+

WO2018043567A1 - Compound for removing human pluripotent stem cells - Google Patents

Compound for removing human pluripotent stem cells Download PDF

Info

Publication number
WO2018043567A1
WO2018043567A1 PCT/JP2017/031165 JP2017031165W WO2018043567A1 WO 2018043567 A1 WO2018043567 A1 WO 2018043567A1 JP 2017031165 W JP2017031165 W JP 2017031165W WO 2018043567 A1 WO2018043567 A1 WO 2018043567A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cells
abcg2
compound
compound according
Prior art date
Application number
PCT/JP2017/031165
Other languages
French (fr)
Japanese (ja)
Inventor
志成 上杉
迪 茅
栄八郎 川瀬
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2018537349A priority Critical patent/JPWO2018043567A1/en
Publication of WO2018043567A1 publication Critical patent/WO2018043567A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a compound for removing undifferentiated cells remaining after induction of differentiation of human pluripotent stem cells such as iPS cells and ES cells, and a method for using the same.
  • Non-patent Documents 1 and 2 Human induced pluripotent stem cells
  • Non-patent document 5 non-patent document 5
  • modified cell culture conditions non-patent documents 6 and 7
  • lectin-toxin fusion protein specific to human pluripotent stem cells
  • Non-patent document 8 Several chemical methods have also been shown to be effective, such as a small molecule inhibitor of stearoyl CoA desaturase (SCD1) (Non-patent Document 9) and a small molecule inhibitor of survivin (Non-patent Document 10).
  • SCD1 small molecule inhibitor of stearoyl CoA desaturase
  • Non-patent Document 10 small molecule inhibitor of survivin
  • KP-1 Kyoto probe 1
  • PCRF ATP binding cassette
  • ABC transporters play an important role in drug resistance mechanisms in cancer treatment (K. Ueda et al., Proceedings of the National Academy of Sciences of United States of America (1987) 84: 3004-300.C.P. Cole et al., Science (1992) 258: 1650-1654; J. Fletcher et al., Nat Rev Cancer (2010) 10: 147-156).
  • a wide range of cytotoxic anticancer agents have been reported as substrates for ABC transporters.
  • KB3-1 cells do not express ABC transporters at detectable levels.
  • KB3-1-derived cells (KB / ABCB1 (Y. Taguchi et al., Biochemistry (1997) 36: 8883-8889), KB / ABCC1 (K. Nagata et al., J Biol Chem (2000) 275: 17626-17630), and KB / ABCG2 (N. Hirata et al., Cell Rep (2014) 6: 1165-1174.) Overexpresses ABCB1, ABCC1, and ABCG2, respectively. Most drugs showed at least one ABC transporter-mediated resistance.
  • camptothecin and etoposide were substrates for both ABCB1 and ABCC1. These results are the results of previous studies by the present inventors (N. Hirata et al., Cell Rep (2014) 6: 1165-1174) and reported results (JJ Strouse et al., Anal Biochem (2013) 437). : 77-87).
  • a common substrate for both ABCB1 and ABCG2 could not be found among the compounds tested. This result means that it is very difficult to find a common substrate for both ABCB1 and ABCG2 even though ABCB1 and ABCC1 share the substrate and ABCC1 and ABCG2 share the substrate. It was.
  • KP-1 etc. exhibit excellent selectivity for human pluripotent stem cells, but KP-1 etc. have cytotoxicity. Because human pluripotent stem cells cannot be removed. Therefore, the present inventors bound KP-1 and the like to a cytotoxic substance, so that the resulting complex has characteristics as a common substrate for both ABCB1 and ABCG2 such as KP-1, We believe that selective and relatively safe substances can be found if both cytotoxicity of cytotoxic anticancer drugs can be maintained, and various cytotoxic anticancer drugs such as KP-1 Were examined by covalent bonding.
  • an object of the present invention is to find a compound that, when combined with KP-1 or the like, gives a complex of a cytotoxic anticancer agent that becomes a common substrate for both ABCB1 and ABCG2.
  • the present inventors create a substance that is a common substrate for both ABCB1 and ABCG2 and has cytotoxicity by binding a cytotoxic anticancer agent that is a substrate of ABCG2 to KP-1 and the like. We have found that this is possible and have completed the present invention.
  • the present invention relates to a complex in which a cytotoxic anticancer agent that is a substrate for ABCG2 is bound to KP-1 or the like.
  • the complex is a common substrate for both ABCB1 and ABCG2 and is a substance having cytotoxicity. More specifically, the present invention relates to: (1) Compound represented by the following formula (I)
  • R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group.
  • R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present
  • R 2 and R 3 are the same or different and are each a hydrogen atom or a C1-6 alkyl group
  • X is an oxygen atom, a sulfur atom, or NR 7
  • R 7 is a hydrogen atom or a C1-6 alkyl group
  • L represents a linker moiety represented by — (CH 2 ) k (NH) m (CO) n (CH 2 ) p —,
  • k represents an integer of 3 to 7, m is 0 or 1, n is 0 or 1, p is 0 or 1,
  • D represents ABCG2 selective cytotoxic substance;
  • R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group.
  • R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present, L represents a linker moiety represented by — (CH 2 ) k (NH) m (CO) n (CH 2 ) p —, Here, k represents an integer of 3 to 7, m is 0 or 1, n is 0 or 1, p is 0 or 1, D represents ABCG2 selective cytotoxic substance;
  • a compound represented by any one of the following formulas (in the formula, a terminal not explicitly showing an atom represents CH 3 ).
  • Compound represented by the following formula (Ia) or (Ib) [Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group.
  • R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
  • R 2 and R 3 are the same or different and are each a hydrogen atom or a C1-6 alkyl group, X is an oxygen atom, a sulfur atom, or NR 7 ;
  • R 7 is a hydrogen atom or a C1-6 alkyl group, k represents an integer of 3 to 7.
  • (9) Compound represented by the following formula (IIa) or (IIb) [Wherein R1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group.
  • R5 and R6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R5 and R6 are not present, k represents an integer of 3 to 7.]
  • 10 The compound according to (8) or (9), wherein R 1 is a halogen atom or a —OP (O) (OR 5 ) (OR 6 ) group.
  • (11) The compound according to any one of (8) to (10), wherein k represents an integer of 3 to 5.
  • ABCG2-selective cytotoxic substances are SN38, Mitoxantrone, Irinotecan, 9-Aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idrubicinol, Boldinol NB-506 and J-107088, Zidovudine (AZT), and lami, inhibitors of topoisomerase I Is a material selected from udine, method.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and preferably a fluorine atom.
  • C1-6 alkyl group means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, Examples include i-propyl group, n-butyl group, sec-butyl group, t-butyl group, isobutyl group, pentyl group, isopentyl group, 2,3-dimethylpropyl group, hexyl group, and cyclohexyl group.
  • C1-5 alkyl group more preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, isobutyl group, pentyl group, An isopentyl group or a 2,3-dimethylpropyl group. More preferred is a C1-3 alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group, and a methyl group or an ethyl group is most preferred.
  • the “C1-6 alkoxy group” means a group ((C1-6 alkyl group) -O— group) bonded to the C1-6 alkyl group through an oxygen atom.
  • the base part may be linear or branched.
  • the C1-6 alkoxy group means that the alkyl group moiety has 1 to 6 carbon atoms. Examples of the alkoxy group include methoxy group, ethoxy group, 1-propyloxy group, 2-propyloxy group, 2-methyl-1-propyloxy group, 2-methyl-2-propyloxy group, and 2,2-dimethyl group.
  • -1-propyloxy group 1-butyloxy group, 2-butyloxy group, 2-methyl-1-butyloxy group, 3-methyl-1-butyloxy group, 2-methyl-2-butyloxy group, 3-methyl-2- Butyloxy, 1-pentyloxy, 2-pentyloxy, 3-pentyloxy, 2-methyl-1-pentyloxy, 3-methyl-1-pentyloxy, 2-methyl-2-pentyloxy , 3-methyl-2-pentyloxy group, 1-hexyloxy group, 2-hexyloxy group, 3-hexyloxy group and the like.
  • the C1-6 alkoxy group is preferably a C1-5 alkoxy group, and more preferably a methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butyloxy group, sec-butyloxy group, t -Butyloxy group, isobutyloxy group, pentyloxy group, isopentyloxy group, and 2,3-dimethylpropyloxy group, and more preferably a C1-3 alkoxy group (methoxy group, ethoxy group, and propyloxy group) And more preferably a methoxy group or an ethoxy group.
  • phenyloxy group means a group (Ph—O— group) bonded to a phenyl group via an oxygen atom.
  • R 5 and R 6 are preferably the same, and more preferably —OP (O) (OCH 2 CH 3 ) (OCH 2 CH 3 ) group, —OP (O) (OCH 2 Ph) (OCH 2 Ph) group, or “—OPO 3 2- group”.
  • R 1 is preferably a hydrogen atom, a halogen atom, a C1-6 alkyl group, a hydroxyl group or a —OP (O) (OR 5 ) (OR 6 ) group (where R 5 and R 6 are Are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 do not exist), more preferably a hydrogen atom, a fluorine atom, A chlorine atom, a propyl group, and a hydroxyl group, and most preferably a fluorine atom.
  • R 1 is a phosphate group
  • uptake into cells can be promoted by utilizing alkaline phosphatase by utilizing the negative charge of the phosphate group.
  • the substitution position for R1 is preferably the para position.
  • R 2 has little influence on transporter selectivity and may be any group of a hydrogen atom and a C1-6 alkyl group, preferably a hydrogen atom, a methyl group, or an ethyl group, Preferably it is a hydrogen atom.
  • R 3 has a low influence on transporter selectivity and may be any group of a hydrogen atom and a C1-6 alkyl group, preferably a hydrogen atom, a methyl group, or an ethyl group, Preferably it is a hydrogen atom.
  • X is an oxygen atom, a sulfur atom, or NR 7 (where R 7 is a hydrogen atom or a C1-6 alkyl group), preferably an oxygen atom or a sulfur atom, and most preferably an oxygen atom. .
  • R 1 to R 3 and X are preferably a combination in which R 1 is a fluorine atom, R 2 and R 3 are hydrogen atoms, and X is an oxygen atom.
  • L represents a linker that binds a KP-1 equivalent moiety and an ABCG2 selective cytotoxic substance moiety, and — (CH 2 ) k (NH) m (CO) n (CH 2 ) p ⁇
  • k represents an integer of 3 to 7, preferably 3 to 6, more preferably 3 to 5 or 3 to 4, and most preferably 3.
  • m is 0 or 1, preferably 1.
  • n is 0 or 1, preferably 1.
  • p is 0 or 1, preferably 1.
  • the combination of k, m, n, and p is preferably 3 to 5, 1, 1, 1, and more preferably 3, 1, 1, 1, 1, respectively.
  • ABCG2 selective cytotoxic substance represented by D means a substance that is a selective substrate of ABCG2 and has cytotoxicity.
  • D means a substance that is a selective substrate of ABCG2 and has cytotoxicity.
  • SN38 Mitoxantrone , Irinotecan, 9-aminocamptothecin, cited Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, NB-506 and J-107088, Zidovudine a topoisomerase I inhibitor (AZT), and lamivudine (L. Doyle et al., Oncoge e (2003) 22: 7340-7358).
  • SN38 and Mitoxantrone are preferable.
  • the binding site on the side of the ABCG2 selective cytotoxic substance is not particularly limited as long as it is a site that does not easily lose the ABCG2 selectivity and cytotoxicity of the ABCG2 selective cytotoxic substance.
  • the present invention also relates to a drug that selectively damages cells in which the expression of ABCB1 and ABCG2 transporters is suppressed, containing the compound of the present invention as an active ingredient.
  • a cell is suppressed in expression of ABCB1 and ABCG2 transporters is determined by confirming the expression of ABCB1 and ABCG2 transporter genes in the test cells at the mRNA or protein level. can do.
  • transport of ABCB1 and ABCG2 transporter-specific marker molecules to the outside of the cells can be confirmed, and cells that do not transport can be determined as the expression of ABCB1 and ABCG2 transporters being suppressed.
  • the cell in which the expression of ABCB1 and ABCG2 transporter is suppressed is an undifferentiated cell.
  • expression of ABCB1 and / or ABCG2 transporter is suppressed does not require that ABCB1 and / or ABCG2 transporter is not expressed, and is the same environment. It includes a low expression level of ABCB1 and / or ABCG2 transporter compared to other cells present in the medium (eg, in the same culture medium).
  • the expression level of ABCB1 and / or ABCG2 transporter is 25% or less, 20% or less, 15% or less, 10% or less compared to other cells present in the same environment (for example, in the same culture medium) , 9% or less, 8% or less, 7% or less, 6% or less, or 5% or less.
  • “selectively causing damage” does not need to mean that no damage is given to cells other than the target cell that causes damage, and the purpose is compared with other cells. Including more strongly damaging cells.
  • selectively damaging may mean selectively killing, i.e., it can kill the desired cell, but not the other cells. May be.
  • the selectivity of the present invention may be brought about not only by the transporter but also by the toxicity mechanism (for example, topoisomerase inhibitory activity, etc.) of the drug to be bound.
  • a kit for selectively damaging cells in which the expression of ABCB1 and ABCG2 transporters containing the compound of the present invention is suppressed includes a container and instructions for encapsulating the compound in addition to the compound. You can leave.
  • the compound represented by the formula (I) or the formula (II) of the present invention can selectively damage a cell in which the expression of ABCB1 and ABCG2 transporter is suppressed, the expression of these transporters This is useful for removing undifferentiated cells in which the suppression is suppressed.
  • the compound represented by the formula (I) or the formula (II) of the present invention is a fluorescent substance, the remaining state after removal of undifferentiated cells can be detected by using fluorescence, so that it is reliable. Clearance evaluation is possible.
  • the compound represented by the formula (Ia), (Ib), (IIa) or (IIb) of the present invention is used for synthesizing the compound represented by the formula (I) or the formula (II) of the present invention. Useful as a synthetic intermediate.
  • the scale bar represents 200 ⁇ m.
  • the selectivity of the complex 17 is shown.
  • (B) A table showing IC50 values of SN38 and complex 17 (Conjugate 17) for KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 cells (n 2).
  • (B) A table showing IC50 values of mitoxantrone and complex 17 (Conjugate 17) for KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 cells (n 2).
  • FIG. 3 is a photograph in which partially differentiated hiPSCs colonies are labeled with KP-1 (1 ⁇ M), complex 17 (1 ⁇ M), or complex 18 (1 ⁇ M). The central part of the colony represents differentiated cells.
  • the scale bar represents 200 ⁇ m.
  • the expression level of nanog was normalized by gadph.
  • the vertical axis shows the percentage (%) relative to GAPDH, and the horizontal axis shows each processed compound.
  • Partially differentiated hiPSCs were prepared by culturing hiPSCs with all-trans retinoic acid (0.5 ⁇ M) for 48 hours, and then treated with each compound (5 ⁇ M) for 72 hours.
  • the expression level of sox2 was normalized by gadph.
  • the vertical axis shows the percentage (%) relative to GAPDH, and the horizontal axis shows each processed compound.
  • FIG. 10 is a graph showing the results of oct3 / 4 qPCR analysis in partially differentiated iPSCs treated with Complex 17, Complex 18, or DMSO.
  • Partially differentiated hiPSCs were prepared by culturing hiPSCs with all-trans retinoic acid (0.5 ⁇ M) for 48 hours, and then treated with each compound (5 ⁇ M) for 72 hours.
  • the expression level of oct3 / 4 was normalized by gadph.
  • the vertical axis shows the percentage (%) relative to GAPDH, and the horizontal axis shows each processed compound.
  • It is a graph showing the viability of hiPSCs (201B7 and 253G1) and human primary cells treated with Complex 17 for 72 hours.
  • A Comparison of SN38 (0.1 ⁇ M) and complex 17 (1 ⁇ M) when the viability level of hiPSCs is ⁇ 20%.
  • B Comparison of SN38 (1 ⁇ M) with Complex 17 (10 ⁇ M) when the viability level of hiPSCs is ⁇ 5%. In both cases, viability was determined by a WST-8 based colorimetric assay. It was revealed that Complex 17 showed higher selectivity than SN38.
  • the vertical axis represents the survival rate (%), and the horizontal axis represents the results of iPS201B7 cells, adrenal microvascular cells, astrocytes, brain microvessels, prostate epithelial cells, and hepatocytes in order from the left. It is a photograph showing inhibition by SN38 and complex 17.
  • Supercoiled DNA premixed with SN38 (0, 1, or 10 ⁇ M) or complex 17 (0, 1 or 10 ⁇ M) was incubated with recombinant human topoisomerase I at 37 ° C. for 30 minutes.
  • Super Coiled represents supercoiled DNA
  • TOPO I represents human recombinant topoisomerase I.
  • the reaction mixture was loaded on a 1% agarose gel. After electrophoresis, the gel was stained with ethidium bromide in TAE buffer and photographed under UV illumination. 5 is a graph showing the removal of the complex 17.
  • Partially differentiated hiPSCs were prepared by incubating with all-trans retinoic acid (0.5 ⁇ M) for 48 hours and then treated with complex 17 (5 ⁇ M) for 72 hours. After the cells were treated with complex 17 for 3 days, the medium was collected. The cells were then washed 3 times with 2 mL of fresh ES medium and the washed medium was collected. Media samples were centrifuged and analyzed for fluorescence intensity (excitation at 528 nm). The vertical axis of the graph indicates the fluorescence intensity, and the horizontal axis indicates the wavelength (nm).
  • the compound of the present invention synthesizes an intermediate derived from KP-1 etc. in consideration of the synthesis of compounds 1 to 13 in the Examples of the present application, and then an intermediate derived from an ABCG2 selective cytotoxic substance as necessary. And finally, an intermediate such as KP-1 and an ABCG2-selective cytotoxic substance or an intermediate derived therefrom are reacted with each other.
  • an intermediate derived from KP-1 etc. of the present invention can be synthesized by the following steps.
  • L ′ may be the same as or a part of the linker L
  • the reaction between an intermediate such as KP-1 and an ABCG2-selective cytotoxic substance is appropriately performed in the field of organic chemistry depending on the type of the functional group of the terminal group of L 'and the ABCG2-selective cytotoxic substance. Can be achieved by bonding by a well-known method.
  • a group that easily binds to the terminal group of L ′ is introduced into ABCG2-selective cytotoxic substance in advance to synthesize an intermediate derived from ABCG2-selective cytotoxic substance, and then KP It may be reacted with an intermediate such as -1.
  • the present invention differentiates stem cells comprising contacting a cell population in which differentiation of stem cells has been induced with the compound of the present invention for a time during which undifferentiated cells die, and removing the remaining compound by washing.
  • the present invention relates to a method for removing undifferentiated cells remaining after induction.
  • stem cell means a cell having pluripotency and self-renewal ability.
  • pluripotency is synonymous with pluripotency, and means a state of a cell that can differentiate into cells of a plurality of lineages by differentiation.
  • pluripotency refers to a state that can be differentiated into all types of cells constituting a living body (totipotency), and a state that can be differentiated into all types of cells other than extraembryonic tissues (differentiation).
  • Pluripotency a state that can differentiate into cells belonging to some cell lineages (multipotency), and a state that can differentiate into one type of cell (unipotency) Including.
  • stem cells in the present specification include stem cells, ES cells, iPS cells, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, skin stem cells, muscle stem cells, or germline stem cells.
  • the “stem cell” in the present specification is a cell having pluripotency, more preferably an embryonic stem cell (ES cell) and an induced pluripotent stem cell (iPS cell). Whether a cell is a stem cell is determined by, for example, a cell that forms an embryoid body in an in vitro culture system, or a cell that differentiates into a desired cell after culturing under differentiation-inducing conditions (differentiation treatment).
  • stem cell It can be confirmed as a stem cell. Or, whether or not it is a stem cell is determined by using a living body to transplant to an immunodeficient mouse, a cell that forms a teratoma, a cell that forms a chimeric embryo by injection into a blastocyst, or a living tissue It can be confirmed that cells proliferating by transplantation or injection into ascites are stem cells.
  • whether the cells are stem cells is determined by determining whether the cells are positive for alkaline phosphatase staining, SSEA3 staining, SSEA4 staining, TRA-1-60 staining, and / or TRA-1-81 staining; oct3 / 4, nanog, sox2, clipto , Dax1, eras, fgf4, esg1, rex1, zfp296, utf1, gdf3, all4, tbx3, tcf3, dnmt3l, and / or dnmt3b gene; miR-290 and / or miR-302 are expressed It can also be confirmed that the cell is a stem cell. Alternatively, whether or not a certain cell is a stem cell can be determined as a cell having a high expression level of telomerase reverse transcriptase or survivin, for example.
  • the stem cell has pluripotency capable of differentiating into all cells existing in a living body, and also has proliferative ability.
  • the pluripotent stem cells include embryonic stem (ES) cells, embryonic stem cells derived from cloned embryos obtained by nuclear transfer (“ntES cells”), germ stem cells (“GS cells”), embryonic germ cells (“EG cells”), and induced pluripotent stem (iPS) cells, but are not limited to these.
  • Examples of preferred pluripotent stem cells include ES cells, ntES cells, and iPS cells.
  • differentiation refers to a phenomenon in which daughter cells having specific functional or morphological characteristics are generated by the division of pluripotent cells.
  • “differentiation treatment” and “differentiation induction treatment” are synonymous and mean treatment for inducing stem cells into differentiated cells. It has been reported that cell differentiation is induced by various methods. Pluripotent cells can be differentiated by differentiation-inducing treatment using a differentiation-inducing substance or the like according to the type of cells to be differentiated. Many differentiation induction methods are already known to those skilled in the art. For example, differentiation induction methods for neural stem cells described in JP-A No. 2002-291469, pancreatic stem-like cells described in JP-A No. 2004-121165 are described.
  • Examples thereof include differentiation induction methods and differentiation induction methods for hematopoietic cells described in JP-T-2003-505006. Furthermore, examples of the differentiation induction method by the formation of embryoid bodies include the method described in JP-T-2003-523766. “Differentiated cells” refers to daughter cells that have a specific functional or morphological characteristic resulting from differentiation. Differentiated cells are usually stable, their ability to proliferate is low, and differentiation into other types of cells occurs only exceptionally.
  • Undifferentiated cell means an undifferentiated cell, an undifferentiated cell in the middle of differentiation, or a cell that is incompletely differentiated.
  • undifferentiated cell means a cell that has not been differentiated even though it has undergone differentiation induction treatment.
  • the undifferentiated cells in the present specification do not necessarily need to have the above-mentioned properties of stem cells completely, and have a higher (self) proliferative capacity than differentiated cells (for example, the proliferation rate is twice or more, (3 times or more, 5 times or more, 10 times or more) means a cell.
  • Whether or not a cell is an undifferentiated cell can be determined, for example, as a cell in which a marker indicating undifferentiation such as c-Myc is activated, or a cell having a high expression level of telomerase reverse transcriptase .
  • a marker indicating undifferentiation such as c-Myc is activated
  • a cell having a high expression level of telomerase reverse transcriptase in the method for removing undifferentiated cells of the present invention.
  • the expression of ABCB1 and / or ABCG2 transporter is suppressed in undifferentiated cells.
  • the time for which the compound of the present invention is brought into contact with the cell population in which the differentiation of stem cells is induced is not particularly limited as long as the undifferentiated cells are killed. For example, 24 to 120 hours, 36 to 96 hours, or 72 hours.
  • the contact of the compound with the cell population can be performed by allowing the compound of the present invention to coexist under normal cell culture conditions.
  • the remaining compound can be easily removed by washing with a medium or PBS. Washing is preferably performed twice or more. Further, the amount of the removed compound can be measured by measuring the fluorescence intensity using the medium or PBS used for washing as a sample. Alternatively, the residual compound amount can be measured by directly measuring the fluorescence of the collected differentiated cells. Desirably, washing is performed until the fluorescence intensity in the sample and / or differentiated cells of the medium and PBS used for washing is comparable to the background.
  • Solution 1H-NMR spectra were collected on a JEOL JNM-ECP 300 MHz or JEOL JNM-ECA 600 MHz spectrometer. The fluorescence spectrum was recorded using an LS55 fluorescence spectrometer (Perkin Elmer).
  • Human primary cells were purchased from Cell Systems, in MSCM (bronchial epithelial cells), BEGM (adrenal microvascular cells), or CSC (astrocytes, brain microvascular cells, prostate epithelial cells, and hepatocytes) In culture.
  • MSCM bronchial epithelial cells
  • BEGM adrenal microvascular cells
  • CSC astrocytes, brain microvascular cells, prostate epithelial cells, and hepatocytes
  • hiPSCs gelatin pre-coated dishes seeded with SNL feeder cells and ES primate medium (Reprocell) containing 4 ng / mL bFGF (Reprocell) were used for regular maintenance. All cells were maintained in a humidified incubator at 37 ° C. and 5% CO 2 .
  • Cell-based assay Test cells were seeded in a 96-well plate at 5000 cells per well. 24 hours after sowing, test compounds were added at various concentrations. After 24 or 72 hours incubation, cells were washed with PBS. Viability (%) was determined by a WST-8 based colorimetric assay (Cell Counting Kit-8, Dojindo). Absorbance at 450 nm was measured and IC50 was calculated based on dose response values. The survival rate (%) was determined with the value when 5000 cells were seeded as 100. For experiments with transporter inhibitors, cyclosporin A (10 ⁇ M) or Ko143 (10 ⁇ M) was added 1 hour prior to incubation with test compounds.
  • HiPSC-colony formation assay Human ESCs or hiPSCs were seeded in 6-well plates, allowed to grow for 72 hours, and then treated with the test compound for 72 hours. The cells were fixed with 4% paraformaldehyde for 1 hour, washed twice with PBS, and stained with 1% crystal violet solution (Sigma Aldrich) for 15 minutes. The plates were then washed 3-5 times with PBS and distilled water and allowed to air dry before taking images. For quantification, 1% SDS solution was added to each well and incubated for 15 minutes. The absorbance at 570 nm of the eluate was measured.
  • KB3-1 and a KB3-1-derived cell line were seeded on a 96-well plate (Nunc 165305, Thermo Fisher Scientific) at 5000 cells per well.
  • Test compounds (1 ⁇ M or 10 ⁇ M) were added 24 hours after cell seeding and the cells were incubated at 37 ° C. for 2 hours.
  • the treated cells were washed with PBS and observed using a confocal microscope with a laser excitation wavelength of 405,488 and 561 nm in DMEM containing 10% FBS (Cell Voyager 1000, Yokogawa Electric Corporation).
  • Quantitative analysis was performed by measuring fluorescence intensity and analyzing using NIH ImageJ, version 1.30.
  • hiPSCs (clone # 201B7) were seeded on SNL feeder cells in a ⁇ -dish (height 35 mm, ibidi). After 6 days of incubation, donut-like colonies of iPS cells were obtained. Colonies were incubated with KP-1 (1 ⁇ M), complex 17 (1 ⁇ M), or complex 18 (10 ⁇ M) at 37 ° C. for 2 hours. Treated cells were washed with PBS and observed in ES primate medium containing 4 ng / mL bFGF. The fluorescence imaging was taken using a confocal microscope (Cell Voyager 1000, Yokogawa Electric Corporation) with laser excitation wavelengths of 405 and 488 and 561 nm.
  • Tubulin polymerization assay kit was purchased from Cytoskeleton (BK006P) and assayed according to manufacturer's instructions. The final concentration of each component was PIPES (pH 6.9) 80 mM, MgCl 2 2 mM, EGTA 0.5 mM, glycerol 10.2%, GTP 1 mM, and tubulin 3 mg / mL. The reaction system was pre-warmed to 37 ° C. without tubulin and then the reaction was initiated by the addition of tubulin. Absorption at 340 nm was measured using SpectraMax M5 (Molecular Devices) immediately after the addition of tubulin, and thereafter for 60 minutes at 1 minute intervals. CA4 and taxol were used as positive controls and molecule 14 and DMSO alone were used as negative controls.
  • alkaline phosphatase assay The alkaline phosphatase activity of hiPSCs was measured using an alkaline phosphatase substrate kit (SK-5300, Vector (registered trademark) blue). hiPSC colonies and partially differentiated hiPSCs were prepared as described above. Cells were then treated with SK-5300, incubated for 1 hour at room temperature, washed and finally maintained in PBS buffer.
  • SK-5300 alkaline phosphatase substrate kit
  • QPCR Quantitative polymerase chain reaction
  • Partially differentiated hiPSCs were prepared by incubating with all-trans retinoic acid (0.5 ⁇ M) for 48 hours and then treated with complex 17 (5 ⁇ M) for 72 hours. Three days after cell treatment with Complex 17, the medium was collected. The cells were washed 3 times with 2 ml of fresh ES medium and the washed medium was collected. The obtained culture medium sample was centrifuged and analyzed for fluorescence intensity (excitation wavelength: 528 nm).
  • Example 11 Comparison of Transporter Selectivity of Cytotoxic Anticancer Agents
  • cytotoxic anticancer agents SN38, Camptothecin, 9-Aminocamptothecin, 9-nitrocamptothecin, 7-ethylcamptothecin, Doxorubicinine, Mitoxanthropnectin C, 5-FUdR, Dactinomycin, Taxol, and Vinblastin were used.
  • the above (cell-based assay) was performed using KB3-1 and KB3-1-derived cells (KB / ABCB1, KB / ABCC1, and KB / ABCG2 cells), and IC50 values of each compound were determined (n ⁇ 2) .
  • KB3-1 represents a control without drug resistance. None of the cells showed resistance to 7-ethylcamptothecin and Mitomycin C.
  • KB / ABCB1 showed resistance.
  • SN38, 9-Aminocamptothecin, 9-nitrocamptothecin, and 5-FUdR were resistant to KB / ABCG2.
  • Camptothecin and Etoposide were resistant to KB / ABCB1 and KB / ABCC1.
  • Mitoxantrone was resistant to KB / ABCC1 and KB / ABCG2. No compound was found that B / ABCB1 and KB / ABCG2 are resistant to.
  • Example 12 Structure-activity relationship of KP-1
  • the structure-activity relationship was examined. First, 15 kinds of KP-1 derivatives having different substituents on the benzene “head” and xanthone “arm” of KP-1 were synthesized according to the above-described method (compounds 1 to 15), and their fluorescence spectra ( ⁇ ex and ⁇ em ) was measured. Subsequently, the selectivity of compounds 1 to 15 for ABC transporter was evaluated by staining patterns of four types of cell lines (KB3-1, KB / ABCB1, KB / ABCC1, and KB / ABCG2).
  • the fluorescence spectra of compounds 1 to 15 are shown in Table 3.
  • the selectivity of compounds 1 to 15 for ABC transporter is shown in FIG.
  • the KP-1 derivatives excluding Compound 9 and Compound 11 clearly stained the parent KB3-1 cells and hardly stained the KB / ABCB1 cells. This indicates that the modification of benzene “head” and xanthone “arm” does not impair the selectivity of KP-1 for ABCB1.
  • the selectivity for ABCG2 was more sensitive to structural transformation compared to ABCB1, and was particularly affected by substituents on the benzene “head”.
  • Compound 1 and Compound 2 did not show ABCG2-mediated efflux such as KP-1 and showed that the para substituent was important for ABCG2 selectivity (Cl) (compound 3), By substituting the fluorine atom (F) with a bromine atom (Br) (compound 4), a hydrogen atom (H) (compound 5), a propyl group (compound 6), or a hydroxyl group (compound 7), the selectivity for ABCG2 is improved. Decreased to various degrees. Modification of the amine “arm” had a lesser effect on selectivity. Similarly, KP-1, Compound 12, and Compound 14 showed excellent selectivity for both ABCB1 and ABCG2, and low selectivity for ABCC1. Compound 14 was selected for binding with cytotoxic anticancer agents.
  • tubulin polymerization assay In order to confirm the ability of Compound 16 to inhibit tubulin polymerization, a tubulin polymerization assay was performed. In addition, in order to examine the ABC transporter selectivity of the complex 16, two types of cell-based assays, a cell viability assay and a fluorescence imaging assay, were performed simultaneously.
  • CA4 inhibited tubulin polymerization
  • compound 14 did not show detectable inhibition of tubulin polymerization at concentrations up to 30 ⁇ M.
  • complex 16 inhibited tubulin polymerization.
  • complex 16 showed significantly superior cytotoxicity than compound 14. This suggests that the toxicity of complex 16 is due to the CA4 moiety. Although the complex 16 maintained the property as a substrate for ABCB1, it could not maintain the selectivity for ABCG2 (FIG. 2B). The results of the fluorescence imaging assay were consistent with the results of the cell viability assay (FIG. 2C). Complex 16 stained KB / ABCG2 cells, but was excreted from KB / ABCB1 cells. From these results, it was suggested that the complex of compound 14 and CA4 maintains selectivity for ABCB1, but does not maintain selectivity for ABCG2.
  • a cell viability assay and a fluorescence imaging assay were performed by synthesizing a complex of four types of cytotoxic anticancer agents other than CA4 and compound 14, and the result was the same as that of complex 16. .
  • Example 14 Cytotoxicity and ABC Transporter Selectivity of Complex 17 ABCG2 is generally thought to have a narrower efflux substrate profile than ABCB1 (JJ Strouse et al., Anal Biochem (2013)). 437: 77-87).
  • an ABCG2 selective cytotoxic agent instead of CA4 in Example 13
  • Several cytotoxic anticancer agents have been reported as substrates for ABCG2 (L. Doyle et al., Oncogene (2003) 22: 7340-7358).
  • the anticancer agent SN38 having a long use calendar was selected from these, and the complex 17 was synthesized (FIG. 3A).
  • To examine the ABC transporter selectivity of Complex 17 two cell-based assays, a cell viability assay and a fluorescence imaging assay, were performed simultaneously.
  • Example 15 Cytotoxicity and ABC transporter selectivity of complex 18 Further verify that the combination of Compound 14 and ABCG2 selective cytotoxic agent can be a cytotoxic substrate for both ABCB1 and ABCG2 Therefore, Compound 14 (FIG. 5A) was synthesized by combining compound 14 with another ABCG2-selective cytotoxic agent mitoxantrone. To examine the ABC transporter selectivity of Complex 18, two cell-based assays, a cell viability assay and a fluorescence imaging assay, were performed simultaneously.
  • mitoxantrone has excellent selectivity for ABCC1 and ABCG2, but low selectivity for ABCB1.
  • complex 18 was a substrate for both ABCB1 and ABCG2, but not ABCC1 (FIG. 4B, C).
  • hiPSCs or hiPSCs partially differentiated on SNL feeder cells were cultured for 72 hours in the presence of complex 17 (5 ⁇ M) or complex 18 (5 ⁇ M).
  • Undifferentiated hiPSCs were detected by colorimetric staining for alkaline phosphatase (ALP) activity which is a pluripotency marker (MD O'Connor et al., Stem Cells (2008) 26: 1109-1116).
  • ALP alkaline phosphatase
  • three types of representative pluripotency markers J. Cai et al., Stem Cells (2006) 24: 516-
  • Example 17 The ability of complex 17 to remove differentiated cells and undifferentiated cells The effect of complex 17 on five different human primary cells compared to two kinds of hiPSC clones, 201B7 and 253G1, was compared. In addition, in order to examine whether SN38 itself is selective for hiPSCs, the effects of SN38 alone and complex 17 on various human primary cells and hiPSCs were compared.
  • SN38 showed mild selectivity for hiPSCs, but not as much as complex 17 (FIG. 7).
  • An SN38 dose of 1 ⁇ M almost completely eliminated iPS cells (viability ⁇ 5%) and more than 70% of human primary cells.
  • complex 17 showed a weaker effect on human primary cells than SN38 even at 10 ⁇ M.
  • TopoI inhibitory activity of complex 17 The selectivity inherently of SN38 may be derived from its mechanism of action.
  • TopoI poisomerase I
  • BL Staker et al. Proc Natl Acad Sci USA (2002) 99: 15387-15392
  • High growth rates are considered important for PSCs pluripotency and self-renewal (S. Ruiz et al., Curr Biol (2011) 21: 45-52).
  • differentiated cells usually show a low growth rate, which may possibly confer some resistance to TopoI inhibitors.
  • an in vitro biochemical assay was performed using recombinant human topoisomerase I.
  • the culture medium containing 5 ⁇ M complex 17 showed strong fluorescence at 548 nm. After simple washing with fresh medium, the fluorescence intensity decreased significantly to about 2%. Furthermore, a simple wash again reduced the fluorescence to the background level (medium only).
  • the fluorescence of conjugate 17 or other KP-1-drug conjugates will be advantageous for future applications by ensuring clearance of cytotoxic reagents in the resulting cell sample.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyrane Compounds (AREA)

