+

WO2018167382A1 - Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique - Google Patents

Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique Download PDF

Info

Publication number
WO2018167382A1
WO2018167382A1 PCT/FR2018/000037 FR2018000037W WO2018167382A1 WO 2018167382 A1 WO2018167382 A1 WO 2018167382A1 FR 2018000037 W FR2018000037 W FR 2018000037W WO 2018167382 A1 WO2018167382 A1 WO 2018167382A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
plate
energy storage
phase change
change material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2018/000037
Other languages
English (en)
Inventor
Kamel Azzouz
Christophe Denoual
Lionel ROBILLON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of WO2018167382A1 publication Critical patent/WO2018167382A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the field of the invention is that of the thermal regulation of one or more electrical energy storage elements equipping a motor vehicle whose propulsion is provided in whole or in part by an electric motor.
  • the thermal regulation of the battery is a major problematm.
  • the temperature of the battery must remain between. 20 ° C and 40 ° C to ensure reliability, battery life, and vehicle performance, while optimizing battery life. Indeed, when the battery is subjected to temperatures too cold, its autonomy decreases strongly. Conversely, when it is subjected to too high temperatures, there is a risk of thermal runaway up to the destruction of the battery.
  • the battery In electric or hybrid vehicles, the battery generally comprises a plurality of electric energy storage cells. These energy storage cells are positioned in a protective box and form, with this housing, what is called a battery pack.
  • the thermal regulation device comprises a heat exchanger positioned directly in contact with the battery at the bottom of the protective housing and traversed by a coolant, or Indirectly in contact with the battery in the case of an exchanger placed outside the pack drums.
  • the heat transfer fluid can thus absorb the heat emitted by each battery to cool them or as needed, it can bring him heat if .the temperature of the battery is insufficient for its proper operation.
  • the heat transfer fluids generally used are liquids such as, for example, water.
  • Patent document WO2010012772 discloses a heat exchanger consisting of two superimposed plates, between which, heat transfer fluid circulation channels are formed.
  • Such a heat exchanger has several disadvantages.
  • such a heat exchanger is effective only when it is supplied with heat transfer fluid via a compressor or a pump.
  • the permanent activation of this compressor or this pump during the entire phase of thermal regulation therefore generates a surplus of energy consumption (fuel or electricity) not negligible.
  • such a heat exchanger is not suitable for mulching localized heating, so-called "hot spots" that may occur within the batteries in the course of their implementation. Such overheating, when they are too large, causes degradation of the performance of the batteries, or even their damage.
  • the present invention aims to provide an improved heat exchanger, to solve the aforementioned drawbacks, while being lightweight, compact, and easily assembled.
  • the invention proposes for this purpose a heat exchanger adapted for the thermal regulation of at least one electrical energy storage element, in particular for a motor vehicle, comprising an assembly by superposition of a first plate and a second plate delimiting a flow circulating a heat transfer fluid, said second plate being intended to come into thermal contact with said at least one electrical energy storage element.
  • said first plate is formed of a composite phase-change material comprising at least a first phase change material and at least a second material whose structure forms a support matrix of the first phase-change material .
  • thermo regulation refers both to the cooling and the heating of a battery and / or a set of electric batteries, referred to as the "electrical energy storage element”.
  • a heat exchanger according to the invention comprises an assembly of. two superimposed plates.
  • the first of these plates comprises a phase change material
  • MCP which in a known manner in the ground is adapted to store and restore thermal energy and in which is formed the coolant passage circuit.
  • the second plate is secured to the first so as to form a sealed circuit passage of the heat transfer fluid.
  • phase change material has the ability to change physical state between a solid phase and a liquid phase, within a restricted temperature range.
  • a phase change material is characterized in particular by its phase change temperature, or melting temperature, as well as SB latent phase change heat, that is to say the amount of energy that can be stored or transferred by simple change of state, while maintaining a constant temperature.
  • this phase change material is embedded in a carbon fiber matrix, for example, allowing the first plate to remain rigid during phase changes.
  • Such a composite phase-change material has the first advantage of being particularly light. Its integration within the first plate makes it possible to reduce the weight while maintaining optimal compactness.
  • the. Composite phase change material is also very thermally conductive, which allows it to cool batteries whether it is in its freezing phase, in its thawing phase or in its maximum charge phase.
  • phase-change material makes it possible to increase the thermal inertia of the exchanger, thus limiting the sudden elevations. while evenly distributing the heat stored throughout its conductive surface, which reduces the risk of performance decline and / or damage to the batteries.
  • a composite phase-change material has a large thermal energy storage capacity in a "cold energy reserve” that can be used for the thermal regulation of the batteries during stopping phases of the compressor and / or the pump.
  • the composite phase change material has a latent heat of between 100 and 300 kJ per kg.
  • said first plate has a thickness of between 2 and 3 mm.
  • the composite phase-change material can be shaped by molding which allows the heat exchanger to be easily dimmed so that it adapts to the space available under the batteries, and to respect the size of the battery pack. .
  • Such a plate thus has optimum properties of flexibility and damping, and a small footprint
  • said composite phase-change material has a phase change temperature, or melting temperature, of between 9 and 13 oC.
  • Such a melting temperature is particularly suitable when the exchanger fulfills the refrigerant function that is to say when the heat exchanger is in a cooling phase of the batteries, as opposed to the operating phase during which the heat exchanger charges in calories without need da cooling battery.
  • said composite phase-change material has a phase change temperature, or melting temperature, of between 20 and 25 oC.
  • a melting temperature is particularly suitable when the heat exchanger performs the cooling function
  • said second plate is formed of a composite phase-change material.
  • the second pleque is aluminum.
  • the mass of a composite phase change material is less than that of aluminum.
  • said second plate comprises heat transfer fluid inlet and outlet ports communicating with said circulation circuit.
  • said first plate and said second plate are sealed together by gluing.
  • said second material of the first plate consists of carbon fibers.
  • the invention also relates to a device for thermal regulation of at least one electrical energy storage element comprising at least one heat exchanger as described above, said heat exchanger being arranged in thermal contact with at least one storage element. 'electric energy.
  • said heat exchanger takes the form of at least one electrical energy storage element.
  • the composite phase change material may be shaped by molding or injection molding. This makes the exchanger more compact and adapts to the shape of the batteries.
  • said heat exchanger is in thermal contact with said electrical energy storage element, through at least one intercalary element.
