+

WO2006013749A1 - Vacuum casting method, casting system, and suction and/or supply device of the casting system - Google Patents

Vacuum casting method, casting system, and suction and/or supply device of the casting system Download PDF

Info

Publication number
WO2006013749A1
WO2006013749A1 PCT/JP2005/013618 JP2005013618W WO2006013749A1 WO 2006013749 A1 WO2006013749 A1 WO 2006013749A1 JP 2005013618 W JP2005013618 W JP 2005013618W WO 2006013749 A1 WO2006013749 A1 WO 2006013749A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
air
pressure
pressure reduction
pouring
Prior art date
Application number
PCT/JP2005/013618
Other languages
French (fr)
Japanese (ja)
Inventor
Masahito Goka
Original Assignee
Masahito Goka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masahito Goka filed Critical Masahito Goka
Priority to JP2006531397A priority Critical patent/JP4076568B2/en
Publication of WO2006013749A1 publication Critical patent/WO2006013749A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/08Controlling, supervising, e.g. for safety reasons

Definitions

  • the present invention relates to generalization, high precision, and high productivity of reduced pressure forging method.
  • the present invention relates to a forging method in which the air-permeable mold is depressurized by a pressure reducing device and gravity pouring is performed from the upper or side of the mold.
  • this construction method is referred to as a reduced pressure construction method in the present specification.
  • the most commonly used air-permeable mold is a mold manufactured using sand particles, but in addition to this, a mold manufactured using ceramic particles or metal particles is also widely used. Used! / Scold.
  • a plaster that has almost no air permeability such as plaster
  • the breathable cage in the present invention includes those breathable cages described above.
  • the reduced pressure construction method is a construction method in which molten metal is poured with negative pressure condition lower than the atmospheric pressure of a vertical cavity.
  • the purpose of depressurization is, in part, to draw in air, which is present in the cavity at the time of pouring, or a gas (such as air and generated gas, collectively referred to in the present invention), such as gas generated in a cage or core force.
  • the purpose is to prevent the generation of a back pressure that will drain and prevent filling of the molten metal in the cavity details.
  • the other is to prevent the gas from being caught in the molten metal by sucking and discharging the gas as well.
  • the purpose of these actions is to prevent hot water defects and gas defects.
  • the decompression construction method requires an airtight container for accommodating the boat type and a special airtight means, etc., so it is more expensive than non-decompression construction method, so it is not applied to general products. Applied to special materials, thin-walled products and complex products. Of course, it is important to reduce back pressure in general products so that the gas does not get caught in the molten metal, and the vacuum construction method is an excellent construction method that can be applied to all types of buildings.
  • Decompression structure method is roughly divided according to the decompression method, the whole decompression is enclosed in some airtight container and the entire decompression method, and a part of the bowl is removed, and almost the whole surface is surrounded by some airtight container.
  • the airtight container connected to the pressure reducing device is required, and the crucible is housed in the airtight container, and after completion of the construction, the crucible is removed from the airtight container.
  • There are production restrictions such as the need for a process of releasing.
  • Another example of the total pressure reduction method is a method of covering the entire mold with a flexible resin material such as vinyl to perform pressure reduction. In this decompression method, there is a limitation that vinyl becomes a consumable material and steps of coating and removing vinyl are required.
  • Classification symbol W2 As another example of the total pressure reduction method, there is a method in which pressure reduction is performed by maintaining an air tightness by combining an airtight container with an open top and a vinyl or the like. This method is an intermediate feature of the above two methods. (Classification symbol W3)
  • the crucible is housed in a pressure-release container whose one side is open, and the pressure is reduced by surrounding the sand with the sandbag. (Classification symbol S)
  • the partial pressure reduction method reduces the pressure of a portion of a bowl-shaped portion, basically the other portion of the bowl-shaped portion is open to the atmosphere. Therefore, air will flow into the cavity from the open part.
  • the feature of this method is that the molten metal is filled with reduced pressure so as to create a unidirectional air flow or reduced pressure gradient in the cavity with a low degree of reduced pressure.
  • the specific decompression method of the partial decompression method is classified as follows. (1) A method of providing air vents on the upper and lower mold mating surfaces of a bowl-shaped and sucking and depressurizing it from there (classification symbol Pl). (2) A method of drawing a suction hole from the outside of the bowl shape at the place where suction reduction is desired and reducing pressure from there (Class Code P2). (3) A method of disposing an external force suction guide at the point where suction reduction is desired and reducing pressure from there (classification symbol P3). (4) It is more breathable than some types of molds, such as placing a material on the mold and using it for suction and pressure reduction (classification symbol P4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-180642
  • the chamber 1 is pressurized to a predetermined pressure.
  • a pressure-reducing structure method of depressurizing and pouring water is disclosed. This corresponds to the classification symbol W1. This method requires one chamber capable of depressurization, and the process time is long!
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-265998 is a reduced-pressure forming mold in which the thickness of the product and the shape of the mold of the proposal cavity is changed in a room-temperature curing type mold for reduced-pressure manufacturing. It is disclosed. This corresponds to W1 in the above classification. This method is possible only when the mold is a room temperature curing mold and under mold conditions.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-170226 arranges a sensor inside a mold in a mold which performs total pressure reduction, and starts a pressure reduction operation after detecting that molten metal has flowed. Is disclosed. This corresponds to W1 in the above classification.
  • the pressure is reduced before pouring, the molten metal will be disturbed.
  • the inflow of molten metal is detected and the pressure is reduced to obtain a good molten metal flow.
  • There are limitations such as the need for dense means and the inability to be applied to many models due to the placement of expensive sensors.
  • Patent Document 4 Japanese Patent Application Laid-Open No. Hei 3-216258
  • the entire surface around the gutter is airtightly covered with a sand film cover made of a resin film, and an exhaust port is provided at a site where the spout force is sufficiently separated.
  • a pressure reducing device for reducing pressure This corresponds to W2 in the above classification. In this device, the need for air-tight containers is unnecessary, and the need for plastic-consumables is required, as well as the process of coating and removing vinyl.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 60-124438
  • a frameless molded gypsum mold is placed on a suction box having an air hole, and the gypsum mold is covered with a film sheet.
  • a pressure-reducing structure method in which hot water is poured after pressure reduction from a suction box. This corresponds to W2 in the above classification.
  • This method also requires the expendable item of vinyl, and also requires the steps of coating and removing vinyl.
  • Patent Document 6 Japanese Patent Publication No. 7-115119
  • a suction mechanism is provided on the side wall of the upper and lower open gutter frame and an airtight sheet is provided closely on the upper and lower sides of the gutter frame in the missing model construction method.
  • a vacuum construction method for suction and pressure reduction This corresponds to W3 in the above classification.
  • a special weir frame provided with a suction mechanism on the side wall is required, and the upper and lower airtight sheets are consumables, and a process of covering and removing the airtight sheets is necessary.
  • Patent Document 7 Japanese Patent Application Laid-Open No. Hei 6-122060 discloses that an organic binder binder is molded into a rod frame having a vent hole, and this is formed in a steel plate chamber having an open top. There is disclosed a reduced pressure method of setting and pouring in a reduced pressure state. This corresponds to S in the above classification. In this method, a steel-made decompression chamber is required, and an organic caking type! There are some limitations.
  • Patent Document 8 Japanese Patent Application Laid-Open No. 08-103861 discloses a reduced pressure construction method in which a sand mold is embedded in sand in a container in a top open type reduced pressure vessel, and pouring is performed under suctioning I reduced pressure condition. Disclosed! This corresponds to S in the above classification. This method requires a pressure reduction vessel. The purpose is to prevent the blow up phenomenon of the molten metal at the time of pouring.
  • Patent Document 9 Japanese Patent Application Laid-Open No. 57-31463 discloses a thin-walled pot for suctioning and pouring the inside of a cavity through an air vent provided at a position farthest from the position of a pothole. Manufacturing A method is disclosed. This corresponds to the PI of the above classification. In this method, since a vent hole is provided in the wedge-shaped mating surface, it is difficult to cope with multiple loading. In addition, there are also problems with equipment as suction holes are made in the weir frame.
  • Patent Document 10 Japanese Patent Application Laid-Open No. 6-55255
  • a feeder or a skein is provided at a position away from the collar portion of the bowl, and a hole communicating with the outside is provided near that.
  • a method of producing a steel frame which is manufactured while depressurizing from the pores This corresponds to P2 of the above classification.
  • Patent Document 10 also provides a method for controlling the pressure reduction rate to reduce the pressure so that the pouring speed of the molten metal becomes constant, or provide a surface detection sensor inside the ridge and detect the molten metal right after it is detected. Also disclosed are methods of initiating decompression and the like. In this case, a pressure reduction rate control means and a hot water surface detection sensor are required.
  • Patent Document 11 Japanese Patent Application Laid-Open No. 6-226423
  • a suction member having a higher air permeability than a bowl type is provided between the vacuum suction port and the feeder or the skein.
  • a method for producing a thin meat dish is disclosed in which the reduced pressure in the vacuum suction side cavity is made larger than that of the pouring side cavity. This corresponds to P2 of the above classification.
  • this method further requires a suction member.
  • Patent Document 12 Japanese Patent Application Laid-Open No. Hei 9-85421 discloses a pressure-reducing structure method for reducing the pressure by providing a hole communicating with the outer part in a core base wood set in a bowl shape. . This corresponds to P2 of the above classification. This method is applicable only to a gift with a core.
  • Patent Document 13 Japanese Patent Application Laid-Open No. 4-147760 discloses a suction mold for forming a suction structure provided with a suction guide that forms a suction passage between an area requiring pressure reduction of the mold space and the outside of the mold. It is done. This corresponds to P3 of the above classification. In this method, a step of providing a suction guide in a bowl shape is required.
  • Patent Document 14 Japanese Patent Application Laid-Open No. 60-564359 discloses a reduced pressure structure provided with a fireproof material filter having better permeability than gypsum from the vicinity of the final filling portion of the plaster mold to the outer surface. Plaster molds are disclosed. This corresponds to P4 of the above classification. In this method using a mold, man-hours are required for producing a plaster mold and productivity is low.
  • Patent Document 15 Japanese Examined Patent Publication No. 7-41400 discloses a method of suctioning separately the gas generated from the green mold and the gas generated from the core force, and adjusting the suction pressure separately. A method of construction is disclosed. This corresponds to G in the above classification. This is for the purpose of suction and discharge of gas.
  • the method (W3) in which the airtight container and the non-air-permeable cover member are used in combination is also applicable to the above W1 and W.
  • the whole decompression structure method has the feature of being able to decompress the entire bowl uniformly, but (1) a special airtight device or member is necessary to make the bowl airtight.
  • a special airtight device or member is necessary to make the bowl airtight.
  • it since it takes many man-hours, it is difficult to construct a continuous line capable of automated high-efficiency production. Therefore, it is currently applied to high value-added gifts, which generally have high manufacturing costs.
  • partial pressure reduction structure method (P) is characterized in that the overall degree of pressure reduction is low, and a flow of air flow in one direction is created in the cavity with suction induction induction and filling in the cavity. is there.
  • partial pressure reduction is performed by providing vent holes, suction holes, suction guides, highly breathable materials, etc. in the mold, individual handling for each product type is troublesome, In some cases it is not possible to [0042]
  • problems common to the conventional full vacuum structure method, the semi-full vacuum structure method, and the partial vacuum structure method will be described.
  • the injection yield is low. That is, although the pot-shaped cavity is generally composed of the cavity part such as the product part, the hot water part, the runner part, and the sprue part, only the product part is the final required part after the forging. The other parts are unnecessary parts only in the pouring process or the coagulation process, and are essentially unnecessary. However, when pouring water, it is completely filled. Therefore, the implantation yield is low, and post-processing steps such as opening and finishing are complicated, and a major cost reduction factor is overlooked.
  • the conventional reduced pressure construction method is currently adopted as a special construction method for special material products, thin-walled products, complex products and the like.
  • the volume produced by the vacuum construction method using the breathable template is as low as 1% of the total timber production volume.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 61-180642
  • Patent Document 2 Japanese Patent Application Laid-Open No. 7-265998
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-170226
  • Patent Document 4 Japanese Patent Application Laid-Open No. 3-216258
  • Patent Document 5 Japanese Patent Application Laid-Open No. 60-124438
  • Patent Document 6 Japanese Patent Publication No. 7-115119
  • Patent Document 7 Japanese Patent Application Laid-Open No. 6-122060
  • Patent Document 8 JP-A-8-103861.
  • Patent Document 9 JP-A-57-31463
  • Patent Document 10 Japanese Patent Application Laid-Open No. 6-55255
  • Patent Document 11 Japanese Patent Application Laid-Open No. 6-226423
  • Patent document 12 Unexamined-Japanese-Patent No. 9-85421 gazette
  • Patent document 13 Unexamined-Japanese-Patent No. 4 147760
  • Patent Document 14 Japanese Patent Application Laid-Open No. 60-56439
  • Patent Document 15 Japanese Patent Application Laid-Open No. 7-41400
  • the present invention addresses the following problems in view of the problems of the prior art described above.
  • (1) The present invention provides a pressure-reducing construction method capable of constructing a continuous line capable of highly efficient production using a normal air-permeable mold.
  • (3) A vacuum construction method is provided in which a high-precision predetermined vacuum distribution is created in a vertical cavity.
  • a reduced pressure construction method is provided in which the molten metal is filled only in the desired cavity among the bowl-shaped cavities.
  • An air seal member is provided on the upper surface and the Z or lower surface of the weir frame, and the air-permeable weir mold molded on the weir frame is placed on the surface plate, and a non-air-permeable material is provided on the upper surface of the breathable weir.
  • the air-tight member is placed, and the molten metal is poured while depressurizing the air-permeable weir-shaped through the suction holes provided in at least one place of the air-tight member.
  • the present method provides a reduced pressure construction method capable of constructing a continuous line capable of easily producing high efficiency using a normal air-permeable mold.
  • the whole general decompression construction method using the conventional general air-permeable mold the whole is covered with a non-air-permeable member such as a car, vinyl or the like that accommodates the mold or the fugitive model in a vacuum-proof airtight container.
  • a non-air-permeable member such as a car, vinyl or the like that accommodates the mold or the fugitive model in a vacuum-proof airtight container.
  • the pressure is reduced and pouring is performed. Therefore, it is superior to non-depressurized normal construction method in terms of hot water pouring and gas defect measures.
  • the upper surface and the Z or the lower surface of the ordinary heddle frame are provided with a heat seal member for preventing the inflow of air.
  • an air-permeable mold is formed on the mold frame with a mold material made of granular material, and the upper and lower molds are put together and placed on a surface plate.
  • a dolly may be used instead of the surface plate. The point is that it can be kept airtight by contacting the light seal member of the heddle frame.
  • an air-tight member made of a non-air-permeable material that similarly prevents the inflow of air is placed on the upper surface of the upper frame of the air-permeable cage, and suction holes provided in at least one location of the air-tight member. The pressure is reduced while pouring water.
  • the same function as that of the airtight container in the conventional full decompression construction method is constituted by the usual coffin frame, the air seal member and the airtight member.
  • This portion is kept airtight by an air seal member provided on the lower surface of the lower frame.
  • the mating surfaces of the upper and lower frames are also kept airtight by the air seal member.
  • the upper surface of the upper frame is in contact with the airtight member, but this portion is kept airtight by the light seal member similarly provided on the upper frame. That is, the air seal members of the weir frames maintain the airtightness between the weir frames, the platen and the airtight member.
  • the air-permeable wedge is in communication with the outside atmosphere, and it is communicated with a general pressure reducing device to perform pressure reduction.
  • a hole for pouring is provided in the air-tight member, but if it is sealed with a suitable non-air-permeable member at the time of pressure reduction, preferably a non-air-permeable member that disappears or melts with the heat of the molten metal be able to.
  • a non-air-permeable member such as a heat-resistant packing is used as the heat sealing member.
  • low breathability members may be used if some air inflow is acceptable.
  • the airtight member is non-air-permeable, and any material that can be provided with a suction hole can be used as well.
  • a metal decompression hood or an iron-made one used as a bowl-like weight may be mentioned.
  • flexible resin materials such as vinyl can also be used.
  • At least one suction hole provided in the airtight member can reduce the pressure in the entire mold.
  • two or more locations can be provided to make the entire bowl more uniformly depressurized more quickly.
  • the above-described method according to the present invention is generally used in a continuous line capable of high-efficiency production, and is applied to a ventilation seal type with a weir frame and a heat seal member and an airtight member. This enabled the same operation and effect as the conventional vacuum-construction using a special airtight container. That is, the present invention provides a reduced pressure forging method which can be easily applied to a continuous line capable of highly efficient production. Details will be described in Examples 1 to 3.
  • the at least one outer surface of the breathable wedge is provided with a plurality of vent holes having different diameter and Z or depth, and the outer surface force is also directed to the inside of the wedge, and the pressure is reduced from the outer surface of the breathable wedge.
  • a partial pressure reduction zone is formed around each of a plurality of vent holes in the mold, and a predetermined pressure distribution is created in the breathable vertical cavity to pour the molten metal. .
  • the present means provides a reduced pressure forging method in which a predetermined reduced pressure distribution is created with high accuracy in a vertical cavity in the total pressure reduction method.
  • At least one outer surface of the breathable wedge is provided with a plurality of vent holes having different diameters and Z or depths from the outer surface toward the inside.
  • the at least one outer surface is the upper surface and the Z or the lower surface of the bowl shape in the case of the bowl type with the bowl frame.
  • a vent hole is provided on at least one of the outer surfaces of the cage, and the other surface is covered with a suitable non-air-permeable member to maintain air tightness.
  • the vent holes may be drilled with a drill or the like, or may be formed by molding. In the present invention, the vent holes will be described as drilling since the drilling is more efficient in consideration of general multi-product production.
  • a plurality of air holes having different diameters and depths or depths provided from the outer surface of the bowl towards the inside increase the air permeability of the bowl and a plurality of different holes in the bowl around the vent holes.
  • the periphery means the periphery of the vent hole and the vicinity of the tip. Hereafter, it will be simply referred to as the surroundings.
  • partial pressure reduction zone plural By providing a vent hole, even if the pressure is reduced from the outer surface of the bowl, that is, even if the entire pressure is reduced, an area similar to a kind of partial pressure is formed around the vent hole in which the portion is preferentially depressurized. Therefore, the area over which the partial pressure reduction acts is called a partial pressure reduction zone.
  • vent holes of different diameters and different Z or depth will be described in detail.
  • One of the effects is that the air permeability of the entire mold is improved by providing a plurality of vent holes, so that the degree of pressure reduction of the cavity can be rapidly increased. In other words, it is a rapid action of depressurization.
  • Another effect is that a partial pressure reduction zone is formed around each of the plurality of vent holes. Further, since the thickness of the wedge between the tip of the vent hole and the cavity in the vicinity thereof is reduced, a pressure reduction degree reflecting the pressure reduction action of the partial pressure reduction zone is obtained in the cavity portion. As a result, in the entire cavity, a predetermined reduced pressure distribution is created as a composite of the degree of reduced pressure of the cavity portion corresponding to each vent hole. That is, partial pressure reduction action is obtained at a plurality of locations by vent holes of different diameters and different Z or depths. Therefore, it can be said that this method is a reduced pressure construction method in which total pressure reduction and partial pressure reduction are combined.
  • the diameter, depth and position of the vent holes are extremely important for the creation of a given reduced pressure distribution.
  • position is the most important. In other words, many are provided in the vicinity of the portion where it is desired to increase the degree of pressure reduction.
  • the vent is usually a force that prevents the cavity from communicating with the core part of the core or the hot water, such as a bowl-shaped mating surface, etc.
  • the vent may be a vent connected to the part!
  • the plurality of vent holes may vary in diameter or depth. Considering the workability of drilling multiple vents, it is better to keep the diameter constant and change the depth and number. In addition, it is effective to place the vent holes as close as possible to the cavity where you want to increase the degree of pressure reduction. In general, it is preferable to provide a large number of vent holes near the product part cavity, and to make the pressure reduction distribution such that the degree of pressure reduction of that part of the cavity is higher than that of the other parts.
  • vent holes may be provided near the product area, they should be provided so that the degree of pressure reduction is slightly lower than that of the feeder and skein.
  • the vent hole drilling apparatus since it is necessary to be able to cope with various types of container production in order to drill the vent holes in an actual production line, the vent hole drilling apparatus generally has one or a plurality of drilling tools such as a drill. We will have the configuration and install it on the upper part of the bowl. Then, it is desirable to move the perforating tools to the best possible position so as to obtain the proper pressure reduction distribution as described above to perforate the vent holes. That is, the piercing device has some means that can be positioned at the desired position. Of course, if the product type is limited, the drilling device may be fixed.
  • the outer surface of the cage is a substantially flat surface, and the thickness of each part of the cage differs depending on the cage shape determined by the product shape and the construction method.
  • the thin part of the mold has low ventilation resistance, so the cavity part of that part is easily depressurized.
  • the thick part of the mold has large ventilation resistance, so it is If the pressure in the portion of the cavity is difficult to decompress! That is, a difference occurs in the degree of pressure reduction at each part of the wedge-shaped cavity.
  • Patent Document 2 is an example that discloses a remedy for this phenomenon.
  • the entire cavity quickly attains a uniform degree of pressure. Since there is usually a certain amount of air inflow, the pressure reducing action proceeds in balance with this. In addition, when the inflow of air is large, the degree of pressure reduction is not uniform, and a portion with a low degree of pressure reduction occurs at the air inflow portion and the portion along the air flow.
  • the uniform pressure reduction degree can be obtained only in the whole pressure reduction structure method, and the uniform pressure reduction degree can not be obtained as described in the above-mentioned prior art.
  • the partial decompression construction method to be performed is also actively studied. It also allows air to flow into the mold. This means that uniform decompression over the entire cavity is not always the best.
  • the gap is good, and it depends on the type of the object to be treated, so it can not be said in general, but in the case of manufacturing further thin and complex objects in the future, the pressure reduction distribution in the cavity is controlled with high accuracy. It is necessary to create an appropriate predetermined pressure reduction distribution for the target product.
  • this partial pressure reduction construction method it is better to generate a directional pressure reduction distribution or pressure reduction gradient ⁇ iij even if the flow of air is permitted to some extent.
  • the effect of this method is to provide a plurality of vent holes different in diameter and Z or depth, and create a predetermined pressure distribution with high accuracy in the wedge-shaped cavity by reducing the pressure on the outer surface of the breathable wedge-shaped surface.
  • the result is a smooth, smooth stream of hot water.
  • the pre-pouring force also creates a specified pressure reduction distribution. If created, it has a function to cope with the pressure reduction change after the start of pouring, and it has the effect of reducing defects in hot water and gas defects, which cause less disturbance of hot water.
  • Patent Document 10 as shown in FIG. 41, discloses a forging method in which holes having similar effects to those of the present means are provided, and suction and pressure are reduced from this point.
  • this method there is a restriction that a feeder or a weir must be provided at a position apart from the heel of the bowl and a cavity should be provided near it. In this method, such restrictions can be applied to the layout of the template-type cavity of any scheme.
  • Patent Document 10 there is one for each product cavity of one hole portion.
  • a plurality of vent holes are disposed throughout the bowl, and their diameters and depths are also changed in order to obtain a specified depressurization distribution.