Abstract

The purpose of the present invention is to discover a cytotoxic anticancer drug that serves as a common substrate for both ABCB1 and ABCG2 which are suppressed in human pluripotent stem cells, and to provide a method for efficiently removing undifferentiated cells using said drug. Specifically, the present invention pertains to: a compound represented by formula (I); synthesis intermediates thereof; a method in which said compound is used to remove undifferentiated cells in a cell population in which the differentiation of stem cells has been induced; and a drug that selectively damages cells that express ABCB1 and ABCG2 transporters, the drug containing said compound as an active ingredient.

Description

ヒト多能性幹細胞を除去する化合物Compounds that remove human pluripotent stem cells
 本発明は,iPS細胞やES細胞等のヒト多能性幹細胞を分化誘導した後に残存する未分化細胞を除去する化合物及びその利用方法に関する。 The present invention relates to a compound for removing undifferentiated cells remaining after induction of differentiation of human pluripotent stem cells such as iPS cells and ES cells, and a method for using the same.
 ヒト人工多能性幹細胞(hiPSCs)は,基礎研究や再生治療の両方において大変貴重な資源となると考えられている。しかし,その臨床応用には多くの制限があり,例えば,移植中に未分化細胞が腫瘍化するリスクが指摘されている(非特許文献1,2)。幹細胞治療の安全性のために,完全な分化または未分化細胞の選択的除去が求められている。選択的な除去のためのいくつかの方法が既に報告されている:幹細胞表面抗原に対する抗体を用いた細胞選択と沈殿(非特許文献3,4);ヒト多能性幹細胞に特異的な細胞障害性抗体(非特許文献5);細胞培養条件の変形(非特許文献6,7);及び,ヒト多能性幹細胞に特異的なlectin-toxin融合タンパク質(非特許文献8)。ステアロイルCoAデサチュラーゼ(SCD1)の低分子阻害剤(非特許文献9)及びサバイビンの低分子阻害剤(非特許文献10)など,いくつかの化学的方法も有効であることが示されている。これらの有望な検討がなされているにもかかわらず,これらの除去方法のいずれも,再生医療の臨床応用段階に至っていない。異なる除去メカニズムを有する新たな化学物質の開発は,単独又は他の方法を補完することにより,腫瘍を起こしやすい未分化細胞の完全な除去を確実にするために求められている。 Human induced pluripotent stem cells (hiPSCs) are considered to be a very valuable resource for both basic research and regenerative treatment. However, there are many limitations on its clinical application, for example, the risk that undifferentiated cells become tumors during transplantation has been pointed out (Non-patent Documents 1 and 2). For the safety of stem cell therapy, selective removal of fully differentiated or undifferentiated cells is required. Several methods for selective removal have already been reported: cell selection and precipitation using antibodies against stem cell surface antigens (3, 4); cytotoxicity specific for human pluripotent stem cells A non-patent document 5 (non-patent document 5); modified cell culture conditions (non-patent documents 6 and 7); and a lectin-toxin fusion protein specific to human pluripotent stem cells (non-patent document 8). Several chemical methods have also been shown to be effective, such as a small molecule inhibitor of stearoyl CoA desaturase (SCD1) (Non-patent Document 9) and a small molecule inhibitor of survivin (Non-patent Document 10). Despite these promising studies, none of these removal methods has reached the clinical application stage of regenerative medicine. Development of new chemicals with different removal mechanisms is sought to ensure complete removal of undifferentiated cells that are prone to tumors, either alone or by complementing other methods.
 本発明者らは以前,蛍光分子である京都プローブ1(KP-1)が選択的にhiPSCsを標識することを報告した(非特許文献11,特許文献1)。メカニズムの研究により,その選択は,ヒト多能性幹細胞におけるATP結合カセット(ABC)トランスポーターの異なる発現パターンおよびKP-1のトランスポーター選択性に主に起因することが示された。KP-1の流出を引き起こす,2種類のABCトランスポーター,ABCB1(MDR1)およびABCG2(BCRP)は,ヒト多能性幹細胞において抑制されている。 The present inventors previously reported that Kyoto probe 1 (KP-1), which is a fluorescent molecule, selectively labels hiPSCs (Non-patent Document 11, Patent Document 1). Mechanistic studies have shown that the selection is primarily due to the different expression patterns of the ATP binding cassette (ABC) transporter and the transporter selectivity of KP-1 in human pluripotent stem cells. Two ABC transporters, ABCB1 (MDR1) and ABCG2 (BCRP), which cause KP-1 efflux, are suppressed in human pluripotent stem cells.
国際公開第WO2013/05051号公報International Publication No. WO2013 / 05051
 ABCトランスポーターは癌治療における薬物耐性メカニズムにおいて重要な役割を果たす(K.Uedaら,Proceedings of the National Academy of Sciences of the United States of America(1987)84:3004-3008;S.P.C.Coleら,Science(1992)258:1650-1654;J.I.Fletcherら,Nat Rev Cancer(2010)10:147-156)。広範囲の細胞障害性抗癌剤がABCトランスポーターの基質として報告されている。しかし,以前の研究には,そのトランスポーター選択性について矛盾した結果も含まれていた。そこで,本発明者らは最初に,ヒト多能性幹細胞において抑制されるABCB1とABCG2の両方に対する共通の基質となる細胞障害性抗がん剤を開発することを目的とする。 ABC transporters play an important role in drug resistance mechanisms in cancer treatment (K. Ueda et al., Proceedings of the National Academy of Sciences of United States of America (1987) 84: 3004-300.C.P. Cole et al., Science (1992) 258: 1650-1654; J. Fletcher et al., Nat Rev Cancer (2010) 10: 147-156). A wide range of cytotoxic anticancer agents have been reported as substrates for ABC transporters. However, previous studies included conflicting results regarding their transporter selectivity. Therefore, the present inventors have first aimed to develop a cytotoxic anticancer agent that is a common substrate for both ABCB1 and ABCG2 that are suppressed in human pluripotent stem cells.
 最初に,本発明者らは,既存の抗がん剤の中からABCB1とABCG2の両方に対する共通の基質を見出すべく,13種類の細胞障害性抗がん剤について4つの細胞株に対する効果を分析し,トランスポーター選択性を比較した。KB3-1細胞は,検出可能なレベルでABCトランスポーターを発現していない。KB3-1由来細胞(KB/ABCB1(Y.Taguchiら,Biochemistry(1997)36:8883-8889),KB/ABCC1(K.Nagataら,J Biol Chem(2000)275:17626-17630),及び,KB/ABCG2(N.Hirataら,Cell Rep(2014)6:1165-1174.))は,それぞれ,ABCB1,ABCC1,及びABCG2を過剰発現する。ほとんどの薬は少なくとも一つのABCトランスポーター-媒介性の抵抗を示した。 First, we analyzed the effects of 13 cytotoxic anticancer agents on four cell lines in order to find a common substrate for both ABCB1 and ABCG2 among the existing anticancer agents. The transporter selectivity was compared. KB3-1 cells do not express ABC transporters at detectable levels. KB3-1-derived cells (KB / ABCB1 (Y. Taguchi et al., Biochemistry (1997) 36: 8883-8889), KB / ABCC1 (K. Nagata et al., J Biol Chem (2000) 275: 17626-17630), and KB / ABCG2 (N. Hirata et al., Cell Rep (2014) 6: 1165-1174.) Overexpresses ABCB1, ABCC1, and ABCG2, respectively. Most drugs showed at least one ABC transporter-mediated resistance.
 例えば,カンプトテシンとエトポシドは,ABCB1及びABCC1の両方の基質であった。これらの結果は,本発明者らの以前の研究結果(N.Hirataら,Cell Rep(2014)6:1165-1174)及び報告された結果(J.J.Strouseら,Anal Biochem(2013)437:77-87)と一致した。しかし,試験した化合物の中からABCB1とABCG2の両方に対する共通の基質を見出すことができなかった。この結果は,ABCB1とABCC1が基質を共有し,ABCC1とABCG2が基質を共有しているにもかかわらず,ABCB1とABCG2の両方に対する共通の基質を見出すことが非常に困難であることを意味していた。 For example, camptothecin and etoposide were substrates for both ABCB1 and ABCC1. These results are the results of previous studies by the present inventors (N. Hirata et al., Cell Rep (2014) 6: 1165-1174) and reported results (JJ Strouse et al., Anal Biochem (2013) 437). : 77-87). However, a common substrate for both ABCB1 and ABCG2 could not be found among the compounds tested. This result means that it is very difficult to find a common substrate for both ABCB1 and ABCG2 even though ABCB1 and ABCC1 share the substrate and ABCC1 and ABCG2 share the substrate. It was.
 WO2013/103501に記載された物質(以下,総称して「KP-1等」という)は,ヒト多能性幹細胞に対して優れた選択性を示すが,KP-1等には細胞障害性がないため,ヒト多能性幹細胞を除去することはできない。そこで,本発明者らは,KP-1等を細胞障害性物質に結合させることにより,得られた複合体が,KP-1等のABCB1とABCG2の両方に対する共通の基質としての特性と,細胞障害性抗がん剤の細胞障害性の両方を維持することができれば,選択的かつ比較的安全な物質を見出すことができると考え,KP-1等と様々な細胞障害性抗がん剤とを共有結合で結合させて検討を行った。最初に発明者らは,細胞障害性抗がん剤であるコンブレタスタチンA-4(CA4)を含む5種類の抗がん剤とKP-1等とを結合させ,トランスポーターの基質としての特異性と,細胞障害活性を分析した。その結果,これらの細胞障害性抗がん剤と結合させることにより,KP-1等のABCG2に対する基質特異性が失われることを見出した。よって,本発明は,KP-1等と組み合わせることにより,ABCB1とABCG2の両方に対する共通の基質となる,細胞障害性抗がん剤の複合体を与える化合物を見出すことを課題とした。 Substances described in WO2013 / 103501 (hereinafter collectively referred to as “KP-1 etc.”) exhibit excellent selectivity for human pluripotent stem cells, but KP-1 etc. have cytotoxicity. Because human pluripotent stem cells cannot be removed. Therefore, the present inventors bound KP-1 and the like to a cytotoxic substance, so that the resulting complex has characteristics as a common substrate for both ABCB1 and ABCG2 such as KP-1, We believe that selective and relatively safe substances can be found if both cytotoxicity of cytotoxic anticancer drugs can be maintained, and various cytotoxic anticancer drugs such as KP-1 Were examined by covalent bonding. First, the inventors bound five anticancer agents including combretastatin A-4 (CA4), which is a cytotoxic anticancer agent, and KP-1 etc., and used them as a substrate for a transporter. Specificity and cytotoxic activity were analyzed. As a result, it was found that the substrate specificity to ABCG2 such as KP-1 was lost by binding to these cytotoxic anticancer agents. Therefore, an object of the present invention is to find a compound that, when combined with KP-1 or the like, gives a complex of a cytotoxic anticancer agent that becomes a common substrate for both ABCB1 and ABCG2.
 本発明者らは,ABCG2の基質である細胞障害性抗がん剤をKP-1等と結合させることにより,ABCB1とABCG2の両方に対する共通の基質であり,かつ細胞障害性を有する物質を創出できることを見出し,本発明を完成させた。 The present inventors create a substance that is a common substrate for both ABCB1 and ABCG2 and has cytotoxicity by binding a cytotoxic anticancer agent that is a substrate of ABCG2 to KP-1 and the like. We have found that this is possible and have completed the present invention.
 よって,本発明は,ABCG2の基質である細胞障害性抗がん剤とKP-1等とが結合した複合体に関する。特に,当該複合体はABCB1とABCG2の両方に対する共通の基質であると共に,細胞障害性を有する物質である。より具体的には,本発明は以下に関する:
(1) 下記式(I)で表される化合物
Therefore, the present invention relates to a complex in which a cytotoxic anticancer agent that is a substrate for ABCG2 is bound to KP-1 or the like. In particular, the complex is a common substrate for both ABCB1 and ABCG2 and is a substance having cytotoxicity. More specifically, the present invention relates to:
(1) Compound represented by the following formula (I)
Figure JPOXMLDOC01-appb-C000009