  • the device "thermal-regulation comprises at least one holding spring of said heat exchanger against said at least one element for storing electrical energy.
  • FIG. 1 - diagram of a device. thermal regulation of a battery, according to a non-limiting embodiment of the invention.
  • FIG. 2 - diagram of a heat exchanger according to a non-limiting embodiment of the invention, exploded and assembled, intended to be arranged in direct contact with a battery, through an Intercalaire element.
  • the invention relates to a heat exchanger formed by superposition of two plates, of which at least one is composed of a composite phase change material (MPC).
  • MPC composite phase change material
  • thermo regulation circuit The use of such a heat exchanger is particularly advantageous for the thermal regulation of a motor vehicle battery since it allows, while satisfying the constraints of lightness, compactness, and ease of assembly, to limit the elevations sudden temperature rise in the battery, mitigate the formation of hot spots, and reduce the overall energy consumption of the thermal regulation circuit.
  • the invention relates to a heat exchanger 4 arranged within a pack * battery 1 for a motor vehicle.
  • This battery pack 1 comprises walls delimiting a protective housing 2 in which at least one battery 3 is positioned.
  • the battery 3 is composed of several cells / electrical energy storage cells or accumulators connected to each other,
  • the battery pack 1 is equipped
  • a heat exchanger 4 having a plurality of circulation ducts for a heat transfer fluid and positioned there under the battery 3.
  • This heat transfer fluid may be of the refrigerant type, for example a mixture of water and gas, or a cooling liquid; for example a mixture of water and glycol.
  • the coolant can thus absorb the heat emitted by the battery 3 in order to cool it or as needed, it can bring him heat if the temperature of the battery 3 is insufficient for its proper operation.
  • the circulation ducts are obtained by assembly (step A) by superposing two plates 41, 42.
  • the two plates 41, 42 are assembled in a sealed manner by gluing, for example.
  • a first plate 41 has an array of parallel channels 5 whose ends are connected to collector channels.
  • These heat transfer fluid circulation ducts are in fluid communication with two heat transfer fluid inlet and outlet ports 6 mounted on the second plate 42, via the collector ducts.
  • the first plate 41 then provides a heat transfer fluid distribution function.
  • the second plate 42 does not have a network of channels 5.
  • the two plates 41, 42 or the second single plate 42 have such a network of channels 5, and therefore ensure the distribution of the coolant.
  • the two plates 41, 42 are manufactured by machining, three-dimensional printing, or molding, to meet the size of the battery pack and thus adapt to the available space under the batteries in the vehicle.
  • the heat exchanger 4 is arranged and kept in direct mechanical and thermal contact with the battery 3.
  • This maintenance in direct contact is achieved by the implementation of an elastic element, for example a spring, which provides a thrust force for pressing the heat exchanger 4 against the battery 3.
  • an elastic element for example a spring, which provides a thrust force for pressing the heat exchanger 4 against the battery 3.
  • the heat exchanger 4 and the spring thus form a device for thermal regulation of the battery 3, and more generally of the battery pack 1.
  • the heat exchanger 4 has been arranged against the battery 3, the heat exchanges between these two elements are carried out by conduction at the level of the second plate 42, one face of which is in contact with the battery 3.
  • the coolant circulating in the ducts of the exchanger 4 can thus absorb the heat energy of the battery 3 through the second plate 42.
  • the heat exchanger 4 and the battery 3 are separated by an Intercalaire element 7, and are therefore in indirect contact (they are thus in thermal contact, but not mechanical). .
  • the intermediate element 7, included in the thermal regulation device of the battery 3, is disposed between a face of the battery-3 and a face of the second plate 42.
  • This intermediate element 7, for example of the "pad” type in slllcone, allows to improve the thermal contact, and the electrical insulation between the heat exchanger 4 and the battery 3 without altering the heat exchange by conduction between them,
  • the Intercalaire 7 element is open.
  • the first plate 41 is formed of a composite phase-change material.
  • a composite material consists of:
  • At least one first thermal energy storage and retrieval material which is a phase change material (PCM) able to store thermal energy and to restore this stored energy.
  • PCM phase change material
  • the first material may in particular be an organic phase change material or vegetable inorganic or other origin.
  • the first phase change material consists of a mixture of paraffin and polymer which gives this material the ability to change physical state between a solid phase and a liquid phase within a restricted temperature range .
  • the composite phase change material can be made in the form of a paraffin matrix, polymer and carbon fibers.
  • compositions of the MCP and the matrix differ from those described above without departing from the claimed protective field.
  • the thickness of this first plate 41 is between 2 and 3 mm, which makes it possible to obtain optimum properties of flexibility and damping, especially with regard to the deformations that this first plate 41 could be subjected to undergo, for example during assembly (A) of the heat exchanger 4.
  • the latent heat of phase change of the composite MCP is between 100 and 300 kl per kg.
  • control circuit has a refrigerant function.
  • phase change temperature of the MCP (for phase change material) is chosen between 9 and 13 oC.
  • the thermal energy is stored or transferred by the composite MCP by simple change of state and height of the latent heat value of the MCP, without changing the latter temperature.
  • MCP therefore makes it possible to increase the thermal inertia of the heat exchanger 4 in this temperature range, thus limiting the sudden rise in temperature. temperature while evenly distribute the heat stored on the entire heat-conducting surface of the heat exchanger 4, which reduces the risk of performance decline and / or damage to the batteries.
  • control circuit has a cooling function.
  • the phase change temperature of the MCP is chosen between 20 and 25 ° C.
  • the thermal inertia of the heat exchanger 4 is increased in this specific temperature range, thus limiting the risks of appearance of hot spots.
  • the first plate 41 is composite MCP / while the second plate 42 is aluminum.
  • these plates 41, 42 are both formed of composite MCP.
  • the composite MCP being three times lighter than aluminum, the substitution of aluminum by the.
  • Composite MCP makes it possible to significantly lighten the heat exchanger 4, in addition to the effects related to the particularly advantageous thermal properties of the MCP, previously mentioned in the description.
  • only the second plate 42 is composed of composite MCP, the first plate 41 being for example made of aluminum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Battery Mounting, Suspending (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'Invention concerne un échangeur thermique (4) adapté pour la régulation thermique d'au moins un élément de stockage d'énergie électrique. (3), notamment pour un véhicule automobile, comprenant un assemblage par superposition d'une première plaque (41) et d'une seconde plaque (42) délimitant un circuit de circulation d'un fluide caloporteur, ladite seconde plaque (42) étant destinée à venir en contact thermique avec ledit au moins un élément de stockage d'énergie électrique (3). Selon l'invention, ladite première plaque (41) est formée d'un matériau à changement de phase composite comportant au moins un premier matériau à changement de phase et au moins un second matériau dont la structure forme une matrice de support du premier matériau à changement de phase,