  • a force is applied to create a one-way decompression gradient with one vent hole.
  • partial decompression is performed through vent holes of different diameters and different Z and depths. Across the whole It is fundamentally different in creating highly accurate decompression distribution.
  • the present means can easily create a predetermined reduced pressure distribution by appropriately arranging the vent holes throughout the entire mold, even for a multi-piece mold. This point is also a feature that is not present in the prior art.
  • the pressure reduction distribution means the distribution of the degree of pressure reduction at each location in the entire cage-type cavity, and the pressure reduction gradient means simply the difference in the degree of pressure reduction between the two locations. Therefore, the pressure reduction distribution described in the present invention expresses the pressure distribution of the wedge-shaped cavity more accurately than the pressure reduction gradient. In the prior art, only the pressure reduction gradient of the vertical cavity cavity is described, and the disclosure document described in the pressure reduction distribution is not! /.
  • a highly accurate depressurization distribution is created by utilizing the partial depressurization action formed by providing a plurality of appropriate venting holes corresponding to the wedge-shaped cavity and depressurizing. Provided a reduced pressure construction method. Details will be described in the fourth embodiment.
  • At least one outer surface of the breathable wedge is provided with a plurality of air holes directed to the inner surface of the wedge, and a plurality of air vents are individually supplied to the plurality of air vents so that the inside of the wedge is inhaled.
  • a partial pressure reduction zone is formed around each of the plurality of vent holes, and a predetermined pressure distribution is created in the air-permeable wedge-shaped cavity to pour the molten metal.
  • the present means provides a reduced pressure forging method in which a predetermined reduced pressure distribution is created in the vertical cavity with higher accuracy than that of the means 2.
  • a plurality of vent holes are provided, and a plurality of suction holes are individually supplied to the plurality of vent holes to create a predetermined pressure reduction gradient with higher accuracy. It is something to drink.
  • vent holes having a plurality of diameters and different Z or depths are provided to obtain a predetermined depressurization distribution by total pressure reduction of the outer surface of the bowl, but in the present means, each vent hole Apply suction or insufflation separately to make the partial The pressure reduction distribution was obtained.
  • the depressurization is controlled by individually suctioning or supplying air to each vent hole, the diameters and depths of the plurality of vent holes may be the same or different.
  • suction in addition to air supply, suction is mainly used because this method is basically based on reduced pressure, but the pressure reduction degree is lowered among a plurality of vent holes (weakened ,) Cavity
  • the air pressure hole or air at atmospheric pressure level is sent to the ventilation hole near one position to reduce the pressure reduction degree actively.
  • suction nor insufflation is applied to the area where the degree of pressure reduction is to be reduced, but the effect of the partial pressure reduction zone around the vent hole is the same as for the other vent holes.
  • this part also has a certain degree of pressure reduction. As a countermeasure for this, the degree of pressure reduction is positively reduced by insufflating the area.
  • the portion of the cavity close to the vent hole where strong suction is performed has a high degree of pressure reduction
  • the portion of the cavity near the vent hole where air is supplied has a low (weak) degree of pressure.
  • the pressure reduction gradient between the two cavity portions can be made larger. That is, by the suction or air flow rate of each vent hole, the pressure reduction degree corresponding to the partial pressure reduction zone around each vent hole is formed in each part of the wedge-shaped cavity, and the combined pressure reduction distribution of the entire cavity is created. It is As a result, it is possible to create a predetermined pressure reduction distribution with higher accuracy than in the second method, and smooth pouring can be performed with less disturbance of the flow of the molten metal.
  • Vent hole force As a method of suctioning or supplying air individually, a plurality of decompression boxes are abutted corresponding to a plurality of ventilation holes on the outer surface of the bowl shape, and a suction port and an air supply port are provided in the decompression box.
  • the suction port can be in communication with the pressure reducing device through the flow control means, and the air supply port can be in communication with the air compression device through the flow control means. Details will be described in Examples 5 and 6. In this case, since a plurality of pressure reducing boxes, which are suction and air supply devices, are used in contact with the plurality of vent holes provided, in this means, some positioning means for aligning with the position of the vent holes is provided. .
  • At least one outer surface of the breathable wedge is provided with a plurality of air vents directed to the inside of the outer surface force wedge, and all or a portion of the outer surface of the breathable wedge is virtually made of a plurality of wedges.
  • Divided into mold segments, and a plurality of suction segments I are individually supplied to the plurality of wedge-shaped segments to form partial pressure reduction zones around the plurality of vent holes, respectively.
  • the molten metal is poured by creating a reduced pressure distribution.
  • a plurality of vent holes are provided, and suction or insufflation is individually performed to form a partial decompression zone around each of the plurality of vent holes, and a predetermined decompression distribution is formed in the ventilated wedge-shaped cavity. It is the same as Method 3 to create and pour the molten metal. Also, the diameter and Z or depth of the vent holes do not necessarily have to be as different as the means 3. What differs from measure 3 is how to determine the position where the vent holes are provided and how to determine the position where suction or air is supplied separately.
  • the plurality of vent holes are provided at appropriate positions where it is easy to obtain a predetermined reduced pressure distribution in accordance with the wedge-shaped cavity.
  • a plurality of pressure reducing boxes which are suction and air supply devices for individually suctioning or supplying air, are used in contact with the bowl-shaped surface corresponding to the positions of the plurality of vent holes. Therefore, in order to cope with the construction of a wide variety of products in an actual production line, the drilling device for drilling the vent hole needs some means capable of positioning at any position.
  • a plurality of decompression boxes which are suction and air supply devices, also require some means capable of positioning at arbitrary positions. In other words, means 3 requires some positioning means for both the vent hole drilling device and the plurality of decompression boxes, making the device complicated, and the time for positioning is not enough to cope with production tact. In some cases.
  • the whole or a part of the outer surface of the wedge is virtually divided into a plurality of wedge segments, and a plurality of air holes are selected at selected positions among the plurality of wedge segments.
  • “virtually dividing into a plurality of wedge-shaped segments” means “dividing by dividing the wedge-shaped outer surface by a plurality of vertical and horizontal straight lines, for example, with appropriate intervals, as shown in FIG. It means that the set segment is provisionally set.
  • the selected position is the position that is as appropriate as possible in order to obtain a predetermined reduced pressure distribution corresponding to the wedge-shaped cavity.
  • the perforators of the perforator of the vent holes can be located at all positions of each wedge-shaped segment, and the perforator of the selected position can provide vent holes of a desired depth.
  • the drilling device can then be fixed. Also, since it is necessary to position the drilling device, it is easy to cope with production tact.
  • the position of the vent hole according to this means is determined by selecting the medium force of a plurality of fixed vertical segments, so that it does not become an arbitrary optimum position as in the case of means 3, so that the vertical shape can be obtained. Slightly inferior to Measure 3 in terms of obtaining a predetermined pressure distribution corresponding to the cavity. However, this point can be brought close to the means 3 by dividing the size of the divided vertical segment into as small a size as possible. In addition, since suction or insufflation is individually performed for all vertical segments, by controlling the amount of suction and the amount of insufflation with high accuracy, a predetermined pressure reduction distribution can be performed with the same or higher accuracy as that of the means 3. Can get
  • a plurality of pressure reduction boxes which are devices for suctioning and supplying air individually, are arranged at the same positions as the vertical segments set at the time of drilling the air holes. Then, for suction and air supply, regardless of the presence or absence of the vent holes at the positions corresponding to the respective pressure reduction boxes, all the plurality of pressure reduction boxes abut on the outer surface of the bowl.
  • a plurality of decompression boxes may be connected to form an integral device, and the entire device may be in contact.
  • a plurality of pressure reducing boxes may be separately moved up and down, and only the pressure reducing box at the position where the vent holes are provided may abut.
  • suction or air supply for depressurization suction or air supply is performed for segments with air holes as well as for segments without air holes as needed. Therefore, predetermined suction pressure distribution can be obtained with higher accuracy by suctioning or feeding air through the vent holes as well as suctioning or feeding the flat bowl-shaped portion without the vent holes.
  • the reason why the wedge-shaped segments are set to all or a part of one wedge-shaped outer surface is that the whole or the whole of the wedge-shaped outer surface can be covered and the air-tightness becomes easier .
  • the pouring mouth If so, set the template segment to a part of the template that excludes that part. In such a case, the air tightness is secured by covering the portion where the wedge-shaped segment can not be set with an appropriate non-air-permeable member. Alternatively, when some air can be allowed to flow, that part may be open.
  • the vent holes are bored by using a drilling device which can be positioned at an optimum position as in the case of means 3, while a plurality of suction and air feeding devices for individually sucking or feeding air are used. It is also possible to fixedly arrange only the decompression box of the above on a plurality of wedge-shaped segments as described above. In this case, even if the vent holes are provided at offset locations on the outer surface of the wedge, they correspond to any one of the plurality of wedge segments set, and the pressure reduction boxes have the same wedge shape. Being arranged corresponding to the segments, the plurality of vent holes communicate with any of the plurality of pressure reducing boxes, so that suction or air pressure can be reduced through the vent holes.
  • the outer surface of the bowl is virtually divided into bowl-shaped segments, and a plurality of vent holes are provided corresponding to the bowl-shaped segments and individually provided with a suction bow I or a feeding bow.
  • the remarkable effects as described above can be obtained by providing a plurality of depressurizing boxes to be used corresponding to each wedge-shaped segment. That is, the venting device for the vent and the device for individually aspirating or ventilating can be fixed without requiring positioning, which is greatly simplified. In addition, since the positioning operation is unnecessary, production tact can be easily coped with.
  • a plurality of decompression boxes are connected side by side and placed on the outer surface of the bowl, and the plurality of decompression boxes are provided with a suction port and an air supply port.
  • Suction This can be achieved by connecting the port to the pressure reducing device through the flow control means, and connecting the air supply port to the air compression device through the flow control means.
  • means 3 sucks or supplies air only at a position where the vent hole is in contact with the decompression box, and the other part of the outer surface of the bowl is enclosed in a chamber or the like that can be opened or totally sealed. It is in a state of total pressure reduction. That is, the creation of the decompression distribution of the vertical cavity is performed only at the position of the vent hole.
  • the perforation means of the vent hole and the apparatus of the plurality of pressure reduction boxes for suctioning and supplying air individually are greatly simplified by this means, and the positioning becomes unnecessary. It becomes easy to cope with it. Therefore, it becomes extremely easy to apply the present invention to a continuous line capable of actual high efficiency production.
  • a plurality of decompression boxes corresponding to each segment cover the whole or a part of one outer surface of the bowl and suction or supply air individually, creation of the decompression distribution of the bowl-shaped cavity is performed with extremely high accuracy. be able to. Details are described in Examples 7 and 8.
  • the melt of the air-permeable mold cavity is filled with the desired degree of pressure reduction of the cavity part to the desired cavity part.
  • the inflow force of the molten metal The negative pressure of a value greater than the absolute value of the static metal pressure yH determined by the height to the top of the desired cavity portion is set to a negative pressure value or more, and the volume of the desired cavity portion is approximately equal.
  • the reduced pressure casting method is characterized in that the molten metal is poured, and the molten metal is filled and solidified substantially only in the desired cavity portion.
  • a reduced pressure construction method in which the molten metal is filled only in the desired pot-shaped cavity portion.
  • a typical boat-shaped cavity generally comprises a product section, a pouring section, a runner section and a sprue section. It is done.
  • a force may be provided to discharge unnecessary molten metal also as a force portion for discharging the product portion force.
  • the basic product portion, the pouring portion, etc. It is assumed that the runner section and the mouth section are configured.
  • the pouring section, the runner section and the sprue section excluding the product section are finally separated from the product as unnecessary parts, and again subjected to remelting as a return material.
  • the pouring section is necessary in the solidification process to compensate for the soundness of the product section.
  • the runners and gates are only necessary for filling the cavity during pouring. It is.
  • the molten metal is also filled in the unnecessary pouring section, runner section and pouring section in the end. It is in the process of pouring. This is extremely unreasonable.
  • the injection yield will be greatly improved.
  • it is also possible to greatly simplify the post-process such as opening the frame and finishing.
  • the present means provides a method of filling a molten metal only in a desired cavity portion, for example, a product portion and a pouring portion, or only a product portion, by utilizing the features of the reduced pressure forming method.
  • the degree of pressure reduction of at least a desired cavity portion to be filled with the molten metal is the molten metal to the desired cavity portion.
  • the inflow force The height of the topmost part
  • the negative pressure is a value more than the absolute value of ⁇ .
  • the volume of the molten metal having a volume substantially equal to that of the volume of the desired cavity portion is filled.
  • approximately equal volume is equal to the volume of the desired cavity portion.
  • V or slightly larger volume means. This means that the volume of the desired cavity portion also varies depending on the change in the properties of the mold material, such as the change in water content, due to the degree of adhesion between the upper and lower molds, and the degree to which the cavity expands varies with the filling of the molten metal. It means that things should be decided in consideration of the problem. It is desirable to pour a slightly larger volume of hot water to compensate for fluctuations.
  • the molten metal may be drawn to the top of the desired cavity portion to fill the desired cavity portion. It can.
  • the molten metal has a volume to fill this cavity portion! /, So the spout portion and runner portion of the other portion will not be filled.
  • solidification of the molten metal proceeds while being fixed to the desired cavity portion. Then, if the reduced pressure is maintained until at least the boundary between the desired cavity portion and the other cavity portion, that is, the end of the molten metal filled on the squeeze side solidifies and does not flow, finally the desired state is obtained.
  • Construction can be completed with the melt filled only in the cavity area.
  • solidification means that 100% of the tissue becomes a solid phase, meaning that the molten metal does not flow out even if the pressure reduction is stopped due to the appearance of a certain percentage of the solid phase. It is.
  • the pouring bath may not be necessary under some conditions, and in this case, it is proposed that no pouring bath and only the desired part be filled with the product part. It can be set as a part.
  • the sprue part, the runner part, and in some cases the feeder part which are conventionally considered to be essential for obtaining a glazed product, and in some cases the feeder part also has a cavity part, but the molten metal is not filled. It is possible to obtain a forged product in which the molten metal is filled only in the pouring portion or the product portion. As a result, the injection yield, which indicates the ratio of the product weight to the total pouring weight, is significantly improved. If this is estimated at a general level, it is estimated that about 50 to 60% will be 80% or more by this method and 80% or more by the product part alone if this method is not used. Can produce extremely large effects.
  • the degree of pressure reduction is a value of ⁇ or more.
  • is a specific weight, it has a unit of kgfZ cm 3 , and H has a height, so the unit is cm. That is, ⁇ ⁇ means pressure in kgfZ cm 2 units. That is, ⁇ ⁇ is a pressure corresponding to the static pressure of the molten metal up to the top of the molten metal flowing into the desired cavity portion. If the desired cavity portion is maintained at a further negative pressure, i.e., the degree of pressure reduction, the molten metal can be maintained at the level of height.
  • the desired cavity has a degree of pressure reduction equal to or greater than the absolute value of the static pressure y of the molten metal.
  • the degree of pressure reduction changes at the sprue, so that the effect on the desired cavity also has some effect, and the degree of pressure reduction of that portion also changes. Therefore, it is necessary to predict this change and to set the degree of pressure reduction of the desired cavity portion to ⁇ or more during and after pouring.
  • the pressure of the desired cavity means exactly the degree of pressure reduction in the mold around the desired cavity. It will be described in more detail.
  • the wedge type can be used with the wedge type having the vent hole of the present invention and V, which does not have the vent hole, and a normal wedge type.
  • V even in the case of deviation, it is necessary to keep at least the desired cavity portion at a degree of pressure reduction of ⁇ ⁇ or more, taking into consideration the change in pressure reduction associated with the start of pouring as described in means 2.
  • the wedge-shaped cavity provided with the air vent creates the pressure distribution of the wedge-shaped cavity with high accuracy, so it is easy to handle.
  • partial pressure reduction may be used in combination. Desirable to carry out specific pressure reduction control.
  • partial depressurization in which the desired cavity portion is depressurized intensively can be applied to this means. At that time, it is desirable to cover the other parts with a non-air-permeable member to increase the degree of pressure reduction. Partial pressure reduction is more stable than total pressure reduction for filling the molten metal only in the desired cavity area.
  • this method can be realized by creating a predetermined pressure reduction distribution in the cavity portion of each product by applying the means 2 to 4 in the construction of a plurality of cells.
  • the total volume of a plurality of desired cavity portions is poured.
  • the pouring gate branches into a plurality of runners distribution of the molten metal can be equally performed. It is necessary to devise a runner system. If the accuracy of the even distribution is insufficient, the method can be implemented by pouring a larger volume of molten metal slightly more than the sum of the volumes of the desired cavity portions.
  • the present method can achieve extremely high implantation yield and greatly simplify the unframed process.
  • the features of this method are as follows in comparison with the conventional pressure reduction method. (1) The degree of pressure reduction of the desired cavity portion was defined as an appropriate value of ⁇ or more. (2) The molten metal having a volume substantially equal to that of the desired cavity portion is poured. (3) After pouring, maintain the reduced pressure until coagulation. Details will be described in Example 10.
  • the degree of pressure reduction of the desired cavity portion is a negative pressure state having a value equal to or more than the absolute value of the molten metal static pressure y H, and the other cavities It is a reduced pressure construction method characterized by being higher than the degree of pressure reduction of the tea portion.
  • This means is substantially the same as the means 5 in that the degree of pressure reduction of the desired cavity portion is a negative pressure state equal to or higher than the absolute value of the static metal pressure y H and is higher than the other cavity portions.
  • the pressure reduction degree change generated near the sprue with the start of pouring is as follows: It also appears as a change in degree of pressure reduction in the desired cavity portion. Therefore, in this method, even if the degree of pressure reduction changes with the start of pouring, the degree of pressure reduction of the desired cavity portion can be maintained so that the degree of pressure reduction of the desired cavity portion can be maintained over ⁇ . It is higher than the part.
  • the molten metal is filled with the molten metal in the air-permeable ⁇ -shaped cavity, and the molten metal is poured in a volume approximately equal to the volume of the desired cavity portion.
  • the pressure reduction degree of the desired cavity portion filled with at least the melt in the air-permeable cage-like cavity is determined by the flow rate of the melt into the desired cavity portion.
  • the height to the top of the desired cavity portion It is a negative pressure state in which the absolute value of the molten metal static pressure ⁇ determined by the crucible is equal to or more than the absolute value, and the molten metal is filled and solidified only in a substantially desired cavity portion.
  • This means is similar to means 5 and 6, but with this means first pouring of molten metal having a volume approximately equal to the volume of the desired cavity portion is started, and then the pressure is reduced to reduce the desired cavity portion only.
  • the molten metal having a volume substantially equal to or slightly larger than the volume of the desired cavity portion is first started without pressure reduction before the start of pouring. Thereafter, the pressure is reduced at an appropriate timing, and at least the desired cavity portion is made negative pressure equal to or more than the molten metal static pressure y, so that the molten metal filled in the portion other than the desired cavity portion is sucked to the desired cavity portion. It is made to fill.
  • this pressure reduction degree is maintained until the boundary is solidified and the molten metal does not flow.
  • this means also allows the filling of the melt to only a portion of the desired cavity, as in means 5 and 6.
  • the present means provides a remedy for the change in pressure reduction associated with the start of pouring which is caused by the pressure reduction before pouring in the means 5 and 6. That is, the features of this means Do not depressurize before pouring, and start depressurization after the molten metal enters the cavity.
  • the timing at which pressure reduction is started and the rate of increase in pressure reduction are important. Initiate decompression as soon as possible after pouring, and make sure that filling of the desired cavity area is completed with as slow as possible a force decompression rate.
  • the timing to start depressurization does not necessarily have to wait for the solution to stop. Depressurization can be started at an appropriate timing according to the product shape and cavity shape. In the case of pressure conditions, temperature of the molten metal, oxidation resistance, etc., it is possible to pour the molten metal once after making it stand still and depressurizing it so as to fill only the desired cavity portion.
  • At least one outer surface of the breathable wedge is provided with a plurality of venting holes different in diameter and Z or depth from the outer surface toward the inside of the wedge.
  • a partial pressure reduction zone is formed around each of the plurality of vent holes in the mold, and a predetermined pressure-reduced distribution is created in the breathable mold cavity. It is a pressure reduction method of construction characterized by pouring a molten metal.
  • the pressure reduction method using the plurality of vent holes of the means 2 is employed in order to fill the molten metal only in the desired cavity portion in the pressure reduction structure method described in any one of the means 5 to 7 and any one of them. Apply It is By forming a plurality of partial pressure reduction zones by a plurality of vent holes to create a highly accurate predetermined pressure distribution, the filling of the molten metal only in the desired cavity portion becomes easier. Details are described in Examples 9, 13 and 14.
  • At least one outer surface of the air-permeable cage is provided with a plurality of air vents directed to the inside of the outer surface of the cylinder, and the plurality of air passages are formed. Separately create a partial pressure reduction zone around a plurality of air vents in the mold, by suctioning I individually or by supplying air to the hole, and creating a predetermined pressure distribution in the air-permeable mold cavity to dissolve it. It is a decompression construction method characterized by pouring hot water.
  • At least one outer surface of the breathable wedge is provided with a plurality of air vents extending from the outer surface toward the inside of the wedge, and the outer surface of the breathable wedge is provided.
  • the whole or a part of the surface is virtually divided into a plurality of wedge-shaped segments, and the plurality of wedge-shaped segments are individually suctioned or insufflated to supply partial decompression zones around the plurality of vent holes.
  • molten metal was filled! /, Desired
  • a ventilation sealing member that has a permeability lower than that of non-air permeability or weir type and that loses or melts due to the heat of the molten metal is installed. It is a pressure reduction method characterized in that molten metal is poured while depressurizing the mold.
  • the air-permeable sealing member uses, for example, a non-air-permeable material such as a resin material or a metal material and a material which disappears or melts due to the heat of the molten metal.
  • a non-air-permeable material such as a resin material or a metal material and a material which disappears or melts due to the heat of the molten metal.
  • it may be a material having air permeability lower than that of a cocoon, such as cloth and paper.
  • the position at which the vent sealing member is disposed is in the vicinity of the boundary, but the position may be appropriately changed to the gate side or the product side. The important point is that the vent sealing member separates the desired cavity portion from the other cavity portion at the time of pressure reduction.
  • Disappearing or melting means that the melting point is lower than the temperature of the molten metal. Do not generate harmful gases, etc., and if the residue is residual, please do!
  • vent sealing member of this means is, in part, to quickly and stably maintain the degree of pressure reduction of the desired cavity portion prior to pouring, and the other is to the vicinity of the sprue at the start of pouring.
  • the reduction in pressure does not affect the degree of pressure reduction of the desired cavity at least until the molten metal reaches the aeration sealing member.
  • the time-lapse sealing member is in contact with the molten metal, and the time until disappearance or melting is 2 seconds or more and 5 seconds or less.
  • this meaning is that the degree of pressure reduction is large when pouring water is started. Since it changes, in order to prevent the influence, the molten metal is allowed to stand still for 2 seconds to 5 seconds with the molten metal filling the portion other than the desired cavity portion, and then the vent sealing member After disappearance or melting, it is made to flow into the desired cavity which has been gently depressurized to ⁇ ⁇ ⁇ .