[式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
  ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
及びRは,同一又は異なって,それぞれ,水素原子,又はC1~6アルキル基であり,
Xは,酸素原子,硫黄原子,又はNRであり,
  ここで,Rは,水素原子又はC1~6アルキル基であり,
Lは,-(CH(NH)(CO)(CH-で表されるリンカー部分を表し,
  ここで,kは3~7の整数を表し,mは0又は1であり,nは0又は1であり,pは0又は1であり,
Dは,ABCG2選択的細胞障害性物質を表し,
  ここで,ABCG2選択的細胞障害性物質は,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineから選択される物質である]。
(2) 下記式(II)で表される,(1)に記載の化合物
Figure JPOXMLDOC01-appb-C000009

[Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
R 2 and R 3 are the same or different and are each a hydrogen atom or a C1-6 alkyl group,
X is an oxygen atom, a sulfur atom, or NR 7 ;
Here, R 7 is a hydrogen atom or a C1-6 alkyl group,
L represents a linker moiety represented by — (CH 2 ) k (NH) m (CO) n (CH 2 ) p —,
Here, k represents an integer of 3 to 7, m is 0 or 1, n is 0 or 1, p is 0 or 1,
D represents ABCG2 selective cytotoxic substance;
Here, ABCG2 selective cytotoxic agent, SN38, Mitoxantrone, Irinotecan, 9-Aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, a topoisomerase I inhibitor NB- 506 and J-107088, Zidovudine (AZT), and lamivudine].
(2) The compound according to (1), represented by the following formula (II)
Figure JPOXMLDOC01-appb-C000010

[式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
  ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
Lは,-(CH(NH)(CO)(CH-で表されるリンカー部分を表し,
  ここで,kは3~7の整数を表し,mは0又は1であり,nは0又は1であり,pは0又は1であり,
Dは,ABCG2選択的細胞障害性物質を表し,
  ここで,ABCG2選択的細胞障害性物質は,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineから選択される物質である]。
(3) Rが,ハロゲン原子又は-OP(O)(OR)(OR)基である,(1)又は(2)に記載の化合物(R及びRは,(1)又は(2)の定義に従う)。
(4) Lが,-(CH(NH)(CO)(CH)-で表されるリンカー部分を表し,ここで,kは3~5の整数を表す,(1)~(3)のいずれか1項に記載の化合物。
(5) Dが,トポイソメラーゼ阻害剤であるABCG2選択的細胞障害性物質である,(1)~(4)のいずれか1項に記載の化合物。
(6) Dが,SN38,又はMitoxantroneである,(1)~(5)のいずれか1項に記載の化合物。
(7) 下記のいずれかの式で表される化合物(式中,原子を明示していない末端は,CHを表す)。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

(8) 下記式(Ia)又は(Ib)で表される化合物
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

[式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
  ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
及びRは,同一又は異なって,それぞれ,水素原子,又はC1~6アルキル基であり,
Xは,酸素原子,硫黄原子,又はNRであり,
  ここで,Rは,水素原子又はC1~6アルキル基であり,
kは3~7の整数を表す]。
(9) 下記式(IIa)又は(IIb)で表される化合物
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

[式中,R1は,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
  ここで,R5及びR6は,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R5及びR6は存在せず,
kは3~7の整数を表す]。
(10) Rが,ハロゲン原子又は-OP(O)(OR)(OR)基である,(8)又は(9)に記載の化合物。
(11) kが3~5の整数を表す,(8)~(10)のいずれか1項に記載の化合物。
(12) (8)~(11)のいずれか1項に記載の化合物と,ABCG2選択的細胞障害性物質とを反応させることを備える,(1)~(7)のいずれか1項に記載の化合物の合成方法であって,ここで,ABCG2選択的細胞障害性物質が,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineから選択される物質である,方法。
(13) 幹細胞を分化誘導した細胞集団に(1)~(7)のいずれか1項に記載の化合物を未分化細胞が死滅する時間接触させること,及び,残存した(1)~(7)のいずれか1項に記載の化合物を洗浄により除去することを含む,幹細胞を分化誘導した後に残存する未分化細胞の除去方法。
(14) 幹細胞がiPS細胞である,(13)に記載の除去方法。
(15) (1)~(7)のいずれか1項に記載の化合物を有効成分として含有する,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与える薬剤。
(16) ABCB1及びABCG2トランスポーターの発現が抑制されている細胞が未分化細胞である,(15)に記載の薬剤。
(17) (1)~(7)のいずれか1項に記載の化合物を含有する,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与えるためのキット。
Figure JPOXMLDOC01-appb-C000010

[Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
L represents a linker moiety represented by — (CH 2 ) k (NH) m (CO) n (CH 2 ) p —,
Here, k represents an integer of 3 to 7, m is 0 or 1, n is 0 or 1, p is 0 or 1,
D represents ABCG2 selective cytotoxic substance;
Here, ABCG2 selective cytotoxic agent, SN38, Mitoxantrone, Irinotecan, 9-Aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, a topoisomerase I inhibitor NB- 506 and J-107088, Zidovudine (AZT), and lamivudine].
(3) The compound according to (1) or (2), wherein R 1 is a halogen atom or a —OP (O) (OR 5 ) (OR 6 ) group (R 5 and R 6 are (1) or Follow the definition in (2)).
(4) L represents a linker moiety represented by — (CH 2 ) k (NH) (CO) (CH 2 ) —, wherein k represents an integer of 3 to 5, (1) to ( 3. The compound according to any one of 3).
(5) The compound according to any one of (1) to (4), wherein D is an ABCG2-selective cytotoxic substance that is a topoisomerase inhibitor.
(6) The compound according to any one of (1) to (5), wherein D is SN38 or Mitoxantrone.
(7) A compound represented by any one of the following formulas (in the formula, a terminal not explicitly showing an atom represents CH 3 ).
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

(8) Compound represented by the following formula (Ia) or (Ib)
Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

[Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
R 2 and R 3 are the same or different and are each a hydrogen atom or a C1-6 alkyl group,
X is an oxygen atom, a sulfur atom, or NR 7 ;
Here, R 7 is a hydrogen atom or a C1-6 alkyl group,
k represents an integer of 3 to 7.]
(9) Compound represented by the following formula (IIa) or (IIb)
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

[Wherein R1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. Yes,
Here, R5 and R6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R5 and R6 are not present,
k represents an integer of 3 to 7.]
(10) The compound according to (8) or (9), wherein R 1 is a halogen atom or a —OP (O) (OR 5 ) (OR 6 ) group.
(11) The compound according to any one of (8) to (10), wherein k represents an integer of 3 to 5.
(12) The method according to any one of (1) to (7), comprising reacting the compound according to any one of (8) to (11) with an ABCG2-selective cytotoxic substance. Wherein ABCG2-selective cytotoxic substances are SN38, Mitoxantrone, Irinotecan, 9-Aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idrubicinol, Boldinol NB-506 and J-107088, Zidovudine (AZT), and lami, inhibitors of topoisomerase I Is a material selected from udine, method.
(13) Contacting the compound according to any one of (1) to (7) with a cell population in which differentiation of stem cells has been induced for a period of time during which undifferentiated cells die, and remaining (1) to (7) A method for removing undifferentiated cells remaining after induction of differentiation of stem cells, comprising removing the compound according to any one of the above by washing.
(14) The removal method according to (13), wherein the stem cell is an iPS cell.
(15) A drug that selectively damages cells in which the expression of ABCB1 and ABCG2 transporters is suppressed, comprising the compound according to any one of (1) to (7) as an active ingredient.
(16) The drug according to (15), wherein the cells in which expression of ABCB1 and ABCG2 transporter is suppressed are undifferentiated cells.
(17) A kit for selectively damaging a cell in which expression of ABCB1 and ABCG2 transporter is suppressed, comprising the compound according to any one of (1) to (7).
 本明細書において,「ハロゲン原子」とは,フッ素原子,塩素原子,臭素原子,又はヨウ素原子を意味し,好ましくは,フッ素原子である。 In this specification, the “halogen atom” means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and preferably a fluorine atom.
 本明細書において,「C1~6アルキル基」とは,直鎖又は分岐状の炭素数が1~6個の飽和炭化水素基を意味し,例えば,メチル基,エチル基,n-プロピル基,i-プロピル基,n-ブチル基,sec-ブチル基,t-ブチル基,イソブチル基,ペンチル基,イソペンチル基,2,3-ジメチルプロピル基,ヘキシル基,及びシクロヘキシル基などが挙げられ,好ましくは,C1~5アルキル基であり,より好ましくは,メチル基,エチル基,n-プロピル基,i-プロピル基,n-ブチル基,sec-ブチル基,t-ブチル基,イソブチル基,ペンチル基,イソペンチル基,又は2,3-ジメチルプロピル基である。更に好ましくは,C1~3アルキル基であり,例えば,メチル基,エチル基,n-プロピル基,及びi-プロピル基,であり,最も好ましくは,メチル基又はエチル基である。 In the present specification, the “C1-6 alkyl group” means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, Examples include i-propyl group, n-butyl group, sec-butyl group, t-butyl group, isobutyl group, pentyl group, isopentyl group, 2,3-dimethylpropyl group, hexyl group, and cyclohexyl group. , C1-5 alkyl group, more preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, t-butyl group, isobutyl group, pentyl group, An isopentyl group or a 2,3-dimethylpropyl group. More preferred is a C1-3 alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group, and a methyl group or an ethyl group is most preferred.
 本明細書において,「C1~6アルコキシ基」とは,前記C1~6アルキル基と酸素原子を介して結合する基((C1~6アルキル基)-O-基)のことであり,該アルキル基部分は直鎖状であっても分岐状であってもよい。C1~6アルコキシ基とは,該アルキル基部分の炭素原子数が1~6個であることを意味する。アルコキシ基としては,例えば,メトキシ基,エトキシ基,1-プロピルオキシ基,2-プロピルオキシ基,2-メチル-1-プロピルオキシ基,2-メチル-2-プロピルオキシ基,2,2-ジメチル-1-プロピルオキシ基,1-ブチルオキシ基,2-ブチルオキシ基,2-メチル-1-ブチルオキシ基,3-メチル-1-ブチルオキシ基,2-メチル-2-ブチルオキシ基,3-メチル-2-ブチルオキシ基,1-ペンチルオキシ基,2-ペンチルオキシ基,3-ペンチルオキシ基,2-メチル-1-ペンチルオキシ基,3-メチル-1-ペンチルオキシ基,2-メチル-2-ペンチルオキシ基,3-メチル-2-ペンチルオキシ基,1-ヘキシルオキシ基,2-ヘキシルオキシ基,3-ヘキシルオキシ基などが挙げられる。C1~6アルコキシ基として,好ましくはC1~5アルコキシ基であり,より好ましくは,メトキシ基,エトキシ基,n-プロピルオキシ基,i-プロピルオキシ基,n-ブチルオキシ基,sec-ブチルオキシ基,t-ブチルオキシ基,イソブチルオキシ基,ペンチルオキシ基,イソペンチルオキシ基,及び2,3-ジメチルプロピルオキシ基であり,更に好ましくは,C1~3アルコキシ基(メトキシ基,エトキシ基,及びプロピルオキシ基)であり,より更に好ましくは,メトキシ基又はエトキシ基である。 In the present specification, the “C1-6 alkoxy group” means a group ((C1-6 alkyl group) -O— group) bonded to the C1-6 alkyl group through an oxygen atom. The base part may be linear or branched. The C1-6 alkoxy group means that the alkyl group moiety has 1 to 6 carbon atoms. Examples of the alkoxy group include methoxy group, ethoxy group, 1-propyloxy group, 2-propyloxy group, 2-methyl-1-propyloxy group, 2-methyl-2-propyloxy group, and 2,2-dimethyl group. -1-propyloxy group, 1-butyloxy group, 2-butyloxy group, 2-methyl-1-butyloxy group, 3-methyl-1-butyloxy group, 2-methyl-2-butyloxy group, 3-methyl-2- Butyloxy, 1-pentyloxy, 2-pentyloxy, 3-pentyloxy, 2-methyl-1-pentyloxy, 3-methyl-1-pentyloxy, 2-methyl-2-pentyloxy , 3-methyl-2-pentyloxy group, 1-hexyloxy group, 2-hexyloxy group, 3-hexyloxy group and the like. The C1-6 alkoxy group is preferably a C1-5 alkoxy group, and more preferably a methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butyloxy group, sec-butyloxy group, t -Butyloxy group, isobutyloxy group, pentyloxy group, isopentyloxy group, and 2,3-dimethylpropyloxy group, and more preferably a C1-3 alkoxy group (methoxy group, ethoxy group, and propyloxy group) And more preferably a methoxy group or an ethoxy group.
 本明細書において,「フェニルオキシ基」とは,フェニル基と酸素原子を介して結合する基(Ph-O-基)を意味する。 In this specification, “phenyloxy group” means a group (Ph—O— group) bonded to a phenyl group via an oxygen atom.
 本明細書において,「-OP(O)(OR)(OR)基」として,好ましくは,RとRは同一であり,より好ましくは,-OP(O)(OCHCH)(OCHCH)基,-OP(O)(OCHPh)(OCHPh)基,又は「-OPO 2-基」である。 In the present specification, as the “—OP (O) (OR 5 ) (OR 6 ) group”, R 5 and R 6 are preferably the same, and more preferably —OP (O) (OCH 2 CH 3 ) (OCH 2 CH 3 ) group, —OP (O) (OCH 2 Ph) (OCH 2 Ph) group, or “—OPO 3 2- group”.
 本発明の化合物においてRとして好ましくは,水素原子,ハロゲン原子,C1~6アルキル基,水酸基又は-OP(O)(OR)(OR)基で(ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在しない)であり,より好ましくは,水素原子,フッ素原子,塩素原子,プロピル基,及び水酸基であり,最も好ましくは,フッ素原子である。Rがリン酸基の場合には,リン酸基の負電化を利用して,アルカリフォスファターゼを利用することにより細胞への取り込みを促進させることができる。また,R1の置換位置として好ましくはパラ位である。 In the compound of the present invention, R 1 is preferably a hydrogen atom, a halogen atom, a C1-6 alkyl group, a hydroxyl group or a —OP (O) (OR 5 ) (OR 6 ) group (where R 5 and R 6 are Are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 do not exist), more preferably a hydrogen atom, a fluorine atom, A chlorine atom, a propyl group, and a hydroxyl group, and most preferably a fluorine atom. When R 1 is a phosphate group, uptake into cells can be promoted by utilizing alkaline phosphatase by utilizing the negative charge of the phosphate group. The substitution position for R1 is preferably the para position.
 Rの置換は,トランスポーター選択性に与える影響は低く,水素原子とC1~6アルキル基のいかなる基であっても良いが,好ましくは,水素原子,メチル基,又はエチル基であり,最も好ましくは水素原子である。 Substitution of R 2 has little influence on transporter selectivity and may be any group of a hydrogen atom and a C1-6 alkyl group, preferably a hydrogen atom, a methyl group, or an ethyl group, Preferably it is a hydrogen atom.
 Rの置換も,トランスポーター選択性に与える影響は低く,水素原子とC1~6アルキル基のいかなる基であっても良いが,好ましくは,水素原子,メチル基,又はエチル基であり,最も好ましくは水素原子である。 Substitution of R 3 has a low influence on transporter selectivity and may be any group of a hydrogen atom and a C1-6 alkyl group, preferably a hydrogen atom, a methyl group, or an ethyl group, Preferably it is a hydrogen atom.
 Xは,酸素原子,硫黄原子,又はNR(ここで,Rは,水素原子又はC1~6アルキル基)であり,好ましくは,酸素原子又は硫黄原子であり,最も好ましくは酸素原子である。 X is an oxygen atom, a sulfur atom, or NR 7 (where R 7 is a hydrogen atom or a C1-6 alkyl group), preferably an oxygen atom or a sulfur atom, and most preferably an oxygen atom. .
 R~R及びXとして,好ましくは,Rがフッ素原子であり,R及びRが水素原子であり,Xが酸素原子である組み合わせである。 R 1 to R 3 and X are preferably a combination in which R 1 is a fluorine atom, R 2 and R 3 are hydrogen atoms, and X is an oxygen atom.
 本明細書において,Lは,KP-1等部分と,ABCG2選択的細胞障害性物質部分を結合するリンカーを表しており,-(CH(NH)(CO)(CH-で表される。ここで,kは3~7の整数を表し,好ましくは,3~6であり,より好ましくは,3~5又は3~4であり,もっとも好ましくは3である。mは0又は1であり,好ましくは1である。nは0又は1であり,好ましくは1である。pは0又は1であり,好ましくは1である。k,m,n,pの組み合わせとして,好ましくは,それぞれ,3~5,1,1,1であり,より好ましくは,3,1,1,1である。 In the present specification, L represents a linker that binds a KP-1 equivalent moiety and an ABCG2 selective cytotoxic substance moiety, and — (CH 2 ) k (NH) m (CO) n (CH 2 ) p − Here, k represents an integer of 3 to 7, preferably 3 to 6, more preferably 3 to 5 or 3 to 4, and most preferably 3. m is 0 or 1, preferably 1. n is 0 or 1, preferably 1. p is 0 or 1, preferably 1. The combination of k, m, n, and p is preferably 3 to 5, 1, 1, 1, and more preferably 3, 1, 1, 1, respectively.
 本明細書において,Dで表される「ABCG2選択的細胞障害性物質」とは,ABCG2の選択的な基質であり,かつ細胞障害性を有する物質を意味し,具体的には,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineを挙げることができる(L.Doyleら,Oncogene(2003)22:7340-7358)。ABCG2選択的細胞障害性物質として,好ましくは,SN38,及びMitoxantroneである。 In the present specification, “ABCG2 selective cytotoxic substance” represented by D means a substance that is a selective substrate of ABCG2 and has cytotoxicity. Specifically, SN38, Mitoxantrone , Irinotecan, 9-aminocamptothecin, cited Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, NB-506 and J-107088, Zidovudine a topoisomerase I inhibitor (AZT), and lamivudine (L. Doyle et al., Oncoge e (2003) 22: 7340-7358). As the ABCG2 selective cytotoxic substance, SN38 and Mitoxantrone are preferable.
 ABCG2選択的細胞障害性物質側の結合部位は,ABCG2選択的細胞障害性物質のABCG2選択性と細胞障害性を失わせにくい部位であれば特に限定されるものではなく,適宜,有機化学の分野における技術常識を参酌して,これらの化合物が有する,水酸基,アシル基,アセチル基,ホルミル基,ベンゾイル基,カルボキシル基,アミド基,イミド基,シアノ基,スルホン酸基,ウレア基,イソニトリル基(-NC),アレン基(>C=C=C<),ケテン基(-C=C=O),ジイミド基(-N=C=N-),イソシアネート基(-N=C=O),イソチオシアネート基(-N=C=S),カルボニル基,アミノ基,イミノ基,シアノ基,アゾ基,アジ基,チオール基,スルホ基,ニトロ基,エーテル結合,エステル結合,アミド結合,及びウレタン結合などの官能基を利用して結合させることができる。 The binding site on the side of the ABCG2 selective cytotoxic substance is not particularly limited as long as it is a site that does not easily lose the ABCG2 selectivity and cytotoxicity of the ABCG2 selective cytotoxic substance. In view of the common technical knowledge in, these compounds have hydroxyl group, acyl group, acetyl group, formyl group, benzoyl group, carboxyl group, amide group, imide group, cyano group, sulfonic acid group, urea group, isonitrile group ( -NC), allene groups (> C = C = C <), ketene groups (-C = C = O), diimide groups (-N = C = N-), isocyanate groups (-N = C = O), Isothiocyanate group (—N═C═S), carbonyl group, amino group, imino group, cyano group, azo group, azide group, thiol group, sulfo group, nitro group, ether bond, ester bond, amino group Binding, and can be attached using functional groups such as urethane bond.
