm (FIG. 2), según la técnica de dispersión de luz dinámica y microscopía electrónica de transmisión, respectivamente, con un contenido de carbonato de calcio de 50% y de proteína de 50%. La suspensión de nanopartículas posteriormente se filtró y se lavó con agua dos veces, para luego ser secada a 60°C y obtener nanopartículas de carbonato de calcio en forma de polvo seco. Ejemplo 2. Obtención de nanopartículas funcionalizadas de carbonato de calcio en forma de polvo seco de carbonato de calcio y caseinato de sodio The multicore-type calcium carbonate nanoparticles and functionalized with protein obtained had an average size in intensity of 180 nm (FIG. 1), with primary particles between 10 and 30 nm (FIG. 2), according to the dynamic light scattering technique and transmission electron microscopy, respectively, with a 50% calcium carbonate and 50% protein content. The nanoparticle suspension was subsequently filtered and washed with water twice, then dried at 60 ° C and obtained calcium carbonate nanoparticles as a dry powder. Example 2. Obtaining functionalized calcium carbonate nanoparticles in the form of dry powder of calcium carbonate and sodium caseinate
Siguiendo el procedimiento del Ejemplo 1, se obtuvieron nanopartículas funcionalizadas de carbonato de calcio 0,3M estabilizadas con 1% caseinato de sodio, las cuales presentaron un tamaño promedio en intensidad de 170nm, según la técnica de dispersión de luz dinámica, y no se sedimentaron hasta por tres meses al ser medidas en un tensiómetro automático dotado con accesorio para determinar sedimentación. Ejemplo 3. Obtención de nanopartículas funcionalizadas de carbonato de calcio en forma de polvo seco de carbonato de calcio y caseinato de sodio Following the procedure of Example 1, 0.3M calcium carbonate functionalized nanoparticles stabilized with 1% sodium caseinate were obtained, which had an average intensity size of 170 nm, according to the dynamic light scattering technique, and did not settle up to three months when measured in an automatic tensiometer equipped with an accessory to determine sedimentation. Example 3. Obtaining functionalized calcium carbonate nanoparticles in the form of dry powder of calcium carbonate and sodium caseinate
Siguiendo el procedimiento del Ejemplo 1, se obtuvieron nanopartículas funcionalizadas de carbonato de calcio 0,2M estabilizadas con 1% caseinato de sodio, las cuales presentaron un tamaño promedio en intensidad de 150nm, según la técnica de dispersión de luz dinámica, y no se sedimentaron hasta por dos meses al ser medidas en un tensiómetro automático dotado con accesorio para determinar sedimentación. Ejemplo 4. Obtención de nanopartículas de carbonato de calcio en forma de polvo seco de carbonato de calcio, caseinato de sodio y quercetina Following the procedure of Example 1, functionalized 0.2M calcium carbonate nanoparticles stabilized with 1% sodium caseinate were obtained, which had an average size in intensity of 150 nm, according to the dynamic light scattering technique, and did not settle up to two months when measured in an automatic tensiometer equipped with an accessory to determine sedimentation. Example 4. Obtaining calcium carbonate nanoparticles in the form of dry powder of calcium carbonate, sodium caseinate and quercetin
Siguiendo el procedimiento del Ejemplo 1, se obtuvieron nanopartículas funcionalizadas de carbonato de calcio 0, 1M estabilizadas con 1% caseinato de sodio y 0, 1% de quercetina, presentaron un tamaño promedio en intensidad de 190nm, según la técnica de dispersión de luz dinámica, y no se sedimentaron hasta por tres meses al ser medidas en un tensiómetro automático dotado con accesorio para determinar sedimentación. La eficiencia de encapsulación de la quercetina fue del 60% medida mediante la técnica de espectrofotometría UV-Vis. Following the procedure of Example 1, functionalized 0.1M calcium carbonate nanoparticles stabilized with 1% sodium caseinate and 0.1% quercetin were obtained, had an average intensity size of 190nm, according to the dynamic light scattering technique , and did not settle for up to three months when measured in an automatic tensiometer equipped with an accessory to determine sedimentation. The encapsulation efficiency of quercetin was 60% measured by the UV-Vis spectrophotometry technique.