  • the reason for setting the time to 5 seconds or less is that if it is longer than this time, the meltability deteriorates due to the temperature decrease of the molten metal, and an oxide is generated due to the oxidation of the molten metal. Details will be described in Example 17.
  • a molten metal blocking member made of a refractory material with a specific gravity smaller than that of the molten metal is installed in the recess provided in the lower part of the cavity near the boundary, and the molten metal blocking member It floats by buoyancy and cuts off the molten metal near the boundary.
  • the melt blocking member is provided to shorten the reduced pressure holding time until the boundary reaches solidify and does not flow out after the melt is completely filled in the desired cavity portion.
  • the molten metal blocking member is disposed in the recess in the lower part of the cavity so as not to prevent the flow of the molten metal during pouring, and floats by buoyancy after the pouring is completed, and blocks the part.
  • the reduced pressure is reduced. Even when it is broken or stopped, the static pressure of the molten metal in the ⁇ crucible pushes this molten metal blocking member to make it adhere closely to the wedge shape, and prevents the molten metal from flowing out.
  • the solidification speed can be increased by using a material with the largest possible heat capacity for this melt blocking member. For example, if you use zircon sand, which has a higher specific gravity than ordinary silica sand, it is possible to accelerate the solidification rate to about twice.
  • the upper portion is used as a flow-through sealing member, and the lower portion is installed as a molten metal blocking member in a recess near the boundary portion. Then, the aeration sealing member seals the aeration during depressurization to stably increase the pressure reduction of the desired cavity, and the molten metal blocking member acts to rise after pouring and to shut off the boundary approach.
  • Means 5 to 14 According to the decompression construction method described in any one of the following, from the outer surface of the air-permeable mold, toward the boundary between the desired cavity part and the other cavity part to be filled with molten water. A vent hole and a Z or cooling hole are provided, and after pouring is completed, coagulation in the vicinity of the boundary is promoted by suctioning or supplying air from the vent hole and Z or cooling hole. Reduced pressure construction method.
  • vent holes and the Z or cooling holes are provided in the vicinity of the boundary, and after pouring is completed Provide vacuum construction that promotes solidification near the boundary by drawing or ventilating holes and holes or cooling holes.
  • vent holes and the Z or cooling holes are provided from the outer surface of the wedge toward the vicinity of the boundary or in the vicinity of the vicinity of the boundary.
  • the vent holes are used for depressurization, and the cooling holes are used for cooling.
  • the vent holes and the cooling holes may be provided separately or may be combined. If the diameter of the vent holes and cooling holes is as large as possible, and if the depth is as deep as possible without penetrating the cavity near the boundary, the cooling effect by suction or air supply will be greater.
  • cooling is performed by suction or air supply, but if compressed air can be supplied, a large amount of air can be supplied per unit time, and therefore the time to coagulation can be shortened.
  • the present means and means 13 make it possible to quickly solidify the vicinity of the boundary after pouring is completed, and the reduced pressure holding time can be shortened, and the molten metal is filled only in the desired cavity portion. Can be enhanced. Details will be described in Example 20.
  • the air-flowing hole communicating from the outer surface of the air-permeable cage to the core wood portion of the core set in the cage and the mating surface of the Z or the cage.
  • an air supply hole communicating with the core wood part of the core set in the mold and the Z or upper and lower mold mating surfaces is provided from the outer surface of the air-permeable rattan shape, and the air supply hole The supply of compressed air prevents the infiltration of the molten metal into the gap.
  • the driving force of the molten metal entering the gap is the sum of the pressure and the degree of pressure reduction due to the static pressure of the molten metal. Therefore, if the positive pressure is supplied more than this to exert the force to prevent infiltration, the infiltration of the molten metal can be prevented.
  • the front end of the molten metal is cooled by the cooling action of the compressed air, the fluidity of the molten metal is reduced, and the molten metal intrudes into the gap.
  • Means 1 to 16 In the decompression construction method as described in any one of the first to 16th aspects, when pouring molten molten iron, the pouring temperature is set to 1300 ° C. or less. . [0200] In this method, when pouring molten molten iron, which may be able to produce a healthy bowl without a feeder due to the expansion of the graphite during solidification, this pressure reduction ensures that the feeder does not have a basin. Provide forgery.
  • the decompression construction method is a hot-water flow method, a force that should be able to be filled at a lower temperature than the normal non-decompression construction method and be able to sufficiently fill the pot-shaped cavity. It is the present condition that pouring is performed at the same temperature. Therefore, we overlook the major cost reduction factor.
  • the pouring temperature is generally 1400 ° C. to 1450 ° C. and is 1300 ° C. or less in the reduced pressure fabrication method of this method.
  • the pouring temperature is reduced to 1300 ° C or less, which is the usual 1400 to 1450 ° C pressure, or the like.
  • the pouring temperature is reduced to 1300 ° C or less, which is the usual 1400 to 1450 ° C pressure, or the like.
  • the absence of a feeder means that the product can be added to the space where the feeder has been placed, resulting in a higher injection yield.
  • the fact that the pouring temperature can be lowered compared to the conventional method means that the melting temperature can be lowered by the temperature corresponding to it, and therefore the cost of melting will be significantly reduced. Details are described in Example 22.
  • a plurality of vent holes, cooling holes and wedge segments provided from the outer surface to the inside of the air-permeable wedge after pouring. It is a reduced pressure structure method characterized by controlling the flow rate of a gas body sucked or fed through each part to advance a desired site force of the filled solution sequentially to coagulate.
  • vent holes In a normal reduced pressure construction method, after pouring is complete, either the force to stop the pressure reduction or simply continuing the suction is used. In other words, cooling control after pouring is not performed at all. In this method, cooling is controlled by actively performing suction or insufflation using the vent holes, cooling holes, and wedge-shaped wedge segments (hereinafter referred to as vent holes) used for depressurization. Let the coagulation proceed from the site sequentially.
  • the suction or air supply strength of each ventilation hole is determined in consideration of the position, size, and depth of the ventilation hole or the like. This is another reason for changing the position, size, and depth when drilling vent holes and the like.
  • the flow rate of suction or insufflation of each vent hole in the cooling process after pouring is different from that for suction or insufflation at the time of depressurization. That is, the vent holes etc. which performed strong suction or air supply at the time of depressurization do not necessarily perform strong suction or air supply after pouring. Since the purpose of suction or insufflation after pouring is to create a desirable solidification sequence by cooling, strong suction or insufflation is carried out in the vent holes of parts which are solidified quickly.
  • vent holes used for depressurization and the vent holes used for cooling and the Z or cooling holes are separately bored, and the vent holes for depressurization are used at the time of depressurization. It is possible to carry out decompression and cooling extremely efficiently by using the vent holes and Z or cooling holes for retrofitting.
  • the cooling can be performed at a higher speed than the insufflation.
  • so-called directional solidification is also possible, in which solidification is sequentially performed from one end of the product to the feeder side or the gate side.
  • the shrinkage deficiency will be replenished sequentially, and the condition that the soundness of the product can be easily secured can be obtained even if the hot water supply of the feeder is small or not.
  • each gaseous substance sucked and discharged from each part such as a plurality of ventilating vent holes, cooling holes, and wedge shaped segments after pouring.
  • estimate the cooling condition of the molten metal filled in the air-permeable cage and control the suction flow and Z or air flow to each part of the air-permeable cage. It is a decompression structure method characterized in that the cooling state of the molten metal is controlled by
  • a reduced pressure forging method for performing coagulation control with high accuracy is provided. That is, the cooling state of the molten metal filled is estimated based on the temperature or temperature and flow rate data of the gas sucked and discharged from each vertical air hole or the like, and suction or air pressure for each air hole or the like is estimated based on the result.
  • This is a reduced pressure construction method in which the cooling condition of the molten metal is controlled by controlling the flow rate of air supply.
  • the gas used for the present means is both one that sucks at the time of depressurization and one that sucks at the cooling process after pouring. It is possible to estimate the solidification state of each part with a certain degree of accuracy only by the temperature of these gas bodies. If the flow rate data is added to this, more accurate estimation is possible.
  • each of suction and discharge from each portion such as the vent holes, the cooling holes and the wedge segments of the air-permeable wedge type described above.
  • the cooling condition of the molten metal filled in the air-permeable cage is estimated, and the suction flow rate and Z or air flow to each part of the air-permeable cage are estimated. Controlling the cooling state of the molten metal by controlling the temperature of the molten metal to adjust the final solidification structure of the filled molten metal.
  • the reduced pressure structure method to which high-precision cooling control is applied is enabled by means 19 of temperature or temperature and flow rate data by means 19, and this is used to make a transformation in the solidification region and the subsequent structural transformation. Control the cooling of the area to provide a vacuum forging method to adjust the final solidified tissue.
  • the number of graphite grains and austenite grains change depending on the eutectic solidification rate, and the cooling control of the eutectoid transformation region causes the change in pearlite structure and the change in pearlite Z ferrite content ratio, etc. .
  • the present means provides a forgery method to which the improvement method is added. That is, after pouring, the pouring spout or the sprue portion is decompressed until solidification of the molten metal by closing the pouring sprue or the sprue portion with a non-air-permeable member or a member having lower air permeability than a bowl shape. As a result, the vertical cavity is again in the same sealed state as before pouring, and as a result, the degree of pressure reduction can be kept stable. In addition, the capacity of the pressure reducing device can be reduced.
  • the heat of the molten metal is obtained by heat exchange of the gas sucked and discharged from the air-permeable mold in a heat exchanger, and preheating of the crucible or the melting material. It is a forgery system characterized by collecting
  • a forgery system that recovers and uses the heat of the gas sucked and discharged through the process of pouring power cooling.
  • the gas sucked and discharged from the mold is introduced into heat exchange ⁇ so as to be recovered by heat exchange with another fluid, and the soot or gas is used directly to preheat the melted raw material. Make it recoverable by
  • this method makes it possible to put the whole factory into a production form with high energy efficiency, and also in terms of production cost, CO reduction which has been a problem in recent years.
  • the second aspect also brings about a great deal of effects. Details are described in Example 27.
  • a suction port in communication with the pressure reducing device and an air feeding port in communication with the Z or air compressor, and the flow rate of the gas flowing through the suction port and the air feeding port.
  • the present means provides a suction and air-feeding device from the outer surface of the bowl used for the means 2 to 21.
  • the device comprises a plurality of pressure reducing boxes having an open end to be brought into contact with the outer surface of the bowl, a means for raising and lowering the same, a suction port or Z communicating with a pressure reducing device provided in each of the plurality of pressure reducing boxes It comprises a communicating air supply port and flow rate control means for individually controlling the flow rate of the gas flowing through the suction port and the air supply port.
  • the plurality of decompression boxes are open at one end and attached to lifting means vertically moving up and down with respect to the boat.
  • a plurality of decompression boxes are mounted on the outer surface of the bowl by raising and lowering means, and the open end is used in contact with the outer surface of the bowl.
  • the vent holes are preferable to have the vent holes in order to easily obtain a preferable reduced pressure distribution.
  • Each of the plurality of decompression boxes may be separated from each other, or may be connected to each other. In the case of separation, it is applied to the reduced pressure forging method described in Measures 2 and 3. In the case of being connected, it is applied to the reduced pressure forging method described in Means 4 and 5.
  • Each pressure reduction box is provided with a suction port in communication with the pressure reduction device or an air supply port in communication with Z and the air compression device. And, a flow control means is provided to individually control the flow rate of the gas flowing through the suction port and the air supply port.
  • This device is a device that performs pressure reduction to the completion of pouring water mainly by suction, and also controls cooling of molten metal filled by suction and Z or air supply after the completion of pouring.
  • a plurality of decompression boxes are mounted on the outer surface of the bowl by the lifting means, and the open end is brought into contact with the outer surface of the bowl. Then, suction and Z or air supply are performed from the suction port and Z or air supply port of the desired pressure reduction box, and the pressure reduction of the bowl type is performed.
  • suction is the main.
  • the insufflation is mainly performed by suction to the extent that the reduced pressure is to be applied to the portion to be reduced.
  • the desired coagulation sequence can be obtained by strengthening the suction and Z or air supply at the site where it is desired to quickly coagulate, and weakening or non-inhaling other areas. This enables so-called directional solidification.
  • suction and Z or air can be performed to adjust the metallographic structure, at least until the temperature passes through the metallographic transformation region. That is, the flow rate of suction and air supply is controlled particularly in the temperature range where transformation of metal structure occurs, and cooling is allowed to proceed at an appropriate cooling rate. For example, in the case of pig iron, cooling control in the range of 830 to 700 ° C. where co-eutectoid transformation occurs is important, and this enables texture adjustment of perlite and ferrite.
  • the cooling effect can be greater in air supply than in suction. This is because compressed air can easily supply a large amount of air at high pressure into the bowl. Therefore, it is easy to obtain a desired cooling pattern by mainly using air supply in the cooling process and using suction as an aid.
  • the flow rate flowing through the suction port and the air supply port is controlled by a flow control device provided for each. At this time, the control method can be easily performed in accordance with the suction and air supply amounts of the respective pressure reduction boxes determined in advance. In addition, when it is desired to control with higher accuracy, it is possible to control by the cooling control method described in means 19 based on the temperature of the gas from each pressure reduction box or the value of the temperature and the flow rate.
  • the gaseous body sucked and discharged by the present apparatus is used for a forging system that effectively uses the heat of the molten metal described in means 22.
  • the present apparatus is an apparatus capable of performing suction and Z or air supply from a selected site of the bowl shape, and creates a predetermined pressure reduction distribution in the cavity when pouring water, and A desired cooling pattern can be obtained in the cooling process.
  • the suction and air feeding device described in means 23 it is characterized in that the positions of the plurality of pressure reducing boxes can be freely changed in a plane parallel to the outer surface of the bowl shape.
  • the positions of the plurality of pressure reducing boxes of the suction and air feeding device of means 22 can be freely changed in a plane parallel to the outer surface of the bowl. That is, a plurality of decompression boxes can be freely moved in three directions of X, Y, and Z with respect to the outer surface of the mold.
  • the plurality of pressure reduction boxes can be moved up and down only vertically to the outer surface of the bowl, and the flexibility in a plane parallel to the outer surface of the bowl is not defined. That is, it was applied when the vent was provided at a fixed position on the outer surface of the boat.
  • a plurality of decompression boxes can be brought into contact with any position on the outer surface of the bowl, so that vent holes provided on the outer surface of the bowl can be provided at any location.
  • the suction and air supply device described in the means 22 is provided with a plurality of pressure reduction boxes at fixed positions, and it is convenient because it abuts on the vent holes provided at the corresponding positions.
  • the choice of which one to use should be decided according to the size, shape, material, quantity, etc. of the container to be manufactured. Details are described in Example 29.
  • Means 1 provides (1) a reduced pressure construction method capable of constructing a continuous line capable of easily producing high efficiency using a normal air-permeable mold. As a result, the pressure reduction forging method has been widely used, and it has become possible to improve the accuracy of the overall manufacturing of the objects.
  • a reduced pressure construction method capable of preventing burrs and a reduced pressure construction method of pouring at low temperature are provided by means 16 and 17. As a result, no pressure was generated or unnecessary pressure reduction forging of the feeder was established.
  • means 23 and 24 provided (7) an apparatus used for the reduced pressure forging method of the present invention. As a result, the reduced pressure casting method of the present invention can be easily implemented.
  • forging can be widely used as a manufacturing method superior in cost and quality as compared with other methods.
  • the best mode for carrying out the invention is characterized in that, as described in the means 1, on the surface plate, an air-permeable wedge shaped in a wedge frame provided with a heat seal member on the upper surface and Z or lower surface of the wedge frame.
  • the whole or a part of at least one outer surface of the breathable wedge is virtually divided into a plurality of segments, and the wedge is formed at a selected position of the plurality of segments.
  • the molten metal is poured into the desired cavity only, and then means 18 20 directional solidification, as described, cooling control, solidification structure adjustment, and a vacuum ⁇ method of performing recovering a melt of heat.
  • Example 1 is shown in FIG. In this embodiment, a pressure-reducing structure method using a pressure-reducing hood as the air seal member and the airtight member will be described using means 1.
  • heat seal members 7, 8, 9 for air-tightness were provided on the upper surface and the Z or lower surface of the upper and lower eyelid frames 2, 3. This is one of the components of the present invention for performing pressure reduction of the trapezoid 4.
  • it is filled with green sand, the upper mold 5 and the lower mold 6 are formed, and this is put together and placed on the surface plate 10.
  • This molding process is a continuous line molding type that enables high-efficiency production using the most common green mold, and the mold 4 is sent to the pouring and cooling, and the frame, sequentially with the platen 10. It is the same as in the case of using wheels and wheels instead of the surface plate 10.
  • the mold 11 cavity 11 is composed of a product portion 12, a pouring portion 13, a runner portion 14 and a spout portion 15.
  • a decompression head 16 is placed on the upper surface of the upper frame 2 of the mold 4 fitted as a hermetic member made of a non-air-permeable material.
  • a suction hole 17 is provided in the decompression hood 16 at one place, and a suction pipe 18 communicated with the pressure reducing device 69 is inserted therein by the elevating means 19 to perform decompression.
  • a heat resistant packing 20 is attached.
  • a portion corresponding to the pouring port 21 of the decompression hood 16 is also opened and covered with a foam resin 22 to maintain air tightness.
  • the contact surface between the surface plate 10 and the lower frame 3 is kept airtight by the air seal member 9. Further, the mating surfaces of the upper and lower molds 5 and 6 are also kept airtight by the heat seal member 8. Further, the contact surfaces of the upper frame 2 and the decompression hood 16 are also kept airtight by the air seal member 7 as well.
  • the air tightness is maintained between the suction hole 17 and the suction pipe 18 by the packing 20.
  • the pouring spout 21 which is another open part of the decompression hood 16 is closed with the foam resin 22 and the air tightness is maintained.
  • the entire mold is formed by the upper and lower frames 2, 3, the surface plate 10, the decompression hood 16 and the heat seal members 7, 8, 9 of the contact surface thereof and the packing of the contact surface of the suction hole 17 and the suction pipe 18.
  • Airtightness is maintained by the foam resin 22 of 20 and the pouring spout 21. That is, among these components, one having an airtight function similar to that of the airtight container used in the conventional total pressure reduction method is obtained.
  • knock 20 and foam resin 22 are general seal members. Not an integral component of the present invention.
  • the cavity 11 in the mold can obtain a prescribed depressurization.
  • the foamed resin 22 disappears, and the molten metal 23 is sequentially filled with the cavity 11 from the sprue portion 15.
  • the suction pipe 18 and the decompression hood 16 may be separate bodies, and the suction pipe 18 and the decompression hood 16 may be integrally raised and lowered.
  • the heat seal members are provided on the upper and lower surfaces of a normal bowl frame, and the depressurization hood is placed on the upper frame, and the suction hole is pumped down to supply pressure. It has become possible to carry out the entire decompression construction without using a special airtight container.
  • an airtight container is configured by combining an ordinary seal frame most commonly used in a high efficiency continuous line for mass production with an air seal member and a decompression hood. Therefore, it can be applied to existing lines easily! Of course, it goes without saying that the invention can be applied to new lines. That is, according to the decompression construction method of this embodiment, since a dedicated airtight container is conventionally used, the decompression construction method applied to special materials, thin-walled products, complex articles, etc. as a special construction method is generally used. It can be easily applied to continuous lines capable of highly efficient production of producing forged products.
  • Example 2 is shown in FIG.
  • a pressure reducing structure method using a weight which is substantially the same as that of the embodiment 1 and is used for preventing the floating of the bowl type as the airtight member will be described using the means 1 in the same manner.
  • the weight 24 is placed on the upper mold 5 or the upper frame 2 in order to prevent the floating phenomenon of the upper mold 5 and the upper frame 2 due to expansion of the mold after pouring.
  • the weight 24 is placed on the upper frame 2 as an airtight member.
  • the weight 24 is provided with a suction hole 17 and a pouring port 21.
  • the airtightness method of this portion is the same as that of the first embodiment.
  • a weight 24 is only used instead of the decompression hood 16 in Example 1, and the airtightness of the entire saddle-shaped body is exactly the same. Similarly, if the pressure is reduced from the suction hole 17 and pouring is performed in the same manner, the same reduced pressure forming method as that of the first embodiment can be performed.
  • Example 3 using a weight generally used in forging as an airtight member It was possible to easily carry out the decompression construction method. The action and effect are the same as in Example 1.
  • Example 3
  • Example 3 is shown in FIG.
  • a decompression construction method using a flexible vinyl as an airtight member with substantially the same configuration as the embodiment 1 and the embodiment 2 will be described using the means 1 in the same manner.
  • the thin and flexible vinyl 25 is put on the upper mold 5 as an airtight member to obtain the airtightness of the mold 4. Then, the suction pipe 18 is brought into contact with the outer surface of the upper mold 5 through the suction holes 17 of the vinyl 25.
  • the pressure is also reduced, the vinyl 25 is adsorbed to the upper mold 5 and the entire mold is kept airtight. And after a predetermined pressure reduction is obtained, pouring is performed. Also in this example, the reduced pressure construction method could be easily implemented.
  • the pressure reducing hood and the weight are not used as in the example 1 and the example 2, so the components for pressure reduction are simplified.
  • vinyl is used as a consumable, it is inferior to Examples 1 and 2 in terms of economy.
  • Example 2 By using the air seal member and the airtight member in both of Example 2 and Example 3, the reduced pressure forging method applicable to a continuous line capable of highly efficient production was provided.
  • the pressure reducing crucible of the present invention includes techniques such as a forging method in which a highly accurate reduced pressure distribution is created, a forging method for filling the molten metal only in a desired cavity portion, and a forging method for performing cooling control. Its significance is great because it can be widely applied to general products.
  • a fourth embodiment is shown in FIG.
  • a plurality of venting holes having different diameters and depths or depths from the outer surface of the bowl to the inside are provided by using the means 2, and a predetermined reduced pressure distribution is obtained by suction and pressure reduction from the outer surface of the bowl.
  • a predetermined reduced pressure distribution is obtained by suction and pressure reduction from the outer surface of the bowl.
  • each vent hole was provided in the upper part of the product portion 12 of the cavity 11, the pouring portion 13, and the runner portion 14 in a direction from the bowl-shaped outer surface 26 toward the inside.
  • the diameter and depth of each vent hole are large or deep so that the product portion 12 and the pouring portion 13 have a high degree of pressure reduction.
  • the two vent holes at the top of the runner portion 14 are provided shallow so that the degree of pressure reduction on the side of the sprue portion 15 becomes low.
  • the depressurizing hood 16 was placed on the upper surface of the upper frame 2 and depressurization was performed by the aspirating tube 18 through the aspiration holes 17 provided in the depressurizing hood 16.
  • the reduced pressure in the present embodiment is basically a total reduced pressure
  • the periphery of each vent hole 27 is selectively decompressed, It is in the same state. That is, the depressurization method of this embodiment can be regarded as a combination of the overall depressurization and the partial depressurization.
  • partial partial pressure reduction zones form respective partial pressure reduction zones around each vent hole 27, and a pressure reduction distribution of the entire cavity 11 is created as a combination thereof. Therefore, by changing the size, depth and position of each vent hole 27, a predetermined reduced pressure distribution can be created in the cavity 11.