 本発明はまた、本発明の化合物を有効成分として含有する,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与える薬剤に関する。本明細書全体に亘って、ある細胞が、ABCB1及びABCG2トランスポーターの発現が抑制されているか否かは、被験細胞におけるABCB1及びABCG2トランスポーター遺伝子の発現をmRNA又はタンパク質レベルで確認することにより決定することができる。あるいは、ABCB1及びABCG2のそれぞれのトランスポーター特異的マーカー分子の細胞外への輸送を確認し、輸送しない細胞はABCB1及びABCG2トランスポーターの発現が抑制されているとして決定することができる。好ましくは、ABCB1及びABCG2トランスポーターの発現が抑制されている細胞は、未分化細胞である。本明細書全体に亘って、「ABCB1及び/又はABCG2トランスポーターの発現が抑制されている」とは、ABCB1及び/又はABCG2トランスポーターが発現していないことを必要とするものではなく、同じ環境中(例えば、同じ培養液中)に存在する他の細胞と比較して、ABCB1及び/又はABCG2トランスポーターの発現レベルが低いことを含む。例えば、同じ環境中(例えば、同じ培養液中)に存在する他の細胞と比較して、ABCB1及び/又はABCG2トランスポーターの発現レベルが25%以下、20%以下、15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、又は5%以下であることを意味していても良い。また、本明細書全体に亘って「選択的に障害を与える」とは、障害を与える目的細胞以外の細胞に障害を全く与えないことを意味する必要はなく、他の細胞と比較して目的の細胞により強く障害を与えることを含む。一例として、選択的に障害を与えるとは、選択的に殺傷を与えることを意味してもよく、すなわち、目的の細胞を殺傷することができるが、他の細胞は殺傷しないことを意味していても良い。また、本発明の選択性は、トランスポーターによりもたらされるのみならず、これに加えて結合する薬物の毒性メカニズム(例えば、トポイソメラーゼ阻害活性など)によりもたらされてもよい。 The present invention also relates to a drug that selectively damages cells in which the expression of ABCB1 and ABCG2 transporters is suppressed, containing the compound of the present invention as an active ingredient. Throughout this specification, whether a cell is suppressed in expression of ABCB1 and ABCG2 transporters is determined by confirming the expression of ABCB1 and ABCG2 transporter genes in the test cells at the mRNA or protein level. can do. Alternatively, transport of ABCB1 and ABCG2 transporter-specific marker molecules to the outside of the cells can be confirmed, and cells that do not transport can be determined as the expression of ABCB1 and ABCG2 transporters being suppressed. Preferably, the cell in which the expression of ABCB1 and ABCG2 transporter is suppressed is an undifferentiated cell. Throughout this specification, “expression of ABCB1 and / or ABCG2 transporter is suppressed” does not require that ABCB1 and / or ABCG2 transporter is not expressed, and is the same environment. It includes a low expression level of ABCB1 and / or ABCG2 transporter compared to other cells present in the medium (eg, in the same culture medium). For example, the expression level of ABCB1 and / or ABCG2 transporter is 25% or less, 20% or less, 15% or less, 10% or less compared to other cells present in the same environment (for example, in the same culture medium) , 9% or less, 8% or less, 7% or less, 6% or less, or 5% or less. In addition, throughout the present specification, “selectively causing damage” does not need to mean that no damage is given to cells other than the target cell that causes damage, and the purpose is compared with other cells. Including more strongly damaging cells. As an example, selectively damaging may mean selectively killing, i.e., it can kill the desired cell, but not the other cells. May be. In addition, the selectivity of the present invention may be brought about not only by the transporter but also by the toxicity mechanism (for example, topoisomerase inhibitory activity, etc.) of the drug to be bound.
 本発明の化合物を含有する,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与えるためのキットは,前記化合物に加えて,当該化合物を封入する容器や説明書を含んでいても良い。 A kit for selectively damaging cells in which the expression of ABCB1 and ABCG2 transporters containing the compound of the present invention is suppressed includes a container and instructions for encapsulating the compound in addition to the compound. You can leave.
 本発明の式(I)又は式(II)で表される化合物は,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与えることができることから,これらのトランスポーターの発現が抑制されている未分化細胞の除去に有用である。特に本発明の式(I)又は式(II)で表される化合物は,蛍光物質であることから,未分化細胞除去後の残存状況を蛍光を利用して検出することができるため,確実なクリアランス評価が可能となる。また,本発明の式(Ia),(Ib),(IIa)又は(IIb)で表される化合物は,本発明の式(I)又は式(II)で表される化合物を合成するための合成中間体として有用である。 Since the compound represented by the formula (I) or the formula (II) of the present invention can selectively damage a cell in which the expression of ABCB1 and ABCG2 transporter is suppressed, the expression of these transporters This is useful for removing undifferentiated cells in which the suppression is suppressed. In particular, since the compound represented by the formula (I) or the formula (II) of the present invention is a fluorescent substance, the remaining state after removal of undifferentiated cells can be detected by using fluorescence, so that it is reliable. Clearance evaluation is possible. In addition, the compound represented by the formula (Ia), (Ib), (IIa) or (IIb) of the present invention is used for synthesizing the compound represented by the formula (I) or the formula (II) of the present invention. Useful as a synthetic intermediate.
KP-1の構造活性相関の概要を示す図である。数値はそれぞれ,KB3-1細胞,KB/ABCB1細胞(ABCB1),KB/ABCC1細胞(ABCC1),及びKB/ABCG2細胞(ABCG2)のImageJによる蛍光イメージから計算して得られた蛍光強度を示す。It is a figure which shows the outline | summary of the structure activity relationship of KP-1. The numerical values indicate the fluorescence intensities obtained by calculating from ImageJ fluorescence images of KB3-1 cells, KB / ABCB1 cells (ABCB1), KB / ABCC1 cells (ABCC1), and KB / ABCG2 cells (ABCG2), respectively. 複合体16の選択性を示す。(A)複合体16の化学構造を示す。(B)CA4,化合物14(14),及び複合体16(Conjugate 16)の,KB3-1細胞,KB/ABCB1細胞,KB/ABCC1細胞,及びKB/ABCG2細胞に対するIC50値を示す表である。(C)複合体16(1μM)で処理した,KB3-1細胞,KB/ABCB1細胞,KB/ABCC1細胞,及びKB/ABCG2細胞の蛍光顕微鏡画像の写真である。スケールバーは200μmを表す。The selectivity of the complex 16 is shown. (A) The chemical structure of the composite 16 is shown. (B) It is a table | surface which shows IC50 value with respect to KB3-1 cell, KB / ABCB1 cell, KB / ABCC1 cell, and KB / ABCG2 cell of CA4, compound 14 (14), and composite 16 (Conjugate 16). (C) Fluorescent microscopic images of KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 cells treated with complex 16 (1 μM). The scale bar represents 200 μm. 複合体17の選択性を示す。(A)複合体17の化学構造を示す。(B)SN38及び複合体17(Conjugate 17)の,KB3-1細胞,KB/ABCB1細胞,KB/ABCC1細胞,及びKB/ABCG2細胞に対するIC50値を示す表である(n=2)。(C)CsA(10μM)又はKo143(10μM)の存在下または非存在下で,複合体17(1μM)で処理した,KB3-1細胞,KB/ABCB1細胞,KB/ABCC1細胞,及びKB/ABCG2細胞の蛍光顕微鏡画像の写真である。スケールバーは200μmを表す。The selectivity of the complex 17 is shown. (A) The chemical structure of the complex 17 is shown. (B) A table showing IC50 values of SN38 and complex 17 (Conjugate 17) for KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 cells (n = 2). (C) KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 treated with complex 17 (1 μM) in the presence or absence of CsA (10 μM) or Ko143 (10 μM) It is a photograph of the fluorescence microscope image of a cell. The scale bar represents 200 μm. 複合体18の選択性を示す。(A)複合体18の化学構造を示す。(B)ミトキサントロン及び複合体17(Conjugate 17)の,KB3-1細胞,KB/ABCB1細胞,KB/ABCC1細胞,及びKB/ABCG2細胞に対するIC50値を示す表である(n=2)。(C)CsA(10μM)又はKo143(10μM)の存在下または非存在下で,複合体18(1μM)で処理した,KB3-1細胞,KB/ABCB1細胞,KB/ABCC1細胞,及びKB/ABCG2細胞の蛍光顕微鏡画像の写真である。スケールバーは200μmを表す。The selectivity of the complex 18 is shown. (A) The chemical structure of the complex 18 is shown. (B) A table showing IC50 values of mitoxantrone and complex 17 (Conjugate 17) for KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 cells (n = 2). (C) KB3-1 cells, KB / ABCB1 cells, KB / ABCC1 cells, and KB / ABCG2 treated with complex 18 (1 μM) in the presence or absence of CsA (10 μM) or Ko143 (10 μM) It is a photograph of the fluorescence microscope image of a cell. The scale bar represents 200 μm. 部分的に分化したhiPSCsコロニーを,KP-1(1μM),複合体17(1μM),または複合体18(1μM)で標識した写真である。コロニー中央部が分化細胞を表す。スケールバーは200μmを表す。FIG. 3 is a photograph in which partially differentiated hiPSCs colonies are labeled with KP-1 (1 μM), complex 17 (1 μM), or complex 18 (1 μM). The central part of the colony represents differentiated cells. The scale bar represents 200 μm. 複合体17(5μM),複合体18(5μM),又はコントロールであるDMSO(0.1%)が,iPSコロニー及び部分的に分化したiPSCsのアルカリフォスファターゼ活性に対して与える影響を示す写真である。細胞は複合体で72時間処理した後,アルカリフォスファターゼ比色染色を行った。It is a photograph showing the effect of complex 17 (5 μM), complex 18 (5 μM), or control DMSO (0.1%) on alkaline phosphatase activity of iPS colonies and partially differentiated iPSCs. . Cells were treated with the complex for 72 hours before alkaline phosphatase colorimetric staining. 複合体17,複合体18,又はDMSOで処理された,部分的に分化したiPSCsにおける,nanogのqPCR解析の結果を表すグラフである。hiPSCsをオールトランスレチノイン酸(0.5μM)と共に48時間培養することにより部分的に分化したhiPSCsを調製し,ついで各化合物(5μM)で72時間処理した。nanogの発現レベルは,gadphにより正規化した。縦軸はGAPDHに対する割合(%)を示し,横軸は処理した各化合物を示す。It is a graph showing the result of the qPCR analysis of nanog in the iPSCs partially differentiated which were processed with the complex 17, the complex 18, or DMSO. Partially differentiated hiPSCs were prepared by culturing hiPSCs with all-trans retinoic acid (0.5 μM) for 48 hours, and then treated with each compound (5 μM) for 72 hours. The expression level of nanog was normalized by gadph. The vertical axis shows the percentage (%) relative to GAPDH, and the horizontal axis shows each processed compound. 複合体17,複合体18,又はDMSOで処理された,部分的に分化したiPSCsにおける,sox2のqPCR解析の結果を表すグラフである。hiPSCsをオールトランスレチノイン酸(0.5μM)と共に48時間培養することにより部分的に分化したhiPSCsを調製し,ついで各化合物(5μM)で72時間処理した。sox2の発現レベルは,gadphにより正規化した。縦軸はGAPDHに対する割合(%)を示し,横軸は処理した各化合物を示す。It is a graph showing the result of the qPCR analysis of sox2 in the partially differentiated iPSCs treated with the complex 17, the complex 18, or DMSO. Partially differentiated hiPSCs were prepared by culturing hiPSCs with all-trans retinoic acid (0.5 μM) for 48 hours, and then treated with each compound (5 μM) for 72 hours. The expression level of sox2 was normalized by gadph. The vertical axis shows the percentage (%) relative to GAPDH, and the horizontal axis shows each processed compound. 複合体17,複合体18,又はDMSOで処理された,部分的に分化したiPSCsにおける,oct3/4のqPCR解析の結果を表すグラフである。hiPSCsをオールトランスレチノイン酸(0.5μM)と共に48時間培養することにより部分的に分化したhiPSCsを調製し,ついで各化合物(5μM)で72時間処理した。oct3/4の発現レベルは,gadphにより正規化した。縦軸はGAPDHに対する割合(%)を示し,横軸は処理した各化合物を示す。FIG. 10 is a graph showing the results of oct3 / 4 qPCR analysis in partially differentiated iPSCs treated with Complex 17, Complex 18, or DMSO. Partially differentiated hiPSCs were prepared by culturing hiPSCs with all-trans retinoic acid (0.5 μM) for 48 hours, and then treated with each compound (5 μM) for 72 hours. The expression level of oct3 / 4 was normalized by gadph. The vertical axis shows the percentage (%) relative to GAPDH, and the horizontal axis shows each processed compound. 複合体17で72時間処理された,hiPSCs(201B7及び253G1)並びにヒト初代細胞の生存率を表すグラフである。濃いグレーの丸はiPS201B7を表し,濃いグレーの四角はiPS253G1を表し,薄いグレーの四角は副腎微小血管細胞を表し,薄いグレーの丸はアストロサイトを表し,ひし形は脳微小血管細胞を表し,下向き三角は前立腺上皮細胞を表し,かつ,上向き三角は肝細胞を表す。縦軸は生存率(%)を表し,横軸は複合体17の濃度(μM)の対数値(Log)を表す。It is a graph showing the viability of hiPSCs (201B7 and 253G1) and human primary cells treated with Complex 17 for 72 hours. Dark gray circles represent iPS201B7, dark gray squares represent iPS253G1, light gray squares represent adrenal microvascular cells, light gray circles represent astrocytes, diamonds represent brain microvascular cells, downward Triangles represent prostate epithelial cells, and upward triangles represent hepatocytes. The vertical axis represents the survival rate (%), and the horizontal axis represents the logarithmic value (Log) of the concentration (μM) of the complex 17. シクロスポリン(黒四角)若しくはKo143(黒三角)の存在下,又は非存在下(黒丸),複合体17で処理したヒト初代細胞の生存率を表すグラフである。生存率は,WST-8ベースの比色アッセイ(Cell Countingキット-8,同仁化学)により決定した。450nmにおける吸光度を測定した。トランスポーター阻害剤である,シクロスポリンA(10μM)またはKo143(10μM)は,複合体17とのインキュベーションの1時間前に添加した。縦軸は生存率(%)を表し,横軸は複合体17の濃度(μM)の対数値(Log)を表す。It is a graph showing the survival rate of the human primary cell processed by the complex 17 in the presence or absence (black circle) of cyclosporine (black square) or Ko143 (black triangle). Viability was determined by a WST-8-based colorimetric assay (Cell Counting kit-8, Dojindo). Absorbance at 450 nm was measured. Transporter inhibitors, cyclosporin A (10 μM) or Ko143 (10 μM) were added 1 hour prior to incubation with complex 17. The vertical axis represents the survival rate (%), and the horizontal axis represents the logarithmic value (Log) of the concentration (μM) of the complex 17. SN38と複合体17の選択性を表すグラフである。hiPSまたはヒト初代体細胞(副腎微小血管,アストロサイト,脳微小血管細胞,前立腺上皮細胞,および肝細胞)を,SN38(0.1または1μM)または複合体17(1または10μM)で72時間処理した。(A)hiPSCsの生存率レベルが~20%である場合における,SN38(0.1μM)と複合体17(1μM)との比較を表す。(B)hiPSCsの生存率レベルが~5%である場合における,SN38(1μM)と複合体17(10μM)との比較を表す。いずれも生存率はWST-8ベースの比色アッセイによって決定した。複合体17がSN38よりも高い選択性を示すことが明らかとなった。縦軸は生存率(%)を表し,横軸は左から順に,iPS201B7細胞,副腎微小血管細胞,アストロサイト,脳微小血管,前立腺上皮細胞,および肝細胞の結果を表す。It is a graph showing the selectivity of SN38 and the complex 17. hiPS or human primary somatic cells (adrenal microvasculature, astrocytes, brain microvascular cells, prostate epithelial cells, and hepatocytes) were treated with SN38 (0.1 or 1 μM) or complex 17 (1 or 10 μM) for 72 hours. did. (A) Comparison of SN38 (0.1 μM) and complex 17 (1 μM) when the viability level of hiPSCs is ˜20%. (B) Comparison of SN38 (1 μM) with Complex 17 (10 μM) when the viability level of hiPSCs is ˜5%. In both cases, viability was determined by a WST-8 based colorimetric assay. It was revealed that Complex 17 showed higher selectivity than SN38. The vertical axis represents the survival rate (%), and the horizontal axis represents the results of iPS201B7 cells, adrenal microvascular cells, astrocytes, brain microvessels, prostate epithelial cells, and hepatocytes in order from the left. SN38と複合体17による阻害を表す写真である。SN38(0,1,または10μM)または複合体17(0,1または10μM)と予め混合した,スーパーコイルDNAを,組換えヒトトポイソメラーゼIと共に37℃で30分間インキュベートした。「Super Coiled」はスーパーコイルドDNAを表し,「TOPO I」は,ヒト組換えトポイソメラーゼIを表す。反応混合物を1%アガロースゲル上に負荷した。電気泳動後,ゲルをTAE緩衝液中の臭化エチジウムで染色し,UV照明下で撮影した。It is a photograph showing inhibition by SN38 and complex 17. Supercoiled DNA premixed with SN38 (0, 1, or 10 μM) or complex 17 (0, 1 or 10 μM) was incubated with recombinant human topoisomerase I at 37 ° C. for 30 minutes. “Super Coiled” represents supercoiled DNA, and “TOPO I” represents human recombinant topoisomerase I. The reaction mixture was loaded on a 1% agarose gel. After electrophoresis, the gel was stained with ethidium bromide in TAE buffer and photographed under UV illumination. 複合体17の除去を表すグラフである。部分的に分化hiPSCsは,オールトランスレチノイン酸(0.5μM)と共に48時間インキュベートすることによって調製し,次いで複合体17(5μM)で72時間処理した。複合体17で細胞を3日間処理した後,培地を回収した。その後,細胞を2mLの新鮮なES培地で3回洗浄し,洗浄培地を回収した。培地試料を遠心分離し,蛍光強度(528nmでの励起)を分析した。グラフの縦軸は蛍光強度を示し,横軸は波長(nm)を示す。5 is a graph showing the removal of the complex 17. Partially differentiated hiPSCs were prepared by incubating with all-trans retinoic acid (0.5 μM) for 48 hours and then treated with complex 17 (5 μM) for 72 hours. After the cells were treated with complex 17 for 3 days, the medium was collected. The cells were then washed 3 times with 2 mL of fresh ES medium and the washed medium was collected. Media samples were centrifuged and analyzed for fluorescence intensity (excitation at 528 nm). The vertical axis of the graph indicates the fluorescence intensity, and the horizontal axis indicates the wavelength (nm).
(本発明の化合物の製造方法)
 本発明の化合物は,本願実施例における化合物1~13の合成を参酌して,KP-1等由来の中間体を合成し,次いで,必要に応じてABCG2選択的細胞障害性物質由来の中間体を合成し,最後にKP-1等の中間体とABCG2選択的細胞障害性物質またはそれ由来の中間体とを反応させることにより製造することができる。
(Method for producing the compound of the present invention)
The compound of the present invention synthesizes an intermediate derived from KP-1 etc. in consideration of the synthesis of compounds 1 to 13 in the Examples of the present application, and then an intermediate derived from an ABCG2 selective cytotoxic substance as necessary. And finally, an intermediate such as KP-1 and an ABCG2-selective cytotoxic substance or an intermediate derived therefrom are reacted with each other.
 例えば,本発明のKP-1等由来の中間体は,以下の工程により合成することができる。 For example, an intermediate derived from KP-1 etc. of the present invention can be synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000017