Description

Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique
1. Domaine
Le domaine de l'Invention est celui de la régulation thermique d'un ou de plusieurs éléments de stockage d'énergie électriques équipant un véhicule automobile dont la propulsion est fournie en tout ou partie par une motorisation électrique.
2. Art antérieur
La régulation thermique de la batterie, notamment dans le domaine automobile et encore plus particulièrement dans le domaine des véhicules électriques et hybrides, est une problématfque.d'lmportance.
La température de la batterie doit rester comprise entre. 20 ºC et 40°C afin d'assurer la fiabilité, l'autonomie, et la performance du véhicule, tout en optimisant ia durée de vie de la batterie. En effet, lorsque la batterie est soumise à des températures trop froides, son autonomie décroît fortement. Inversement, lorsqu'elle est soumise à des températures trop importantes, il y a un risque d'emballement thermique pouvant aller Jusqu'à la destruction de la batterie.
Dans les véhicules électriques ou hybrides, la batterie comprend généralement plusieurs cellules de stockage d'énergie électrique. Ces cellules de stockage d'énergie sont positionnées dans un bottier de protection et forment, avec ce boîtier, ce que l'on appelle un pack-batterie.
Afin de réguler la température de la batterie, il est connu d'utiliser un dispositif de régulation thermique. Le dispositif de régulation thermique comprend un écnangeur thermique positionné directement au contact de la batterie au fond du bottier de protection et parcouru par un fluide caloporteur, ou Indirectement au contact de la batterie dans le cas d'un èchangeur placé à l'extérieur du pack batterie.
Le fluide caloporteur peut ainsi absorber la chaleur émise par chaque batterie afin de les refroidir ou selon les besoins, il peut lui apporter de la chaleur si .la température de la batterie est insuffisante pour son bon fonctionnement.
Les fluides caloporteurs généralement utilisés sont des liquides comme, par exemple, l'eau. Le document de brevet WO2010012772 décrit un échangeur thermique constitué de deux plaques superposées, entre lesquelles, des canaux de circulation d'un fluide caloporteur sont formés.
Un tel échangeur thermique présente plusieurs Inconvénients.
Premièrement, un tel échangeur thermique n'est effectif que lorsqu'il est alimenté en fluide caloporteur par l'intermédiaire d'un compresseur pu d'une pompe. L'activation permanente de ce compresseur ou de cette pompe pendant la totalité de la phase de régulation thermique engendre donc un surplus de consommation énergétique (de carburant ou d'électricité) non négligeable.
Deuxièmement un tel échangeur thermique n'est pas adapté pour pailler les échauffements localisés, dits "points chauds", pouvant survenir au sein des batteries au coure de leur mise en œuvre. De tels échauffements, lorsqu'ils sont trop importants, engendrent une dégradation des performances des batteries, voire leur endommagement.
Dans ce contexte, la présente Invention vise à fournir un échangeur thermique amélioré, permettant de résoudre les Inconvénients précédemment mentionnés, tout en étant léger, compact, et aisément assemblable.
3. Résumé
L'invention propose à cet effet un échangeur thermique adapté pour le régulation thermique d'au moins un élément de stockage d'énergie, électrique, notamment pour un véhicule automobile, comprenant un assemblage par superposition d'une première plaque et d'une seconde plaqua délimitant un circult de circulation d'un fluide caloporteur, ladite seconde plaque étant destinée à venir en contact thermique avec ledit au moins un élément de stockage d'énergie électrique.
Selon l'invention, ladite première plaque est formée d'un matériau à changement de phase composite comportant au moins un premier matériau à changement de phase et au moins un second matériau dont la structure forme une matrice de support du premier matériau à changement de phase.
Dans la suite de la description, la notion de « régulation thermique » se réfère tant au refroidissement qu'au réchauffement d'une batterie et/ou un ensemble de batteries électriques, désigné par l'expression « élément de stockage d'énergie électrique ».
Un échangeur thermique selon l'invention comprend un assemblage de. deux plaques superposées.
La première de ces plaques comprend un matériau â changement de phase
(MCP) qui de façon connue en sol est adapté pour stocker et restituer de l'énergie thermique et dans laquelle est réalisé le circuit de passage du fluide caloporteur.
La seconde plaque est solidarisée à la première de sorte à former un circuit étanche de passage du fluide caloporteur.
Un tel matériau à changement de phase a la capacité de changer d'état physjque entre une phase solide et une phase liquide, dans une plage de températures restreinte. Un matériau à changement déphasé se caractérise notamment par sa température de changement de phase, ou température de fusion, ainsi que par SB chaleur latente de changement de phase, c'est-à-dire la quantité d'énergie pouvant être stockée ou cédée par simple changement d'état, tout en conservant une température constante.
Concernant la première plaque, ce matériau à changement de phase est pris dans, une matrice en fibres de carbone, par exemple, permettant à la première pla.que de rester rigide lors des changements de phase.