  • the vent holes 27 provided in this embodiment are provided such that the degree of reduced pressure on the spout portion 15 side where the degree of reduced pressure is high in the product portion 12 and the pouring portion 13 is low and the reduced pressure distribution is obtained. .
  • a high pressure reduction distribution is created by the plurality of vent holes 27 in which the product 12 and the pouring portion 13 have a reduced pressure at the same time at the outlet 15 side.
  • the change in pressure is small. Since a plurality of vent holes 27 are provided so that a pressure reduction distribution is created so that the pressure is directed toward the product part 12 and the pressure reduction degree is increased toward the product part 12 first, the generation occurs near the gate part 15 The reduced pressure changes are promptly resolved and act to restore the original reduced pressure distribution.
  • the cavity 11 maintains a state close to the initial depressurization distribution, and the poured hot water is hardly affected by a large depressurization change. Therefore, the flow of the molten metal can be suctioned and induced to a turbulent and generated reduced pressure distribution, and the product portion can be smoothly filled.
  • vent holes 27 will be provided to describe what kind of pouring situation will occur in the conventional whole decompression construction method using a normal bowl shape.
  • the purpose is to pour the water in a state where the pressure distribution is almost uniform throughout.
  • the initial purpose can not be achieved with this alone.
  • the degree of pressure reduction is uniform throughout the cavity 11, the degree of pressure reduction near the gate portion 15 is higher than in the case of the present embodiment, so the pressure reduction change is large. Therefore, the molten metal is affected by a large pressure reduction change, and the flow is easily disturbed.
  • the reduced pressure since the reduced pressure only acts in the direction of homogenization in the conventional whole reduced pressure structure method with respect to the generated reduced pressure change, the reduced pressure distribution created again in the pouring process is nearly uniform. is there. In other words, it does not have a pressure reduction distribution that causes the molten metal to be smoothly drawn into the product section.
  • the filling of the melt is only performed in the form of pressure at atmospheric pressure and the static pressure of the melt (partly converted to dynamic pressure).
  • the pressure in the cavity is merely low, and there is no effect of causing any molten metal to be disturbed and smoothly drawn to the target product portion smoothly.
  • the molten metal may not be completely filled if a thin-walled, complex-shaped product is to be produced.
  • this embodiment is also effective in a so-called multi-piece structure in which a plurality of products can be contained in one frame. That is, by providing a large vent hole deep in the vicinity of each product portion or product portion desired to increase the degree of pressure reduction and the cavity portion of the pouring portion, a predetermined pressure reduction distribution can be easily created.
  • the decompression hood is placed on the upper part of the bowl shape, but it is also possible to provide the decompression hood on the lower part of the bowl shape to reduce the pressure.
  • the upper part of the bowl is placed on an airtight member to keep it airtight.
  • the weir and weir of the present invention are not limited to this.
  • a plurality of vent holes can be provided to perform the same reduced pressure forming method as that of this embodiment.
  • the pressure reduction method using the pressure reduction hood is shown in the present embodiment, the action and effect are the same as long as the method of reducing pressure from the outer surface of the bowl is not limited thereto.
  • a partial pressure reduction zone is formed around each of the plurality of vent holes by providing and ventilating the plurality of vent holes having different diameters and Z or depth, and By creating a specific pressure reduction distribution in the cavity, smooth pouring with less disturbance of the molten metal became possible.
  • high pressure accuracy which can be said to be a kind of combined pressure reduction method combining total pressure reduction and partial pressure reduction by providing a plurality of vent holes of different diameter and Z or depth from the bowl-shaped outer surface and reducing pressure. Provided a reduced pressure construction method.
  • Example 5 is shown in FIG. In the present embodiment, a pressure reduction structure method in which a plurality of vent holes are suctioned individually for pressure reduction using means 3 will be described.
  • the configurations of the weir frame and the weir type are the same as in the fourth embodiment.
  • a plurality of vent holes 27 are similarly provided from the bowl-shaped outer surface 26.
  • a plurality of pressure reducing boxes 28 having open ends in contact with the bowl shape were placed in contact with the air vents 27 by the lifting means 19.
  • the plurality of pressure reducing boxes 28 are communicated with the pressure reducing device 69 via the suction flow rate control means 29 respectively.
  • an airtight hood 30 is connected to the outside of the decompression box 28 to keep the outer surface 26 airtight, and the airtight hood 30 is placed on the upper frame 2.
  • a plurality of vent holes 27 provided on the outer surface 26 of the bowl is provided so that the product portion 12 has a high degree of pressure reduction and the spout portion 15 has a low degree of pressure reduction. ing.
  • the force of the entire decompression performed by the vacuum hood 16 covering the entire upper surface of the bowl is used.
  • a plurality of vacuum boxes 28 are provided for each vent hole 27. The suction flow rate was controlled separately to reduce the pressure through it.
  • the partial pressure reduction zone formed around the vent hole can be strengthened by increasing the suction flow rate of the pressure reducing box corresponding to the vent hole of the portion where the pressure reduction is desired to be increased.
  • the partial pressure reduction zone formed around the vent hole can be weakened by reducing the suction flow rate of the pressure reduction box corresponding to the portion where the pressure reduction degree is desired to be reduced (weakened). That is, by controlling the suction flow rate of each decompression box 28 individually, it is possible to control the strength of the partial decompression zone around each ventilation hole 27.
  • a plurality of partial pressure reductions individually controlled are performed. That is, in this embodiment, in addition to the action of a kind of partial pressure reduction obtained by changing the diameter and depth of each vent hole 27 described in the fourth embodiment, the suction flow rate is controlled separately from each vent hole 27 to reduce The partial pressure can be further clarified by pressure. As a result, in this example, a more accurate reduced pressure structure having two kinds of partial pressure reduction actions by the plurality of vent holes 27 provided in the bowl shape and by the plurality of pressure reduction boxes 28 was achieved.
  • the same action and effect can be obtained by the method of controlling the suction flow rates of the plurality of decompression boxes 28 with the same diameter and depth of the vent holes 27.
  • the perforation device of the vent hole 27 can be easily connected.
  • the airtight hood 30 is provided to maintain the airtightness of the entire bowl shape, if the number of decompression boxes 28 can be increased to cover one bowl-like outer surface 26, If a certain degree of air flow can be tolerated, the same effect can be obtained even if the air-tight hood 30 is not installed and depressurized.
  • Example 6 is shown in FIG. In the present embodiment, the same method 3 is used to describe a decompression / construction method in which a plurality of vent holes are individually suctioned or supplied with air to reduce the pressure.
  • the configuration of the weir frame and the weir type is the same as that of the fifth embodiment.
  • a plurality of vent holes 27 are similarly provided from the bowl-shaped outer surface 26.
  • each suction port 31 is in communication with a pressure reducing device 69 via a suction flow rate control means 29, and each air supply port 32 is in communication with an air compression device 70 via an air flow amount control means 33.
  • an airtight hood 30 is provided connected to the outside of the plurality of pressure reducing boxes 28, and the airtight hood 30 is placed on the upper frame 2. ing.
  • the purpose of enabling air supply in addition to suction is to obtain a desired reduced pressure distribution with higher accuracy. That is, by supplying a small amount of compressed air from the pressure reducing box 28 communicating with the vent hole of the portion where the pressure reducing degree is to be reduced, the pressure reducing degree can be positively reduced.
  • suction is performed to the three vent holes provided at the upper portion of the product portion 12 and the pouring portion 13 to increase the degree of pressure reduction, and air is delivered to the vent holes near the sprue portion 15. Reduced the degree of pressure reduction.
  • the states of suction and air supply are indicated by the direction and size of the arrows in the decompression box 28.
  • suction and insufflation can be performed separately for a plurality of vent holes, so a predetermined pressure reduction distribution can be created with higher accuracy than in the fifth embodiment.
  • Example 7 is shown in FIG.
  • a plurality of vent holes are provided by means 4 and one of the outer surfaces of the cage is virtually divided into a plurality of cage segments, and the plurality of cage segments are individually divided. Suction bow I or air supply and partial pressure reduction and pouring is explained.
  • the configuration of the weir frame and the weir type is the same as that of the sixth embodiment.
  • a plurality of vent holes 27 are provided in the bowl-shaped outer surface 26. The plurality of vent holes 27 virtually divides the wedge-shaped outer surface 26 into wedge-shaped segments and is provided at selected positions therein.
  • a plurality of pressure reducing boxes 28 having an open end in contact with the bowl shape is used.
  • the plurality of pressure reducing boxes 28 are connected on the side, and a total of approximately one bowl shape outer surface 26 is covered. It has become.
  • one wedge-shaped outer surface 26 is virtually divided into wedge-shaped segments of a predetermined size, and a plurality of pressure reducing boxes 28 are arranged in a connected manner at all positions corresponding to each wedge-shaped segment. It has become. That is, the plurality of vent holes 27 and the plurality of pressure reducing boxes 28 are perforated and installed at positions corresponding to the same vertical segment, and the plurality of vent holes 27 and the plurality of pressure reducing boxes 28 are communicated.
  • the airtight hood 30 is attached around the plurality of pressure reducing boxes 28 in order to maintain the airtightness of the entire mold.
  • a plurality of pressure reducing boxes 28 are placed in contact with the outer surface 26 of the bowl by the lifting means 19. Note that, in the configuration of the present embodiment, since almost the entire outer surface 26 is covered with the plurality of pressure reducing boxes 28, the airtight hood 30 may not be necessarily required.
  • suction ports 31 and air ports 32 are provided in the plurality of pressure reducing boxes 28 respectively.
  • Each suction port 31 is in communication with a pressure reducing device 69 via a suction flow rate control means 29, and each air supply port 32 is in communication with an air compression device 70 via an air flow amount control means 33.
  • the plurality of decompression boxes 28 are arranged both in the vertical segment where the vent holes 27 are provided and in the vertical segment where the vent holes are not provided. Suction or insufflation is possible in the decompression box 28 of Therefore, since almost the entire wedge-shaped outer surface 26 is divided into segments and the partial pressure is reduced individually, it is possible to create the reduced pressure distribution of the entire cavity 11 with extremely high accuracy.
  • the arrangement, the diameter, and the depth of the plurality of vent holes 27 are the same as in the fifth and sixth embodiments as appropriate configurations to obtain a predetermined decompression distribution.
  • the vent holes 27 are provided, and by virtue of the pressure reduction, a strong partial pressure reduction zone is formed around the vent holes 27, and naturally the pressure reduction distribution of the cavity 11 is strongly affected. Therefore, highly accurate partial pressure reduction can be performed by controlling the flow rate of suction and Z or air supply of each pressure reduction box 28 in consideration of the presence or absence of the vent hole 27, the arrangement, the shape of the cavity 11, and the like. As a result, it is possible to create a highly accurate predetermined decompression distribution in the wedge-shaped cavity 11. This is one of the major features of this embodiment.
  • Another major feature of the present embodiment is that the entire outer surface of one wedge is virtually divided into wedge-shaped segments, so that the present invention can be actually produced in a continuous line capable of highly efficient production.
  • the device for drilling multiple vent holes and the device for multiple decompression boxes will be greatly simplified.
  • the drilling tools can be placed at all positions corresponding to each wedge-shaped segment, and a desired site can be selected and drilled.
  • a desired site can be selected and drilled.
  • the present embodiment is highly adaptable to the tact of continuous lines capable of highly efficient production.
  • Another feature of this embodiment is that, by virtually dividing the eaves into eaves and performing suction or insufflation, a plurality of cavity arrangements as shown in FIG.
  • the present embodiment can be easily applied to the boat type, and a predetermined depressurized distribution can be obtained.
  • a downward pressure distribution can be easily created from the low pressure gate to the high pressure product area.
  • Such a highly accurate decompression distribution as in the present embodiment for the multi-fill bowl type is a force which can not be realized at all by the conventional decompression forging method. It should be noted that, even in the fifth and sixth embodiments, it is possible to cope with the multi-fill vertical type, as described above, the present embodiment is compatible with a continuous line capable of high efficiency production. high.
  • one of the outer surface of the wedge is virtually divided into a plurality of wedge segments, and vent holes are selected and provided at positions corresponding to the respective wedge segments.
  • a plurality of decompression boxes are arranged at a position corresponding to the segment, and by pouring it while suctioning or supplying air and decompressing, a highly accurate decompression distribution can be created, and an actual high efficiency is achieved.
  • Example 9 is shown in FIG.
  • the ventilation hole is not provided on the outer surface of the bowl
  • one of the outer surface of the bowl is virtually divided into a plurality of the bowl-shaped segments by using the means 4.
  • Explain the pressure reducing forging method in which the suction bow I or air supply, pressure reduction and pouring are performed individually to the segments.
  • each wedge shape is suctioned or supplied from each pressure reducing box 28. Partial decompression can be performed on the segment.
  • a plurality of partial pressure reduction zones corresponding to the suction flow rate or the air flow amount of each pressure reduction box 28 are formed in the lower part of each pressure reduction box 28 in the mold.
  • the vent holes are provided, and therefore, to obtain the predetermined depressurization distribution as described above, it depends on the control of the suction flow rate and the air flow rate of each depressurization box. Since it is necessary to provide a ventilation hole instead of force, there is an advantage if it becomes easy to manufacture a mold. That is, a normal template can be used as it is.
  • the cage outer surface is virtually divided into a plurality of caged segments, and a plurality of decompression boxes connected to each cage segment are provided. Then, the pressure was reduced by suction or air supply to a predetermined pressure distribution with high accuracy. Pouring water under this reduced pressure condition made it possible to fill the cavity smoothly and with less disturbance of the water flow.
  • the effect of the present embodiment is that suction and air supply by a plurality of segment-like connected pressure reduction boxes are performed on a normal normal type without providing any ventilation holes in the type. This means that high-precision pressure distribution can be obtained, and generalization of the pressure reduction method has become easy.
  • Example 9 is shown in FIG. 10 and FIG. Figure 10 shows the condition during pouring and Figure 11 shows the condition after pouring.
  • a pressure-reducing structure method is described in which a molten metal is filled and solidified only in a portion as a desired cavity portion desired to fill the product portion and the pouring portion in the vertical cavity using means 6.
  • the configurations of the weir frame, weir type and decompression method are the same as in Example 4.
  • a plurality of vent holes 27 are provided so that the degree of pressure reduction of the desired cavity 35 is higher than that of the other cavities 38.
  • the heddle frame and heddle type of the present invention are not limited to the heddle frame and heddle type of this embodiment. The same applies to the following embodiments.
  • the degree of reduced pressure of cavity 11 is equal to or more than the absolute value of static metal pressure ⁇ of molten metal determined by the height H from the inlet 36 of the molten metal to the desired cavity 35 to the top 37 of the cavity.
  • is the specific weight of the molten metal.
  • the degree of vacuum is at least filled with the desired cavity 35 alone, but in the present embodiment, the entire cavity is almost equal to or higher than the degree of vacuum because it is a total vacuum.
  • the molten metal 23 having a volume substantially equal to or slightly larger than the volume of the desired cavity 35 is poured, the molten metal 23 flows from the sprue 15 through the runner 14 and is the desired cavity 35
  • the product section 12 and the feeder section 13 are filled. Since at least the product portion 12 and the feeder portion 13 have a degree of pressure reduction of ⁇ or more, the molten metal 23 is filled up to the top 37 of the desired cavity portion 35. Since the amount of molten metal poured is only the volume of the product portion 12 and the pouring portion 13, naturally, only this portion is filled, and there is no molten metal in the runner portion 14 and the sprue portion 15.
  • the reduced pressure is maintained until the filled molten metal 23 solidifies, and it is possible to obtain a structure having only the desired cavity portion 35, ie, the product portion 12 and the pouring portion 13. Until the molten metal 23 solidifies, it is not always necessary to solidify the filled molten metal 23 completely. At least the desired portion of the interface between the cavity 35 and the other part 38 Keep the reduced pressure until it solidifies to the extent that it does not flow out to the 15 side!
  • the meaning of the pressure reduction degree ⁇ is the melt pressure at which the melt 23 filled in the product portion 12 and the pouring portion 13 flows out also in the vicinity of the boundary portion 39 described above. Therefore, the molten metal 23 will not flow out if it is maintained at a pressure reduction degree higher than this.
  • this pressure reduction degree is ⁇
  • the pressure reduction inside the mold is broken near the sprue portion 15 with the start of pouring and the pressure reduction degree of cavity 11 Will also change. Therefore, in order to keep the degree of pressure reduction at or above ⁇ , it is necessary to perform pressure reduction in consideration of this pressure reduction change.
  • a desired cavity portion 35 filled with the molten metal by a plurality of vent holes 27 having a certain pressure in the overall depressurization is a spout portion 15 in which the degree of decompression of the product portion 12 and the feeder 13 is high. Since a low pressure distribution is created on the side, it is possible to cope with the pressure change caused by pouring water.
  • the present embodiment since the diameters and depths of the plurality of vent holes 27 are changed, the present embodiment also corresponds to the means 8.
  • the desired degree of pressure reduction of the cavity portion is at least ⁇ or more, and the molten metal having a volume substantially equal to that of the desired cavity portion is poured, and the reduced pressure is maintained until solidification. It was possible to obtain a fabricated product of only the part of the cavity.
  • Example 10 is shown in FIG. 12 and FIG. Figure 12 shows the condition during pouring and Figure 13 shows the condition after pouring.
  • FIG. 12 shows the condition during pouring
  • Figure 13 shows the condition after pouring.
  • a pressure reduction structure in which the product portion and the pouring portion in the cavity are filled with the molten metal only in that portion as the desired cavity portion and solidified.
  • the configurations of the weir frame, weir type and decompression method are the same as in the first embodiment.
  • the vent holes are not provided in this embodiment.
  • the depressurization method is exactly the same as in Example 9.
  • the pressure reduction degree of the cavity 11 is determined by the absolute value of the static metal pressure ⁇ of the molten metal, which is determined by the height H from the inlet 36 of the molten metal to the desired cavity 35 to the top 37 of the cavity. To a negative pressure condition.
  • the molten metal 23 flows from the spout 15 through the runner 14 and is the desired cavity 35, the product 12 and the feeder 13 Be filled with Then, by maintaining the reduced pressure until the solidification near the boundary 39 between the desired cavity portion 35 and the other cavity portions 38, it is possible to obtain a structure in which the molten metal is filled only in the desired cavity portion 35. it can.
  • Example 9 only the desired cavity portion 35 can be filled with the molten water.
  • Example 9 and the present Example there is a slight difference in the stability of pouring. That is, as described above, with such a total pressure reduction, the pressure reduction breaks near the gate 15 with the start of pouring, and there is a difference in the responsiveness to a large change in the pressure distribution.
  • a plurality of vent holes are provided so that the degree of pressure reduction of the desired cavity 35 is higher than that of the other cavities 38, so this is corrected also for the change in pressure due to the start of pouring. It is easy to restore the proper depressurization distribution.
  • the stability problem at the time of pouring in the present embodiment can be improved as follows, as an example.
  • it is effective to provide another suction and decompression means near the desired cavity in addition to the overall vacuum. That is, when the degree of pressure reduction changes with the pouring of water, the pressure reduction distribution near at least the desired cavity portion is properly maintained by the other suction and pressure reduction means. This will greatly improve the stability of pouring.
  • the feature of the present embodiment is that by providing no vent holes in the wedge shape, that is, by using a normal wedge shape, the degree of pressure reduction of at least the desired cavity portion is stabilized at or above the value of ⁇ H.
  • the volume of the molten metal By holding the volume of the molten metal so that the volume of the molten metal is approximately equal to that of the desired cavity portion, it is possible to obtain a fabricated product in which the molten metal is filled only in the desired cavity portion.
  • Example 11 is shown in FIG. 14 and FIG. Figure 14 shows the condition during pouring and Figure 15 shows the condition after pouring.
  • a pressure-reducing structure method in which only a desired cavity portion is poured with the same configuration as that of the embodiment 6 will be described by using the means 9.
  • vent holes 27 are provided, and the vent holes of the product portion 12 and the feeder 13 which are the desired cavity portions 35 have large sizes so as to increase the degree of pressure reduction. It is deeply perforated.
  • each vent hole 27 is communicated to a plurality of pressure reducing boxes 28 capable of suction or air supply, and the suction flow rate and the air flow amount are individually controlled, the pressure reduction from each vent hole 27 is It becomes possible to control individually.
  • the pressure reduction degree of the product portion 12 and the pouring portion 13 is set to ⁇ or more using the above-mentioned pressure reduction means, and the pressure reduction degree of the sprue portion 15 is made as low as possible.
  • a small amount of compressed air is supplied to the vent holes of the spout portion 15 in order to reduce the degree of pressure reduction.
  • the force on the side of the sprue 15 is also directed toward the product 12 to create a pressure reduction distribution such that the degree of pressure reduction is high.
  • molten metal 23 having a volume substantially equal to the volume of product section 12 and feeder 13 is poured.
  • the molten metal 23 is drawn by suction to the reduced pressure distribution of the cavity 11 and is filled in the product portion 12 and the pouring portion 13.
  • the molten metal is not filled in the runner portion 14 and the gate portion 15. That is, a manufactured product of only the product section 12 and the feeder section 13 can be obtained.
  • the pouring process is considered. With the start of pouring, the pressure reduction in the initial state is broken near the gate 15, and the pressure reduction degree of the cavity 11 also changes. However, in the present embodiment, since the degree of pressure reduction is lowered near the gate 15 from the initial state to be close to the atmospheric pressure and the pressure degree is reduced, the change in the degree of pressure reduction of the cavity 11 is small.
  • the change in pressure reduction to which the molten metal is subjected is small, the disturbance of the flow of the molten metal is small, and the filling can be performed more smoothly and smoothly.
  • Example 12 is shown in FIG. 16 and FIG. Figure 16 shows the condition during pouring and Figure 17 shows the condition after pouring.
  • a pressure-reducing structure in which the pressure is reduced from a plurality of cage-shaped segments virtually provided in the same configuration as that of the embodiment 7 using the means 10 and only the desired cavity portion is poured will be described.
  • the configuration of the shed frame and the boat type is the same as that of the seventh embodiment. Also, a plurality of vent holes 27 are provided to increase the degree of pressure reduction of the desired cavity portion 35. In the present embodiment, in the seventh embodiment, a plurality of decompression boxes 28 placed on the plurality of virtually divided vertical segments 34 used in the embodiment are used while being decompressed by suction or supply of air. Water was poured only to the cavity part 35.
  • Example 13 is shown in FIG. 18 and FIG. Figure 18 shows the condition during pouring and Figure 19 shows the condition after pouring.
  • means 8 is used to describe a reduced pressure forming method in which a molten metal is filled only in a desired cavity portion in a so-called vertical structure using a vertical mold-matching surface.
  • the vertical cavity consists of 4 product parts 12 and 4 pouring parts 13 provided at the top of each, spout part 15 for filling it with molten metal, and runner part 14 .
  • the product sections 12 are arranged two each in the upper and lower parts.
  • the point different from the usual vertical type structure is that the runner portion 14 and the gate portion 15 are independently arranged in two sets for the upper stage and the lower stage.
  • vent holes 27 are provided from the upper surface 42 of the upper portion to the upper portions of the respective pouring holes 13 in the upper stage. Further, for the lower part, the upper force of each feeder 13 is also communicated with the upper surface 42 by the vent hole 41 extending vertically and the vent hole 40 extending horizontally. In vertical weirs these vents can be molded by molding. [0395] Further, the decompression box 28 communicated with the decompression device 69 is placed in contact with each vent hole so that the pressure can be reduced through each vent hole.