[式中,R,R,R,及びXは,上記定義に従う。L’は,リンカーLと同じ又はその一部であっても良い]
Figure JPOXMLDOC01-appb-C000017

[Wherein R 1 , R 2 , R 3 and X follow the above definition. L ′ may be the same as or a part of the linker L]
 KP-1等の中間体とABCG2選択的細胞障害性物質との反応は,L’の末端の基,及びABCG2選択的細胞障害性物質が有する官能基の種類に応じて,適宜有機化学の分野で周知の方法で結合させることにより達成することができる。また,必要に応じて,L’の末端の基と結合しやすい基を予めABCG2選択的細胞障害性物質に導入して,ABCG2選択的細胞障害性物質由来の中間体を合成してから,KP-1等の中間体と反応させても良い。 The reaction between an intermediate such as KP-1 and an ABCG2-selective cytotoxic substance is appropriately performed in the field of organic chemistry depending on the type of the functional group of the terminal group of L 'and the ABCG2-selective cytotoxic substance. Can be achieved by bonding by a well-known method. In addition, if necessary, a group that easily binds to the terminal group of L ′ is introduced into ABCG2-selective cytotoxic substance in advance to synthesize an intermediate derived from ABCG2-selective cytotoxic substance, and then KP It may be reacted with an intermediate such as -1.
(未分化細胞除去方法)
 一態様において,本発明は,幹細胞を分化誘導した細胞集団に本発明の化合物を未分化細胞が死滅する時間接触させること,及び,残存した前記化合物を洗浄により除去することを含む,幹細胞を分化誘導した後に残存する未分化細胞の除去方法に関する。
(Undifferentiated cell removal method)
In one embodiment, the present invention differentiates stem cells comprising contacting a cell population in which differentiation of stem cells has been induced with the compound of the present invention for a time during which undifferentiated cells die, and removing the remaining compound by washing. The present invention relates to a method for removing undifferentiated cells remaining after induction.
 本明細書において,「幹細胞」とは,多能性及び自己複製能を有する細胞を意味する。本明細書において,「多能性」とは,多分化能と同義であり,分化により複数の系統の細胞に分化可能な細胞の状態を意味する。本明細書における,多能性は,生体を構成する全ての種類の細胞に分化可能な状態(分化全能性(totipotency)),胚体外組織を除く全ての種類の細胞に分化可能な状態(分化万能性(pluripotency)),一部の細胞系列に属する細胞に分化可能な状態(分化多能性(multipotency)),及び1種類の細胞に分化可能な状態(分化単能性(unipotency))を含む。よって,本明細書における「幹細胞」は,幹細胞,ES細胞,iPS細胞,神経幹細胞,造血幹細胞,間葉系幹細胞,肝幹細胞,膵幹細胞,皮膚幹細胞,筋幹細胞,又は生殖幹細胞を含む。好ましくは,本明細書における「幹細胞」は,分化万能性を有する細胞であり,より好ましくは,胚性幹細胞(ES細胞)及び人工多能性幹細胞(iPS細胞)である。ある細胞が幹細胞であるかどうかは,たとえば,体外培養系において胚様体(embryoid body)を形成する細胞,又は,分化誘導条件下で培養(分化処理)した後に所望の細胞に分化する細胞が幹細胞であるとして確認することができる。または,幹細胞であるかどうかは,生体を用いて,免疫不全マウスへ移植することにより奇形種(テラトーマ)を形成する細胞,胚盤胞への注入によりキメラ胚を形成する細胞,生体組織への移植や腹水への注入により増殖する細胞が幹細胞であるとして確認することができる。あるいは,幹細胞であるかどうかは,アルカリフォスファターゼ染色,SSEA3染色,SSEA4染色,TRA-1-60染色,及び/又はTRA-1-81染色に陽性を示す細胞;oct3/4,nanog,sox2,cripto,dax1,eras,fgf4,esg1,rex1,zfp296,utf1,gdf3,sall4,tbx3,tcf3,dnmt3l,及び/又はdnmt3b遺伝子を発現している細胞;miR-290,及び/又はmiR-302を発現している細胞が幹細胞であるとして確認することもできる。あるいは,ある細胞が幹細胞であるか否かは,例えば,テロメラーゼ逆転写酵素,又はサバイビンの発現レベルが高い細胞が幹細胞であるとして判定することができる。 In the present specification, “stem cell” means a cell having pluripotency and self-renewal ability. In this specification, “pluripotency” is synonymous with pluripotency, and means a state of a cell that can differentiate into cells of a plurality of lineages by differentiation. In the present specification, pluripotency refers to a state that can be differentiated into all types of cells constituting a living body (totipotency), and a state that can be differentiated into all types of cells other than extraembryonic tissues (differentiation). Pluripotency), a state that can differentiate into cells belonging to some cell lineages (multipotency), and a state that can differentiate into one type of cell (unipotency) Including. Therefore, “stem cells” in the present specification include stem cells, ES cells, iPS cells, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, skin stem cells, muscle stem cells, or germline stem cells. Preferably, the “stem cell” in the present specification is a cell having pluripotency, more preferably an embryonic stem cell (ES cell) and an induced pluripotent stem cell (iPS cell). Whether a cell is a stem cell is determined by, for example, a cell that forms an embryoid body in an in vitro culture system, or a cell that differentiates into a desired cell after culturing under differentiation-inducing conditions (differentiation treatment). It can be confirmed as a stem cell. Or, whether or not it is a stem cell is determined by using a living body to transplant to an immunodeficient mouse, a cell that forms a teratoma, a cell that forms a chimeric embryo by injection into a blastocyst, or a living tissue It can be confirmed that cells proliferating by transplantation or injection into ascites are stem cells. Alternatively, whether the cells are stem cells is determined by determining whether the cells are positive for alkaline phosphatase staining, SSEA3 staining, SSEA4 staining, TRA-1-60 staining, and / or TRA-1-81 staining; oct3 / 4, nanog, sox2, clipto , Dax1, eras, fgf4, esg1, rex1, zfp296, utf1, gdf3, all4, tbx3, tcf3, dnmt3l, and / or dnmt3b gene; miR-290 and / or miR-302 are expressed It can also be confirmed that the cell is a stem cell. Alternatively, whether or not a certain cell is a stem cell can be determined as a cell having a high expression level of telomerase reverse transcriptase or survivin, for example.
 好ましくは,幹細胞は,生体に存在するすべての細胞に分化可能である多能性を有し,かつ,増殖能をも併せもつ。該多能性幹細胞の例としては,胚性幹(ES)細胞,核移植により得られるクローン胚由来の胚性幹細胞(「ntES細胞」),生殖幹細胞(「GS細胞」),胚性生殖細胞(「EG細胞」),および人工多能性幹(iPS)細胞が挙げられるが,これらに限定されない。好ましい前記多能性幹細胞の例として,ES細胞,ntES細胞,およびiPS細胞が挙げられる。 Preferably, the stem cell has pluripotency capable of differentiating into all cells existing in a living body, and also has proliferative ability. Examples of the pluripotent stem cells include embryonic stem (ES) cells, embryonic stem cells derived from cloned embryos obtained by nuclear transfer (“ntES cells”), germ stem cells (“GS cells”), embryonic germ cells ("EG cells"), and induced pluripotent stem (iPS) cells, but are not limited to these. Examples of preferred pluripotent stem cells include ES cells, ntES cells, and iPS cells.
 本明細書において,「分化」とは,多能性細胞の分裂によって特定の機能的又は形態的特徴を有する娘細胞を生じる現象をいう。本明細書において「分化処理」及び「分化誘導処理」とは同義であり,幹細胞を分化細胞へと誘導させるための処理を意味する。細胞の分化は,様々な方法により誘導されることが報告されている。多能性細胞は,分化させる細胞の種類等に応じて,分化誘導物質などを利用した分化誘導処理により分化させることができる。既に多くの分化誘導方法が当業者に知られているが,例えば,特開2002-291469に記載される神経幹細胞への分化誘導法,特開2004-121165に記載される膵幹様細胞への分化誘導法,および特表2003-505006に記載される造血細胞への分化誘導法を挙げることができる。さらに,胚様体の形成による分化誘導法の例として,特表2003-523766等に記載される方法等が挙げられる。「分化細胞」とは,分化して生じた特定の機能的又は形態的特徴を有する娘細胞を意味する。分化細胞は通常安定しており,その増殖能は低く,別のタイプの細胞に分化することは例外的にしか起こらない。 In this specification, “differentiation” refers to a phenomenon in which daughter cells having specific functional or morphological characteristics are generated by the division of pluripotent cells. In the present specification, “differentiation treatment” and “differentiation induction treatment” are synonymous and mean treatment for inducing stem cells into differentiated cells. It has been reported that cell differentiation is induced by various methods. Pluripotent cells can be differentiated by differentiation-inducing treatment using a differentiation-inducing substance or the like according to the type of cells to be differentiated. Many differentiation induction methods are already known to those skilled in the art. For example, differentiation induction methods for neural stem cells described in JP-A No. 2002-291469, pancreatic stem-like cells described in JP-A No. 2004-121165 are described. Examples thereof include differentiation induction methods and differentiation induction methods for hematopoietic cells described in JP-T-2003-505006. Furthermore, examples of the differentiation induction method by the formation of embryoid bodies include the method described in JP-T-2003-523766. “Differentiated cells” refers to daughter cells that have a specific functional or morphological characteristic resulting from differentiation. Differentiated cells are usually stable, their ability to proliferate is low, and differentiation into other types of cells occurs only exceptionally.
 「未分化細胞」とは,分化していない細胞,もしくは分化途中の未分化細胞,および分化が不完全な細胞を意味する。本明細書においては,特にそのように解することが不整合である場合を除き,「未分化細胞」とは,分化誘導処理したにもかかわらず,分化細胞とならなかった細胞を意味する。本明細書における未分化細胞は必ずしも前述の幹細胞の性質を完全に有することを必要とするものではなく,分化細胞と比較して(自己)増殖能が高い(例えば,増殖速度が2倍以上,3倍以上,5倍以上,10倍以上など)細胞を意味する。ある細胞が未分化細胞であるか否かは,例えば,c-Myc等の未分化を示すマーカーが活性化している細胞,あるいは,テロメラーゼ逆転写酵素の発現レベルが高い細胞として判定することができる。本発明の未分化細胞除去方法において、未分化細胞はABCB1及び/又はABCG2トランスポーターの発現が抑制されている。 “Undifferentiated cell” means an undifferentiated cell, an undifferentiated cell in the middle of differentiation, or a cell that is incompletely differentiated. In the present specification, unless otherwise understood in particular, “undifferentiated cell” means a cell that has not been differentiated even though it has undergone differentiation induction treatment. The undifferentiated cells in the present specification do not necessarily need to have the above-mentioned properties of stem cells completely, and have a higher (self) proliferative capacity than differentiated cells (for example, the proliferation rate is twice or more, (3 times or more, 5 times or more, 10 times or more) means a cell. Whether or not a cell is an undifferentiated cell can be determined, for example, as a cell in which a marker indicating undifferentiation such as c-Myc is activated, or a cell having a high expression level of telomerase reverse transcriptase . In the method for removing undifferentiated cells of the present invention, the expression of ABCB1 and / or ABCG2 transporter is suppressed in undifferentiated cells.
 幹細胞を分化誘導した細胞集団に本発明の化合物を接触させる時間は,未分化細胞が死滅する時間であれば特に制限されるものではないが,例えば,24~120時間,36~96時間,又は72時間とすることができる。細胞集団への化合物の接触は,通常の当該細胞の培養条件下に本発明の化合物を共存させることで行うことができる。 The time for which the compound of the present invention is brought into contact with the cell population in which the differentiation of stem cells is induced is not particularly limited as long as the undifferentiated cells are killed. For example, 24 to 120 hours, 36 to 96 hours, or 72 hours. The contact of the compound with the cell population can be performed by allowing the compound of the present invention to coexist under normal cell culture conditions.
 未分化細胞を殺傷した後,残存した前記化合物の除去は,培地やPBSによる洗浄等により簡便に達成することが出来る。洗浄は,2回以上行うことが好ましい。また,洗浄に使用した培地やPBSをサンプルとして,蛍光強度を測定することにより,除去された化合物量を測定することができる。あるいは,回収した分化細胞の蛍光を直接測定することにより,残存化合物量を測定することができる。望ましくは,洗浄は,洗浄に使用した培地やPBSをサンプル,及び/又は分化細胞における蛍光強度が,バックグラウンドと同程度となるまで行う。 After the undifferentiated cells have been killed, the remaining compound can be easily removed by washing with a medium or PBS. Washing is preferably performed twice or more. Further, the amount of the removed compound can be measured by measuring the fluorescence intensity using the medium or PBS used for washing as a sample. Alternatively, the residual compound amount can be measured by directly measuring the fluorescence of the collected differentiated cells. Desirably, washing is performed until the fluorescence intensity in the sample and / or differentiated cells of the medium and PBS used for washing is comparable to the background.
 以下に実施例を用いて本発明をより詳細に説明するが,これは本発明の範囲を限定するものではない。なお,本願明細書全体を通じて引用する文献は,参照によりその全体が本願明細書に組み込まれる。 Hereinafter, the present invention will be described in more detail with reference to examples, but this does not limit the scope of the present invention. References cited throughout the present specification are incorporated herein by reference in their entirety.
(材料と方法)
化学試薬は,シグマアルドリッチジャパン株式会社,和光純薬株式会社,東京化成工業(TCI)から購入し,そのまま使用した。化学合成のために使用した溶媒は,使用前に乾燥させた。高速液体クロマトグラフィーは,島津LC-2010C及び日立HPLCシステム(L-7260 オートサンプラー,L-7150 ポンプ,D-7600 インターフェース,L-7410 UV検出器)を用いて行った。マススペクトルは,島津LCMS-2010を用いてESIモードで記録した。3つの複合体の高分解能質量スペクトルは,JEOL JMS LG-2000をFABモードで使用して得た。溶液1H-NMRスペクトルはJEOL JNM-ECP 300MHzまたはJEOL JNM-ECA 600MHzのスペクトロメーターで収集した。蛍光スペクトルは,LS55蛍光分光計(Perkin Elmer社)を用いて記録した。
(Materials and methods)
The chemical reagents were purchased from Sigma Aldrich Japan Co., Ltd., Wako Pure Chemical Industries, Ltd. and Tokyo Chemical Industry (TCI) and used as they were. The solvent used for chemical synthesis was dried before use. High performance liquid chromatography was performed using Shimadzu LC-2010C and Hitachi HPLC system (L-7260 autosampler, L-7150 pump, D-7600 interface, L-7410 UV detector). Mass spectra were recorded in ESI mode using Shimadzu LCMS-2010. High resolution mass spectra of the three complexes were obtained using JEOL JMS LG-2000 in FAB mode. Solution 1H-NMR spectra were collected on a JEOL JNM-ECP 300 MHz or JEOL JNM-ECA 600 MHz spectrometer. The fluorescence spectrum was recorded using an LS55 fluorescence spectrometer (Perkin Elmer).
(細胞培養)
 KB3-1及びKB3-1由来細胞(ABCB1を安定的に発現するKB/ABCB1(Y.Taguchiら,Biochemistry(1997)36:8883-8889),ABCC1を安定的に発現するKB/ABCC1(K.Nagataら,J Biol Chem(2000)275:17626-17630),及び,ABCG2を安定的に発現するKB/ABCG2(N.Hirataら,Cell Rep(2014)6:1165-1174.))を,10%熱不活化ウシ胎児血清(Equitech-Bio社,カーヴィル,テキサス州)および1%抗生物質(シグマアルドリッチ社,セントルイス,ミズーリ州)含有ダルベッコ改変イーグル培地(DMEM,Gibco社)中で培養した。SNLフィーダー細胞を,7%の熱不活化ウシ胎児血清(Equitechバイオ社,カーヴィル,テキサス州),1%のL-グルタミン(200mM,ギブコ社),及び1%の抗生物質を含む,4.5g/Lのグルコース含有ダルベッコ改変イーグル培地(DMEM高グルコース,ナカライテスク,日本)を含有する培地で培養した。ヒト体初代細胞を,セルシステムズ社から購入した,MSCM(気管支上皮細胞),BEGM(副腎微小血管細胞),又はCSC(星状膠細胞,脳微小血管細胞,前立腺上皮細胞,及び肝細胞)中で培養した。hiPSCsについては,SNLフィーダー細胞を播種したゼラチンプレコートディッシュ,および,4ng/mLのbFGF(リプロセル)を含むES霊長類培地(リプロセル)を定期的なメンテナンスのために使用した。全ての細胞を37℃,5%COの加湿インキュベーター中で維持した。
(Cell culture)
KB3-1 and KB3-1-derived cells (KB / ABCB1 stably expressing ABCB1 (Y. Taguchi et al., Biochemistry (1997) 36: 8883-8889), KB / ABCC1 stably expressing ABCC1 (K. Nagata et al., J Biol Chem (2000) 275: 17626-17630) and KB / ABCG2 stably expressing ABCG2 (N. Hirata et al., Cell Rep (2014) 6: 1165-1174.)), 10 Cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco) containing 1% heat-inactivated fetal bovine serum (Equitech-Bio, Kerrville, TX) and 1% antibiotic (Sigma Aldrich, St. Louis, MO). SNL feeder cells containing 4.5% of 7% heat inactivated fetal bovine serum (Equitech Bio, Kerrville, TX), 1% L-glutamine (200 mM, Gibco), and 1% antibiotics / L glucose-containing Dulbecco's modified Eagle medium (DMEM High Glucose, Nacalai Tesque, Japan). Human primary cells were purchased from Cell Systems, in MSCM (bronchial epithelial cells), BEGM (adrenal microvascular cells), or CSC (astrocytes, brain microvascular cells, prostate epithelial cells, and hepatocytes) In culture. For hiPSCs, gelatin pre-coated dishes seeded with SNL feeder cells and ES primate medium (Reprocell) containing 4 ng / mL bFGF (Reprocell) were used for regular maintenance. All cells were maintained in a humidified incubator at 37 ° C. and 5% CO 2 .
(部分的に分化したhiPSCsの調製)
 hiPSCsを24時間継代培養した後,0.5μMのオールトランスレチノイン酸を添加し,細胞を更に48または72時間インキュベートした。その後,部分的に分化したhiPSCsを,被験化合物で72時間処理した。
(Preparation of partially differentiated hiPSCs)
After hiPSCs were subcultured for 24 hours, 0.5 μM all-trans retinoic acid was added and the cells were further incubated for 48 or 72 hours. Subsequently, partially differentiated hiPSCs were treated with the test compound for 72 hours.
(細胞ベースアッセイ)
 被験細胞を,1ウェルあたり5000細胞となるように96ウェルプレートに播種した。播種から24時間後,被験化合物を様々な濃度で添加した。24または72時間インキュベーション後,細胞をPBSで洗浄した。生存率(%)はWST-8ベースの比色アッセイ(細胞計数キット-8,同仁化学)により決定した。450nmにおける吸光度を測定し,IC50を用量応答値に基づいて計算した。生存率(%)は,5000細胞を播種した時の値を100として求めた。トランスポーター阻害剤を用いた実験のため,シクロスポリンA(10μM)またはKo143(10μM)を,被験化合物とのインキュベーションの1時間前に添加した。
(Cell-based assay)
Test cells were seeded in a 96-well plate at 5000 cells per well. 24 hours after sowing, test compounds were added at various concentrations. After 24 or 72 hours incubation, cells were washed with PBS. Viability (%) was determined by a WST-8 based colorimetric assay (Cell Counting Kit-8, Dojindo). Absorbance at 450 nm was measured and IC50 was calculated based on dose response values. The survival rate (%) was determined with the value when 5000 cells were seeded as 100. For experiments with transporter inhibitors, cyclosporin A (10 μM) or Ko143 (10 μM) was added 1 hour prior to incubation with test compounds.
(hiPSC-コロニー形成アッセイ)
 ヒトESCsまたはhiPSCsを6ウェルプレートに播種し,72時間増殖させた後,被験化合物で72時間処理した。細胞を4%パラホルムアルデヒドで1時間固定し,PBSで2回洗浄し,1%クリスタルバイオレット溶液(シグマアルドリッチ社)で15分間染色した。次いで,プレートをPBS及び蒸留水で3~5回洗浄し,画像を撮影する前に空気乾燥させた。定量のため,1%SDS溶液を各ウェルに添加し,15分間インキュベートした。溶出液の570nmにおける吸光度を測定した。
(HiPSC-colony formation assay)
Human ESCs or hiPSCs were seeded in 6-well plates, allowed to grow for 72 hours, and then treated with the test compound for 72 hours. The cells were fixed with 4% paraformaldehyde for 1 hour, washed twice with PBS, and stained with 1% crystal violet solution (Sigma Aldrich) for 15 minutes. The plates were then washed 3-5 times with PBS and distilled water and allowed to air dry before taking images. For quantification, 1% SDS solution was added to each well and incubated for 15 minutes. The absorbance at 570 nm of the eluate was measured.
(KB3-1細胞株およびhiPSCコロニーの蛍光顕微鏡イメージング)
 KB3-1とKB3-1由来細胞株を1ウェルあたり5000細胞となるように96ウェルプレート(Nunc 165305,サーモフィッシャーサイエンティフィック社)上に播種した。細胞播種の24時間後に被験化合物(1μMまたは10μM)を添加し,細胞を37℃で2時間インキュベートした。処理した細胞をPBSで洗浄し,10%FBSを含有するDMEM中,レーザ励起波長405,488,及び561nmの共焦点顕微鏡を使用して観察した(Cell Voyager 1000,横河電機株式会社)。定量分析は,蛍光強度を測定し,NIH ImageJ,バージョン1.30をもちいて分析することにより行った。hiPSCs(クローン#201B7)を,μ-ディッシュ(高さ35mm,ibidi社)中のSNLフィーダー細胞上に播種した。インキュベーション6日後に,iPS細胞のドーナツ状のコロニーが得られた。コロニーをKP-1(1μM),複合体17(1μM),または複合体18(10μM)と共に,37℃で2時間インキュベートした。処理した細胞をPBSで洗浄し,4ng/mLのbFGFを含むES霊長類培地中で観察した。蛍光イメージングは,レーザー励起波長405,488,および561nmの共焦点顕微鏡(Cell Voyager 1000,横河電機株式会社)を用いて撮影した。
(Fluorescence microscope imaging of KB3-1 cell line and hiPSC colony)
KB3-1 and a KB3-1-derived cell line were seeded on a 96-well plate (Nunc 165305, Thermo Fisher Scientific) at 5000 cells per well. Test compounds (1 μM or 10 μM) were added 24 hours after cell seeding and the cells were incubated at 37 ° C. for 2 hours. The treated cells were washed with PBS and observed using a confocal microscope with a laser excitation wavelength of 405,488 and 561 nm in DMEM containing 10% FBS (Cell Voyager 1000, Yokogawa Electric Corporation). Quantitative analysis was performed by measuring fluorescence intensity and analyzing using NIH ImageJ, version 1.30. hiPSCs (clone # 201B7) were seeded on SNL feeder cells in a μ-dish (height 35 mm, ibidi). After 6 days of incubation, donut-like colonies of iPS cells were obtained. Colonies were incubated with KP-1 (1 μM), complex 17 (1 μM), or complex 18 (10 μM) at 37 ° C. for 2 hours. Treated cells were washed with PBS and observed in ES primate medium containing 4 ng / mL bFGF. The fluorescence imaging was taken using a confocal microscope (Cell Voyager 1000, Yokogawa Electric Corporation) with laser excitation wavelengths of 405 and 488 and 561 nm.
(チューブリン重合アッセイ)
 チューブリン重合アッセイキットは,Cytoskeleton(BK006P)から購入し,製造業者の指示に従ってアッセイを行った。各成分の最終濃度は,PIPES(pH6.9) 80mM,MgCl 2mM,EGTA 0.5mM,グリセロール 10.2%,GTP 1mM,及びチューブリン 3mg/mLであった。反応系を,チューブリンを含有しない状態で37℃に予備加温し,次いでチューブリンの添加により反応を開始した。チューブリンの添加直後,及び,その後1分間隔で60分間,340nmにおける吸収をSpectraMax M5(Molecular Devices社)を用いて測定した。CA4およびタキソールを陽性対照として用い,分子14及びDMSO単独を陰性対照として用いた。
(Tubulin polymerization assay)
Tubulin polymerization assay kit was purchased from Cytoskeleton (BK006P) and assayed according to manufacturer's instructions. The final concentration of each component was PIPES (pH 6.9) 80 mM, MgCl 2 2 mM, EGTA 0.5 mM, glycerol 10.2%, GTP 1 mM, and tubulin 3 mg / mL. The reaction system was pre-warmed to 37 ° C. without tubulin and then the reaction was initiated by the addition of tubulin. Absorption at 340 nm was measured using SpectraMax M5 (Molecular Devices) immediately after the addition of tubulin, and thereafter for 60 minutes at 1 minute intervals. CA4 and taxol were used as positive controls and molecule 14 and DMSO alone were used as negative controls.
(アルカリホスファターゼアッセイ)
 hiPSCsのアルカリフォスファターゼ活性は,アルカリフォスファターゼ基質キット(SK-5300,Vector(登録商標)ブルー)を用いて測定した。hiPSCコロニーと部分的に分化したhiPSCsを上述の方法で調製した。次いで,細胞をSK-5300で処理し,室温で1時間インキュベートして洗浄し,最後にPBS緩衝液中で維持した。
(Alkaline phosphatase assay)
The alkaline phosphatase activity of hiPSCs was measured using an alkaline phosphatase substrate kit (SK-5300, Vector (registered trademark) blue). hiPSC colonies and partially differentiated hiPSCs were prepared as described above. Cells were then treated with SK-5300, incubated for 1 hour at room temperature, washed and finally maintained in PBS buffer.
(定量的ポリメラーゼ連鎖反応(QPCR))
 オールトランスレチノイン酸(0.5μM)と共に48時間インキュベートすることにより部分的に分化したhiPSCsを調製した後,被験化合物と共に72時間処理した。トータルmRNAをISOGEN(株式会社ニッポンジーン)を用いて単離し,PrimeScript(宝酒造社)を用いてcDNAを合成した。QPCRは,高速SYBR(登録商標)Greenマスターミックスを用い,7500FastリアルタイムPCRシステム(Applied Biosystems社)で行った。プライマー配列を以下の表1に示す。
(Quantitative polymerase chain reaction (QPCR))
Partially differentiated hiPSCs were prepared by incubating with all-trans retinoic acid (0.5 μM) for 48 hours and then treated with test compounds for 72 hours. Total mRNA was isolated using ISOGEN (Nippon Gene Co., Ltd.), and cDNA was synthesized using PrimeScript (Takara Shuzo Co., Ltd.). QPCR was performed on a 7500 Fast real-time PCR system (Applied Biosystems) using a high-speed SYBR (registered trademark) Green master mix. The primer sequences are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
(トポイソメラーゼI阻害アッセイ)
 複合体17のトポイソメラーゼIが阻害活性は,スーパーコイルDNA緩和アッセイにより試験した。スーパーコイルDNA(TopoGEN社)を,複合体17(0,1,若しくは10μM)又は対照としてSN38(0,1,若しくは10μM)と予め混合された,組換えヒトトポイソメラーゼI(野生型タンパク質,TopoGEN社)と共に37℃で30分間インキュベートした。反応を停止緩衝液(TopoGEN社)で終了させ,反応混合物を1%アガロースゲルにロードした。電気泳動後,ゲルを,TAE緩衝液中の臭化エチジウムで染色し,UV照明下で撮影した。
(Topoisomerase I inhibition assay)
The inhibitory activity of complex 17 topoisomerase I was tested by the supercoiled DNA relaxation assay. Recombinant human topoisomerase I (wild type protein, TopoGEN) pre-mixed with supercoiled DNA (TopoGEN) with complex 17 (0, 1, or 10 μM) or SN38 (0, 1, or 10 μM) as a control ) At 37 ° C. for 30 minutes. The reaction was terminated with stop buffer (TopoGEN) and the reaction mixture was loaded onto a 1% agarose gel. After electrophoresis, the gel was stained with ethidium bromide in TAE buffer and photographed under UV illumination.
(複合体17の除去)
 オールトランスレチノイン酸(0.5μM)と共に48時間インキュベートすることにより部分的に分化したhiPSCsを調製し,その後複合体17(5μM)で72時間処理した。複合体17で細胞処理した3日後,培地を回収した。細胞を2mlの新鮮なES培地で3回洗浄し,洗浄培地を回収した。得られた培地試料を遠心分離し,蛍光強度(励起波長528nm)を分析した。
(Removal of complex 17)
Partially differentiated hiPSCs were prepared by incubating with all-trans retinoic acid (0.5 μM) for 48 hours and then treated with complex 17 (5 μM) for 72 hours. Three days after cell treatment with Complex 17, the medium was collected. The cells were washed 3 times with 2 ml of fresh ES medium and the washed medium was collected. The obtained culture medium sample was centrifuged and analyzed for fluorescence intensity (excitation wavelength: 528 nm).
(化合物1~15の合成) (Synthesis of compounds 1 to 15)
Figure JPOXMLDOC01-appb-C000019