Un tel matériau à changement de phase composite a pour premier avantaged'etre particulièrement léger. Son Intégration au sein de la première plaque permet donc d'en réduire le poids tout en conservant une compacité optimale.
De par ses propriétés de conduction thermique, le. matériau a changement de phase composite est également très conducteur thermfquement, ce qui lui permet de refroidir des batteries qu'il soit dans sa phase de congélation, dans sa phase de décongélation ou dans sa phase de charge maximale.
D'autre part, dans le cadre d'un échauffement local de la batterie, également nommé « point chaud », la mise en oeuvre de matériau à changement de phase permet d'augmenter l'inertie thermique de rechangeur, limitant ainsi les élévations soudaines de température tout en répartissent de manière uniforme la chaleur stockée sur toute sa surface conductrice, ce qui permet de réduire les risques de baisse de performance et/ou d'endommagement des batteries. Enfin, compte tenu de sa chaleur latente de changement de phase, un matériau à changement de phase composite présente une grande capacité de stockage d'énergie thermique en une réserve d'énergie « froide a pouvant être utilisée pour le régulation thermique des batteries lors des phases d'arrêt du compresseur et/ou de la pompe.
L'intégration d'un tel matériau a changement de phese composite au sein d'un échangeur thermique permet donc de réduire la consommation énergétique (et l'émission de C02), sous forme de carburant et/ou d'électricité, du circuit de régulation thermique d'un véhicule automobile, et donc d'augmenter l'autonomie électrique du véhicule
Selon un aspect particulier de. l'invention, le matériau à changement de phase composite a une chaleur latente comprise entre 100 et 300 kJ par kg.
Ced permet de garantir une grande capacité de stockage d'énergie thermique. Selon un aspect particulier de l'invention, ladite première plaque a une épaisseur comprise entre 2 et 3 mm.
Le matériauà changement de phase composite peut être mis en forme par moulage ce qui permet de dlmenslonner aisément l'échangeur thermique de sorte à ce qu'il s'adapte à la place disponible sous les batteries, et de respecter l'encombrement du pack batteries.
Une telle plaque présente ainsi des propriétés optimales de souplesse et d'amortissement, et un encombrement réduit,
Selon un mode de réalisation de l'Invention, ledit matériau à changement de phase composite a une température de changement de phase, ou température de fusion, comprise entre 9 et 13 ºC.
Une telle température de fusion est particulièrement adaptée lorsque réchangeur remplit la fonction de réfrigérant Cest-a-dire lorsque l'échangeur est dans une phase de refroidissement des batteries, par oppositionà la phase de fonctionnement pendant laquelle l'échangeur se charge en calories sans besoin da refroidissement batterie.
Selon un autre mode de réalisation ledit matériau à changement de phase composite a une température de changement de phase, ou température .de fusion, comprise entre 20 et 25 ºC Une telle température de fusion est particulièrement adaptée lorsque l'échangeur remplit la fonction de refroidissement
Selon un aspect particulier de l'Invention, ladite seconde plaque est formée d'un matériau à changement de phase composite.
Dans une variante, la seconde pleque est en aluminium.
Il est a noter que la masse d'un matériau a changement de phase composite est trais fols moins, importante que celle de l'aluminium.
Selon un aspect particulier de l'invention, ladite seconde plaque comprend des ports d'entrée et de sortie de fluide caloporteur communiquant avec ledit circuit de circulation.
Selon un aspect particulier de l'invention, ladite première plaque et ladite seconde plaque sont assemblées de manière étanche par collage.
Selon un aspect particulier de l'invention, ledit second matériau de la première plaque est constitué de fibres de carbone.
L'invention concerne également un dispositif de régulation- thermique d'au moins un élément de stockage d'énergie électrique comprenant au moins un échangeur thermique tel que décrit précédemment, ledit échangeur thermique étant agencé en contact thermique avec au moins un élément de stockage d'énergie électrique.
Selon un aspect particulier de l'invention, ledit échangeur thermique épouse la forme dudlt au moins élément de stockage d'énergie électrique.
Le matériau à changement de- phase composite peut fitre mis en forme par moulage ou Injection. Ceci permet de rendre l'échangeur plus compact et de l'adapter à la forme des batteries.
Selon un aspect particulier de l'invention, ledit échangeur thermique est en contact thermique avec ledit élément de stockage d'énergie électrique, au travers d'au moins un élément Intercalaire.
Selon un aspect particulier de l'invention, le dispositif «le régulation -thermique comprend au moins un ressort de maintien dudit échangeur thermique contre ledit au moins un élément de stockage d'énergie électrique.
Un tel ressort de maintien permet d'améliorer l'échange thermique entre l'échangeur et les batteries. 4. Figuras
D'autres caractéristiques et avantages de l'Invention apparaîtront à la lecture de la description suivante de modes de réalisation particuliers, donnés a titre de simples exemples Illustratlfs et non limitatifs, et des figures annexées, à savoir :