  • the vertical mold 4 used for the vertical structure has an open upper surface and a lower transfer tool 43 on the lower surface, and there is a gap to some extent. Further, the side surface is provided with a wedge-shaped clamp member 44, which also has a certain degree of clearance.
  • the product portion 12 and the pouring portion 13 which are desired cavity portions are allowed to have a predetermined degree of pressure reduction ⁇ or more while permitting a certain amount of air inflow from the gaps between the lower and side peripheral members. It was made to do.
  • is the specific weight of the molten metal to be poured
  • is the height from the molten metal inflow port 36 to the product section 12 to the top 37 of the feeder section 13.
  • the pressure is reduced by the pressure reducing box 28 so that the degree of pressure reduction of the product portion 12 and the pouring portion 13 is equal to or more than ⁇ .
  • the product 12 and feeder 13 are maintained at a degree of pressure reduction equal to or greater than ⁇ , so The molten metal passes from the sprue portion 15 through the runner portion 14 and fills only the product portion 12 and the pouring portion 13.
  • the upper two sets of the product portion 12 and the feeder portion 13 are filled with the molten metal from the other gate portion 15 as well.
  • the pressure reduction at the lower stage is also performed from the bowl-shaped upper surface 42, it is also possible to arrange the pressure reduction box 28 in the side of the clamp member 44 and reduce the pressure.
  • Example 14 is shown in FIG. 20 and FIG. Figure 20 shows the condition during pouring, and Figure 21 shows the condition after pouring.
  • means 8 is used to describe a reduced pressure forming method in which a vent hole is provided when the mold is a mold to fill the molten metal only in a desired cavity portion.
  • the upper surface force of the upper die is also provided with a vent hole 27 in the vicinity of the product portion 12 which is the desired cavity portion 35 of the mold 45 and the pouring portion 13.
  • the vent hole 27 is composed of a hole 46 drilled from the outer surface of the mold and a vent 47 having a clearance to the extent that the molten metal provided at the tip does not pass. Therefore, although the mold body is not breathable, the cavity 11 can be depressurized through the vent holes 27.
  • an air seal member 8 is disposed on the upper and lower mating surfaces of the mold so that air tightness can be maintained.
  • the mold is housed in an airtight container 48.
  • a suction hole 17 is provided in the airtight container 48 at one place, and the suction pipe 18 communicated with the pressure reducing device 69 is inserted from the suction hole 17 and the pressure reducing box 28 attached to the tip is vented 27 It comes in contact with the equipment so that suction and pressure reduction can be performed.
  • the pressure reducing device 69 is operated to set the degree of pressure reduction of at least the product portion 12 which is the desired cavity portion 35 and the pouring portion 13 to ⁇ H or more.
  • the degree of reduced pressure of the portion is high!
  • the meaning of the present embodiment is that only the desired cavity portion of the present invention is provided in the same manner as a general breathable cage, by appropriately providing a plurality of vent holes regardless of the shape of the bowl. It is said that it is possible to apply a reduced pressure construction method in which the molten metal is filled.
  • Example 15 is shown in FIG. 22 and FIG. Figure 22 shows the condition during pouring and Figure 23 shows the condition after pouring.
  • a pressure-reducing structure in which the pressure is reduced after pouring is started and only a desired cavity portion is poured is described using means 7.
  • the configuration of the heddle frame and the crest type is the same as that of the fifth embodiment.
  • the pressure was reduced by placing a plurality of pressure reducing boxes 28 communicated with the pressure reducing device 69 on the upper mold 5.
  • the pressure was reduced to a predetermined pressure, and the force was poured by force.
  • the order was reversed. That is, at first, the pressure is not reduced, and the molten metal 23 having approximately the same volume as the desired cavity 35 is poured. Then, the molten metal 23 is dispersed and filled throughout the cavity 11 as shown in FIG.
  • the molten metal 23 is sucked and introduced into the product portion 12 and the pouring portion 13 which are the desired cavity portions 35. In this state, if the degree of pressure reduction is maintained at or above ⁇ until solidification, a manufactured product of only the product portion 12 and the pouring portion 13 can be obtained.
  • FIG. 22 shows the state in which the molten metal 22 is at rest for the sake of explanation.
  • the pressure reduction start does not necessarily have to wait for the stationary state of the molten metal 23 to start at an appropriate timing after the pouring start. It is
  • Example 16 is shown in FIG.
  • the desired cavity portion and the other portions are formed in accordance with the construction method in which the pressure is reduced and the desired cavity portion is poured using means 11.
  • a ventilation sealing member is installed near the boundary of the cavity, which has air permeability lower than that of air-impermeable or wedge-shaped, and which loses or melts due to the heat of the molten metal. .
  • the configurations of the boat type, the boat frame and the pressure reducing means are the same as in the fifth embodiment. That is, a plurality of vent holes 27 were provided from the bowl-shaped outer surface 26 and the pressure was reduced by the corresponding plurality of pressure reducing boxes 28. In this configuration, the degree of reduced pressure of the product portion 12 and the feeder 13 which are the desired cavity portion 35 is high! The reduced pressure distribution is created.
  • concave portions 49 are formed on the upper and lower sides near the boundary 39 between the desired cavity portion 35 and the other cavity portions 38, and a 50 mm ⁇ 50 mm ⁇ 15 mm thick foam is formed thereon as a vent sealing member. 50 fats were installed.
  • the reduced pressure changes on the side of the sprue 15 accompanying pouring, at least until the molten metal reaches the foamed resin 50, the influence of the reduced pressure does not appear in the desired cavity 35. Therefore, during this time, the desired cavity 35 can be stably maintained at a predetermined degree of pressure reduction. This is another function of the vent sealing member.
  • the vent sealing member functions to stabilize the degree of pressure reduction of a desired cavity portion before and after pouring.
  • the filling power of the molten metal to the desired cavity portion can be made more stable by covering the preferable reduced pressure distribution by the plurality of vent holes and the reduced pressure box.
  • the vent sealing member works in the same manner in the case of partial pressure reduction with respect to the desired cavity portion by using a plurality of pressure reduction boxes for pressure reduction and in the case of total pressure reduction.
  • vent sealing member is to separate the desired cavity part from the sprue side and keep the degree of pressure reduction stable, so from the non-air-permeable member such as metal piece, plate material or wedge type The same function and effect can be obtained if it is a low-permeability breathable member.
  • Example 17 is shown in FIG.
  • the air-permeable sealing member provided in the vicinity of the boundary portion is made of molten metal.
  • This steel plate 51 has exactly the same action as the foamed resin of Example 11 in terms of pressure stability and stability. However, in the present embodiment, after the molten metal reaches the steel plate 51, it takes about three minutes before the steel plate 51 melts and the molten metal starts to flow into the desired cavity portion 35. A state where the molten metal has reached the steel plate 51 is shown in FIG. That is, for about 3 seconds, the molten metal fills up the remaining portion of the desired cavity 35 as shown in the figure and stands still! /. Therefore, even if the flow of the molten metal is disturbed due to the pouring, when the molten metal stops once in this state, the disturbance of the flow of the molten metal is almost completely eliminated. That is, the dynamic pressure of the molten metal as it is poured is converted to static pressure. This is one of the functions of the steel plate 51 which is the vent sealing member.
  • the gas-passing sealing member of the present embodiment enables filling in a static pressure state by temporarily stopping the molten metal, and floats up inclusions and the like mixed in the molten metal at the initial pouring. And the effect of reducing defects. As a result, the filling of the desired cavity part can be performed more stably.
  • Example 18 is shown in FIG. 26 and FIG. Figure 26 shows the condition before pouring, and Figure 27 shows the condition after pouring.
  • the pressure reduction method of reducing pressure and pouring to a desired cavity using the means 13 the molten metal in the cavity recess of the vicinity of the boundary portion so that the molten metal filled in the desired cavity portion solidifies quickly.
  • the reduced pressure construction method with the blocking member installed the reduced pressure construction method with the blocking member installed.
  • the configurations of the boat type, the boat frame and the pressure reducing means are the same as in the fifth embodiment. That is, a plurality of vent holes 27 are provided from the bowl-shaped outer surface 26, and a plurality of pressure reducing boxes 28 corresponding thereto are provided. Depressurized.
  • a recess 49 is provided in the lower and upper portions near the boundary 39 between the desired cavity 35 and the other cavities 38, and it is molded with shell sand as a molten metal blocking member 50 mm X 50 mm X thickness 15 mm A shell piece 52 was placed to fit in the recess 49 in the lower part of the cavity.
  • the shell piece 52 is in the recess 49 in the upper and lower cavities due to the static pressure of the molten metal 1 It is pressed to the 5 side and works to prevent the outflow of the molten metal. This pressing force can not completely stop the outflow of the molten metal, but a slight reduction in pressure can prevent the outflow.
  • the operation and effect of the molten metal blocking member are the same as long as it is a fire-resistant material whose specific gravity is smaller than that of the molten metal.
  • the shapes of the melt blocking member and the recess are not limited to those of this embodiment. The same operation and effect can be obtained by combining appropriate shapes.
  • the reduced pressure holding time after pouring can be shortened, and the production efficiency can be improved.
  • This embodiment solves or reduces the problem of requiring a certain reduced pressure holding time until solidification after pouring, which is one of the problems in the reduced pressure method according to the present invention, in which the molten metal is filled only in the desired cavity portion. We were able to.
  • Example 19 is shown in FIG.
  • the pressure is reduced to the desired cavity using the means 14.
  • pressure reduction is stably performed, and near the boundary between the desired cavity portion and the other cavity portion so that the molten metal filled in the desired cavity portion solidifies quickly.
  • a reduced pressure construction method will be described in which a sealing and blocking member in which the through-flow sealing member and the molten metal blocking member used in Examples 16 and 18 are integrated is installed.
  • the foam resin 50 is used as the air-permeable sealing member
  • the shell piece 52 is used as the molten metal blocking member
  • the foam resin 50 is the upper part
  • the shell piece 52 is the lower part.
  • a blocking member 53 is placed in the recess 49 of the cavity near the boundary 39 of the desired cavity 35 and other cavities 38.
  • the operation and effects of the sealing and blocking member 53 are obtained by combining the effects of the two members of the through-flow sealing member and the molten metal blocking member shown in the embodiments 16 and 18. That is, at the time of pressure reduction, the stability of the pressure reduction of the cavity is measured with the foam resin 50, and after pouring, the shell piece 52 comes up to promote coagulation in the vicinity of the boundary 39. In addition, even if it uses the steel plate 51 of Example 17 instead of the foamed resin 50, the effect
  • Example 20 is shown in FIG.
  • a reduced pressure structure method will be described in which quenching is performed by supplying strong air from the vent holes and Z or cooling holes near the boundary to rapidly solidify the molten metal filled in the desired cavity.
  • the configurations of the boat type, the boat frame and the pressure reducing means are the same as in the sixth embodiment. That is, a plurality of vent holes 27 were provided from the bowl-shaped outer surface 26 and depressurized by the corresponding depressurizing boxes 28.
  • the desired cavity portion to which the molten metal is to be filled from the bowl-shaped outer surface 26 35 A deep cooling hole 54 which is larger than the other part is provided near the boundary 39 of the other cavity 38 and the other cavity 38.
  • the molten metal fills the desired cavity 35 as shown in the above embodiment. Then, it can be cooled by suction or air supply through each air vent 27. At that time, a large amount of compressed air is supplied to the large, deep, cooling holes 54 provided near the boundary 39. The area around the boundary 39 was quickly cooled. Although strong suction can be performed to the cooling holes 54 to increase the cooling rate, in general, the cooling rate can be increased by supplying compressed air.
  • the cooling hole provided near the boundary is always large if there is a constraint on the cavity shape, etc.
  • the depth and depth of the cooling hole should be appropriate, and the cooling speed of the part should be from the pressure reduction box. It can also be adjusted by the flow rate of suction or insufflation. Also, if no cooling holes are provided, it can be cooled by suction or air supply from the vent holes near the boundary.
  • Example 21 is shown in FIG.
  • means 16 is used to explain a decompression fork method for preventing burrs which are easily generated in the gap in the vacuum forging method.
  • the basic configurations of the boat type and the boat frame are the same as in the first embodiment.
  • this embodiment in order to facilitate the principle of the method of preventing burrs, a case is described in which the pressure reducing hood 16 is placed on the upper part of the bowl and the entire bowl is depressurized.
  • the bowl type is provided with an air supply hole 57 communicating with the core wood part 55 and an air supply hole 58 communicating with the upper and lower bowl mating surfaces 56. Then, the air supply pipe 60 is communicated with the air supply holes 57, 58 through the air supply holes 59 provided at two points of the decompression hood 16 so as to supply compressed air. [0460] The operation and effect of this configuration will be described. In general, in the decompression construction method, when the pressure is reduced, the gaps such as the core wood part 55 and the upper and lower facings 56 are also reduced in pressure, and the possibility that the molten metal will immediately generate burrs increases. .
  • compressed air is supplied to these gaps from the two air supply holes 57 and 58 as described above to stop the invading molten metal. That is, since the pressure of these gaps is maintained at a positive pressure without being a negative pressure due to the pressure reduction due to the air supply of the compressed air, it is possible to exert an action of preventing the entry of the molten metal. In addition, since the molten metal which compressed air infiltrates is cooled to lower the fluidity, the molten metal is more difficult to infiltrate into the gap.
  • burrs are likely to be generated, the pressure reduction method is also suitable, but even burrs are likely to be generated, by providing air holes in the part and supplying compressed air to the holes. I was able to prevent The elimination of the generation of the solder eliminates the work of removing the solder in the post process generally performed conventionally, and brings about the effect of significant cost reduction and process shortening.
  • an air supply hole communicating with the outer surface is provided at a necessary portion to supply compressed air. Can prevent burrs.
  • Example 7 it is most effective to use a plurality of segmented pressure reducing boxes as used in Example 7 to supply air.
  • Example 22 is shown in FIG. In this embodiment, when pouring the spherical graphite pig iron in the vacuum construction method using the means 17, the vacuum construction method in which the predetermined vacuum distribution with high accuracy is created in the cavity is obtained by Examples 1 to 21. As a result, we will explain the reduced pressure construction method where the pouring temperature is below 1300 ° C.
  • the basic configurations of the boat type and the boat frame are the same as in the fifteenth embodiment.
  • two pots A and B were prepared, and both pots were poured without pouring.
  • A was poured by a normal structure without pressure reduction
  • B was poured by pressure reduction by a pressure reduction method according to the present invention.
  • the pouring temperature was set to 1,300 ° C., since a general reduced pressure distribution can be created at A: 1,400 ° C., and a highly accurate decompression distribution can be created according to the present invention;
  • the molten metal is spheroidal graphite pig iron, and the chemical composition is 3.70% C, 2.62% Si, 0.30% Mn, 0.05% Cu, PO. 032%, SO. 008%, MgO. 045%.
  • the spherical shape was made using a FeSiMg alloy. The product weighs 5.2 kg.
  • the result of this example is that, in the case of the 1300 ° C. pouring in B's reduced pressure method, the number of shattering spots is negligible, compared with the force of A. The area became about 1Z15, and one with almost no shrinkage was obtained.
  • This is an effect of the reduced pressure casting method according to the present invention, which improves the hot water pouring and makes it possible to lower the pouring temperature by 100 ° C.
  • decompression is properly performed by a decompression method using a plurality of decompression boxes, etc. It has been confirmed that pouring at 1250 ° C is possible without failure. Such low temperature pouring can further reduce shrinkage defects.
  • a spherical graphite pig iron can be obtained as a defect-free container product without pouring.
  • this can be applied to pig iron in general, including ordinary pig iron (maze iron) and special pig iron.
  • ordinary pig iron since the solidification form is skin-forming solidification compared to the matsushi-type solidification of the spheroidal graphite pig iron, the occurrence of shrinkage spots is further reduced, and the present embodiment can be applied more easily.
  • the decompression construction method of the pig iron of the present example significantly enhances the production efficiency of the pig iron parts that are produced about 50 million tons annually in the fields of automobiles, construction, machinery and the like in the world. This is a salute.
  • Example 23 is shown in FIG.
  • the means 18 is used to control the flow rate of the gas drawn or fed through the vent holes, the cooling holes and the wedge-shaped segments after pouring in the reduced pressure drilling method, thereby making it desirable to fill the molten metal.
  • the basic configurations of the boat type, the boat frame and the pressure reducing means are the same as in the seventh embodiment.
  • a plurality of vent holes 27 are provided at selected portions of the segment, and suction or air is supplied by a plurality of pressure reducing boxes 28 placed on the boat to pour and after pouring. Cooling was done.
  • the pressure reduction before pouring is set to a pressure reduction distribution with a low degree of pressure reduction on the side of the sprue 15 where the pressure reduction degree of the product section 12 and the pouring section 13 is increased as described in the above examples.
  • a molten metal having a volume substantially equal to that of the desired cavity 35 was poured and filled only in the desired cavity 35.
  • a plurality of vent holes 27 are provided from the bowl-shaped outer surface 26 and after pouring, the pouring portion of the product portion 12 is carried out.
  • a large amount of compressed air was supplied to the farthest area from 13 and compressed air with a reduced flow rate was supplied to the product section 12 and the pouring section 13 sequentially. Then, the area around the gate 15 was subjected to weak suction.
  • a large amount of compressed air can be set early in the cooling process to shorten solidification time: .
  • the cooling rate of each part was as shown in the lowermost part of FIG. 32, and it was possible to perform directional solidification such that the partial force farthest from the feeder 12 was sequentially solidified.
  • the product portion 12 is solidified on the end face side, and the contractions are sequentially supplied to the adjacent site force to improve the soundness. In some cases, it is also possible to reduce or eliminate the feeder.
  • the cooling speed of the boundary portion 39 is equal to the cooling speed of the feeder 13.
  • the minimum time for solidification around the boundary 39 is set so as not to rise.
  • the air holes are for obtaining a desired pressure reduction distribution and directivity as shown in the present embodiment. It is desirable to provide both cooling holes to obtain solidification.
  • the flow rate of suction or air supply for each ventilation hole and cooling hole force should be determined in consideration of the thickness of each part of the product and its positional relationship.
  • this embodiment also brings about a great effect in the case of multiple loading. That is, in the case of multiple filling, if it is intended to obtain directional solidification with a normal feeder or chiller, a lot of feeder or chiller will be used, and the amount of molten metal and the number of man-hours tend to be large.
  • vent holes and Z or cooling holes as in this embodiment are provided for each of a plurality of product blocks of the cavity, and As aspiration or insufflation is performed, directional coagulation can be easily obtained.
  • the decompression forging method of the present invention can control the cooling process with high accuracy as well as the pouring process, and can easily perform the most desirable directional solidification of the forging. As a result, if defects can be reduced and pouring can be reduced or omitted, a great effect can be provided.
  • Figure 24 shows Example 24.
  • the temperature or temperature of each gas body sucked and discharged from each part such as a plurality of vent holes, cooling holes, and wedge segments after pouring in the reduced pressure method using the means 19 according to the present invention.
  • the basic configurations of the boat type, the boat frame and the depressurizing means are the same as in the twenty-third embodiment.
  • the flow 79 of the gas body sucked and discharged from each part of the vertical ML, the flow 80 of the compressed air supplied, and the flow 81 of the control signal and the flow 91 of the data signal are configured as shown in FIG. did .
  • one decompression box VB is shown! /!
  • the flow rate and temperature of the compressed air to be supplied are measured by the air flow rate and temperature measurement means CM, and the data signal 91 is sent to the calculation means CL.
  • the calculation means CL serves as auxiliary data for estimating the cooling state of each part.
  • the solidification state of each part is estimated by the calculation means CL based on the data of the temperature and flow rate of the gas and compressed air from the plurality of pressure reduction boxes VB.
  • a control signal 81 for approaching the cooling condition is desirably sent to the suction flow control means VC and the air flow control means CC. Then, the flow rate is controlled by each control means to perform suction or air supply.
  • substantially the same action and effect can be obtained with only the force temperature obtained by measuring both the temperature and flow rate data of the gas and compressed air.
  • Example 25 is shown in Figs. 34 and 35.
  • the reduced pressure structure method for adjusting the final solidified structure of the filled molten metal will be described.
  • the basic configuration of the boat type, the boat frame and the pressure reducing means is the same as that of the twenty-third embodiment.
  • the cooling of the important solidification area or transformation area was controlled in the process up to the release frame to obtain the desired final solidification structure.
  • Molten metal is the same as Example 22 It is a component of spherical graphite pig iron, and the material equivalent to FCD 500 can be obtained by ordinary natural cooling.
  • the cooling control method shown in Embodiment 24 is based on the data of the temperature and flow rate of the gas and compressed air from the plurality of vent holes and the plurality of pressure reduction boxes corresponding thereto after pouring. The cooling was faster than usual.
  • FIG. 34 shows the cooling curve of this example.
  • the figure shows a natural cooling curve 84 when the above molten molten iron is subjected to a normal pressureless structure and naturally cooled in the mold, and a control cooling curve 85 when the controlled cooling according to this embodiment is performed.
  • the In the case of pig iron the cooling rate of the area until the entire solidification is completed at the eutectic temperature and the eutectoid transformation area 83 where the austenite is transformed into pearlite and ferrite is the important factor that determines the final solidified structure. .
  • the cooling rate of the eutectic temperature range and the eutectoid transformation range 83 is larger than that of the normal cooling.
  • the final solidified structure and mechanical properties of both coolings are shown in FIG.
  • the metallographic structure 87 in controlled cooling is a structure with many pearlite and less ferrite as compared to the metallographic structure 86 in natural cooling.
  • the mechanical properties of natural cooling are equivalent to FCD 500, while those of controlled cooling are equivalent to FCD 700, and the tensile strength and yield strength are high, and the elongation is as good as natural cooling. In general, although the elongation decreases as the tensile strength increases, such elongation is obtained because the pearlite is compacted by controlled cooling.
  • the formation of the material of the bowl is carried out by changing the components of the molten metal, heat treating the solidified bowl, and the like.
  • the former there are many types of molten metal to prepare, and it is complicated in operation.
  • a large amount of heat energy for heating again This will consume a lot of money and require an extra process such as heat treatment, which is a major cause of cost increase.
  • Example 26 is shown in FIG. In this embodiment, after the pouring, using the method 21, the pouring spout or the spout portion is lower in air permeability than the non-air-permeable member or the bowl type, and the member is closed. Explain the law.
  • the desired purpose can be achieved by maintaining the degree of pressure reduction of the desired cavity portion at or above ⁇ .
  • the pouring port or sprue part is opened to the atmosphere along with the pouring, the degree of pressure reduction of that part is greatly reduced, and the degree of pressure reduction of the wedge-shaped cavity is also susceptible to change.
  • the pouring port 21 is closed by the non-air-permeable member 92, and the pressure is reduced until solidification of the molten metal.
  • the vertical cavity will be in the same sealed state as before pouring water, and as a result, the degree of pressure reduction can be kept stable.
  • the capacity of the decompression device can be reduced.
  • the place to be closed by the non-air-permeable member 92 may be the pouring port 21 as in this embodiment, and the same effect is obtained at the spout portion 15.
  • non-air-permeable member metal, resin, rubber, plate or the like is suitable.