(実施例1)化合物1~8の合成
Figure JPOXMLDOC01-appb-C000019

Example 1 Synthesis of Compounds 1-8
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物1-8は,いずれも以下の方法に従って合成した。3-アミノフェノール(3.0当量)および置換されたベンズアルデヒド(1.0当量)のメタンスルホン酸懸濁液を130℃で24時間撹拌した。次いで,反応混合物を周囲温度まで冷却し,氷水で希釈し,KCOで約pH6となるように調整して濾過した。沈殿物を水で洗浄し,メタノールに溶解して減圧下で濃縮した。残留物をHPLCにより精製した(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0)。 Compound 1-8 was synthesized according to the following method. A suspension of 3-aminophenol (3.0 equivalents) and substituted benzaldehyde (1.0 equivalents) in methanesulfonic acid was stirred at 130 ° C. for 24 hours. The reaction mixture was then cooled to ambient temperature, diluted with ice water, adjusted to about pH 6 with K 2 CO 3 and filtered. The precipitate was washed with water, dissolved in methanol and concentrated under reduced pressure. The residue was purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0).
化合物1.紫色の油状物.収率:0.5%.1H-NMR(300 MHz,CD3OD) δ 7.72-7.64(m,1H),7.44-7.39(m,1H),7.29-7.24(m,4H),6.86(dd,J=9.1,2.2 Hz,2H),6.82(d,J=2.2 Hz,2H);ESIMS m/z=305[M]+ Compound 1. Purple oil. Yield: 0.5%. 1H-NMR (300 MHz, CD3OD) δ 7.72-7.64 (m, 1H), 7.44-7.39 (m, 1H), 7.29-7.24 (m, 4H), 6 .86 (dd, J = 9.1, 2.2 Hz, 2H), 6.82 (d, J = 2.2 Hz, 2H); ESIMS m / z = 305 [M] +
化合物2.紫色の油状物.収率:0.6%.1H-NMR(300 MHz,CD3OD) δ 7.76-7.69(m,1H),7.51-7.40(m,3H),7.23(dd,J=6.3,1.1 Hz,2H),6.87(dd,J=9.1,2.2 Hz,2H),6.83(d,J=2.2 Hz,2H);ESIMS m/z=305[M]+ Compound 2. Purple oil. Yield: 0.6%. 1H-NMR (300 MHz, CD3OD) δ 7.76-7.69 (m, 1H), 7.51-7.40 (m, 3H), 7.23 (dd, J = 6.3, 1. 1 Hz, 2H), 6.87 (dd, J = 9.1, 2.2 Hz, 2H), 6.83 (d, J = 2.2 Hz, 2H); ESIMS m / z = 305 [M ] +
化合物3.紫色の油状物.収率:1.8%.1H-NMR(300 MHz,CD3OD) δ 7.68(dd,J=5.5,1.9 Hz,2H),7.46(dd,J=6.5,2.1 Hz,2H),7.28(d,J=9.1 Hz,2H),6.87(dd,J=9.1,2.2 Hz,2H),6.82(d,J=9.1 Hz,2H);ESIMS m/z=321[M]+ Compound 3. Purple oil. Yield: 1.8%. 1H-NMR (300 MHz, CD3OD) δ 7.68 (dd, J = 5.5, 1.9 Hz, 2H), 7.46 (dd, J = 6.5, 2.1 Hz, 2H), 7.28 (d, J = 9.1 Hz, 2H), 6.87 (dd, J = 9.1, 2.2 Hz, 2H), 6.82 (d, J = 9.1 Hz, 2H) ); ESIMS m / z = 321 [M] +
化合物4.紫色の油状物.収率:1.5 %.1H-NMR(300 MHz,CD3OD) δ 7.84(dd,J=6.6,1.9 Hz,2H),7.39(dd,J=6.6,1.9 Hz,2H),7.28(d,J=9.1 Hz,2H),6.86(dd,J=9.1,2.2 Hz,2H),6.81(d,J=2.2 Hz,2H);ESIMS m/z=365[M]+ Compound 4. Purple oil. Yield: 1.5%. 1H-NMR (300 MHz, CD3OD) δ 7.84 (dd, J = 6.6, 1.9 Hz, 2H), 7.39 (dd, J = 6.6, 1.9 Hz, 2H), 7.28 (d, J = 9.1 Hz, 2H), 6.86 (dd, J = 9.1, 2.2 Hz, 2H), 6.81 (d, J = 2.2 Hz, 2H) ); ESIMS m / z = 365 [M] +
化合物5.紫色の油状物.収率:1.3%.1H-NMR(300 MHz,CD3OD) δ 7.67-7.64(m,3H),7.47-7.44(m,2H),7.29(d,J=9.1 Hz,2H),6.86(dd,J=9.1,2.2 Hz,2H),6.82(d,J=1.9 Hz,2H);ESIMS m/z=287[M]+ Compound 5. Purple oil. Yield: 1.3%. 1H-NMR (300 MHz, CD3OD) δ 7.67-7.64 (m, 3H), 7.47-7.44 (m, 2H), 7.29 (d, J = 9.1 Hz, 2H) ), 6.86 (dd, J = 9.1, 2.2 Hz, 2H), 6.82 (d, J = 1.9 Hz, 2H); ESIMS m / z = 287 [M] +
化合物6.紫色の油状物.収率:0.7%.1H-NMR(300 MHz,CD3OD) δ 7.49(d,J=8.3 Hz,2H),7.38(dd,J=8.3,1.9 Hz,2H),7.29(d,J=9.1 Hz,2H),6.85(dd,J=9.1,1.9 Hz,2H),6.82(d,J=2.2 Hz,2H),2.76(t,J=7.7 Hz,2H),1.82-1.70(m,2H),1.03(t,J=7.4 Hz,3H);ESIMS m/z=329[M]+ Compound 6. Purple oil. Yield: 0.7%. 1H-NMR (300 MHz, CD3OD) δ 7.49 (d, J = 8.3 Hz, 2H), 7.38 (dd, J = 8.3, 1.9 Hz, 2H), 7.29 ( d, J = 9.1 Hz, 2H), 6.85 (dd, J = 9.1, 1.9 Hz, 2H), 6.82 (d, J = 2.2 Hz, 2H), 2. 76 (t, J = 7.7 Hz, 2H), 1.82-1.70 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H); ESIMS m / z = 329 [ M] +
化合物7.紫色の油状物.収率:0.2%.1H-NMR(300 MHz,CD3OD) δ 7.44(d,J=9.1 Hz,2H),7.31(dd,J=6.6,2.2 Hz,2H),7.05(dd,J=6.6,1.9 Hz,2H),6.86(dd,J=9.1,1.9 Hz,2H),6.80(d,J=2.2 Hz,2H);ESIMS m/z=303[M]+ Compound 7. Purple oil. Yield: 0.2%. 1H-NMR (300 MHz, CD3OD) δ 7.44 (d, J = 9.1 Hz, 2H), 7.31 (dd, J = 6.6, 2.2 Hz, 2H), 7.05 ( dd, J = 6.6, 1.9 Hz, 2H), 6.86 (dd, J = 9.1, 1.9 Hz, 2H), 6.80 (d, J = 2.2 Hz, 2H) ); ESIMS m / z = 303 [M] +
化合物8.紫色の油状物.収率:0.2%.1H-NMR(300 MHz,CD3OD) δ 7.42(d,J=8.7 Hz,2H),7.31(dd,J=6.6,1.9 Hz,2H),7.05(dd,J=6.6,1.9 Hz,2H),6.85(dd,J=9.1,2.2 Hz,2H),6.78(d,J=2.2 Hz,2H);ESIMS m/z=303[M]+ Compound 8. Purple oil. Yield: 0.2%. 1H-NMR (300 MHz, CD3OD) δ 7.42 (d, J = 8.7 Hz, 2H), 7.31 (dd, J = 6.6, 1.9 Hz, 2H), 7.05 ( dd, J = 6.6, 1.9 Hz, 2H), 6.85 (dd, J = 9.1, 2.2 Hz, 2H), 6.78 (d, J = 2.2 Hz, 2H) ); ESIMS m / z = 303 [M] +
(実施例2)化合物9及び10の合成 Example 2 Synthesis of Compounds 9 and 10
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 5-フルオロ-1,3-イソベンゾフランジオン(5-fluoro-1,3-isobenzofurandione)(498mg,3mmol)および3-アミノフェノール(982mg,9mmol)のメタンスルホン酸(9mL)懸濁液を130℃で24時間撹拌した。周囲温度まで冷却した後,メタノール(25mL)を反応物に添加し,一晩還流した。次いで,反応混合物を周囲温度まで冷却し,氷水で希釈し,KCOで約pH6に調整した後,濾過した。沈殿物を水で洗浄してからメタノールに溶解し,減圧下で濃縮した。残留物をHPLCにより精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),0.9mgの化合物9と,紫色の油状物として0.8mgの化合物10を得た。 A suspension of 5-fluoro-1,3-isobenzofurandione (498 mg, 3 mmol) and 3-aminophenol (982 mg, 9 mmol) in methanesulfonic acid (9 mL) was added at 130 ° C. For 24 hours. After cooling to ambient temperature, methanol (25 mL) was added to the reaction and refluxed overnight. The reaction mixture was then cooled to ambient temperature, diluted with ice water, adjusted to about pH 6 with K 2 CO 3 and filtered. The precipitate was washed with water, dissolved in methanol, and concentrated under reduced pressure. The residue was purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0), 0.9 mg of compound 9 and purple 0.8 mg of compound 10 was obtained as an oil.
化合物9.紫色の油状物.収率:0.8%.1H-NMR(300 MHz,CD3OD) δ 8.06(dd,J=9.6,2.1 Hz,1H),7.66(ddd,J=8.1,8.1,2.8 Hz,1H),7.49(dd,J=8.9,5.5 Hz,1H),7.22(d,J=8.9 Hz,2H),7.15(d,J=2.1 Hz,1H),6.99(dd,J=9.0,2.0 Hz,1H),6.96(dd,J=9.6,2.0 Hz,1H),6.92(d,J=2.0 Hz,2H),3.65(s,3H);ESIMS m/z=363[M]+ Compound 9. Purple oil. Yield: 0.8%. 1H-NMR (300 MHz, CD3OD) δ 8.06 (dd, J = 9.6, 2.1 Hz, 1H), 7.66 (ddd, J = 8.1, 8.1, 2.8 Hz) , 1H), 7.49 (dd, J = 8.9, 5.5 Hz, 1H), 7.22 (d, J = 8.9 Hz, 2H), 7.15 (d, J = 2. 1 Hz, 1H), 6.99 (dd, J = 9.0, 2.0 Hz, 1H), 6.96 (dd, J = 9.6, 2.0 Hz, 1H), 6.92 ( d, J = 2.0 Hz, 2H), 3.65 (s, 3H); ESIMS m / z = 363 [M] +
化合物10.紫色の油状物.収率:0.7%.1H-NMR(300 MHz,CD3OD) δ 8.40(dd,J=8.9,5.5 Hz,1H),7.57(ddd,J=8.3,8.3,2.8 Hz,1H),7.32(dd,J=8.3,2.8 Hz,1H),7.23(d,J=9.6 Hz,2H),7.16(d,J=2.1 Hz,1H),6.99(dd,J=9.6,2.1 Hz,1H),6.97(dd,J=9.6,2.1 Hz,1H),6.92(d,J=2.1 Hz,1H),3.62(s,3H);ESIMS m/z=363[M]+ Compound 10. Purple oil. Yield: 0.7%. 1H-NMR (300 MHz, CD3OD) δ 8.40 (dd, J = 8.9, 5.5 Hz, 1H), 7.57 (ddd, J = 8.3, 8.3, 2.8 Hz) , 1H), 7.32 (dd, J = 8.3, 2.8 Hz, 1H), 7.23 (d, J = 9.6 Hz, 2H), 7.16 (d, J = 2. 1 Hz, 1H), 6.99 (dd, J = 9.6, 2.1 Hz, 1H), 6.97 (dd, J = 9.6, 2.1 Hz, 1H), 6.92 ( d, J = 2.1 Hz, 1H), 3.62 (s, 3H); ESIMS m / z = 363 [M] +
(実施例3)化合物11の合成 Example 3 Synthesis of Compound 11
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 レゾルシノール(1.32g,12mmol)および4-フルオロベンズアルデヒド(422μL,4mmol)のメタンスルホン酸(12mL)懸濁液を130℃で24時間撹拌した。次いで,反応混合物を周囲温度まで冷却してから氷水で希釈し,KCOで約pH6に調整した後,濾過した。沈殿物を水で洗浄し,メタノールに溶解し,減圧下で濃縮した。残留物をHPLCで精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1から1:0),紫色の油状物として3mgの化合物11を得た。収率:0.1%。 A suspension of resorcinol (1.32 g, 12 mmol) and 4-fluorobenzaldehyde (422 μL, 4 mmol) in methanesulfonic acid (12 mL) was stirred at 130 ° C. for 24 hours. The reaction mixture was then cooled to ambient temperature, diluted with ice water, adjusted to about pH 6 with K 2 CO 3 and filtered. The precipitate was washed with water, dissolved in methanol and concentrated under reduced pressure. The residue was purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0) to give 3 mg of compound 11 as a purple oil. Obtained. Yield: 0.1%.
1H-NMR(300 MHz,CD3OD) δ 7.70-7.61(m,4H);7.51-7.48(m,2H),7.24-7.15(m,4H);ESIMS m/z=307[M+H]+ 1H-NMR (300 MHz, CD3OD) δ 7.70-7.61 (m, 4H); 7.51-7.48 (m, 2H), 7.24-7.15 (m, 4H); ESIMS m / z = 307 [M + H] +
(実施例4)化合物12の合成 Example 4 Synthesis of Compound 12
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 3-(メチルアミノ)フェノール(411mg,3.3mmol)および4-フルオロベンズアルデヒド(176μL,1.67mmol)のメタンスルホン酸(11mL)懸濁液を,130℃で24時間撹拌した。次いで,反応混合物を周囲温度に冷却してから氷水で希釈し,KCOにより約pH6に調整した後濾過した。沈殿物を水で洗浄してからメタノールに溶解し,減圧下で濃縮した。残留物をHPLCにより精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),紫色の油状物として23mgの化合物12を得た。収率:3.1% A suspension of 3- (methylamino) phenol (411 mg, 3.3 mmol) and 4-fluorobenzaldehyde (176 μL, 1.67 mmol) in methanesulfonic acid (11 mL) was stirred at 130 ° C. for 24 hours. The reaction mixture was then cooled to ambient temperature, diluted with ice water, adjusted to about pH 6 with K 2 CO 3 and filtered. The precipitate was washed with water, dissolved in methanol, and concentrated under reduced pressure. The residue was purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0) to give 23 mg of compound 12 as a purple oil. Obtained. Yield: 3.1%
1H-NMR(300 MHz,CD3OD) δ 7.48-7.36(m,2H);7.21(d,J=9.1 Hz,2H),7.04-6.90(m,2H),6.83(dd,J=9.3,1.7 Hz,2H),6.69(s,2H),2.99(s,6H);ESIMS m/z=333[M]+ 1H-NMR (300 MHz, CD3OD) δ 7.48-7.36 (m, 2H); 7.21 (d, J = 9.1 Hz, 2H), 7.04-6.90 (m, 2H) ), 6.83 (dd, J = 9.3, 1.7 Hz, 2H), 6.69 (s, 2H), 2.99 (s, 6H); ESIMS m / z = 333 [M] +
(実施例5)化合物13の合成 Example 5 Synthesis of Compound 13
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 3-((3-アミノプロピル)アミノ)フェノール臭化水素酸塩(2.5g,10mmol)(Firmino,A.D.G.;Goncalves,M.S.T.Tetrahedron Lett.2012,53,4946.),3-アミノフェノール(1.1g,10mmol),及び4-フルオロベンズアルデヒド(710μL,6.7mmol)のメタンスルホン酸(25mL)懸濁液を130℃で24時間撹拌した。次いで,反応混合物を周囲温度まで冷却してから氷水で希釈し,KCOで約pH6に調整した後,濾過した。沈殿物を水で洗浄してからメタノールに溶解し,減圧下で濃縮した。残留物をHPLCで精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),紫色の油状物として150mgの化合物13を得た。収率:4.7%。 3-((3-aminopropyl) amino) phenol hydrobromide (2.5 g, 10 mmol) (Firmino, ADG; Goncalves, MS Tetrahedron Lett. 2012, 53, 4946 .), 3-aminophenol (1.1 g, 10 mmol), and 4-fluorobenzaldehyde (710 μL, 6.7 mmol) in methanesulfonic acid (25 mL) were stirred at 130 ° C. for 24 hours. The reaction mixture was then cooled to ambient temperature, diluted with ice water, adjusted to about pH 6 with K 2 CO 3 and filtered. The precipitate was washed with water, dissolved in methanol, and concentrated under reduced pressure. The residue was purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0) to give 150 mg of compound 13 as a purple oil. Obtained. Yield: 4.7%.
1H-NMR(300 MHz,CD3OD) δ 7.53-7.48(m,2H);7.45-7.39(m,2H),7.31(dd,J=9.1,2.2 Hz,2H),6.93-6.90(m,2H),6.86(dd,J=10.4,2.2 Hz,2H),3.51(t,J=7.1 Hz,2H),3.09(t,J=7.7 Hz,2H),2.12-2.00(m,2H);ESIMS m/z=362[M]+ 1H-NMR (300 MHz, CD3OD) δ 7.53-7.48 (m, 2H); 7.45-7.39 (m, 2H), 7.31 (dd, J = 9.1, 2. 2 Hz, 2H), 6.93-6.90 (m, 2H), 6.86 (dd, J = 10.4, 2.2 Hz, 2H), 3.51 (t, J = 7.1) Hz, 2H), 3.09 (t, J = 7.7 Hz, 2H), 2.12-2.00 (m, 2H); ESIMS m / z = 362 [M] +
(実施例6)化合物14の合成 Example 6 Synthesis of Compound 14
 化合物13(20mg,42μmol)の乾燥DMF(600μL)溶液に,2-メトキシ酢酸(3.8mg,42μmol),HATU(19mg,54μmol),HOBT(7mg,54μmol),およびDIPEA(20mg,155μmol)を添加した。反応混合物を室温で3時間撹拌した。反応終了後,混合物をメタノールで希釈し,HPLCで精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),紫色の油状物として8.8 mgの化合物14を得た。収率:38.3%。 To a solution of compound 13 (20 mg, 42 μmol) in dry DMF (600 μL), 2-methoxyacetic acid (3.8 mg, 42 μmol), HATU (19 mg, 54 μmol), HOBT (7 mg, 54 μmol), and DIPEA (20 mg, 155 μmol) were added. Added. The reaction mixture was stirred at room temperature for 3 hours. After completion of the reaction, the mixture was diluted with methanol and purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0). 8.8 mg of compound 14 was obtained as an oil. Yield: 38.3%.
 1H-NMR(300 MHz,CD3OD) δ 7.52-7.48(m,2H);7.44-7.38(m,2H),7.29(dd,J=9.1,1.1 Hz,2H),6.88-6.82(m,4H),3.89(s,2H),3.44-3.33(m,7H),1.87-1.97(m,2H);ESIMS m/z=434[M]+ 1H-NMR (300 MHz, CD3OD) δ 7.52-7.48 (m, 2H); 7.44-7.38 (m, 2H), 7.29 (dd, J = 9.1, 1. 1 Hz, 2H), 6.88-6.82 (m, 4H), 3.89 (s, 2H), 3.44-3.33 (m, 7H), 1.87-1.97 (m , 2H); ESIMS m / z = 434 [M] +
(実施例7)化合物15の合成 Example 7 Synthesis of Compound 15
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 化合物15は既に報告された方法により合成した(Hirata,N.ら,M.Cell Rep(2014)6,1165.)。紫色の油状物。収率:2.4%。 Compound 15 was synthesized by the method already reported (Hirata, N. et al., M. Cell Rep (2014) 6, 1165.). Purple oil. Yield: 2.4%.
1H-NMR(600 MHz,acetic acid-d4) δ 7.51(dd,J=8.9,5.5 Hz,2H),7.40(dd,J=8.9,8.9 Hz,2H),7.31(d,J=8.9 Hz,2H),6.98-6.93(m,4H),3.40(m,2H),3.04(m,2H),1.74-1.67(m,2H),1.44-1.32(m,14H);ESIMS m/z=460[M]+ 1H-NMR (600 MHz, acetic acid-d4) δ 7.51 (dd, J = 8.9, 5.5 Hz, 2H), 7.40 (dd, J = 8.9, 8.9 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H), 6.98-6.93 (m, 4H), 3.40 (m, 2H), 3.04 (m, 2H), 1.74-1.67 (m, 2H), 1.44-1.32 (m, 14H); ESIMS m / z = 460 [M] +
(複合体16~18の合成) (Synthesis of complexes 16-18)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(実施例8)複合体16の合成 Example 8 Synthesis of Complex 16
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 化合物13(18mg,37μmol)の乾燥DMF(600μl)溶液に,C16-1(Kamal,A.;Mallareddy,A.;Janaki Ramaiah,M.;Pushpavalli,S.N.;Suresh,P.;Kishor,C.;Murty,J.N.;Rao,N.S.;Ghosh,S.;Addlagatta,A.;Pal-Bhadra,M.Eur.J.Med.Chem.2012,56,166.)(14mg,37μmol),HATU(16mg,41μmol),HOBT(6mg,41μmol),およびDIPEA(16mgを,124μmol)を添加した。反応混合物を室温で3時間撹拌した。反応終了後,混合物をメタノールで希釈し,HPLCにより精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),紫色の油状物として14mgの複合体16を得た。収率:44.4%。 To a solution of compound 13 (18 mg, 37 μmol) in dry DMF (600 μl), C16-1 (Kamal, A .; Mallareddy, A .; Janaki Ramaiah, M .; Pushpavalli, SN; Suresh, P .; Kishor, Raty, NS; Ghosh, S .; Addlagata, A .; Pal-Bhadra, M. Eur. J. Med. Chem. 2012, 56, 166.) (14 mg 37 μmol), HATU (16 mg, 41 μmol), HOBT (6 mg, 41 μmol), and DIPEA (16 mg, 124 μmol) were added. The reaction mixture was stirred at room temperature for 3 hours. After completion of the reaction, the mixture was diluted with methanol and purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0). 14 mg of complex 16 was obtained as an oil. Yield: 44.4%.
1H-NMR(300 MHz,CD3OD) δ7.50-7.37(m,4H),7.27(d,J=9.1 Hz,1H),7.24-7.15(m,1H),6.92(s,2H),6.89-6.82(m,3H),6.78(dd,J=8.2,2.2 Hz,2H),6.50-6.43(m,4H),4.35(s,2H),3.83(s,3H),3.69(s,3H),3.59(s,6H),3.41-3.34(m,4H),1.94-1.89(m,2H);ESIMS m/z=718[M]+;HRMS(FAB) calcd for[M]+ m/z=718.2923,found 718.2946. 1H-NMR (300 MHz, CD3OD) δ 7.50-7.37 (m, 4H), 7.27 (d, J = 9.1 Hz, 1H), 7.24-7.15 (m, 1H) 6.92 (s, 2H), 6.89-6.82 (m, 3H), 6.78 (dd, J = 8.2, 2.2 Hz, 2H), 6.50-6.43. (M, 4H), 4.35 (s, 2H), 3.83 (s, 3H), 3.69 (s, 3H), 3.59 (s, 6H), 3.41-3.34 ( m, 4H), 1.94-1.89 (m, 2H); ESIMS m / z = 718 [M] +; HRMS (FAB) calcd for [M] + m / z = 718.923, found 718. 2946.
(実施例9)複合体17の合成 Example 9 Synthesis of Complex 17
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 SN38(30mg,76μmol),tert-ブチルクロロ酢酸(46mg,307mmol),およびDIPEA(65mg,504μmol)のDMF(1.5mL)懸濁液を70℃で48時間撹拌した。溶媒を真空除去し,残留物をフラッシュカラム(DCM:メタノール=20:1)により精製して,黄色固体として30mgのC17-1を得た。C17-1(11mg,22μmol)のDCM(500μL)溶液に,トリフルオロ酢酸(500μl)を滴下した。反応混合物を室温で一晩撹拌した後,メタノールで希釈し,HPLCで精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),黄色固体として5.5mgのC17-2を得た。2ステップの収率:43.3%。 A suspension of SN38 (30 mg, 76 μmol), tert-butylchloroacetic acid (46 mg, 307 mmol), and DIPEA (65 mg, 504 μmol) in DMF (1.5 mL) was stirred at 70 ° C. for 48 hours. The solvent was removed in vacuo and the residue was purified by flash column (DCM: methanol = 20: 1) to give 30 mg of C17-1 as a yellow solid. Trifluoroacetic acid (500 μl) was added dropwise to a solution of C17-1 (11 mg, 22 μmol) in DCM (500 μL). The reaction mixture was stirred at room temperature overnight then diluted with methanol and purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0), 5.5 mg of C17-2 was obtained as a yellow solid. 2-step yield: 43.3%.
1H-NMR(300 MHz,CD3OD) δ 7.99(d,J=9.1 Hz,1H),7.54(s,1H),7.49(dd,J=9.4,2.8 Hz,1H),7.34(d,J=2.5 Hz,1H),5.55(d,J=16 Hz,1H),5.35(d,J=16 Hz,1H),5.16(s,2H),4.86(s,2H),3.14(q,J=7.7 Hz,2H),1.94(q,J=7.1 Hz,2H),1.36(t,J=7.4 Hz,3H),1.00(t,J=7.4 Hz,3H);ESIMS m/z=451[M+H]+ 1H-NMR (300 MHz, CD3OD) δ 7.9 (d, J = 9.1 Hz, 1H), 7.54 (s, 1H), 7.49 (dd, J = 9.4, 2.8) Hz, 1H), 7.34 (d, J = 2.5 Hz, 1H), 5.55 (d, J = 16 Hz, 1H), 5.35 (d, J = 16 Hz, 1H), 5 .16 (s, 2H), 4.86 (s, 2H), 3.14 (q, J = 7.7 Hz, 2H), 1.94 (q, J = 7.1 Hz, 2H), 1 .36 (t, J = 7.4 Hz, 3H), 1.00 (t, J = 7.4 Hz, 3H); ESIMS m / z = 451 [M + H] +
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 化合物13(10mg,21μmol)の乾燥DMF(600μl)溶液に,C17-2(12mg,21μmol),HATU(8.8mg,23μmol),HOBT(4mg,23μmol),及びDIPEA(13.5mg,105μmol)を添加した。反応混合物を室温で3時間撹拌した。反応終了後,混合物をメタノールで希釈し,HPLCにより精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),紫色の油状物として5mgの複合体17を得た。収率:26.2%。 To a solution of compound 13 (10 mg, 21 μmol) in dry DMF (600 μl), C17-2 (12 mg, 21 μmol), HATU (8.8 mg, 23 μmol), HOBT (4 mg, 23 μmol), and DIPEA (13.5 mg, 105 μmol) Was added. The reaction mixture was stirred at room temperature for 3 hours. After completion of the reaction, the mixture was diluted with methanol and purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0). 5 mg of complex 17 was obtained as an oil. Yield: 26.2%.
1H-NMR(300 MHz,CD3OD) δ 8.03(d,J=9.1 Hz,1H),7.57(d,J=9.1 Hz,2H),7.38(brs,4H),7.28(s,2H),7.09(d,J=9.3 Hz,2H),6.67(d,J=8.8 Hz,2H),6.55(d,J=1.7 Hz,2H),5.42(brs,1H),5.26(brs,1H),5.16-5.05(m,2H),4.83(s,2H),3.64(brs,2H),3.13-2.85(m,6H),1.93(brs,4H),1.38(t,J=7.4 Hz,3H),0.89(brs,3H);ESIMS m/z=794[M]+;HRMS(FAB) calcd for[M]+m/z=794.2985,found 794.2962. 1H-NMR (300 MHz, CD3OD) δ 8.03 (d, J = 9.1 Hz, 1H), 7.57 (d, J = 9.1 Hz, 2H), 7.38 (brs, 4H) , 7.28 (s, 2H), 7.09 (d, J = 9.3 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 1.7 Hz, 2H), 5.42 (brs, 1H), 5.26 (brs, 1H), 5.16-5.05 (m, 2H), 4.83 (s, 2H), 3. 64 (brs, 2H), 3.13-2.85 (m, 6H), 1.93 (brs, 4H), 1.38 (t, J = 7.4 Hz, 3H), 0.89 (brs) , 3H); ESIMS m / z = 794 [M] +; HRMS (FAB) calcd for [M] + m / z = 794.2985, fou d 794.2962.
(実施例10)複合体18の合成 Example 10 Synthesis of Complex 18
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物13(30mg,63μmol)の乾燥DMF(600μL)溶液に,クロロ酢酸(6mg,63μmol),HATU(26.3mg,69μmol),HOBT(9.4mg,71μmol),及びDIPEA(26.7mg,207μmol)を添加した。反応混合物を室温で3時間撹拌した。反応終了後,混合物をメタノノールで希釈し,HPLC(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0)で精製し,紫色の油状物として12mgのC18-1を得た。収率:34.6%。 To a solution of compound 13 (30 mg, 63 μmol) in dry DMF (600 μL), chloroacetic acid (6 mg, 63 μmol), HATU (26.3 mg, 69 μmol), HOBT (9.4 mg, 71 μmol), and DIPEA (26.7 mg, 207 μmol). ) Was added. The reaction mixture was stirred at room temperature for 3 hours. After completion of the reaction, the mixture was diluted with methanol and purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0). 12 mg of C18-1 was obtained as an oil. Yield: 34.6%.
 1H-NMR(300 MHz,CD3OD) δ 7.56-7.48(m,2H),7.44-7.38(m,2H),7.29(dd,J=9.1,2.5 Hz,2H),6.89-6.82(m,4H),4.06(s,2H),3.49-3.32(m,4H),1.95-1.91(m,2H);ESIMS m/z=438[M]+ 1H-NMR (300 MHz, CD3OD) δ 7.56-7.48 (m, 2H), 7.44-7.38 (m, 2H), 7.29 (dd, J = 9.1, 2. 5 Hz, 2H), 6.89-6.82 (m, 4H), 4.06 (s, 2H), 3.49-3.32 (m, 4H), 1.95-1.91 (m , 2H); ESIMS m / z = 438 [M] +
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
C18-1(12mg,22μmol),ミトキサントロン二塩酸塩(22.8mg,44μmol),およびDIPEA(56.4mgを,440μmol)のDMF(300μL)懸濁液を40℃で24時間撹拌した。次いで,反応混合物を周囲温度に冷却し,メタノールで希釈し,HPLCにより精製し(Inertsil ODS-3,メタノール:0.1%(v/v),TFA-HO=0:1~1:0),濃い紫色の油状物として,9.9mgの複合体18を得た。収率:46.9%。 A suspension of C18-1 (12 mg, 22 μmol), mitoxantrone dihydrochloride (22.8 mg, 44 μmol), and DIPEA (56.4 mg, 440 μmol) in DMF (300 μL) was stirred at 40 ° C. for 24 hours. The reaction mixture was then cooled to ambient temperature, diluted with methanol and purified by HPLC (Inertsil ODS-3, methanol: 0.1% (v / v), TFA-H 2 O = 0: 1 to 1: 0), 9.9 mg of complex 18 was obtained as a dark purple oil. Yield: 46.9%.