Ejemplo 5. Síntesis de un composito de poliuretano Example 5. Synthesis of a polyurethane compound
Para la síntesis del poliuretano se fundieron 43, 3g de metil bis(p-fenil isocianato) (MDI, por sus siglas en inglés) en un reactor a 70°C aplicando agitación continua de 400 rpm y en atmósfera de nitrógeno para evitar reacciones de oxidación. Posteriormente se adicionaron 82 g del diol de poli(tetra metilenóxido) (PTMO, por sus siglas en inglés) con peso molecular de 2000 g/mol durante 30 minutos y con 200 rpm de agitación. Una vez se completó la adición del PTMO, se elevó la temperatura del reactor a 85°C y se mantuvo durante 90 minutos. For the synthesis of the polyurethane, 43.3g of methyl bis (p-phenyl isocyanate) (MDI) was melted in a 70 ° C reactor by applying continuous stirring of 400 rpm and under a nitrogen atmosphere to avoid reactions of oxidation. Subsequently, 82 g of the poly (tetramethylene oxide) diol (PTMO) with a molecular weight of 2000 g / mol for 30 minutes and with 200 rpm of stirring were added. Once the addition of the PTMO was completed, the reactor temperature was raised to 85 ° C and maintained for 90 minutes.
Luego se realizó la adición rápida de 11, 4g de 1,4-butanodiol (BDO, por sus siglas en inglés) y 0,69g de nanopartículas funcionalizadas de carbonato de calcio funcionalizadas con proteína (obtenidas según el Ejemplo 1) y dispersas inicialmente en el BDO. Todo el sistema se mantuvo a 85°C durante 5 minutos. Posteriormente fue vaciado a un plato de teflón y curado a 110°C por 4 horas en un horno con recirculación de nitrógeno. Then the quick addition of 11.4g of 1,4-butanediol (BDO) and 0.69g of functionalized calcium functionalized calcium carbonate nanoparticles (obtained according to Example 1) and initially dispersed in the BDO. All The system was maintained at 85 ° C for 5 minutes. It was subsequently emptied into a Teflon dish and cured at 110 ° C for 4 hours in an oven with nitrogen recirculation.
La microestructura del composito obtenido fue observada mediante microscopía electrónica de barrido (FIG. 3). The microstructure of the composite obtained was observed by scanning electron microscopy (FIG. 3).
Ejemplo 6. Síntesis de un composito de poliuretano Example 6. Synthesis of a polyurethane compound
Para la síntesis del poliuretano se fundieron 43, 3g de metil bis(p-fenil isocianato) (MDI, por sus siglas en inglés) en un reactor a 70°C aplicando agitación continua de 400 rpm y en atmósfera de nitrógeno para evitar reacciones de oxidación. Posteriormente se adicionaron al reactor 82 g del diol de poli(tetra metilenóxido) (PTMO, por sus siglas en inglés) con peso molecular de 2000 g/mol durante 30 min y con 200 rpm de agitación. Una vez se completó la adición del PTMO, se elevó la temperatura del reactor a 85 °C y se mantuvo durante 90 minutos. For the synthesis of the polyurethane, 43.3g of methyl bis (p-phenyl isocyanate) (MDI) was melted in a 70 ° C reactor by applying continuous stirring of 400 rpm and under a nitrogen atmosphere to avoid reactions of oxidation. Subsequently, 82 g of the poly (tetramethylene oxide) diol (PTMO) with a molecular weight of 2000 g / mol for 30 min and with 200 rpm of stirring were added to the reactor. Once the addition of the PTMO was completed, the reactor temperature was raised to 85 ° C and maintained for 90 minutes.