Figure 1 - schéma d'un dispositif de. régulation thermique d'une batterie, selon un mode de réalisation non limitatif de l'invention.
Figure 2 - schéma d'un échangeur thermique selon un mode de réalisation non limitatif de l'invention, en éclaté et assemblé, destiné à être agencé en contact direct avec une batterie, par le biais d'un élément Intercalaire.
Les différents éléments Illustrés par les figures ne sont pas nécessairement représentés à l'échelle réelle, l'accent, étant davantage porté sur la représentation du fonctionnement général de l'invention.
5. Description détaillée de modes de réalisation particuliers de l'Invention
Plusieurs modes de réalisation particuliers de l'Invention sont présentés dans la suite de la description.
Il est bien entendu que la présente invention n'est nullement limitée par ces modes de réalisation particuliers et que d'autres modes de réalisation peuvent parfaitement être mis en œuvre.
L'Invention concerne un échangeur thermique formé par superposition de deux plaques dont pu moins une est composée d'un matériau à changement de phase (MÇP) composite.
L'utilisation d'un tel échangeur thermique est particulièrement avantageuse pour la régulation thermique d'une batterie de véhicule automobile puisqu'elle permet, tout en satisfaisant des contraintes de légèreté, de compacité, et de facilité d'assemblage, de limiter les élévations soudaines de température au sein de la batterie, de pallier la formation de points chauds, et de réduire la consommation énergétique globale du circuit de régulation thermique.
Selon un premier mode de réalisation, et tel qu'illustre sur la vue schématique de la figure 1, l'Invention concerne un échangeur thermique 4 agencé au sein d'un pack* batterie 1 pour véhicule automobile. Ce pack-batterie 1 comprend des parois délimitant un boîtier 2 de protection dans lequel au moins une batterie 3 est positionnée.
De façon classique, la batterie 3 est composée de plusieurs, cellules/éléments de stockage d'énergie électrique ou accumulateurs reliés entre -eux,
Afin de réguler la température de cette batterie 3, le pack-batterie 1 est équipé
.d'un échangeur thermique 4 présentant une pluralité de conduits de circulation d'un fluide caloporteur et positionné là sous la batterie 3.
Ce fluide caloporteur peut être du type réfrigérant, par exemple un mélanged'eau et de gaz, ou bien un liquide de refroidissement; par exemple un mélange d'eau et de glycol.
Le fluide caloporteur peut ainsi absorber la chaleur émise par la batterie 3 afin de la refroidir ou selon les besoins, il peut lui apporter de la chaleur si la température de la batterie 3 est insuffisante pour son bon fonctionnement.
Tel qu'illustré par la figure 2, les conduits de circulation sont obtenus par assemblage (étape A) par superposition de deux plaques 41, 42.
Les deux plaques 41, 42 sont assemblées cfe manière étanche par collage, par exemple.
. Une première plaque 41 présente un réseau de canaux 5 parallèles dont les extrémités sont reliées a des canaux-collecteurs.
Lorsque cette première plaque 41 et une seconde plaque 42, destinéeà être agencée à proximité et en regard de la batterie 3; sont fixées entre elles, les portions de la seconde plaque 42 en vis-à-vis des canaux 5 définissent avec ces derniers une pluralité de conduits de circulation du fluide caloporteur et des conduits collecteurs.
Ces conduits de circulation du fluide caloporteur sont en communication fluldiqua avec deux ports 6 d'entrée et de sortie de fluide caloporteur montés sur la seconde plaque 42, via les conduits collecteurs.
La première plaque 41 assure alors une fonction de distribution du fluide caloporteur.
. Selon les modes de réalisations illustrés par les figures 1 et 2, la seconde plaque 42 ne présente pas de réseau de canaux 5. Cependant, selon des modes de réalisations alternatifs, lés deux plaques 41, 42 ou la seconde plaque seule 42 présentent un tel réseau de canaux 5, et assurent par conséquent la distribution du fluide caloporteur.
Selon un mode de réalisation non limitatif, les deux plaques 41, 42 sont fabriquées par usinage, Impression tridimensionnelle, ou moulage, afin de respecter l'encombrement du pack batterie et ainsi s'adapter à la place disponible sous les batteries dans le véhicule.
Selon un premier mode de réalisation, illustré par la figure .1, l'échangeur thermique 4 est agencé et maintenu en contact direct mécanique et thermique avec la batterie 3.
Ce maintien en contact direct, est réalisé par la mise en œuvre d'un élément élastique, par exemple un ressort, qui fournit une force de poussée permettant de plaquer l'échangeur thermique 4 contre la batterie 3.
L'échangeur thermique 4 et le ressort forment ainsi un dispositif de régulation thermique de la batterie 3, et plus généralement du pack batterie 1.
Une fois l'échangeur thermique 4 agencé contre la batterie 3, tes échanges -thermiques entre ces deux éléments sont réalisés par conduction -au niveau de la seconde plaque 42 dont une face est en contact avec la batterie 3.
Le fluide caloporteur circulant dans les conduits de l'échangeur 4 peut ainsi absorber l'énergie calorifique de la batterie 3 au travers de la seconde plaque 42.