  • a certain effect can be obtained even with a member having lower air permeability than a bowl-like, for example, a cloth, a fine-grain bowl-like or the like.
  • Example 27 is shown in FIG.
  • the means 22 is used to heat exchange the gas body sucked and discharged from the mold by the heat exchange device 72 and supply the heat to the Z or raw material preheating device 71 to recover the heat of the molten metal. Describe the forgery system that is effectively used.
  • the basic configurations of the boat type, the boat frame and the pressure reducing means are the same as in the twenty-third embodiment.
  • the poured melt is solidified by giving its heat to the mold, and finally the heat remaining in the melt and the heat of the mold are cooled by air or water. Therefore, the heat required for melting is dissipated into the air without being recovered at all. In other words, the energy recovery rate in construction is almost zero.
  • the gas body sucked and discharged by the suction and air feeding means 61 placed on the upper part of the bowl shape is subjected to heat exchange with the heat exchange device 72;
  • piping was performed to supply raw material preheating device 71. This makes it possible to effectively use the heat of the molten water poured into the cavity.
  • the structure system of the present invention together with the above-mentioned high-precision pressure reduction control and cooling control, provides a great effect also in the recovery of the thermal energy of the molten metal, and the overall high quality An accurate, high-efficiency reduced pressure construction method was provided.
  • Fig. 38 shows Example 28.
  • a suction / air supply device for pressure reduction during pouring and cooling after pouring will be described using means 23.
  • a plurality of pressure reducing boxes 28 each having an open end 62 to be brought into contact with the bowl-shaped outer surface 26 are attached to the lifting means 19 for lifting and lowering vertically with respect to the bowl-shaped outer surface 26.
  • a plurality of decompression boxes 28 are connected sideways so as to cover the entire surface of one bowl-shaped outer surface 26 except for the gate portion 15. That is, one wedge-shaped outer surface 26 is virtually divided into a plurality of wedge-shaped segments so that the suction bow I or air can be supplied from each portion.
  • the suction port 31 and the air supply port 32 are provided on the opposite side of the opening end 62, and these are provided in the upper part of the plurality of decompression boxes 28. It communicates with 63 and the air supply chamber 64 respectively.
  • the suction port 31 is in direct communication with the suction chamber 63
  • the force supply port 32 is in communication with the air supply chamber 64 through a communication pipe 65 passing through the suction chamber 63.
  • suction flow rate control means 29 and suction air flow amount control means 33 for individually controlling the suction amount and the air supply amount respectively can be moved up and down by the mechanism of the pressing valve. It is provided at six six.
  • the suction chamber 63 is in communication with the pressure reducing device, and the air feeding chamber 64 is in communication with the air compression device.
  • the suction flow rate control means 29 and the air flow amount control means 33 are not necessarily limited to those of the pressing valve mechanism shown in this embodiment, and any control means other than the suction flow rate control means 29 and the air flow amount control means 33 have the same action and effect.
  • a plurality of pressure reducing boxes 28 are disposed so as to cover one wedge outer surface 26, and this is placed in contact with the wedge outer surface 26 to perform pressure reduction.
  • a plurality of vent holes 27 are provided at selected positions in the bowl shape, and the suction flow rate and the air flow rate of each pressure reduction box 28 are controlled by flow control means 29 and 33 so that a predetermined pressure reduction distribution can be obtained. Control.
  • suction is mainly used, and air supply is supplementarily used at a site where the degree of depressurization is to be reduced.
  • air supply is supplementarily used at a site where the degree of depressurization is to be reduced.
  • a combination of intake and air supply is used. Especially strong The cooling effect is greater if the air is supplied to the part where the cooling was given.
  • suction and air supply device of the seventh embodiment also works and the effect is exactly the same as that of the present embodiment. Also, as in the fifth embodiment, suction and pressure reduction can be performed only with the air intake port without providing the air supply port.
  • a plurality of pressure reducing boxes are connected sideways to cover the outer surface of the bowl shape, but as shown in Example 11, a plurality of separated pressure reducing boxes are connected without being connected. It can also be used as In this case, a plurality of pressure reducing boxes are brought into contact with a plurality of vent holes provided on the outer surface of the bowl so as to perform suction or air supply.
  • This device is one of the basic elements of the high-precision reduced pressure fabrication method of the present invention.
  • FIG. 39 shows Example 29.
  • suction and air feeding device shown in the twenty-eighth embodiment using means 24 suction and air feeding where the positions of a plurality of pressure reducing boxes can be freely changed in a plane parallel to the outer surface of the bowl. The apparatus will be described.
  • each decompression pump can be in contact with a plurality of ventilation holes provided in the paddle. It was possible to change freely in the plane parallel to the surface.
  • each stringer 67 is placed on two stringers 66, each stringer
  • 67 is configured to be freely movable in the X direction 88 above the crossbeam 66.
  • four decompression boxes 28 are mounted on the longitudinal girder 67 so as to be freely movable in the Y direction 89 along the longitudinal girder 67.
  • the four decompression boxes 28 can be freely positioned in the X and Y directions.
  • the multiple vent holes provided in the mold can be placed in contact with each other easily at any position.
  • the moving means of the decompression box is not limited to the means using the cross beam and the longitudinal beam shown in the present embodiment, and the action and effect are the same if it is a means which can freely move in the XY direction. .
  • Fig. 1 is a view showing Embodiment 1 of the present invention.
  • Fig. 2 is a view showing Embodiment 2 of the present invention.
  • Fig. 4 is a view showing Example 4 of the present invention.
  • Fig. 5 is a view showing Example 5 of the present invention.
  • FIG. 8 is a view showing a plurality of embedded segments according to Embodiment 7 of the present invention.
  • FIG. 10 is a view showing a state during pouring of Embodiment 9 of the present invention.
  • FIG. 11 A diagram showing a state after pouring of water in Example 9 of the present invention.
  • FIG. 12 is a view showing a state during pouring of Embodiment 10 of the present invention.
  • FIG. 13 is a view showing a state after pouring of water in Example 10 of the present invention.
  • FIG. 14 is a view showing a state during pouring of Embodiment 11 of the present invention.
  • FIG. 15 is a view showing a state after pouring of water in Example 11 of the present invention.
  • FIG. 16 is a view showing a state during pouring of Embodiment 12 of the present invention.
  • FIG. 18 is a view showing a state during pouring of Embodiment 13 of the present invention.
  • FIG. 19 is a view showing a state after pouring of water in Example 13 of the present invention.
  • FIG. 20 is a view showing a state during pouring of Embodiment 14 of the present invention.
  • FIG. 22 is a view showing a state during pouring of Embodiment 15 of the present invention.
  • FIG. 23 is a view showing a state after pouring the melt in Example 15 of the present invention.
  • FIG. 24 is a drawing showing Embodiment 16 of the present invention.
  • FIG. 26 is a view showing the state during pouring of Embodiment 18 of the present invention.
  • FIG. 27 is a view showing the state after pouring of the example 18 of the present invention.
  • FIG. 29 shows Example 20 of the present invention.
  • Fig. 30 is a diagram showing Embodiment 21 of the present invention.
  • Fig. 31 is a diagram showing Embodiment 22 of the present invention.
  • ⁇ 32] is a drawing showing Embodiment 23 of the present invention.
  • FIG. 34 is a diagram showing a cooling curve of Example 25 of the present invention.
  • Fig. 35 is a view showing coagulated tissue of Example 25 of the present invention.
  • FIG. 36 shows Example 26 of the present invention.
  • [38] is a diagram showing Embodiment 28 of the present invention.
  • FIG. 39 is a diagram showing Embodiment 29 of the present invention.
  • FIG. 40 This is a view showing the whole pressure reducing forging method using the airtight container of the prior art. 41] It is a figure which shows the partial pressure reduction structure method using the void
  • Air supply hole 8 communicating with base wood part Air supply hole 9 communicating with mating surface 9 Air supply hole
  • Direction of elevation of elevation means Flow of data signal Non-air permeable member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

[PROBLEMS] To provide a vacuum casting method for a permeable mold wherein a molten metal is filled in only a specified cavity portion by producing a highly accurate reduced pressure distribution and solidification and cooling of the molten metal is controlled in the mold. [MEANS FOR SOLVING PROBLEMS] A plurality of vent holes extending from the outer surface to the inside of the mold are formed, a plurality of pressure reduced boxes are brought into contact with the vent holes, air is sucked and/or supplied to form a plurality of partially pressure reduced zones in the mold around the vent holes to produce the specified reduced pressure distribution in the mold cavity, and the molten metal approximately equal in volume to the specified cavity portion is filled in the cavity of the mold.

Description

明 細 書  Specification
減圧铸造法、铸造システム及びその吸引送気装置  Reduced pressure construction method, construction system and suction air supply device therefor
技術分野  Technical field
[0001] 本発明は減圧铸造法の汎用化、高精度化、及び高生産性ィ匕に関するものである。  TECHNICAL FIELD [0001] The present invention relates to generalization, high precision, and high productivity of reduced pressure forging method.
背景技術  Background art
[0002] 本発明は通気性铸型を減圧装置によって減圧し、铸型上部又は側部から重力注 湯する铸造法に関するものである。以下、本明細書ではこの铸造法を減圧铸造法と 呼称する。  [0002] The present invention relates to a forging method in which the air-permeable mold is depressurized by a pressure reducing device and gravity pouring is performed from the upper or side of the mold. Hereinafter, this construction method is referred to as a reduced pressure construction method in the present specification.
[0003] ここで、通気性铸型とは砂粒子を用いて造型された铸型が最も一般的であるが、そ の他に、セラミックス粒子や金属粒子を用いて造型された铸型も広く使われて!/ヽる。 また、石膏などのほとんど通気性のない铸型でも、通気性材料を混在させたり、部分 的に用いて通気性を付与したものは通気性铸型とみなせる。また、全く通気性のない 金型の場合でも、複数の通気穴やベントホールを設けて通気性を付与したものは通 気性铸型とみなせる。本発明における通気性铸型とは前記したこれらの通気性铸型 を含むものである。  [0003] Here, the most commonly used air-permeable mold is a mold manufactured using sand particles, but in addition to this, a mold manufactured using ceramic particles or metal particles is also widely used. Used! / Scold. In addition, even if it is a plaster that has almost no air permeability, such as plaster, it is possible to think of it as the air-permeable rattan that is made by mixing or partially using air-permeable materials. Also, even in the case of a mold that is not completely air-permeable, it is possible to regard it as the air-permeable weir type that is provided with a plurality of vent holes and vent holes to provide air permeability. The breathable cage in the present invention includes those breathable cages described above.
[0004] 減圧铸造法は铸型キヤビティーを大気圧よりも低い負圧状態として溶湯を注湯する 铸造法である。減圧の目的は、ひとつには注湯時にキヤビティー内に存在する空気 や、铸型、中子力 発生するガスなどのガス体 (本発明においては空気と発生ガスを 合せた総称とする)を吸引排出し、キヤビティー細部への溶湯の充填を阻害する背圧 を発生させないようにすることである。また、もうひとつは同じくガス体を吸引排出する ことによって、ガス体が溶湯に巻き込まれないようにすることである。これらの作用によ つて湯廻り不良やガス欠陥などを防止することを目的としている。  [0004] The reduced pressure construction method is a construction method in which molten metal is poured with negative pressure condition lower than the atmospheric pressure of a vertical cavity. The purpose of depressurization is, in part, to draw in air, which is present in the cavity at the time of pouring, or a gas (such as air and generated gas, collectively referred to in the present invention), such as gas generated in a cage or core force. The purpose is to prevent the generation of a back pressure that will drain and prevent filling of the molten metal in the cavity details. The other is to prevent the gas from being caught in the molten metal by sucking and discharging the gas as well. The purpose of these actions is to prevent hot water defects and gas defects.
[0005] 一般に減圧铸造法は铸型を収容する気密容器や特殊な気密手段などを必要とする ので無減圧の铸造法に比べコスト高になることから、一般品にはあまり適用されず、 主に特殊材質品、薄肉品、複雑品などに適用されている。勿論、一般品においても 背圧を低減し、ガス体が溶湯に巻き込まないようにすることは重要で、減圧铸造法は 铸物全般に適用可能な優れた铸造法である。 [0006] 減圧铸造法を減圧方式によって大別すると、铸型全体を何らかの気密容器で囲つ て減圧する全体減圧法と、铸型の一部を除!ヽてほぼ全面を何らかの気密容器で囲つ て減圧するセミ全体減圧法と、铸型のほとんどの部分は開放で一部分から減圧する 部分減圧法に分類することができる。以下、これらについて説明するので、全体減圧 法は記号 Wを、セミ全体減圧法には Sを、部分減圧法には Pをつけて分類すること〖こ する。 [0005] Generally, the decompression construction method requires an airtight container for accommodating the boat type and a special airtight means, etc., so it is more expensive than non-decompression construction method, so it is not applied to general products. Applied to special materials, thin-walled products and complex products. Of course, it is important to reduce back pressure in general products so that the gas does not get caught in the molten metal, and the vacuum construction method is an excellent construction method that can be applied to all types of buildings. Decompression structure method is roughly divided according to the decompression method, the whole decompression is enclosed in some airtight container and the entire decompression method, and a part of the bowl is removed, and almost the whole surface is surrounded by some airtight container. It can be classified into semi-total pressure reduction method for reducing pressure and partial pressure reduction method for partially reducing pressure from open part. In the following, since these will be described, classification will be performed by adding the symbol W for the total decompression method, S for the semi-total decompression method, and P for the partial decompression method.
[0007] その他に、減圧铸造法の一種である力 キヤビティーの減圧はほとんど考慮せず、铸 型からのガス体を排出することを目的とするものもある。これを分類記号 Gとする。  [0007] In addition, there is also a method aimed at discharging a gas from a cocoon, with little consideration given to the decompression of the force ca- bility, which is a type of decompression construction method. Let this be the classification symbol G.
[0008] 次に、各減圧法の特徴について説明する。 Next, the features of each pressure reduction method will be described.
[0009] まず全体減圧法では、最も一般的な方法としては減圧装置に連通された気密容器 に铸型を収容して減圧が行われる。したがって、基本的には铸型キヤビティー内は均 一な減圧状態になっている。そして、この状態力 湯口を通して注湯が行われる。 ( 分類記号 W1)  [0009] First, in the total pressure reduction method, pressure reduction is carried out by accommodating the bowl shape in an airtight container communicated with the pressure reduction device as the most general method. Therefore, basically, the pressure in the vertical cavity is uniformly reduced. Then, pouring water is performed through this state force gate. (Classification symbol W1)
[0010] このような気密容器を用いる全体減圧法では、減圧装置に連通された気密容器が必 要なことや、铸型を気密容器に収容し、また铸造完了後に気密容器から铸型を取り 出すという工程が必要などの生産上の制約がある。  [0010] In the entire decompression method using such an airtight container, the airtight container connected to the pressure reducing device is required, and the crucible is housed in the airtight container, and after completion of the construction, the crucible is removed from the airtight container. There are production restrictions such as the need for a process of releasing.
[0011] 全体減圧法の他の例としては、ビニール等の可撓性の榭脂材料で铸型全体を覆つ て減圧を行う方法がある。この減圧法では、ビニールが消耗材となることや、ビニール を被覆する工程と除去する工程が必要となるという制約がある。(分類記号 W2) [0012] 全体減圧法のもう一つの例としては、上部開放の気密容器とビニール等を組合せ て気密を保って減圧を行う方法がある。この方法は前記 2つの方法の中間的特徴で ある。(分類記号 W3)  [0011] Another example of the total pressure reduction method is a method of covering the entire mold with a flexible resin material such as vinyl to perform pressure reduction. In this decompression method, there is a limitation that vinyl becomes a consumable material and steps of coating and removing vinyl are required. (Classification symbol W2) [0012] As another example of the total pressure reduction method, there is a method in which pressure reduction is performed by maintaining an air tightness by combining an airtight container with an open top and a vinyl or the like. This method is an intermediate feature of the above two methods. (Classification symbol W3)
[0013] セミ全体減圧法は、一面を開放した減圧容器に铸型を収容し、該铸型の周りを砂 で囲って減圧が行われる。(分類記号 S)  [0013] In the semi-total pressure reduction method, the crucible is housed in a pressure-release container whose one side is open, and the pressure is reduced by surrounding the sand with the sandbag. (Classification symbol S)
[0014] この方法は一面が開放されているのでキヤビティーの減圧度は低いが、キヤビティ 一全体はある程度均一な減圧になっている。主な目的は铸型からの発生ガスの排出 である。この方法では、全体減圧法と同じように減圧装置に連通された減圧容器が必 要なことや、铸型を減圧容器に収容し、また铸造完了後に铸型を取り出すという工程 が必要などの生産上の制約がある。 [0014] Although this method is open on one side, the degree of pressure reduction of the cavity is low, but the entire cavity has a somewhat uniform pressure reduction. The main purpose is the emission of gas from the mold. In this method, as in the whole pressure reduction method, it is necessary to have a pressure reducing vessel connected to the pressure reducing device, or the step of storing the mold in the pressure reducing vessel and removing the mold after completion of the construction. There are production restrictions such as the need for.
[0015] 次に部分減圧法は、铸型の一部分カゝら減圧するもので、基本的にはその他の铸型 部分は大気に開放されている。したがって、開放部分からはキヤビティー内に空気の 流入が生じることになる。この方法の特徴は、低い減圧度でキヤビティー内に一方向 の空気の流れ又は減圧勾配をつくるように減圧して溶湯を充填させることである。  [0015] Next, the partial pressure reduction method reduces the pressure of a portion of a bowl-shaped portion, basically the other portion of the bowl-shaped portion is open to the atmosphere. Therefore, air will flow into the cavity from the open part. The feature of this method is that the molten metal is filled with reduced pressure so as to create a unidirectional air flow or reduced pressure gradient in the cavity with a low degree of reduced pressure.
[0016] 部分減圧法の具体的な減圧方法について分類すると次のようになる。(1)铸型の 上下型合せ面に通気穴を設けてそこから吸引減圧する方法 (分類記号 Pl)。 (2) 吸引減圧したい個所に铸型の外部から吸引穴を設けてそこから減圧する方法 (分類 記号 P2)。 (3)吸引減圧したい個所に铸型の外部力 吸引ガイドを配置してそこか ら減圧する方法 (分類記号 P3)。 (4)铸型の一部に铸型よりも通気性のよ!ヽ材料を 配置してそこから吸引減圧する方法 (分類記号 P4)などである。これらについては具 体的に特許文献に開示された従来技術で説明するが、使用する铸型の制約や複数 個込めへの対応性などの面で問題点がある。  The specific decompression method of the partial decompression method is classified as follows. (1) A method of providing air vents on the upper and lower mold mating surfaces of a bowl-shaped and sucking and depressurizing it from there (classification symbol Pl). (2) A method of drawing a suction hole from the outside of the bowl shape at the place where suction reduction is desired and reducing pressure from there (Class Code P2). (3) A method of disposing an external force suction guide at the point where suction reduction is desired and reducing pressure from there (classification symbol P3). (4) It is more breathable than some types of molds, such as placing a material on the mold and using it for suction and pressure reduction (classification symbol P4). Although these are specifically described in the prior art disclosed in the patent document, there are problems in terms of constraints of the template used and compatibility with multiple loads.
[0017] 以上の減圧铸造法の分類にもとづき、特許文献に開示されている減圧铸造法及び その装置、铸型について従来技術を説明する。  Based on the classification of the decompression construction method described above, the prior art will be described with respect to the decompression construction method disclosed in the patent document, an apparatus therefor, and a boat type.
[0018] 特許文献 1 (特開昭 61— 180642号公報)には、チャンバ一内に通気性の铸型を 設置し、湯口穴を溶融しうる材料で塞いだ後、チャンバ一を所定の圧力に減圧して 注湯する減圧铸造方法が開示されている。これは分類記号の W1に相当する。この 方法では減圧が可能なチャンバ一が必要で、また工程時間が長!、。  [0018] In Patent Document 1 (Japanese Patent Application Laid-Open No. 61-180642), after an air-permeable mold is installed in a chamber 1 and the porthole is closed with a meltable material, the chamber 1 is pressurized to a predetermined pressure. A pressure-reducing structure method of depressurizing and pouring water is disclosed. This corresponds to the classification symbol W1. This method requires one chamber capable of depressurization, and the process time is long!
[0019] 特許文献 2 (特開平 7— 265998号公報)には、減圧铸造する常温硬化型铸型にお いて、製品及び方案キヤビティーの铸型の厚さを変化させた減圧铸造用铸型が開示 されている。これは前記分類の W1に相当する。この方法は铸型が常温硬化型铸型 と 、う条件でのみ可能である。  [0019] Patent Document 2 (Japanese Patent Application Laid-Open No. 7-265998) is a reduced-pressure forming mold in which the thickness of the product and the shape of the mold of the proposal cavity is changed in a room-temperature curing type mold for reduced-pressure manufacturing. It is disclosed. This corresponds to W1 in the above classification. This method is possible only when the mold is a room temperature curing mold and under mold conditions.
[0020] 特許文献 3 (特開 2003— 170226号公報)には全体減圧を行う铸型において铸型 内にセンサーを配置し、溶湯が流入したことを検知した後に減圧動作を開始させる 減圧铸造方法が開示されている。これは前記分類の W1に相当する。この方法では 注湯前力 減圧しておくと溶湯の乱れが起こるので、その対策として溶湯の流入を検 知して力 減圧し、良好な湯流れを得ようとするものである。この場合は、何らかの気 密手段が必要なことと、高価なセンサーを配置するのでたくさんの铸型には適用でき ないなどの制約がある。 [0020] Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-170226) arranges a sensor inside a mold in a mold which performs total pressure reduction, and starts a pressure reduction operation after detecting that molten metal has flowed. Is disclosed. This corresponds to W1 in the above classification. In this method, if the pressure is reduced before pouring, the molten metal will be disturbed. As a countermeasure, the inflow of molten metal is detected and the pressure is reduced to obtain a good molten metal flow. In this case, There are limitations such as the need for dense means and the inability to be applied to many models due to the placement of expensive sensors.
[0021] 特許文献 4 (特開平 3— 216258号公報)には铸型の周囲の全面を榭脂フィルム製 の砂型カバーで気密に覆うとともに、湯口力も十分離間した部位に排気口を設けて、 そこ力 減圧する減圧装置が開示されている。これは前記分類の W2に相当する。こ の装置では気密容器は不要である力 ビニールという消耗品が必要で、またビニー ルの被覆、除去の工程が必要である。  [0021] In Patent Document 4 (Japanese Patent Application Laid-Open No. Hei 3-216258), the entire surface around the gutter is airtightly covered with a sand film cover made of a resin film, and an exhaust port is provided at a site where the spout force is sufficiently separated. There is disclosed a pressure reducing device for reducing pressure. This corresponds to W2 in the above classification. In this device, the need for air-tight containers is unnecessary, and the need for plastic-consumables is required, as well as the process of coating and removing vinyl.