1H-NMR(300 MHz,CD3OD) δ 7.48-7.35(m,6H),7.16-6.94(m,4H),6.74-6.66(m,2H),6.49(s,1H),6.42(s,1H),4.13(s,2H),3.97(s,2H),3.92(brt,J=4.7 Hz,2H),3.82-3.79(m,6H),3.72(brs,2H),3.53(brs,2H),3.47(brs,2H),3.38(brs,2H),1.93(brs,2H);ESIMS m/z=846[M]+;HRMS(FAB) calcd for[M]+ m/z=846.3621,found 846.3611. 1H-NMR (300 MHz, CD3OD) δ 7.48-7.35 (m, 6H), 7.16-6.94 (m, 4H), 6.74-6.66 (m, 2H), 6 .49 (s, 1H), 6.42 (s, 1H), 4.13 (s, 2H), 3.97 (s, 2H), 3.92 (brt, J = 4.7 Hz, 2H) 3.82-3.79 (m, 6H), 3.72 (brs, 2H), 3.53 (brs, 2H), 3.47 (brs, 2H), 3.38 (brs, 2H), 1.93 (brs, 2H); ESIMS m / z = 846 [M] +; HRMS (FAB) calcd for [M] + m / z = 846.33621, found 846.3611.
(実施例11)細胞障害性抗がん剤のトランスポーター選択性比較
 細胞障害性抗がん剤として,SN38,Camptothecin,9-Aminocamptothecin,9-nitrocamptothecin,7-ethylcamptothecin,Doxorubicin,Mitoxantrone,Etoposide,Mitomycin C,5-FUdR,Dactinomycin,Taxol,及びVinblastinを用いた。KB3-1及びKB3-1由来細胞(KB/ABCB1,KB/ABCC1,及びKB/ABCG2細胞を用いて,上述の(細胞ベースアッセイ)を行い,各化合物のIC50値を求めた(n≧2)。
Example 11 Comparison of Transporter Selectivity of Cytotoxic Anticancer Agents As cytotoxic anticancer agents, SN38, Camptothecin, 9-Aminocamptothecin, 9-nitrocamptothecin, 7-ethylcamptothecin, Doxorubicinine, Mitoxanthropnectin C, 5-FUdR, Dactinomycin, Taxol, and Vinblastin were used. The above (cell-based assay) was performed using KB3-1 and KB3-1-derived cells (KB / ABCB1, KB / ABCC1, and KB / ABCG2 cells), and IC50 values of each compound were determined (n ≧ 2) .
 結果を表2に示す。KB3-1は薬剤耐性のないコントロールを示す。7-ethylcamptothecin及びMitomycin Cに対しては,いずれの細胞も耐性を示さなかった。Doxorubicin,Dactinomycin,Taxol,及びVinblastinは,KB/ABCB1が耐性を示した。SN38,9-Aminocamptothecin,9-nitrocamptothecin,及び5-FUdRは,KB/ABCG2が耐性を示した。Camptothecin及びEtoposideは,KB/ABCB1及びKB/ABCC1が耐性を示した。Mitoxantroneは,KB/ABCC1及びKB/ABCG2が耐性を示した。B/ABCB1及びKB/ABCG2が耐性を示す化合物は見出せなかった。 The results are shown in Table 2. KB3-1 represents a control without drug resistance. None of the cells showed resistance to 7-ethylcamptothecin and Mitomycin C. For Doxorubicin, Dactinomycin, Taxol, and Vinblastin, KB / ABCB1 showed resistance. SN38, 9-Aminocamptothecin, 9-nitrocamptothecin, and 5-FUdR were resistant to KB / ABCG2. Camptothecin and Etoposide were resistant to KB / ABCB1 and KB / ABCC1. Mitoxantrone was resistant to KB / ABCC1 and KB / ABCG2. No compound was found that B / ABCB1 and KB / ABCG2 are resistant to.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
(実施例12)KP-1の構造活性相関
 KP-1における結合可能な部位を調べるため,構造活性相関を調べた。最初にKP-1のベンゼン「ヘッド」及びキサントン「アーム」上に異なる置換機を有するKP-1誘導体を上述の方法に従って15種類合成し(化合物1~15),それらの蛍光スペクトル(λex及びλem)を測定した。次いで,化合物1~15のABCトランスポーターに対する選択性を4種類の細胞株(KB3-1,KB/ABCB1,KB/ABCC1,およびKB/ABCG2)の染色パターンにより評価した。
(Example 12) Structure-activity relationship of KP-1 In order to examine the sites capable of binding in KP-1, the structure-activity relationship was examined. First, 15 kinds of KP-1 derivatives having different substituents on the benzene “head” and xanthone “arm” of KP-1 were synthesized according to the above-described method (compounds 1 to 15), and their fluorescence spectra (λ ex and λ em ) was measured. Subsequently, the selectivity of compounds 1 to 15 for ABC transporter was evaluated by staining patterns of four types of cell lines (KB3-1, KB / ABCB1, KB / ABCC1, and KB / ABCG2).
 化合物1~15の蛍光スペクトルを表3に示す。また,化合物1~15のABCトランスポーターに対する選択性を図1に示す。化合物9および化合物11を除くKP-1誘導体は,親KB3-1細胞を明確に蛍光染色し,KB/ABCB1細胞をほとんど染色しなかった。このことから,ベンゼン「ヘッド」及びキサントン「アーム」の修飾はKP-1のABCB1に対する選択性を損なわないことが示された。ABCG2に対する選択性は,ABCB1と比較して構造変換に対してより敏感であり,特にベンゼン「ヘッド」上の置換基の影響を受けた。化合物1及び化合物2は,KP-1のようなABCG2に媒介された流出を示さず,ABCG2選択性のためにパラ置換基が重要であることを示した塩素原子(Cl)(化合物3),臭素原子(Br)(化合物4),水素原子(H)(化合物5),プロピル基(化合物6),または水酸基(化合物7)でフッ素原子(F)を置換することにより,ABCG2に対する選択性が様々な程度に減少した。アミン「アーム」の修飾は,選択性への影響はより小さかった。同様に,KP-1,化合物12,及び化合物14は,ABCB1とABCG2の両方に対して優れた選択性を示し,ABCC1に対しては低い選択性を示した。化合物14を,細胞障害性抗がん剤との結合のために選択した。 The fluorescence spectra of compounds 1 to 15 are shown in Table 3. In addition, the selectivity of compounds 1 to 15 for ABC transporter is shown in FIG. The KP-1 derivatives excluding Compound 9 and Compound 11 clearly stained the parent KB3-1 cells and hardly stained the KB / ABCB1 cells. This indicates that the modification of benzene “head” and xanthone “arm” does not impair the selectivity of KP-1 for ABCB1. The selectivity for ABCG2 was more sensitive to structural transformation compared to ABCB1, and was particularly affected by substituents on the benzene “head”. Compound 1 and Compound 2 did not show ABCG2-mediated efflux such as KP-1 and showed that the para substituent was important for ABCG2 selectivity (Cl) (compound 3), By substituting the fluorine atom (F) with a bromine atom (Br) (compound 4), a hydrogen atom (H) (compound 5), a propyl group (compound 6), or a hydroxyl group (compound 7), the selectivity for ABCG2 is improved. Decreased to various degrees. Modification of the amine “arm” had a lesser effect on selectivity. Similarly, KP-1, Compound 12, and Compound 14 showed excellent selectivity for both ABCB1 and ABCG2, and low selectivity for ABCC1. Compound 14 was selected for binding with cytotoxic anticancer agents.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(実施例13)複合体16の細胞障害性及びABCトランスポーター選択性
 化合物14と細胞障害性抗がん剤であるコンブレタスタチンA-4(CA4)との結合物(複合体16)が,KP-1のABC輸送体選択性を維持するか否かを,化合物14とCA4を結合させて調べた。この天然に存在するチューブリン阻害剤は,高度にABCB1およびABCG2を発現する細胞株に対して効果的であり,このことはCA4が,ABCB1またはABCG2のいずれかの基質ではないことを示している(L.M.Greeneら,J Pharmacol Exp Ther(2010)335:302-313)。化合物16の構造を図2Aに示す。化合物16のチューブリン重合阻害能を確認するため,チューブリン重合アッセイを行った。また,複合体16のABCトランスポーター選択性を調べるため,細胞生存率アッセイと蛍光イメージングアッセイの2種類の細胞ベースのアッセイを同時に行った。
(Example 13) Cytotoxicity and ABC transporter selectivity of complex 16 A conjugate (complex 16) of compound 14 and combretastatin A-4 (CA4), which is a cytotoxic anticancer agent, Whether or not the ABC transporter selectivity of KP-1 was maintained was examined by binding compound 14 and CA4. This naturally occurring tubulin inhibitor is highly effective against cell lines that highly express ABCB1 and ABCG2, indicating that CA4 is not a substrate for either ABCB1 or ABCG2. (LM Greene et al., J Pharmacol Exp Ther (2010) 335: 302-313). The structure of compound 16 is shown in FIG. 2A. In order to confirm the ability of Compound 16 to inhibit tubulin polymerization, a tubulin polymerization assay was performed. In addition, in order to examine the ABC transporter selectivity of the complex 16, two types of cell-based assays, a cell viability assay and a fluorescence imaging assay, were performed simultaneously.
 チューブリン重合アッセイでは,CA4がチューブリン重合を阻害するのに対し,化合物14は,30μMまでの濃度でチューブリン重合の検出可能な阻害を示さなかった。化合物14とは対照的に,複合体16はチューブリン重合を阻害した。 In the tubulin polymerization assay, CA4 inhibited tubulin polymerization, whereas compound 14 did not show detectable inhibition of tubulin polymerization at concentrations up to 30 μM. In contrast to compound 14, complex 16 inhibited tubulin polymerization.
 細胞生存率アッセイにおいて,複合体16は化合物14よりも有意に優れた細胞障害性を示した。このことは複合体16の毒性がCA4部分によるものであることを示唆している。複合体16はABCB1に対する基質としての性質は維持したものの,ABCG2に対する選択性を維持することはできなかった(図2B)。蛍光イメージングアッセイの結果は,細胞生存率アッセイの結果と一致した(図2C)。複合体16はKB/ABCG2細胞を染色した一方,KB/ABCB1細胞からは排出された。これらの結果から,化合物14とCA4の複合体は,ABCB1に対する選択性を維持するが,ABCG2への選択性を維持しないことが示唆された。 In the cell viability assay, complex 16 showed significantly superior cytotoxicity than compound 14. This suggests that the toxicity of complex 16 is due to the CA4 moiety. Although the complex 16 maintained the property as a substrate for ABCB1, it could not maintain the selectivity for ABCG2 (FIG. 2B). The results of the fluorescence imaging assay were consistent with the results of the cell viability assay (FIG. 2C). Complex 16 stained KB / ABCG2 cells, but was excreted from KB / ABCB1 cells. From these results, it was suggested that the complex of compound 14 and CA4 maintains selectivity for ABCB1, but does not maintain selectivity for ABCG2.
 同様に,CA4以外の4種類の細胞障害性抗がん剤と化合物14との複合体を合成して細胞生存率アッセイと蛍光イメージングアッセイを行ったが,結果は複合体16と同様であった。 Similarly, a cell viability assay and a fluorescence imaging assay were performed by synthesizing a complex of four types of cytotoxic anticancer agents other than CA4 and compound 14, and the result was the same as that of complex 16. .
(実施例14)複合体17の細胞障害性及びABCトランスポーター選択性
 ABCG2は,一般に,ABCB1よりも狭い排出基質プロファイルを持つと考えられている(J.J.Strouseら,Anal Biochem(2013)437:77-87)。実施例13におけるCA4の代わりにABCG2選択的細胞障害性薬剤を用いることにより,得られる複合体がABCB1およびABCG2の両方の基質となるか調べた。いくつかの細胞障害性抗がん剤が,ABCG2の基質として報告されている(L.Doyleら,Oncogene(2003)22:7340-7358)。この中から長い使用暦を持つ抗癌剤SN38を選択して複合体17を合成した(図3A)。複合体17のABCトランスポーター選択性を調べるため,細胞生存率アッセイと蛍光イメージングアッセイの2種類の細胞ベースのアッセイを同時に行った。
Example 14 Cytotoxicity and ABC Transporter Selectivity of Complex 17 ABCG2 is generally thought to have a narrower efflux substrate profile than ABCB1 (JJ Strouse et al., Anal Biochem (2013)). 437: 77-87). By using an ABCG2 selective cytotoxic agent instead of CA4 in Example 13, it was examined whether the resulting complex would be a substrate for both ABCB1 and ABCG2. Several cytotoxic anticancer agents have been reported as substrates for ABCG2 (L. Doyle et al., Oncogene (2003) 22: 7340-7358). The anticancer agent SN38 having a long use calendar was selected from these, and the complex 17 was synthesized (FIG. 3A). To examine the ABC transporter selectivity of Complex 17, two cell-based assays, a cell viability assay and a fluorescence imaging assay, were performed simultaneously.
 細胞生存率アッセイにおいて,以前に報告されたように,SN38に対してKB/ABCG2細胞は抵抗性を示したが,SN38はKB/ABCB1およびKB/ABCC1細胞において強力な細胞障害性を示した。複合体17は,SN38と比較してわずかに細胞障害性は弱まったが,KB/ABCB1細胞及びKB/ABCG2細胞の両方において抵抗性が確認された(図3B)。 In the cell viability assay, as previously reported, KB / ABCG2 cells showed resistance to SN38, but SN38 showed strong cytotoxicity in KB / ABCB1 and KB / ABCC1 cells. Complex 17 was slightly less cytotoxic than SN38, but resistance was confirmed in both KB / ABCB1 and KB / ABCG2 cells (FIG. 3B).
 KP-1と同様に,複合体17の蛍光強度は,KB3-1細胞に比べKB/ABCB1細胞およびKB/ABCG2細胞において有意に低かった。蛍光は,ABCB1の選択的阻害剤(シクロスポリンA,10μM)又はABCG2の選択的阻害剤(Ko143,10μM)で処理することにより回復した(図3C)。これらの結果は,複合体17がABCB1およびABCG2の両方に対する優れた細胞障害性基質であることを示している。 As with KP-1, the fluorescence intensity of complex 17 was significantly lower in KB / ABCB1 cells and KB / ABCG2 cells than in KB3-1 cells. Fluorescence was restored by treatment with a selective inhibitor of ABCB1 (cyclosporin A, 10 μM) or a selective inhibitor of ABCG2 (Ko143, 10 μM) (FIG. 3C). These results indicate that complex 17 is an excellent cytotoxic substrate for both ABCB1 and ABCG2.
(実施例15)複合体18の細胞障害性及びABCトランスポーター選択性
 化合物14とABCG2選択的細胞障害性薬剤との組み合わせが,ABCB1およびABCG2の両方に対する細胞障害性基質となりうることをさらに検証するため,化合物14と別のABCG2選択的細胞障害性薬剤ミトキサントロンとを結合させて,複合体18(図5A)を合成した。複合体18のABCトランスポーター選択性を調べるため,細胞生存率アッセイと蛍光イメージングアッセイの2種類の細胞ベースのアッセイを同時に行った。
Example 15: Cytotoxicity and ABC transporter selectivity of complex 18 Further verify that the combination of Compound 14 and ABCG2 selective cytotoxic agent can be a cytotoxic substrate for both ABCB1 and ABCG2 Therefore, Compound 14 (FIG. 5A) was synthesized by combining compound 14 with another ABCG2-selective cytotoxic agent mitoxantrone. To examine the ABC transporter selectivity of Complex 18, two cell-based assays, a cell viability assay and a fluorescence imaging assay, were performed simultaneously.
 細胞生存率および蛍光画像解析の結果,ミトキサントロンはABCC1とABCG2に対して優れた選択性を有することを示すが,ABCB1への選択性が低いことが示された。対照的に,複合体18は,ABCB1およびABCG2の両方の基質であったが,ABCC1の基質ではなかった(図4B,C)。 As a result of cell viability and fluorescence image analysis, it was shown that mitoxantrone has excellent selectivity for ABCC1 and ABCG2, but low selectivity for ABCB1. In contrast, complex 18 was a substrate for both ABCB1 and ABCG2, but not ABCC1 (FIG. 4B, C).
(実施例16)複合体17及び複合体18の未分化細胞標識能及び除去能
 複合体17と複合体18が,細胞混合物中のhiPSCsを標識し,排除することができるかどうかを確認した。hiPSCsは,過増殖すると細胞がドーナツ状のコロニーを形成する。コロニーの中央部は分化した細胞を表す(N.Hirataら,Cell Rep(2014)6:1165-1174)。まず,ドーナツ状のコロニーを形成したhiPSCsを複合体17(1μM)又は複合体18(10μM)で処理し,直後に共焦点顕微鏡で観察した。
(Example 16) Undifferentiated cell labeling ability and removal ability of complex 17 and complex 18 It was confirmed whether complex 17 and complex 18 can label and eliminate hiPSCs in the cell mixture. When hiPSCs overgrow, cells form donut-shaped colonies. The central part of the colony represents differentiated cells (N. Hirata et al., Cell Rep (2014) 6: 1165-1174). First, hiPSCs in which donut-shaped colonies were formed were treated with the complex 17 (1 μM) or the complex 18 (10 μM), and observed immediately afterwards with a confocal microscope.
 次に,SNLフィーダー細胞上で部分的に分化したhiPSCs,又はhiPSCsを,複合体17(5μM)または複合体18(5μM)存在下で72時間培養した。未分化hiPSCsは,多能性マーカーであるアルカリフォスファターゼ(ALP)活性に比色染色で検出した(M.D.O’Connorら,Stem Cells(2008)26:1109-1116)。未分化細胞の除去を確認するため,各複合体又はDMSOコントロール存在下で培養された細胞における,3種類の代表的な多分化能マーカー(J.Caiら,Stem Cells(2006)24:516-530;M.Stadtfeldら,Genes Dev(2010)24:2239-2263)の発現レベルを定量的ポリメラーゼ連鎖反応(qPCR)で量った。nanog,sox2,およびoct3の/4の相対的な発現レベルは,ハウスキーピング遺伝子であるGAPDHにより正規化した。 Next, hiPSCs or hiPSCs partially differentiated on SNL feeder cells were cultured for 72 hours in the presence of complex 17 (5 μM) or complex 18 (5 μM). Undifferentiated hiPSCs were detected by colorimetric staining for alkaline phosphatase (ALP) activity which is a pluripotency marker (MD O'Connor et al., Stem Cells (2008) 26: 1109-1116). In order to confirm the removal of undifferentiated cells, three types of representative pluripotency markers (J. Cai et al., Stem Cells (2006) 24: 516-) in cells cultured in the presence of each complex or DMSO control. 530; M. Stadtfeld et al., Genes Dev (2010) 24: 2239-2263) was measured by quantitative polymerase chain reaction (qPCR). The relative expression levels of nanog, sox2, and oct3 / 4 were normalized by the housekeeping gene GAPDH.
 KP-1と同様に,複合体17および複合体18は,分化細胞よりも未分化細胞を強く
蛍光標識した(図5A)。また,複合体17又は複合体18存在下での培養により,ALP-陽性細胞が除去されたが,ALP-陰性細胞はほとんど影響を受けなかった(図5B)。hiPSCsが細胞混合物から除去された。DMSO単独で処理した細胞混合物は,nanog(0.7%),oct3/4(6.7%),およびsox2(0.4%)を比較的高く発現した。複合体17または複合体18存在下での培養により,nanogの発現レベルを0.1%に,oct3/4の発現レベルを0.8%に,かつsox2の発現レベルを0.03%に減少させ(図5C,5D,5E),多能性細胞の選択的な除去と一致した。
Similar to KP-1, Complex 17 and Complex 18 fluorescently labeled undifferentiated cells more strongly than differentiated cells (FIG. 5A). In addition, ALP-positive cells were removed by culturing in the presence of complex 17 or complex 18, but ALP-negative cells were hardly affected (FIG. 5B). hiPSCs were removed from the cell mixture. The cell mixture treated with DMSO alone expressed relatively high nanog (0.7%), oct3 / 4 (6.7%), and sox2 (0.4%). Culture in the presence of Complex 17 or Complex 18 reduces nanog expression level to 0.1%, oct3 / 4 expression level to 0.8%, and sox2 expression level to 0.03% (FIGS. 5C, 5D, 5E), consistent with selective removal of pluripotent cells.
(実施例17)複合体17の分化細胞及び未分化細胞除去能
 2種類のhiPSCクローン,201B7及び253G1と比較した,5種類の異なるヒト体初代細胞に対する複合体17の効果を比較した。また,SN38自体がhiPSCsに対して選択的であるかどうかを調べるために,SN38単独と複合体17の種々のヒト初代細胞及びhiPSCsに対する効果を比較した。
(Example 17) The ability of complex 17 to remove differentiated cells and undifferentiated cells The effect of complex 17 on five different human primary cells compared to two kinds of hiPSC clones, 201B7 and 253G1, was compared. In addition, in order to examine whether SN38 itself is selective for hiPSCs, the effects of SN38 alone and complex 17 on various human primary cells and hiPSCs were compared.
 肝細胞(代謝機能),前立腺上皮(生殖器官),脳微小血管細胞(バリア機能),アストロサイト(中枢神経システム),および副腎微小血管細胞(分泌機能)は複合体17に対して抵抗性(IC50>10μM)を示したが,2種類のhiPSC細胞株は高感度で反応した。(201B7:IC50=0.2μM;253G1:IC50=0.4μM)(図5F)。シクロスポリン(ABCB1選択的阻害剤)またはKo143(ABCG2選択的阻害剤)の添加により,抵抗性を示した体細胞に対する複合体17の細胞障害性を増加させた(図6)。培地へのトランスポーター阻害剤の添加は,複合体17のヒト初代体細胞に対する細胞障害性を復活させたが,この細胞障害性は完全なものではなかった。このことは,複合体17がABCトランスポーター媒介排出以外のメカニズムで選択的細胞障害性を発揮していることを示唆している。高レベルのABCトランスポーターを発現することが知られている(N.Hirataら,Cell Rep(2014)6:1165-1174),肝細胞,前立腺上皮細胞,および脳微小血管細胞は,シクロスポリンまたはKo143の存在下でも抵抗性を維持していた(図6)。 Hepatocytes (metabolic function), prostate epithelium (genital organs), brain microvascular cells (barrier function), astrocytes (central nervous system), and adrenal microvascular cells (secretory function) are resistant to complex 17 ( IC50> 10 μM), but the two hiPSC cell lines reacted with high sensitivity. (201B7: IC50 = 0.2 μM; 253G1: IC50 = 0.4 μM) (FIG. 5F). Addition of cyclosporine (ABCB1 selective inhibitor) or Ko143 (ABCG2 selective inhibitor) increased the cytotoxicity of complex 17 against somatic cells that showed resistance (FIG. 6). Addition of a transporter inhibitor to the medium restored the cytotoxicity of complex 17 to human primary somatic cells, but this cytotoxicity was not complete. This suggests that Complex 17 exhibits selective cytotoxicity by a mechanism other than ABC transporter-mediated excretion. It is known to express high levels of ABC transporters (N. Hirata et al., Cell Rep (2014) 6: 1165-1174), hepatocytes, prostate epithelial cells, and brain microvascular cells are either cyclosporine or Ko143. The resistance was maintained even in the presence of (Fig. 6).
 SN38は,hiPSCsに対して穏やかな選択性を示したが,複合体17ほどの選択性は示さなかった(図7)。SN38の投与量1μMでは,ほぼ完全にiPS細胞を排除し(生存性<5%),ヒト初代細胞の70%以上を排除した。これとは対照的に,複合体17は,10μMでもヒト初代細胞に対してSN38より弱い効果しか示さなかった。これらの結果は,本来SN38はhiPSCsに対して選択的ではあるが,KP-1との結合により選択性が高められることを示唆している。 SN38 showed mild selectivity for hiPSCs, but not as much as complex 17 (FIG. 7). An SN38 dose of 1 μM almost completely eliminated iPS cells (viability <5%) and more than 70% of human primary cells. In contrast, complex 17 showed a weaker effect on human primary cells than SN38 even at 10 μM. These results suggest that SN38 is originally selective for hiPSCs, but the selectivity is enhanced by binding to KP-1.
(実施例18)複合体17のTopoI阻害活性
 SN38が元来有する選択性は,その作用メカニズムに由来する可能性がある。(C.P.Garciaら,Stem Cell Res(2014)12:400-414;O.Momcilovic,PLoS One(2010)5:e13410) SN38はポイソメラーゼI(TopoI)を阻害することによって抗増殖活性を発揮する(B.L.Stakerら,Proc Natl Acad Sci USA(2002)99:15387-15392)。PSCsの多能性と自己再生には高い増殖率が重要であると考えられている(S.Ruizら,Curr Biol(2011)21:45-52)。対照的に,分化細胞は通常,低増殖速度を示し,おそらくこれがある程度のTopoI阻害剤に対する抵抗性を与え得る。複合体17が,TopoIを阻害するかどうかを調べるため,組換えヒトトポイソメラーゼIを使用して,インビトロでの生化学アッセイを行った。
(Example 18) TopoI inhibitory activity of complex 17 The selectivity inherently of SN38 may be derived from its mechanism of action. (C.P. Garcia et al., Stem Cell Res (2014) 12: 400-414; O. Momcilovic, PLoS One (2010) 5: e13410) SN38 exhibits antiproliferative activity by inhibiting poisomerase I (TopoI). (BL Staker et al., Proc Natl Acad Sci USA (2002) 99: 15387-15392). High growth rates are considered important for PSCs pluripotency and self-renewal (S. Ruiz et al., Curr Biol (2011) 21: 45-52). In contrast, differentiated cells usually show a low growth rate, which may possibly confer some resistance to TopoI inhibitors. To examine whether Complex 17 inhibits TopoI, an in vitro biochemical assay was performed using recombinant human topoisomerase I.
 結果を図8に示す。SN38は,10μMでTopoIを阻害した。しかし,複合体17はさらに強くTopoIを阻害した。 The results are shown in FIG. SN38 inhibited TopoI at 10 μM. However, Complex 17 inhibited TopoI more strongly.
(実施例19)複合体17のTopoI阻害活性
 腫瘍を生じやすい未分化細胞が複合体によって除去された後,移植前に細胞試料から複合体を除去する必要がある。その蛍光特性を利用して,複合体17の残存量をモニターした。
(Example 19) TopoI inhibitory activity of complex 17 After the undifferentiated cells that are likely to cause tumors are removed by the complex, it is necessary to remove the complex from the cell sample before transplantation. Using the fluorescence characteristics, the remaining amount of the complex 17 was monitored.
 5μMの複合体17を含む培養培地は,548nmで強い蛍光発光を示した。新鮮な培地で簡単に洗浄した後,蛍光強度は有意に減少して約2%となった。更にもう一度簡単な洗浄を行うことにより,バックグラウンドレベル(培地のみ)まで蛍光が減少した。結合体17または他のKP-1-薬物複合体の蛍光は,得られた細胞サンプル中の細胞障害性試薬のクリアランスを確実にすることにより,将来のアプリケーションにとって利点となる。 The culture medium containing 5 μM complex 17 showed strong fluorescence at 548 nm. After simple washing with fresh medium, the fluorescence intensity decreased significantly to about 2%. Furthermore, a simple wash again reduced the fluorescence to the background level (medium only). The fluorescence of conjugate 17 or other KP-1-drug conjugates will be advantageous for future applications by ensuring clearance of cytotoxic reagents in the resulting cell sample.