Luego, se realizó la adición rápida de l l,4g de 1,4-butanodiol (BDO, por sus siglas en inglés) y 2,8 g de nanopartículas de carbonato de calcio (obtenidas según el Ejemplo 1) füncionalizadas con proteína y dispersas inicialmente en el BDO. Todo el sistema se mantuvo a la temperatura de 85°C durante 5 minutos. Posteriormente el composito fue vaciado a un plato de teflón y curado a 110°C por 4 horas en un horno con recirculación de nitrógeno. Then, the rapid addition of ll, 4g of 1,4-butanediol (BDO) and 2.8 g of calcium carbonate nanoparticles (obtained according to Example 1) functionalized with protein and initially dispersed was performed in the BDO. The entire system was maintained at the temperature of 85 ° C for 5 minutes. Subsequently, the compound was emptied into a Teflon dish and cured at 110 ° C for 4 hours in an oven with nitrogen recirculation.
La microestructura del composito fue observada mediante microscopía electrónica de barrido (FIG. 4). The microstructure of the composite was observed by scanning electron microscopy (FIG. 4).
Ejemplo 7. Propiedades mecánicas del composito obtenido mediante el Ejemplo 5 y el Ejemplo 6 Las propiedades mecánicas de compositos obtenidos según el Ejemplo 5 y el Ejemplo 6, fueron determinadas en una máquina universal 4202 de Instron empleando una carga de 5 kN y una velocidad de 10 mm/min a 25 °C, usando probetas tipo IV obtenidas mediante moldeo por inyección. La dureza shore A fue medida empleando un durómetro PCT a 25°C. Finalmente, el trabajo de adhesión fue calculado a partir de las energías libres de superficie obtenidas mediante la teoría de van Oss al medir los ángulos de contacto con diyodometado y agua en un tensiómetro K12 de Krüss. Los resultados se ilustran en la Tabla 2. Example 7. Mechanical properties of the composite obtained by Example 5 and Example 6 The mechanical properties of composites obtained according to Example 5 and Example 6 were determined in an Instron 4202 universal machine using a load of 5 kN and a velocity of 10 mm / min at 25 ° C, using type IV specimens obtained by injection molding. Shore A hardness was measured using a PCT hardness tester at 25 ° C. Finally, the adhesion work was calculated from the surface-free energies obtained by van Oss theory by measuring the contact angles with diiodometry and water in a K12 tensiometer from Krüss. The results are illustrated in Table 2.
Tabla 2 Table 2
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CONC2017/0003270 | 2017-04-03 | ||
| CONC2017/0003270A CO2017003270A1 (en) | 2017-04-03 | 2017-04-03 | Polyurethane compound |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018185650A1 true WO2018185650A1 (en) | 2018-10-11 |
Family
ID=62598404
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2018/052283 Ceased WO2018185650A1 (en) | 2017-04-03 | 2018-04-03 | Polyurethane composite |
Country Status (2)
| Country | Link |
|---|---|
| CO (1) | CO2017003270A1 (en) |
| WO (1) | WO2018185650A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113956437A (en) * | 2021-10-28 | 2022-01-21 | 赛克赛斯生物科技股份有限公司 | Polyurethane sponge and preparation method and application thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070072991A1 (en) * | 2004-06-28 | 2007-03-29 | University Of Akron | Synthesis of thermoplastic polyurethane composites |
| CN101210066A (en) * | 2006-12-30 | 2008-07-02 | 比亚迪股份有限公司 | Entire polyurethane foam composition |
| US20100112032A1 (en) * | 2008-10-30 | 2010-05-06 | Guelcher Scott A | Bone/Polyurethane Composites and Methods Thereof |
| US7776600B2 (en) * | 2002-04-18 | 2010-08-17 | Carnegie Mellon University | Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids |
| WO2016057684A1 (en) * | 2014-10-08 | 2016-04-14 | Board Of Trustees Of The University Of Arkansas | Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same |
-
2017
- 2017-04-03 CO CONC2017/0003270A patent/CO2017003270A1/en unknown
-
2018
- 2018-04-03 WO PCT/IB2018/052283 patent/WO2018185650A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7776600B2 (en) * | 2002-04-18 | 2010-08-17 | Carnegie Mellon University | Method of manufacturing hydroxyapatite and uses therefor in delivery of nucleic acids |