[0022] 特許文献 5 (特開昭 60— 124438号公報)には、無枠造型された石膏铸型を通気 孔を有する吸引箱上に載置するとともに、石膏铸型をフィルムシートで覆って、吸引 箱から減圧したのちに注湯を行う減圧铸造方法が開示されている。これは前記分類 の W2に相当する。この方法ではやはりビニールという消耗品が必要で、またビニー ルの被覆、除去の工程が必要である。  [0022] In Patent Document 5 (Japanese Patent Application Laid-Open No. 60-124438), a frameless molded gypsum mold is placed on a suction box having an air hole, and the gypsum mold is covered with a film sheet. There is disclosed a pressure-reducing structure method in which hot water is poured after pressure reduction from a suction box. This corresponds to W2 in the above classification. This method also requires the expendable item of vinyl, and also requires the steps of coating and removing vinyl.
[0023] 特許文献 6 (特公平 7—115119号公報)には、消失模型铸造法のおいて、上下開 放铸枠の側壁に吸引機構を設け、铸枠上下に気密シートを密着具備して吸引減圧 する減圧铸造法が開示されている。これは前記分類の W3に相当する。この方法で は側壁に吸引機構を設けた特殊な铸枠が必要であり、また上下の気密シートが消耗 品で、かつ気密シートの被覆、除去の工程が必要である。  According to Patent Document 6 (Japanese Patent Publication No. 7-115119), a suction mechanism is provided on the side wall of the upper and lower open gutter frame and an airtight sheet is provided closely on the upper and lower sides of the gutter frame in the missing model construction method. There is disclosed a vacuum construction method for suction and pressure reduction. This corresponds to W3 in the above classification. In this method, a special weir frame provided with a suction mechanism on the side wall is required, and the upper and lower airtight sheets are consumables, and a process of covering and removing the airtight sheets is necessary.
[0024] 特許文献 7 (特開平 6— 122060号公報)には、有機粘結剤铸型を通気穴を有する 铸枠に造型し、これを上部が開放された鋼鈑製のチャンバ一内にセットして減圧状 態で注湯する減圧铸造方法が開示されている。これは前記分類の Sに相当する。こ の方法では鋼鈑製の減圧チャンバ一が必要なこと、及び有機粘結铸型と!、う制約が ある。  [0024] Patent Document 7 (Japanese Patent Application Laid-Open No. Hei 6-122060) discloses that an organic binder binder is molded into a rod frame having a vent hole, and this is formed in a steel plate chamber having an open top. There is disclosed a reduced pressure method of setting and pouring in a reduced pressure state. This corresponds to S in the above classification. In this method, a steel-made decompression chamber is required, and an organic caking type! There are some limitations.
[0025] 特許文献 8 (特開平 8— 103861号公報)には、上部開放型の減圧容器内の铸物 砂中に砂型を埋設し、吸弓 I減圧状態下で注湯する減圧铸造方法が開示されて!ヽる 。これは前記分類の Sに相当する。この方法では減圧容器が必要である。目的は注 湯時の溶湯の吹き上がり現象の防止である。  [0025] Patent Document 8 (Japanese Patent Application Laid-Open No. 08-103861) discloses a reduced pressure construction method in which a sand mold is embedded in sand in a container in a top open type reduced pressure vessel, and pouring is performed under suctioning I reduced pressure condition. Disclosed! This corresponds to S in the above classification. This method requires a pressure reduction vessel. The purpose is to prevent the blow up phenomenon of the molten metal at the time of pouring.
[0026] 特許文献 9 (特開昭 57— 31463号公報)には、铸型の湯口位置から最も遠く離れ た位置に設けられた通気穴を介してキヤビティー内を吸引注湯する薄肉铸物の製造 方法が開示されている。これは前記分類の PIに相当する。この方法では、铸型合せ 面に通気穴を設けるので、複数個込めには対応しにくい。また、铸枠に吸引穴を設 けるので設備的な問題もある。 [0026] Patent Document 9 (Japanese Patent Application Laid-Open No. 57-31463) discloses a thin-walled pot for suctioning and pouring the inside of a cavity through an air vent provided at a position farthest from the position of a pothole. Manufacturing A method is disclosed. This corresponds to the PI of the above classification. In this method, since a vent hole is provided in the wedge-shaped mating surface, it is difficult to cope with multiple loading. In addition, there are also problems with equipment as suction holes are made in the weir frame.
[0027] 特許文献 10 (特開平 6— 55255号公報)には、铸型の堰部カも離隔した位置に押 湯又ははかせを設け、その近くに外部と連通する空孔部を設け、その空孔部から減 圧しながら铸造する鉄鋼铸物の製造方法が開示されている。これは前記分類の P2 に相当する。  [0027] In Patent Document 10 (Japanese Patent Application Laid-Open No. 6-55255), a feeder or a skein is provided at a position away from the collar portion of the bowl, and a hole communicating with the outside is provided near that. There is disclosed a method of producing a steel frame which is manufactured while depressurizing from the pores. This corresponds to P2 of the above classification.
[0028] この方法では、開放铸型の局部減圧であるので減圧度は低ぐ一方向に空気流れ が生じるような減圧によって溶湯を吸引充填するものである。しかし、铸型の堰部から 離隔した位置に必ず押湯又はは力せを設けなければならな 、と 、う制約がある。  [0028] In this method, since the pressure is reduced in a single direction, the degree of pressure reduction is low, so that the molten metal is suctioned and filled by the pressure reduction such that the pressure is reduced in an open pot-shaped local pressure. However, there is a restriction that a feeder or a force must be provided at a position apart from the buttocks of the boat.
[0029] また、同じく特許文献 10には減圧速度制御手段を設け、溶湯の注入速度が一定に なるように減圧する方法や、堰部内に湯面検知センサーを設け、溶湯を検知した直 後から減圧を開始する方法なども開示されている。この場合には、減圧速度制御手 段や湯面検知センサーなどが必要になる。  In the same way, Patent Document 10 also provides a method for controlling the pressure reduction rate to reduce the pressure so that the pouring speed of the molten metal becomes constant, or provide a surface detection sensor inside the ridge and detect the molten metal right after it is detected. Also disclosed are methods of initiating decompression and the like. In this case, a pressure reduction rate control means and a hot water surface detection sensor are required.
[0030] 特許文献 11 (特開平 6— 226423号公報)には、前記特許文献 10と同じ構成で、 減圧吸引口と押湯又ははかせの間に铸型よりも通気度の大きな吸引部材を設けて 減圧吸引口側キヤビティー内の減圧を湯口側キヤビティーのそれよりも大きくする薄 肉铸物の製造方法が開示されている。これは前記分類の P2に相当する。この方法で は、さらに特許文献 10の制約に加えてさらに吸引部材が必要である。  [0030] Patent Document 11 (Japanese Patent Application Laid-Open No. 6-226423) has the same configuration as Patent Document 10, except that a suction member having a higher air permeability than a bowl type is provided between the vacuum suction port and the feeder or the skein. A method for producing a thin meat dish is disclosed in which the reduced pressure in the vacuum suction side cavity is made larger than that of the pouring side cavity. This corresponds to P2 of the above classification. In addition to the limitations of Patent Document 10, this method further requires a suction member.
[0031] 特許文献 12 (特開平 9— 85421号公報)には、铸型にセットされた中子巾木に外 部と連通する空孔部を設け、減圧する減圧铸造方法が開示されている。これは前記 分類の P2に相当する。この方法は中子がある铸物のみに適用できるものである。  [0031] Patent Document 12 (Japanese Patent Application Laid-Open No. Hei 9-85421) discloses a pressure-reducing structure method for reducing the pressure by providing a hole communicating with the outer part in a core base wood set in a bowl shape. . This corresponds to P2 of the above classification. This method is applicable only to a gift with a core.
[0032] 特許文献 13 (特開平 4— 147760号公報)には、铸型空間の減圧必要部位と铸型 外部との間で吸引通路を形成する吸引ガイドを設けた吸引铸造用铸型が開示されて いる。これは前記分類の P3に相当する。この方法では、吸引ガイドを铸型に設ける 工程が必要である。  [0032] Patent Document 13 (Japanese Patent Application Laid-Open No. 4-147760) discloses a suction mold for forming a suction structure provided with a suction guide that forms a suction passage between an area requiring pressure reduction of the mold space and the outside of the mold. It is done. This corresponds to P3 of the above classification. In this method, a step of providing a suction guide in a bowl shape is required.
[0033] 特許文献 14 (特開昭 60— 56439号公報)には、石膏铸型の最終充填部近傍から 外表面にかけて、石膏より通気性が良好な耐火材料製フィルターを設けた減圧铸造 用石膏铸型が開示されている。これは前記分類の P4に相当する。この铸型を使った 方法では、石膏铸型製作に工数がかかり、生産性が低い。 [0033] Patent Document 14 (Japanese Patent Application Laid-Open No. 60-56439) discloses a reduced pressure structure provided with a fireproof material filter having better permeability than gypsum from the vicinity of the final filling portion of the plaster mold to the outer surface. Plaster molds are disclosed. This corresponds to P4 of the above classification. In this method using a mold, man-hours are required for producing a plaster mold and productivity is low.
[0034] 特許文献 15 (特公平 7— 41400号公報)には、生型铸型から発生するガスと中子 力 発生するガスを個別に吸引し、かつ吸引圧力を個別に調整自在とした吸引铸造 方法が開示されている。これは前記分類の Gに相当する。これはガスの吸引排出が 目的である。 [0034] Patent Document 15 (Japanese Examined Patent Publication No. 7-41400) discloses a method of suctioning separately the gas generated from the green mold and the gas generated from the core force, and adjusting the suction pressure separately. A method of construction is disclosed. This corresponds to G in the above classification. This is for the purpose of suction and discharge of gas.
[0035] 以上の特許文献に開示されている減圧铸造法並びにその装置、铸型などの従来 技術を総括すると次のようになる。  [0035] A summary of the conventional techniques, such as the reduced pressure structure method and the apparatus and molds disclosed in the above patent documents, is as follows.
[0036] まず全体減圧铸造法においては、铸型を減圧が可能な気密容器に収容して減圧 を行う方法 (W1)では、特殊な気密容器が必要なことや、铸型を気密容器に収容し たり取り出したりする工程が必要なことなどのため、铸造タタトが長いという問題点があ り高効率の生産が可能な連続ラインを構成することが難しい。 First, in the whole decompression construction method, in the method (W1) in which the bowl type is accommodated in an airtight container capable of depressurization and pressure is reduced (W1), a special airtight container is required, and the crucible type is accommodated in the airtight container. There is a problem that the forged tatter is long, and it is difficult to construct a continuous line capable of high-efficiency production, due to the need for processes such as taking out and taking place.
[0037] また、铸型をビニールなどの非通気性のカバー部材で被覆する方法 (W2)では、ビ ニールを毎回消耗材として使用することになること、及びビニールを被覆、除去する 工程が必要などのため、铸造タタトが長いという問題点があり W1と同様に高効率の 生産が可能な連続ラインを構成することが難 、。 [0037] In addition, in the method (W2) of covering the mold with a non-air-permeable cover member such as vinyl (W2), it is necessary to use the vinyl as a consumable each time, and a step of covering and removing the vinyl. Because of this, there is a problem that the forged tatter is long, and it is difficult to construct a continuous line that can produce as efficiently as W1.
[0038] さらに、気密容器と非通気性のカバー部材を併用する方法 (W3)も前記 W1及び W[0038] Furthermore, the method (W3) in which the airtight container and the non-air-permeable cover member are used in combination is also applicable to the above W1 and W.
2と同様である。 Similar to 2.
[0039] 以上の結果、全体減圧铸造法は铸型全体を均一に減圧できるという特徴を有して いるが、(1)铸型の気密化のために特殊な気密装置又は部材が必要で、また工数も かかるので、自動化された高効率の生産が可能な連続ラインを構成しにくい。そのた め製造コストが高ぐ一般に高付加価値の铸物に適用されているのが現状である。  [0039] As a result of the above, the whole decompression structure method has the feature of being able to decompress the entire bowl uniformly, but (1) a special airtight device or member is necessary to make the bowl airtight. In addition, since it takes many man-hours, it is difficult to construct a continuous line capable of automated high-efficiency production. Therefore, it is currently applied to high value-added gifts, which generally have high manufacturing costs.
[0040] 次にセミ全体減圧铸造法 (S)にお 、てもほぼ全体減圧铸造法と同じである。 Next, the semi-entire decompression construction method (S) is almost the same as the overall decompression construction method.
[0041] 次に部分減圧铸造法 (P)にお 、ては、全体の減圧度は低 、状態でキヤビティー内 に一方向の気流の流れをつくり溶湯を吸引誘導して充填することが特徴である。しか し、(2)铸型中に通気穴、吸引穴、吸引ガイド、高通気性材料などを設けて部分的な 減圧を行うので、製品種類毎の個別対応が面倒であるし、複数個込めに対応できな い場合もある。 [0042] 次に従来の全体減圧铸造法、セミ全体減圧铸造法、及び部分減圧铸造法に共通 の問題点につ 、て述べる。 Next, partial pressure reduction structure method (P) is characterized in that the overall degree of pressure reduction is low, and a flow of air flow in one direction is created in the cavity with suction induction induction and filling in the cavity. is there. However, (2) Since partial pressure reduction is performed by providing vent holes, suction holes, suction guides, highly breathable materials, etc. in the mold, individual handling for each product type is troublesome, In some cases it is not possible to [0042] Next, problems common to the conventional full vacuum structure method, the semi-full vacuum structure method, and the partial vacuum structure method will be described.
[0043] ひとつは、(3) Vヽずれの減圧铸造法にぉ 、ても、全体を減圧して均一な減圧分布 を創生する力、又は铸型の局部の 1個所力 減圧して単純な一方向の減圧勾配を創 生するかいずれかの減圧状態で注湯が行われている。すなわち、キヤビティー内の 減圧分布を高精度に制御して、対象の铸物に適正な所定の減圧分布を創生した減 圧状態で注湯することができて 、な 、。  [0043] One of the reasons is (3) a pressure reduction structure method of V strain, even if the pressure is reduced entirely to create a uniform pressure distribution, or pressure is reduced by simple pressure reduction at a local portion of the wedge shape. Pouring is performed under either one of two conditions: creating a one-way depressurization gradient. That is, the pressure reduction distribution in the cavity can be controlled with high accuracy, and pouring can be performed in a pressure-reduced state in which a proper predetermined pressure reduction distribution is created in the target container.
[0044] また、キヤビティー内に高精度の所定の減圧分布を創生できていないということは、 最も一般的に行われて 、る 1枠の中に複数の铸物を込める複数個込めの铸造にお いて、各铸物のキヤビティーに対して適正な減圧分布を創生した状態で注湯ができ て!ヽな 、ことを意味して 、る。このため湯廻り不良やガス欠陥の対策の面で不十分で ある。  [0044] In addition, the fact that it has not been possible to create a high-precision predetermined decompression distribution in the cavity is most commonly performed in the form of a multi-piece structure in which a plurality of pots can be placed in one frame. In this case, it is possible to pour the water while creating an appropriate decompression distribution for the cavities of each pottery! For this reason, it is inadequate in terms of measures against hot water defects and gas defects.
[0045] また、キヤビティー内に高精度の所定の減圧分布^ |IJ生できて!/、な!/、ため、本来、 減圧铸造法のもって 、る湯流れ性がょ ヽと 、う特徴が生力されて ヽな 、。そのため、 大きなコスト低減の要素を見逃して 、る。  [0045] In addition, high-precision predetermined decompression distribution within the cavity ^ | IJ can be created! /!生 力 、 て 、、。 Therefore, we overlook the major cost reduction factors.
[0046] 次に、(4)いずれの減圧铸造方法においても、注湯にあたって铸型の全キヤビティ 一を充填するので注入歩留りが低い。すなわち、铸型キヤビティーは一般に製品部、 押湯部、湯道部、湯口部などのキヤビティー部分で構成されているが、このうち铸造 後最終的に必要な部分は製品部のみである。その他の部分は注湯過程又は凝固過 程で必要なだけで、本来は不必要な部分である。しかるに注湯にあたってこれをす ベて充填しているのである。したがって、注入歩留りは低ぐまた解枠、仕上などの後 工程も煩雑で、大きなコスト低減の要素を見逃している。  Next, (4) In any of the reduced pressure forming methods, since the entire cavity shape is filled in pouring, the injection yield is low. That is, although the pot-shaped cavity is generally composed of the cavity part such as the product part, the hot water part, the runner part, and the sprue part, only the product part is the final required part after the forging. The other parts are unnecessary parts only in the pouring process or the coagulation process, and are essentially unnecessary. However, when pouring water, it is completely filled. Therefore, the implantation yield is low, and post-processing steps such as opening and finishing are complicated, and a major cost reduction factor is overlooked.
[0047] 次に、(5)いずれの減圧铸造法においても、注湯完了後から凝固、冷却、解枠まで の間の制御が行われていない。すなわち、注湯完了までは減圧状態の制御が行わ れているが、注湯完了後は減圧を止めるカゝ、又は単に減圧を継続するかという程度 の方法が行われている。つまり、注湯完了後に、(a)指向性凝固の制御が行われて いない。(b)凝固組織の調整が行われていない。(c)溶湯の熱エネルギーの回収が 行われて 、な 、。などの点で铸物製造の低コストィ匕及び高精度化の要素を見逃して いる。 Next, in (5) none of the reduced pressure fabrication methods, control from solidification completion to cooling, solidification and release is not performed after pouring is completed. That is, although the control of the reduced pressure state is performed until the completion of pouring, a method is adopted in which the pressure reduction is stopped after the completion of pouring, or the pressure is simply continued. In other words, (a) directional solidification control is not performed after pouring is complete. (B) Adjustment of solidified tissue is not performed. (C) Recovery of heat energy of molten metal is performed. And miss the elements of low cost and high precision in the manufacture of goods in terms of There is.
[0048] 以上のように、従来の減圧铸造法は優れた特徴を有しているにもかかわらず、(1) 乃至 (5)のような問題点があり、その特徴が十分に活用されていない。  As described above, although the conventional decompression structure method has excellent features, there are problems (1) to (5) and the features are fully utilized. Absent.
[0049] 以上のような理由から、従来の減圧铸造法は特殊材質品や薄肉品、複雑品などを対 象に、特殊铸造法という位置付けで採用されているのが現状である。その結果、通気 性铸型を用いた減圧铸造法による生産量は铸物生産量全体の 1 %にも満たな ヽ状 態である。減圧铸造法の特徴を最大限に活用できる方法が発明できれば、铸造技術 の革新が図れ、铸物が他の工法に対し極めて優位な製造法となるものと思われる。 本発明はこのような観点からなされたものである。 For the reasons as described above, the conventional reduced pressure construction method is currently adopted as a special construction method for special material products, thin-walled products, complex products and the like. As a result, the volume produced by the vacuum construction method using the breathable template is as low as 1% of the total timber production volume. If a method that can make the most of the features of the decompression construction method can be invented, it is possible to innovate the construction technology and make the product an extremely superior manufacturing method over other construction methods. The present invention has been made from such a point of view.
[0050] 特許文献 1:特開昭 61— 180642号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 61-180642
特許文献 2:特開平 7— 265998号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 7-265998
特許文献 3 :特開平 2003— 170226号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2003-170226
特許文献 4:特開平 3 - 216258号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 3-216258
特許文献 5 :特開昭 60— 124438号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 60-124438
特許文献 6:特公平 7 - 115119号公報  Patent Document 6: Japanese Patent Publication No. 7-115119
特許文献 7:特開平 6 - 122060号公報  Patent Document 7: Japanese Patent Application Laid-Open No. 6-122060
特許文献 8:特開平 8— 103861号公報  Patent Document 8: JP-A-8-103861.
特許文献 9:特開昭 57— 31463号公報  Patent Document 9: JP-A-57-31463
特許文献 10:特開平 6— 55255号公報  Patent Document 10: Japanese Patent Application Laid-Open No. 6-55255
特許文献 11:特開平 6— 226423号公報  Patent Document 11: Japanese Patent Application Laid-Open No. 6-226423
特許文献 12 :特開平 9— 85421号公報  Patent document 12: Unexamined-Japanese-Patent No. 9-85421 gazette
特許文献 13 :特開平 4 147760号公報  Patent document 13: Unexamined-Japanese-Patent No. 4 147760
特許文献 14:特開昭 60— 56439号公報  Patent Document 14: Japanese Patent Application Laid-Open No. 60-56439
特許文献 15 :特開平 7— 41400号公報  Patent Document 15: Japanese Patent Application Laid-Open No. 7-41400
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0051] 本発明は以上の従来技術の問題点に鑑み、次のような課題を解決しょうとするもの である。 [0052] (1)通常の通気性铸型を用いて高効率の生産が可能な連続ラインが構成できる減 圧铸造法を提供する。 (2)铸物製品毎の個別対応及び複数個込めへの対応が容易 にできる減圧铸造法を提供する。(3)铸型キヤビティー内に高精度な所定の減圧分 布を創生した減圧铸造法を提供する。(4)铸型キヤビティーのうち所望キヤビティー のみに溶湯を充填する減圧铸造法を提供する。(5)注湯後から凝固、冷却、解枠ま での過程を制御する高効率、高精度な減圧铸造法及び铸造システムを提供する。 The present invention addresses the following problems in view of the problems of the prior art described above. [0052] (1) The present invention provides a pressure-reducing construction method capable of constructing a continuous line capable of highly efficient production using a normal air-permeable mold. (2) To provide a reduced pressure construction method that can easily cope with individual products and multiple loads. (3) A vacuum construction method is provided in which a high-precision predetermined vacuum distribution is created in a vertical cavity. (4) A reduced pressure construction method is provided in which the molten metal is filled only in the desired cavity among the bowl-shaped cavities. (5) To provide a high-efficiency, high-precision reduced pressure structure method and structure system that controls the process from pouring to solidification, cooling, and releasing frames.
[0053] 上記課題を解決する効果は次のようになる。(1)によって減圧铸造法の汎用化が図 れ、铸物製造全般の高精度化が可能となる。(2)及び (3)によって多品種及び複数 個込めの高効率連続ラインに適用できる高精度な減圧铸造法が確立でき、薄肉品、 複雑品の铸造がさらに容易になる。(4)によって極めて高歩留りの減圧铸造法が確 立できるとともに、解枠後の後工程が大幅に簡略化される。(5)によって溶湯の熱ェ ネルギーを利用及び回収して铸造コストの大幅な改善が図れる。また、 CO削減など  The effects to solve the above problems are as follows. By (1), generalization of the vacuum construction method can be achieved, and high precision of general manufacturing of the objects becomes possible. By (2) and (3), it is possible to establish a high-precision reduced pressure construction method that can be applied to high-efficiency continuous lines with multiple types and multiple packings, making it easier to form thin-walled products and complex products. By (4), it is possible to establish an extremely high-yield reduced pressure construction method and greatly simplify post-dissolution post-process. By (5), the thermal energy of the molten metal can be used and recovered to significantly improve the cost of forging. Also, CO reduction etc.
2 の環境面でも大きく貢献する。  It also contributes significantly to the environmental aspects of 2).
課題を解決するための手段  Means to solve the problem
[0054] (手段 1) (Means 1)
铸枠の上面及び Z又は下面にェヤーシール部材を設け、該铸枠に造型された通 気性铸型を型合せして定盤上に置くとともに、該通気性铸型の上面に非通気性材料 よりなる気密部材を載置し、該気密部材の少なくとも 1個所に設けられた吸引穴を通 して通気性铸型の減圧を行いながら溶湯を注湯することを特徴とする減圧铸造法で ある。  An air seal member is provided on the upper surface and the Z or lower surface of the weir frame, and the air-permeable weir mold molded on the weir frame is placed on the surface plate, and a non-air-permeable material is provided on the upper surface of the breathable weir. The air-tight member is placed, and the molten metal is poured while depressurizing the air-permeable weir-shaped through the suction holes provided in at least one place of the air-tight member.