Selon un seconde mode de réalisation, Illustré par la figure 2, l'échangeur thermique 4 et la batterie 3 sont séparés par un élément Intercalaire 7, et sont de ce fait en contact indirect (ils sont ainsi en contact thermique, mais pas mécanique}.
L'élément intercalaire 7, compris dans le dispositif de régulation thermique de la batterie 3, est disposé entre une face de la batterie-3 et une face, de la seconde plaque 42.
Cet élément intercalaire 7, par exemple du -type « pad » en slllcone, permet d'amélkiFer le contact thermique, et l'isolation électrique entre l'échangeur thermique 4 et la batterie 3 sans altérer les échanges thermiques par conduction entre ces derniers, Dans l'exemple Illustré, l'élément Intercalaire 7 est ajouré.
Selon un premier mode de réalisation, la première plaque 41 est formée d'un matériau à changement de phase composite. Un tel matériau composite est constitué :
- d'au moins un premier matériau de stockage et de restitution d'énergie thermique, qui est un matériau A changement de phase (MCP) apte A emmagasiner de l'énergie thermique et A restituer cette énergie emmagasinée.
- d'au moins un deuxième matériau, choisi(s) de manière à former une matrice de support solide du MCP, quelle que soit la phase liquide ou solide de ce dernier, la matrice de support étant Ici constituée de fibres de carbone dont la structure permet à la première plaque 41 de rester rigide quelle que splt la phase du MCP et empêchant une fuite du premier matériau à changement de phase dans la phase liquide de ce dernier.
En variante, en deuxième matériau, on peut prévoir un polymère avec ou sans fibres de carbone.
Le premier matériau peut notamment être un matériau A changement de phase organique où inorganique végétale ou d'autre origine. A titre d'exemple, le premier matériau A changement de phase consiste en un mélange de paraffine et de polymère qui confère à ce matériau la capacité de changer d'état physique entre une phase solide et une phase liquide, dans une plage de températures restreinte.
Ainsi, selon un exemple particulier, le matériau A changement de phase composite peut être réalisé sous la forme d'une matrice de paraffine, de polymère et de fibres de carbone.
Selon des modes de réalisation alternatifs, les compositions respectives du MCP et de la matrice diffèrent de celles décrites ci-dessus, sans pour autant sortir du champ de protection revendiqué.
Selon ce premier mode de réalisation, l'épaisseur de cette première plaque 41 est comprise entre 2 et 3 mm, ce qui permet d'obtenir des propriétés de souplesse et d'amortissement optimales, notamment au regard des déformations que cette première plaque 41 pourrait être amenée A subir, par exemple lors de l'assemblage (A) de l'échangeur thermique 4.
Toujours selon ce premier mode de réalisation, le chaleur latente de changement de phase du MCP composite est comprise entre 100 et 300 kl par kg.
Le choix de cet -intervalle de valeurs permet de garantir au MCP composite une grande capacité de stockage d'énergie thermique « froide » pouvant être utilisée pour la régulation thermique des batteries lors des phases d'arrêt du compresseur et/ou de la pompe.
L'Intégration d'un tel MCP composite au sein d'un échangeur thermique permet donc de réduire la consommation énergétique, sous forme de carburant et/ou d'électricité, du circuit de régulation thermique.
Selon ce premier mode de réalisation, le circuit de régulation a une' fonction réfrigérante.
Dans ce cas, la température de changement de phase du MCP (pour matériau à changement de phase) est choisie entre 9 et 13 ºC
Dans cet Intervalle de température, l'énergie thermique est stockée ou cédée par le MCP composite par simple changement d'état et & hauteur de ta valeur de la chaleur latente du MCP, sans modification de la température ce dernier.
La mise en œuvré de MCP permet par conséquent d'augmenter l'inertie thermique de t'échangeur thermique 4 dans cette plage de température, limitant ainsi les élévations soudaines de. température tout en répartissent de manière uniforme la chaleur stockée sur toute la surface thermiquement conductrice de l'échangeur thermique 4, ce qui permet de réduire les risques de baisse de performance et/ou d'endommagement des batteries.
Selon un mode de réalisation alternatif, le circuit de régulation a une fonction refroidissante.
Dans ce cas, la température de changement de phase du MCP ést choisie entre 20 et 25 ºC De ce fait, l'inertie thermique de l'échangeur thermique 4 est accrue dans cette plage de température spécifique, limitant ainsi tes risques d'apparition de points chauds.
Selon le premier mode de réalisation, la première plaque 41 est en MCP composite/tandis que la seconde- plaque 42 est en aluminium.
Selon un mode de réalisation alternatif, ces plaques 41, 42 sont toutes deux formées de MCP composite.
Le MCP composite étant trois fois plus léger que l'aluminium, la substitution de l'aluminium par le. MCP composite permet d'alléger significativement l' édiartgeur thermique 4, en sus des effets liés aux propriétés thermiques particulièrement avantageuses du MCP, précédemment mentionnés dans la description. Selon un autre mode de réalisation, seule la seconde plaque 42 est composée de MCP composite, la première plaque 41 étant par exemple constituée d'aluminium.