Claims (17)

  1.  下記式(I)で表される化合物
    Figure JPOXMLDOC01-appb-C000001

    [式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
      ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
    及びRは,同一又は異なって,それぞれ,水素原子,又はC1~6アルキル基であり,
    Xは,酸素原子,硫黄原子,又はNRであり,
      ここで,Rは,水素原子又はC1~6アルキル基であり,
    Lは,-(CH(NH)(CO)(CH-で表されるリンカー部分を表し,
      ここで,kは3~7の整数を表し,mは0又は1であり,nは0又は1であり,pは0又は1であり,
    Dは,ABCG2選択的細胞障害性物質を表し,
      ここで,ABCG2選択的細胞障害性物質は,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineから選択される物質である]。
    Compound represented by the following formula (I)
    Figure JPOXMLDOC01-appb-C000001

    [Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
    Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
    R 2 and R 3 are the same or different and are each a hydrogen atom or a C1-6 alkyl group,
    X is an oxygen atom, a sulfur atom, or NR 7 ;
    Here, R 7 is a hydrogen atom or a C1-6 alkyl group,
    L represents a linker moiety represented by — (CH 2 ) k (NH) m (CO) n (CH 2 ) p —,
    Here, k represents an integer of 3 to 7, m is 0 or 1, n is 0 or 1, p is 0 or 1,
    D represents ABCG2 selective cytotoxic substance;
    Here, ABCG2 selective cytotoxic agent, SN38, Mitoxantrone, Irinotecan, 9-Aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, a topoisomerase I inhibitor NB- 506 and J-107088, Zidovudine (AZT), and lamivudine].
  2.  下記式(II)で表される,請求項1に記載の化合物
    Figure JPOXMLDOC01-appb-C000002

    [式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
      ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
    Lは,-(CH(NH)(CO)(CH-で表されるリンカー部分を表し,
      ここで,kは3~7の整数を表し,mは0又は1であり,nは0又は1であり,pは0又は1であり,
    Dは,ABCG2選択的細胞障害性物質を表し,
      ここで,ABCG2選択的細胞障害性物質は,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineから選択される物質である]。
    The compound of Claim 1 represented by following formula (II)
    Figure JPOXMLDOC01-appb-C000002

    [Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
    Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
    L represents a linker moiety represented by — (CH 2 ) k (NH) m (CO) n (CH 2 ) p —,
    Here, k represents an integer of 3 to 7, m is 0 or 1, n is 0 or 1, p is 0 or 1,
    D represents ABCG2 selective cytotoxic substance;
    Here, ABCG2 selective cytotoxic agent, SN38, Mitoxantrone, Irinotecan, 9-Aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, a topoisomerase I inhibitor NB- 506 and J-107088, Zidovudine (AZT), and lamivudine].
  3.  Rが,ハロゲン原子又は-OP(O)(OR)(OR)基である,請求項1又は請求項2に記載の化合物。 The compound according to claim 1 or 2, wherein R 1 is a halogen atom or a -OP (O) (OR 5 ) (OR 6 ) group.
  4.  Lが,-(CH(NH)(CO)(CH)-で表されるリンカー部分を表し,ここで,kは3~5の整数を表す,請求項1~請求項3のいずれか1項に記載の化合物。 L represents a linker moiety represented by-(CH 2 ) k (NH) (CO) (CH 2 )-, wherein k represents an integer of 3 to 5. The compound according to any one of the above.
  5.  Dが,トポイソメラーゼ阻害剤であるABCG2選択的細胞障害性物質である,請求項1~請求項4のいずれか1項に記載の化合物。 The compound according to any one of claims 1 to 4, wherein D is an ABCG2-selective cytotoxic substance that is a topoisomerase inhibitor.
  6.  Dが,SN38,又はMitoxantroneである,請求項1~請求項5のいずれか1項に記載の化合物。 6. The compound according to any one of claims 1 to 5, wherein D is SN38 or Mitoxantrone.
  7.  下記のいずれかの式で表される化合物。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004
    A compound represented by any one of the following formulae.
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004
  8.  下記式(Ia)又は(Ib)で表される化合物
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    [式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
      ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
    及びRは,同一又は異なって,それぞれ,水素原子,又はC1~6アルキル基であり,
    Xは,酸素原子,硫黄原子,又はNRであり,
      ここで,Rは,水素原子又はC1~6アルキル基であり,
    kは3~7の整数を表す]。
    Compound represented by the following formula (Ia) or (Ib)
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    [Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
    Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
    R 2 and R 3 are the same or different and are each a hydrogen atom or a C1-6 alkyl group,
    X is an oxygen atom, a sulfur atom, or NR 7 ;
    Here, R 7 is a hydrogen atom or a C1-6 alkyl group,
    k represents an integer of 3 to 7.]
  9.  下記式(IIa)又は(IIb)で表される,請求項8に記載の化合物
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    [式中,Rは,水素原子,ハロゲン原子,C1~6アルキル基,C1~6アルコキシ基,フェニル基,フェニルオキシ基,水酸基,又は-OP(O)(OR)(OR)基であり,
      ここで,R及びRは,同一又は異なって,それぞれ,フェニル基で置換されていても良いC1~6アルキル基を表すか,又は,R及びRは存在せず,
    kは3~7の整数を表す]。
    The compound according to claim 8, which is represented by the following formula (IIa) or (IIb):
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    [Wherein R 1 represents a hydrogen atom, a halogen atom, a C1-6 alkyl group, a C1-6 alkoxy group, a phenyl group, a phenyloxy group, a hydroxyl group, or an —OP (O) (OR 5 ) (OR 6 ) group. And
    Here, R 5 and R 6 are the same or different and each represents a C1-6 alkyl group which may be substituted with a phenyl group, or R 5 and R 6 are not present,
    k represents an integer of 3 to 7.]
  10.  Rが,ハロゲン原子又は-OP(O)(OR)(OR)基である,請求項8又は請求項9に記載の化合物。 The compound according to claim 8 or 9, wherein R 1 is a halogen atom or a -OP (O) (OR 5 ) (OR 6 ) group.
  11.  kが3~5の整数を表す,請求項8~請求項10のいずれか1項に記載の化合物。 The compound according to any one of claims 8 to 10, wherein k represents an integer of 3 to 5.
  12.  請求項8~請求項11のいずれか1項に記載の化合物と,ABCG2選択的細胞障害性物質とを反応させることを備える,請求項1~請求項7のいずれか1項に記載の化合物の合成方法であって,ここで,ABCG2選択的細胞障害性物質が,SN38,Mitoxantrone,Irinotecan,9-Aminocamptothecin,Doxorubicin,Daunorubicin,Epirubicin,Idarubicinol,Flavopiridol,CI1033,BBR3390,Methotrexate,Prazocin,Indolocarbazole,topoisomerase I 阻害剤であるNB-506及びJ-107088,Zidovudine(AZT),及びlamivudineから選択される物質である,方法。 A compound according to any one of claims 1 to 7, comprising reacting the compound according to any one of claims 8 to 11 with an ABCG2-selective cytotoxic substance. a synthetic method, wherein, ABCG2 selective cytotoxic substance, SN38, Mitoxantrone, Irinotecan, 9-aminocamptothecin, Doxorubicin, Daunorubicin, Epirubicin, Idarubicinol, Flavopiridol, CI1033, BBR3390, Methotrexate, Prazocin, Indolocarbazole, topoisomerase I Inhibitors NB-506 and J-107088, Zidovudine (AZT), and la It is a material selected from Ivudine, method.
  13.  幹細胞を分化誘導した細胞集団に請求項1~請求項7のいずれか1項に記載の化合物を未分化細胞が死滅する時間接触させること,及び,残存した請求項1~請求項7のいずれか1項に記載の化合物を洗浄により除去することを含む,幹細胞を分化誘導した後に残存する未分化細胞の除去方法。 The cell population induced to differentiate stem cells is contacted with the compound according to any one of claims 1 to 7 for a period of time during which undifferentiated cells die, and any one of claims 1 to 7 which remains. A method for removing undifferentiated cells remaining after differentiation induction of stem cells, comprising removing the compound according to item 1 by washing.
  14.  幹細胞がiPS細胞である,請求項13に記載の除去方法。 The removal method according to claim 13, wherein the stem cells are iPS cells.
  15.  請求項1~請求項7のいずれか1項に記載の化合物を有効成分として含有する,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与える薬剤。 A drug which selectively damages cells in which the expression of ABCB1 and ABCG2 transporters is suppressed, comprising the compound according to any one of claims 1 to 7 as an active ingredient.
  16.  ABCB1及びABCG2トランスポーターの発現が抑制されている細胞が未分化細胞である,請求項15に記載の薬剤。 The drug according to claim 15, wherein the cells in which expression of ABCB1 and ABCG2 transporter is suppressed are undifferentiated cells.
  17.  請求項1~請求項7のいずれか1項に記載の化合物を含有する,ABCB1及びABCG2トランスポーターの発現が抑制されている細胞に選択的に障害を与えるためのキット。 A kit for selectively damaging a cell in which expression of ABCB1 and ABCG2 transporter is suppressed, comprising the compound according to any one of claims 1 to 7.
PCT/JP2017/031165 2016-08-31 2017-08-30 Compound for removing human pluripotent stem cells WO2018043567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018537349A JPWO2018043567A1 (en) 2016-08-31 2017-08-30 Compounds for removing human pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169721 2016-08-31
JP2016169721 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043567A1 true WO2018043567A1 (en) 2018-03-08

Family

ID=61300774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031165 WO2018043567A1 (en) 2016-08-31 2017-08-30 Compound for removing human pluripotent stem cells

Country Status (2)

Country Link
JP (1) JPWO2018043567A1 (en)
WO (1) WO2018043567A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805374A (en) * 2021-01-29 2022-07-29 湖北华大基因研究院 Xanthene compound and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233883A (en) * 2000-02-22 2001-08-28 Okayama Pref Gov Shin Gijutsu Shinko Zaidan Cage-like boron compound-supporting porphyrin complex
JP2004138397A (en) * 2002-10-15 2004-05-13 Kyowa Hakko Kogyo Co Ltd Screening method for compound accumulated at specific part
JP2005333904A (en) * 2004-05-27 2005-12-08 Institute Of Physical & Chemical Research Embryonic stem cell culture method using amnion-derived factor
US20090227467A1 (en) * 2007-12-20 2009-09-10 New York University Combinatorial rosamine library to detect cell-state switching
JP2010126533A (en) * 2008-11-28 2010-06-10 Bio Verde:Kk Highly-functionalized anticancer agent
WO2012027266A2 (en) * 2010-08-24 2012-03-01 New York University Methods for dectecting embryonic stem cells, induced pluripotent stem cells, or cells undergoing reprogramming to produce induced pluripotent stem cells
JP2015505240A (en) * 2012-01-06 2015-02-19 国立大学法人京都大学 Method for sorting pluripotent cells
WO2015063553A2 (en) * 2013-04-11 2015-05-07 Mitotech S.A. Mitochondrially-targeted timoquinones and toluquinones

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233883A (en) * 2000-02-22 2001-08-28 Okayama Pref Gov Shin Gijutsu Shinko Zaidan Cage-like boron compound-supporting porphyrin complex
JP2004138397A (en) * 2002-10-15 2004-05-13 Kyowa Hakko Kogyo Co Ltd Screening method for compound accumulated at specific part
JP2005333904A (en) * 2004-05-27 2005-12-08 Institute Of Physical & Chemical Research Embryonic stem cell culture method using amnion-derived factor
US20090227467A1 (en) * 2007-12-20 2009-09-10 New York University Combinatorial rosamine library to detect cell-state switching
JP2010126533A (en) * 2008-11-28 2010-06-10 Bio Verde:Kk Highly-functionalized anticancer agent
WO2012027266A2 (en) * 2010-08-24 2012-03-01 New York University Methods for dectecting embryonic stem cells, induced pluripotent stem cells, or cells undergoing reprogramming to produce induced pluripotent stem cells
JP2015505240A (en) * 2012-01-06 2015-02-19 国立大学法人京都大学 Method for sorting pluripotent cells
WO2015063553A2 (en) * 2013-04-11 2015-05-07 Mitotech S.A. Mitochondrially-targeted timoquinones and toluquinones

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOO, A. B. ET AL.: "Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1", STEM CELLS, vol. 26, 2008, pages 1454 - 1463, XP002538481 *
DAVID, U. B. ET AL.: "Selective Elimination of Human Pluripotent Stem Cells by an Oleate Synthesis Inhibitor Discovered in a High-Throughput Screen", CELL STEM CELL, vol. 12, February 2013 (2013-02-01), pages 167 - 179, XP055072276 *
HIDENORI, I. ET AL., BIO INDUSTRY, vol. 33, no. 2, 12 February 2016 (2016-02-12), pages 4 - 10 *
SAMORI, C. ET AL.: "Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers", CHEMICAL COMMUNICATIONS, vol. 46, no. 9, 2010, pages 1494 - 1496, XP055604014 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805374A (en) * 2021-01-29 2022-07-29 湖北华大基因研究院 Xanthene compound and preparation method thereof
CN114805374B (en) * 2021-01-29 2024-09-06 湖北华大基因研究院 A xanthene compound and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018043567A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
CN103502218B (en) Compounds and methods for for conjugating biomolecules
US9335323B2 (en) Method for sorting of pluripotent cells
KR101715543B1 (en) MegaStokes Amino-Triazolyl-BODIPY compounds and Applications to Live Neuron Staining and Human Serum Albumin FA1 Drug Site Probing
EP2794620B1 (en) Bodipy structure fluorescence probes for diverse biological applications
JP7140398B2 (en) Nitrobenzene derivative or salt thereof and uses thereof
Li et al. Red emission fluorescent probes for visualization of monoamine oxidase in living cells
Bhat et al. Synthesis and characterization of novel benzothiazole amide derivatives and screening as possible antimitotic and antimicrobial agents
US10947390B2 (en) Compounds for the detection of senescent cells
US20240343709A1 (en) Substituted heterocycles as aldehyde dehydrogenase inhibitors
Gao et al. A highly selective ratiometric fluorescent probe for biothiol and imaging in live cells
WO2018043567A1 (en) Compound for removing human pluripotent stem cells
US20210215671A1 (en) Compounds and methods of identifying, synthesizing, optimizing and profiling protein modulators
Capetian et al. Altered glutamate response and calcium dynamics in iPSC-derived striatal neurons from XDP patients
US20200062719A1 (en) Application of Imidazopyridine Derivatives in Regenerative Medicine
Mao et al. A Synthetic hybrid molecule for the selective removal of human pluripotent stem cells from cell mixtures
Jin et al. Selective turn-on near-infrared fluorescence probe for hypoxic tumor cell imaging
Luker et al. Switching between agonists and antagonists at CRTh2 in a series of highly potent and selective biaryl phenoxyacetic acids
US20190225812A1 (en) Compounds, linked with haptens, for the detection of senescent cells
KR102105938B1 (en) Anti-cancer prodrug for overcoming drug resistance
CN103097339B (en) Chalcone structure fluorescence dye for embryonic stem cell probe
WO2018105667A1 (en) Fluorescent probe for aldh3a1 detection
Kang et al. Development of a next-generation endogenous OCT4 inducer and its anti-aging effect in vivo
Zaman et al. Novel PROTAC probes targeting KDM3 degradation to eliminate colorectal cancer stem cells through inhibition of Wnt/β-catenin signaling
US20080317674A1 (en) Method and Reagent for Measuring Nitroreductase Enzyme Activity
CN103789389A (en) Compounds and methods for identifying, synthesizing, optimizing and characterizing protein modulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846571

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载