| US20070072991A1 (en) * | 2004-06-28 | 2007-03-29 | University Of Akron | Synthesis of thermoplastic polyurethane composites |
| CN101210066A (en) * | 2006-12-30 | 2008-07-02 | 比亚迪股份有限公司 | Entire polyurethane foam composition |
| US20100112032A1 (en) * | 2008-10-30 | 2010-05-06 | Guelcher Scott A | Bone/Polyurethane Composites and Methods Thereof |
| WO2016057684A1 (en) * | 2014-10-08 | 2016-04-14 | Board Of Trustees Of The University Of Arkansas | Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same |
Non-Patent Citations (3)
| Title |
|---|
| BHATTACHARYA , M: "Polymer Nanocomposites-A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers", MATERIALS, vol. 9, no. 4, 1 April 2016 (2016-04-01), pages E262-1 - 35, XP055552405, Retrieved from the Internet <URL:doi:10.3390/ma9040262> * |
| CAO, X . ET AL.: "Polyurethane/clay nanocomposites foams: processing, structure and properties", POLYMER, vol. 46, no. 3, 8 December 2004 (2004-12-08), pages 775 - 783, XP055552413, Retrieved from the Internet <URL:https://doi.org/10.1016/j.polymer.2004.11.028> * |
| PATEL, D.K. ET AL.: "Nanoparticle-induced phenomena in polyurethanes", ADVANCES IN POLYURETHANE BIOMATERIALS, 2016, pages 171 - 194, Retrieved from the Internet <URL:http://dx.doi.org/10.1016/B978-0-08-100614-6.00006-8.> * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113956437A (en) * | 2021-10-28 | 2022-01-21 | 赛克赛斯生物科技股份有限公司 | Polyurethane sponge and preparation method and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CO2017003270A1 (en) | 2018-04-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rose et al. | Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance | |
| Sartori et al. | Biomimetic polyurethanes in nano and regenerative medicine | |
| Cooper et al. | Advances in polyurethane biomaterials | |
| Gentile et al. | Layer-by-layer assembly for biomedical applications in the last decade | |
| Pattnaik et al. | Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering | |
| Shelke et al. | Polyurethanes | |
| Sumathra et al. | In vivo assessment of a hydroxyapatite/κ-carrageenan–maleic anhydride–casein/doxorubicin composite-coated titanium bone implant | |
| CN111386133B (en) | Method for producing osteoconductive fibrous products and medical implants comprising such osteoconductive fibrous products | |
| Moghanizadeh-Ashkezari et al. | Vitamin C loaded poly (urethane-urea)/ZnAl-LDH aligned scaffolds increase proliferation of corneal keratocytes and up-regulate vimentin secretion | |
| Miri et al. | Updates on polyurethane and its multifunctional applications in biomedical engineering | |
| Aoki et al. | Design of polyurethane composed of only hard main chain with oligo (ethylene glycol) units as side chain simultaneously achieved high biocompatible and mechanical properties | |
| Shoaib et al. | Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery | |
| Zhang et al. | Hydroxyapatite/polyurethane scaffolds for bone tissue engineering | |
| Azarmgin et al. | Polyurethanes and their biomedical applications | |
| Feldman | Polyurethane and polyurethane nanocomposites: Recent contributions to medicine | |
| Bil et al. | Bioactivity of polyurethane-based scaffolds coated with Bioglass® | |
| WO2011075183A1 (en) | Injectable/in situ forming tissue polyurethane composites and methods thereof | |
| Lai et al. | In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characteristics | |
| Sultan | Hydroxyapatite/polyurethane composites as promising biomaterials | |
| US20200254136A1 (en) | Water-based tissue adhesives | |
| US20180193520A1 (en) | Injectable Polyurethanes and Applications Thereof | |
| JP7220723B2 (en) | tissue repair laminate | |
| WO1995015775A1 (en) | Implantation material and process for producing the same | |
| Dang et al. | Multifunctional polyurethane materials in regenerative medicine and tissue engineering | |
| WO2018185650A1 (en) | Polyurethane composite |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781688 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18781688 Country of ref document: EP Kind code of ref document: A1 |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/02/2020) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18781688 Country of ref document: EP Kind code of ref document: A1 |