Claims

REVENDICATIONS
1. Echangeur thermique (4) adapté pour la régulation thermique d'au moins un élément de stockage d'énergie électrique (3), notamment pour un véhicule automobile, comprenant un assemblage par superposition d'une première plaque (41) et d'une seconde plaque (42) délimitant un circuit de circulation d'un fluide caloporteur, ladite seconde plaque (42) étant destinéeà venir en contact thermique avec ledit au moins un élément de stockage d'énergie électrique (3),
ledit échangeur thermique (4) -étant caractérisé en ce que ladite première plaque (41) est formée d'un matériau à changement de phase composite comportant au moins un premier matériauà changement de phase et au moins un second matériau dont la structure forme une matrice de support du premier matériau a changement de phase.
2. Echangeur thermique (4) selon la revendication 1, caractérisé an ce que ledit matériau à changement de phase composite a une chaleur latente comprise entre 100 et 300 kJ par kg.
3. Echangeur thermique (4) selon l'une quelconque des revendications l et 2, caractérisé en ce que ladite première plaque (41) a une épaisseur comprise entre 2 et 3 mm,
4. Echangeur thermique (4) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit matériauà changement de phase composite a une température de changement de phase comprise entra 9 et 13 ºC.
5. Echangeur thermique (4) selon l'une quelconque des revendications 1à 3, caractérisé en ce que ledit matériau à changement de phase composite a une température de changement de phase comprise entre 20 et 25 ºC
6. Echangeur thermique (4) selon l'une quelconque des revendications 1 à S, caractérisé en ce que ladite seconde plaque (42) est formée d'un matériau à changement de phase composite.
7. Echangeur thermique (4) selon d'u ne quelconque des revendications 1 à 6, caractérisé en ce que ladite seconde plaqué (42) comprend des ports (6) d'entrée et de sortie de fluide caloporteur communiquant avec ledit circuit de circulation.
8. Echangeur thermique (4) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ladite première plaque (41) et ladite seconde plaque (42) sont assemblées de manière étanche par collage,
9. Echangeur thermique (4) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que ledit second matériau de la première plaque (41) est constitué de fibres de carbone-
10. Dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique (3), caractérisé en ce qu'il comprend au moins un echangeur thermique (4) selon l'une quelconque des revendications 1 à 9, ledit échangeur thermique (4) étant agencé en contact thermique avec au moins un élément de stockage d'énergie électrique (3).
11. Dispositif de régulation thermique selon la revendication 10, caractérisé en ce que ledit échangeur thermique (4) épouse la forme dudit au moins élément de stockage d'énergie électrique (3).
12. Dispositif de régulation thermique selon la revendication 10, caractérisé en ce que ledit échangeur thermique (4) est en contact thermique avec ledit élément de stockage d'énergie électrique (3), au travers d'au moins un élément intercalaire (7).
13. Dispositif de régulation thermique selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il comprend au moins un ressort de maintien dudit échangeur thermique (4) contre ledit au moins un élément de stockage d'énergie électrique (3)·
PCT/FR2018/000037 2017-02-23 2018-02-23 Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique Ceased WO2018167382A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1751451 2017-02-23
FR1751451A FR3063137B1 (fr) 2017-02-23 2017-02-23 Echangeur thermique et dispositif de regulation thermique d’au moins un element de stockage d’energie electrique

Publications (1)

Publication Number Publication Date
WO2018167382A1 true WO2018167382A1 (fr) 2018-09-20

Family

ID=58707777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/000037 Ceased WO2018167382A1 (fr) 2017-02-23 2018-02-23 Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique

Country Status (2)

Country Link
FR (1) FR3063137B1 (fr)
WO (1) WO2018167382A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638380A (zh) * 2018-12-06 2019-04-16 深圳垒石热管理技术有限公司 一种相变式换热结构及应用其的蓄电池组
CN109860949A (zh) * 2019-01-22 2019-06-07 重庆交通大学 电池安全热管理装置
EP4382331A3 (fr) * 2022-12-08 2024-07-17 Honeywell International Inc. Stockage d'énergie à matériau à changement de phase pour système et procédé de gestion thermique de véhicule électrique
US12179632B2 (en) 2018-08-31 2024-12-31 Hutchinson Thermal management structure with integrated channels

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012772A1 (fr) 2008-07-29 2010-02-04 Behr Gmbh & Co. Kg Dispositif de refroidissement d'une source de chaleur dans un véhicule à moteur
CN102664292A (zh) * 2012-05-22 2012-09-12 上海电力学院 用于动力电池的散热冷却装置
FR3015780A3 (fr) * 2013-12-23 2015-06-26 Renault Sa Systeme de maintien en temperature d'une batterie.
US20160006088A1 (en) * 2014-07-01 2016-01-07 Embry-Riddle Aeronautical University, Inc. Battery thermal management for hybrid electric vehicles using a phase-change material cold plate
EP2993435A1 (fr) * 2014-08-11 2016-03-09 Valeo Systemes Thermiques Plaque d'échange thermique pour gestion thermique de pack batteries
CN106033827A (zh) * 2015-03-18 2016-10-19 广东万锦科技股份有限公司 一种具有高效散热和加热功能的动力电池热管理系统
CN106299550A (zh) * 2016-09-19 2017-01-04 宁德时代新能源科技股份有限公司 电池组热管理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012772A1 (fr) 2008-07-29 2010-02-04 Behr Gmbh & Co. Kg Dispositif de refroidissement d'une source de chaleur dans un véhicule à moteur
CN102664292A (zh) * 2012-05-22 2012-09-12 上海电力学院 用于动力电池的散热冷却装置
FR3015780A3 (fr) * 2013-12-23 2015-06-26 Renault Sa Systeme de maintien en temperature d'une batterie.
US20160006088A1 (en) * 2014-07-01 2016-01-07 Embry-Riddle Aeronautical University, Inc. Battery thermal management for hybrid electric vehicles using a phase-change material cold plate
EP2993435A1 (fr) * 2014-08-11 2016-03-09 Valeo Systemes Thermiques Plaque d'échange thermique pour gestion thermique de pack batteries
CN106033827A (zh) * 2015-03-18 2016-10-19 广东万锦科技股份有限公司 一种具有高效散热和加热功能的动力电池热管理系统
CN106299550A (zh) * 2016-09-19 2017-01-04 宁德时代新能源科技股份有限公司 电池组热管理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12179632B2 (en) 2018-08-31 2024-12-31 Hutchinson Thermal management structure with integrated channels
US12237484B2 (en) 2018-08-31 2025-02-25 Hutchinson Thermal management structure with fluid channels
CN109638380A (zh) * 2018-12-06 2019-04-16 深圳垒石热管理技术有限公司 一种相变式换热结构及应用其的蓄电池组
CN109860949A (zh) * 2019-01-22 2019-06-07 重庆交通大学 电池安全热管理装置
EP4382331A3 (fr) * 2022-12-08 2024-07-17 Honeywell International Inc. Stockage d'énergie à matériau à changement de phase pour système et procédé de gestion thermique de véhicule électrique

Also Published As

Publication number Publication date
FR3063137B1 (fr) 2021-05-21
FR3063137A1 (fr) 2018-08-24

Similar Documents

Publication Publication Date Title
EP3017498B1 (fr) Dispositif de gestion thermique de la batterie d'un vehicule electrique
WO2018167382A1 (fr) Echangeur thermique et dispositif de régulation thermique d'au moins un élément de stockage d'énergie électrique
EP3337963B1 (fr) Circuit et procede de refroidissement sur un vehicule
FR3085545A1 (fr) Module electrique comprenant une pluralite de cellules de batteries immergees dans un fluide dielectrique
CA2667410A1 (fr) Batterie electrique comprenant un systeme de conditionnement mecanique et thermique
EP3235022A1 (fr) Accumulateur au lithium avec emballage isolant thermiquement a deux couches et avec caloduc pour la gestion thermique
EP3516318A2 (fr) Dispositif de regulation thermique
FR3040210A1 (fr) Ensemble modulaire pour stockeur ou batterie
EP3008772B1 (fr) Bloc batterie pour véhicule automobile
FR3085547A1 (fr) Module electrique comprenant une pluralite de cellules de batteries immergees dans un fluide dielectrique
EP4089794A2 (fr) Unité de batterie avec des moyens de controle ou de régulation de température intégrés
EP3262362B1 (fr) Dispositif de gestion thermique d'une unité de réserve d'énergie
WO2020165517A1 (fr) Unité de batterie et véhicule automobile équipé d'au moins une telle unité
WO2018127641A1 (fr) Echangeur thermique à deux rangées de tubes pour la régulation thermique d'une batterie d'un véhicule automobile
EP4595148A1 (fr) Dispositif pour espacer des cellules de batterie d'un bloc batterie de vehicule
EP4268311A1 (fr) Dispositif de régulation thermique
FR3105384A1 (fr) Dispositif d’échange thermique pour des composants électriques et/ou électroniques
EP2952706B1 (fr) Dispositif d'échange de chaleur, ligne d'échappement d'un moteur thermique et module thermoélectrique comprenant un tel dispositif
FR3101731A1 (fr) « Dispositif de refroidissement d’un élément électrique susceptible de dégager de la chaleur en fonctionnement »
FR3147431A1 (fr) Module de batterie et procédé de fabrication associé
EP2858841A1 (fr) Batterie thermique et dispositif de chauffage associe
EP4193417A1 (fr) Dispositif de refroidissement de deux cellules électrochimiques, ensemble électrochimique et procédé correspondants
FR3067101A1 (fr) Module thermique comprenant un boitier et un echangeur thermique
FR3108464A1 (fr) Dispositif de régulation thermique
FR3121786A1 (fr) Système de gestion thermique pour un module de système électronique.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18729724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18729724

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载