[0055] 本手段では、通常の通気性铸型を用いて容易に高効率の生産が可能な連続ライ ンが構成できる減圧铸造法を提供する。  [0055] The present method provides a reduced pressure construction method capable of constructing a continuous line capable of easily producing high efficiency using a normal air-permeable mold.
[0056] 従来の一般的な通気性铸型を用いた全体減圧铸造法では铸型又は消失性模型 を減圧可能な気密容器に収容するカゝ、ビニールなどの非通気性部材で全体を覆つ て減圧して注湯が行われる。そのため、湯廻り性やガス欠陥対策の面では無減圧の 通常の铸造法に比べて優れて 、る。 [0056] In the whole general decompression construction method using the conventional general air-permeable mold, the whole is covered with a non-air-permeable member such as a car, vinyl or the like that accommodates the mold or the fugitive model in a vacuum-proof airtight container. The pressure is reduced and pouring is performed. Therefore, it is superior to non-depressurized normal construction method in terms of hot water pouring and gas defect measures.
[0057] しかし、生産性の面では特殊な気密容器や消耗材のビニールなどの非通気性部材 を必要とすることから、工程が複雑で時間も長ぐまた製造コストも高い。このことから 全体減圧铸造法は特殊材質品、薄肉品、及び複雑品などを対象に採用されている。 従来技術の最も一般的な気密容器を使った全体減圧铸造法の一例を図 40に示す。 However, since a non-air-permeable member such as a special airtight container and a consumable material vinyl is required in terms of productivity, the process is complicated, time-consuming, and the manufacturing cost is high. From this The whole decompression structure method is adopted for special material products, thin products and complex products. An example of the total pressure reduction construction method using the most general airtight container of the prior art is shown in FIG.
[0058] 本手段では、まず通常の铸枠の上面及び Z又は下面に空気の流入を防ぐェヤー シール部材を設ける。そして、その铸枠に粒状材料よりなる铸型材で通気性铸型を 造型し、上下铸型を型合せして定盤上に置く。定盤の代わりに台車などでもよい。要 は铸枠のェヤーシール部材と接して気密が保てるものであればよい。 [0058] In this method, first, the upper surface and the Z or the lower surface of the ordinary heddle frame are provided with a heat seal member for preventing the inflow of air. Then, an air-permeable mold is formed on the mold frame with a mold material made of granular material, and the upper and lower molds are put together and placed on a surface plate. A dolly may be used instead of the surface plate. The point is that it can be kept airtight by contacting the light seal member of the heddle frame.
[0059] 次に前記通気性铸型の上枠の上面に同じく空気の流入を防ぐ非通気性の材料より なる気密部材を載置し、その気密部材の少なくとも 1個所に設けられた吸引穴を通し て減圧を行 、ながら注湯を行うものである。  Next, an air-tight member made of a non-air-permeable material that similarly prevents the inflow of air is placed on the upper surface of the upper frame of the air-permeable cage, and suction holes provided in at least one location of the air-tight member. The pressure is reduced while pouring water.
[0060] 本手段では、通常の铸枠及びェヤーシール部材と気密部材によって、従来の全体 減圧铸造法における気密容器と同様な機能を構成している。  [0060] In this means, the same function as that of the airtight container in the conventional full decompression construction method is constituted by the usual coffin frame, the air seal member and the airtight member.
[0061] すなわち、下枠の下面は定盤と接している力 この部分は下枠下面に設けたェャ 一シール部材によって気密が保持されている。また、上下铸枠の合せ面は同じくェ ヤーシール部材によって気密が保持されている。また、上枠上面は気密部材と接し ているが、この部分は同じく上枠に設けたェヤーシール部材によって気密が保持さ れている。つまり、铸枠のェヤーシール部材によって铸枠同士、定盤及び気密部材 との間の気密が保たれているのである。  That is, the force with which the lower surface of the lower frame is in contact with the surface plate. This portion is kept airtight by an air seal member provided on the lower surface of the lower frame. In addition, the mating surfaces of the upper and lower frames are also kept airtight by the air seal member. Further, the upper surface of the upper frame is in contact with the airtight member, but this portion is kept airtight by the light seal member similarly provided on the upper frame. That is, the air seal members of the weir frames maintain the airtightness between the weir frames, the platen and the airtight member.
[0062] そして、通気性铸型が外部の大気と通じているのは、気密部材に設けた吸引穴の みであって、これを一般的な減圧装置に連通させて減圧を行う。勿論、注湯のための 穴を気密部材に設けるが、ここは減圧時には適宜の非通気性部材、好ましくは溶湯 の熱で消失又は融解する非通気性部材で封止しておけば気密を保つことができる。  And, it is only the suction hole provided in the airtight member that the air-permeable wedge is in communication with the outside atmosphere, and it is communicated with a general pressure reducing device to perform pressure reduction. Of course, a hole for pouring is provided in the air-tight member, but if it is sealed with a suitable non-air-permeable member at the time of pressure reduction, preferably a non-air-permeable member that disappears or melts with the heat of the molten metal be able to.
[0063] ェヤーシール部材としては耐熱性のパッキン等の非通気性部材を使用する。又は 若干の空気流入を許容できる場合は通気性の低 、部材も使用可能である。  A non-air-permeable member such as a heat-resistant packing is used as the heat sealing member. Or low breathability members may be used if some air inflow is acceptable.
[0064] 気密部材は非通気性であって、吸引穴を設けることができる材料であれば、 、ずれ も使用可能である。例えば、金属製の減圧フードや、鉄製で铸型の重錘と兼用で用 いるものなどがあげられる。また、可撓性のビニール等の榭脂材料などを用いることも できる。  [0064] The airtight member is non-air-permeable, and any material that can be provided with a suction hole can be used as well. For example, a metal decompression hood or an iron-made one used as a bowl-like weight may be mentioned. In addition, flexible resin materials such as vinyl can also be used.
[0065] 気密部材に設ける吸引穴は少なくとも 1個所あれば铸型全体を減圧することができる 。また、 2個所以上設けてより速やかに铸型全体を均一な減圧状態にすることもでき る。 [0065] At least one suction hole provided in the airtight member can reduce the pressure in the entire mold. . In addition, two or more locations can be provided to make the entire bowl more uniformly depressurized more quickly.
[0066] 以上説明したごとぐ本手段は、一般に高効率の生産が可能な連続ラインに用いら れて ヽる铸枠付の通気性铸型にぉ ヽて、ェヤーシール部材と気密部材を適用するこ とによって、従来の特殊な気密容器を用いた減圧铸造法と同じ作用、効果を可能に した。すなわち、高効率の生産が可能な連続ラインに容易に適用できる減圧铸造法 を提供するものである。詳細は実施例 1乃至 3で説明する。  [0066] The above-described method according to the present invention is generally used in a continuous line capable of high-efficiency production, and is applied to a ventilation seal type with a weir frame and a heat seal member and an airtight member. This enabled the same operation and effect as the conventional vacuum-construction using a special airtight container. That is, the present invention provides a reduced pressure forging method which can be easily applied to a continuous line capable of highly efficient production. Details will be described in Examples 1 to 3.
[0067] (手段 2)  (Method 2)
通気性铸型の少なくとも 1つの外表面に、該外表面力も铸型内部へ向力 直径及 び Z又は深さの異なる複数の通気穴を設け、通気性铸型の外表面から減圧して铸 型内の複数の通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、通気性铸型のキ ャビティーに所定の減圧分布を創生して溶湯を注湯することを特徴とする減圧铸造 法である。  The at least one outer surface of the breathable wedge is provided with a plurality of vent holes having different diameter and Z or depth, and the outer surface force is also directed to the inside of the wedge, and the pressure is reduced from the outer surface of the breathable wedge. A partial pressure reduction zone is formed around each of a plurality of vent holes in the mold, and a predetermined pressure distribution is created in the breathable vertical cavity to pour the molten metal. .
[0068] 本手段では、全体減圧法において、铸型キヤビティー内に高精度に所定の減圧分 布を創生した減圧铸造法を提供する。  The present means provides a reduced pressure forging method in which a predetermined reduced pressure distribution is created with high accuracy in a vertical cavity in the total pressure reduction method.
[0069] 本手段ではまず通気性铸型の少なくとも 1つの外表面に、該外表面から内部へ向 力う直径及び Z又は深さの異なる複数の通気穴を設ける。少なくとも 1つの外表面と は、铸枠付の铸型の場合は铸型の上面及び Z又は下面である。また、铸枠なしの铸 型の場合は铸型の外表面のうち少なくともひとつの面に通気穴を設け、その他の面 は適宜の非通気性部材で覆って気密を保つようにする。なお、通気穴はドリル等で 穿孔してもよいし、造型によって成型してもよい。一般の多品種生産への対応を考慮 すると穿孔の方が効率的であるので、以下、本発明では通気穴は穿孔するものとし て説明する。  [0069] In this method, first, at least one outer surface of the breathable wedge is provided with a plurality of vent holes having different diameters and Z or depths from the outer surface toward the inside. The at least one outer surface is the upper surface and the Z or the lower surface of the bowl shape in the case of the bowl type with the bowl frame. Further, in the case of a cage without a cage frame, a vent hole is provided on at least one of the outer surfaces of the cage, and the other surface is covered with a suitable non-air-permeable member to maintain air tightness. The vent holes may be drilled with a drill or the like, or may be formed by molding. In the present invention, the vent holes will be described as drilling since the drilling is more efficient in consideration of general multi-product production.
[0070] 铸型の外表面から内部へ向力つて設ける直径及び Z又は深さの異なる複数の通 気穴は、铸型の通気度を高めるとともに通気穴の周囲の铸型内に異なる複数の部分 減圧ゾーンを形成することによって、その複合として铸型キヤビティーに所定の減圧 分布を創生するためのものである。なお、本発明において周囲とは通気穴の外周及 び先端部付近を意味する。以後、単に周囲と記す。また部分減圧ゾーンとは、複数 の通気穴を設けることによって、铸型外表面からの減圧、すなわち全体減圧であって も、通気穴の周囲にはその部分が優先的に減圧される一種の部分減圧と同じような 領域が形成されるので、その部分減圧の作用のおよぶ領域を部分減圧ゾーンと称す るものである。 [0070] A plurality of air holes having different diameters and depths or depths provided from the outer surface of the bowl towards the inside increase the air permeability of the bowl and a plurality of different holes in the bowl around the vent holes. By forming a partial pressure reduction zone, it is intended to create a predetermined pressure distribution in the cocoon-shaped cavity as a complex. In the present invention, the periphery means the periphery of the vent hole and the vicinity of the tip. Hereafter, it will be simply referred to as the surroundings. In addition, with partial pressure reduction zone, plural By providing a vent hole, even if the pressure is reduced from the outer surface of the bowl, that is, even if the entire pressure is reduced, an area similar to a kind of partial pressure is formed around the vent hole in which the portion is preferentially depressurized. Therefore, the area over which the partial pressure reduction acts is called a partial pressure reduction zone.
[0071] 複数の直径及び Z又は深さの異なる通気穴の作用について詳述する。そのひとつ の作用は、複数の通気穴を設けることによって铸型全体の通気性が向上するので、 キヤビティーの減圧度を速やかに高めることができることである。すなわち、減圧作用 の迅速ィ匕である。  [0071] The operation of vent holes of different diameters and different Z or depth will be described in detail. One of the effects is that the air permeability of the entire mold is improved by providing a plurality of vent holes, so that the degree of pressure reduction of the cavity can be rapidly increased. In other words, it is a rapid action of depressurization.
[0072] もうひとつの作用は、複数の通気穴の周囲にそれぞれ部分減圧ゾーンが形成され ることである。そして、通気穴先端とその近傍のキヤビティーとの間の铸型厚みは薄く なっているので、そのキヤビティー部分では部分減圧ゾーンの減圧作用が反映され た減圧度が得られることになる。その結果、キヤビティー全体ではそれぞれの通気穴 に対応したキヤビティー部分の減圧度の複合として所定の減圧分布が創生される。 すなわち、複数の直径及び Z又は深さの異なる通気穴によって複数個所の部分減 圧作用が得られていることになる。したがって、本手段は全体減圧と部分減圧が複合 された減圧铸造法であるとも言える。  Another effect is that a partial pressure reduction zone is formed around each of the plurality of vent holes. Further, since the thickness of the wedge between the tip of the vent hole and the cavity in the vicinity thereof is reduced, a pressure reduction degree reflecting the pressure reduction action of the partial pressure reduction zone is obtained in the cavity portion. As a result, in the entire cavity, a predetermined reduced pressure distribution is created as a composite of the degree of reduced pressure of the cavity portion corresponding to each vent hole. That is, partial pressure reduction action is obtained at a plurality of locations by vent holes of different diameters and different Z or depths. Therefore, it can be said that this method is a reduced pressure construction method in which total pressure reduction and partial pressure reduction are combined.
[0073] したがって、通気穴の直径、深さ、及び位置は所定の減圧分布の創生に極めて重 要である。第一義的には位置が最も重要である。すなわち、減圧度を高めたい部分 の近傍に多く設けるようにする。  Therefore, the diameter, depth and position of the vent holes are extremely important for the creation of a given reduced pressure distribution. First of all, position is the most important. In other words, many are provided in the vicinity of the portion where it is desired to increase the degree of pressure reduction.
[0074] 次に、通気穴の直径は大きいほどその周囲力 多量の空気を吸引するので強い部 分減圧ゾーンが形成され、その通気穴の周囲で高 、減圧度を得ることができる。  Next, the larger the diameter of the vent hole is, the greater the pressure of the surrounding air is absorbed, so a strong partial pressure reduction zone is formed, and a high degree of pressure reduction can be obtained around the vent hole.
[0075] また、通気穴の深さはできるだけ深ぐキヤビティーに近いところまで穿孔することに よって、その通気穴の減圧作用をキヤビティーに強く反映させることができる。通気穴 は通常はキヤビティーに連通しないようにする力 中子の巾木部分や、铸型合せ面な どの湯が直接浸入しな 、部分にっ 、ては連通した通気穴としてもよ!、。  In addition, if the depth of the vent hole is as deep as possible, the pressure reducing action of the vent hole can be strongly reflected in the cavity. The vent is usually a force that prevents the cavity from communicating with the core part of the core or the hot water, such as a bowl-shaped mating surface, etc. The vent may be a vent connected to the part!
[0076] したがって、所望の減圧分布を得るためには、適切な位置にできるだけ直径の大き な深い通気穴を設けることが要点である。そして、減圧度を低めにしたい部分には、 小さく浅 、通気穴を設ける力、又は全く設けな 、ようにする。 [0077] このように、複数の通気穴を位置、直径、深さを変えて設けることによって、減圧度 の高い部分と低い部分を明確に区分して形成することができ、その複合として铸型キ ャビティーに高精度な減圧分布^ |lj生することができるのである。 Therefore, in order to obtain a desired pressure distribution, it is important to provide deep vent holes with the largest possible diameter at an appropriate position. Then, in areas where the degree of pressure reduction is to be lowered, make them small, shallow, force to provide vent holes, or not at all. As described above, by providing a plurality of vent holes at different positions, diameters, and depths, it is possible to clearly separate and form a portion with a high degree of pressure reduction and a portion with a low degree of pressure. It is possible to generate highly accurate decompression distribution ^ | lj in the cavity.
[0078] 複数の通気穴は直径を変えてもよいし、深さを変えてもよい。複数の通気穴を穿孔 する作業性を考慮すると直径を一定にしておき、深さと数を変える方が望ましい。ま た、通気穴は減圧度を高めたいキヤビティー部分にできる限り近い位置に設けること が効果的である。通常は通気穴を製品部キヤビティー付近に多く設け、そのキヤビテ ィ一部分の減圧度を他の部分より高くするような減圧分布にすることが注湯の安定の 面力 好ましい。 [0078] The plurality of vent holes may vary in diameter or depth. Considering the workability of drilling multiple vents, it is better to keep the diameter constant and change the depth and number. In addition, it is effective to place the vent holes as close as possible to the cavity where you want to increase the degree of pressure reduction. In general, it is preferable to provide a large number of vent holes near the product part cavity, and to make the pressure reduction distribution such that the degree of pressure reduction of that part of the cavity is higher than that of the other parts.
[0079] また、湯口側から見て製品部より先に押湯やは力せを設けた方案では、押湯やは かせ部の減圧度を高くしたいので、この付近に通気穴を多ぐ深く設ける。製品部付 近にも通気穴を設けてもよいが、押湯やはかせ部に比べて減圧度がやや低くなるよう に設けるようにする。  [0079] In addition, in the plan where the pouring water or pressure is provided prior to the product part when viewed from the sprue side, it is desirable to increase the degree of pressure reduction of the pouring water or the filling part. Set up. Although vent holes may be provided near the product area, they should be provided so that the degree of pressure reduction is slightly lower than that of the feeder and skein.
[0080] なお、実際の生産ラインにおける通気穴の穿孔にあたっては、多品種の铸物生産 に対応できることが必要なので、通気穴の穿孔装置は一般的にはドリルなどの穿孔 具を 1乃至複数本備えた構成とし、铸型上部に設置する。そして、上記のような適正 な減圧分布が得られるように可能な限り最適な位置に各穿孔具を移動させて通気穴 を穿孔する方法が望ましい。すなわち、穿孔装置は所望の位置に位置決めが可能な 何らかの手段を有するようにする。勿論、製品種類が限定される場合は穿孔装置を 固定式としてもよい。  In addition, since it is necessary to be able to cope with various types of container production in order to drill the vent holes in an actual production line, the vent hole drilling apparatus generally has one or a plurality of drilling tools such as a drill. We will have the configuration and install it on the upper part of the bowl. Then, it is desirable to move the perforating tools to the best possible position so as to obtain the proper pressure reduction distribution as described above to perforate the vent holes. That is, the piercing device has some means that can be positioned at the desired position. Of course, if the product type is limited, the drilling device may be fixed.
[0081] ここで、減圧铸造法におけるキヤビティーの減圧状態を考察し、本手段と従来の全 体減圧铸造法の違!ヽを説明する。  Here, the pressure reduction state of the cavity in the reduced pressure construction method is considered, and the difference between this method and the conventional whole pressure reduction construction method will be described.
[0082] 一般に用いられる铸型の場合、铸型の外表面はほぼフラットな面となっており、製 品形状や铸造方案によって決まる铸型キヤビティーによって、铸型各部の厚みは異 なっている。この铸型を外表面から減圧すると、铸型の薄い部分は通気抵抗が小さ いのでその部位のキヤビティー部分は減圧され易ぐ逆に铸型の厚い部分は通気抵 抗が大き 、のでその部位のキヤビティー部分は減圧されにくいと!、う現象がおこる。 つまり、铸型キヤビティーの各部で減圧度に差が生じることになる。し力も、その減圧 分布は製品形状、铸造方案などによって決まり、必ずしも溶湯の充填に適正な減圧 分布は得られるとは限らない。この現象に対する改善策を開示した一例が前記特許 文献 2である。 In the case of a generally used cage, the outer surface of the cage is a substantially flat surface, and the thickness of each part of the cage differs depending on the cage shape determined by the product shape and the construction method. When this mold is depressurized from the outer surface, the thin part of the mold has low ventilation resistance, so the cavity part of that part is easily depressurized. On the contrary, the thick part of the mold has large ventilation resistance, so it is If the pressure in the portion of the cavity is difficult to decompress! That is, a difference occurs in the degree of pressure reduction at each part of the wedge-shaped cavity. Also the pressure reduction The distribution is determined by the product shape, forging method, etc., and the pressure reduction distribution that is appropriate for filling the molten metal may not always be obtained. Patent Document 2 is an example that discloses a remedy for this phenomenon.
[0083] ここで、気密が完全であればキヤビティー全体は速やかに均一な減圧度に達する 力 通常はある程度の空気の流入があるので、 減圧作用はこれとバランスしながら進 行する。また、空気の流入量が多い場合は、均一な減圧度にはならず、空気の流入 部及び空気の流れに沿った部分に減圧度の低い部分が発生する。  Here, if the air tightness is perfect, the entire cavity quickly attains a uniform degree of pressure. Since there is usually a certain amount of air inflow, the pressure reducing action proceeds in balance with this. In addition, when the inflow of air is large, the degree of pressure reduction is not uniform, and a portion with a low degree of pressure reduction occurs at the air inflow portion and the portion along the air flow.
[0084] また、注湯にあたって、キヤビティー内の減圧度が均一なことが本当に最善力どうか は現在までの研究では明確になっていない。例えば、均一な減圧度が得られていて も、注湯の開始とともに湯口部付近で気密は破れるので減圧度は大きく変化し、これ が湯流れの乱れの原因であると言われて 、る。  [0084] In addition, it has not been clarified in the research so far whether or not it is really the best ability to have a uniform degree of pressure reduction in the cavity when pouring water. For example, even if a uniform degree of pressure reduction is obtained, the air tightness is broken near the gate with the start of pouring, so the degree of pressure reduction changes significantly, and it is said that this is the cause of the disturbance of the water flow.
[0085] また、均一な減圧度は全体減圧铸造法においてのみ得られるのである力 一方に おいて、前述の従来技術で述べたように、均一な減圧度は求めず局部から一方向の 減圧を行う部分減圧铸造法も盛んに研究されている。しカゝも、それは铸型内への空 気の流入を許容して 、るのである。このことはキヤビティー全体の均一な減圧状態が 必ずしも最善ではな 、ことを意味して 、る。 、ずれが良 、かは対象とする铸物の種類 によるので一概には言えないが、今後さらに薄肉かつ複雑な铸物を铸造するにあた つては、キヤビティー内の減圧分布を高精度に制御して、対象の铸物に適正な所定 の減圧分布を創生することが必要である。  Further, as described in the above-mentioned prior art, the uniform pressure reduction degree can be obtained only in the whole pressure reduction structure method, and the uniform pressure reduction degree can not be obtained as described in the above-mentioned prior art. The partial decompression construction method to be performed is also actively studied. It also allows air to flow into the mold. This means that uniform decompression over the entire cavity is not always the best. The gap is good, and it depends on the type of the object to be treated, so it can not be said in general, but in the case of manufacturing further thin and complex objects in the future, the pressure reduction distribution in the cavity is controlled with high accuracy. It is necessary to create an appropriate predetermined pressure reduction distribution for the target product.
[0086] この部分減圧铸造法の思想に従えば、空気の流入をある程度許容しても方向性の ある減圧分布又は減圧勾配^ iij生する方がよ!、と 、うことになる。  According to the concept of this partial pressure reduction construction method, it is better to generate a directional pressure reduction distribution or pressure reduction gradient ^ iij even if the flow of air is permitted to some extent.
[0087] この点から本手段を考察すると、本手段では前述のように铸型の外表面から内部へ 向かって直径及び Z又は深さの異なる複数の通気穴を設けることによって、通気穴 の周囲の铸型内に複数の部分減圧ゾーンを形成し、その複合としてキヤビティー全 体の減圧分布を創生している。したがって、この減圧分布は従来技術の特許文献に 開示されている部分減圧による単純な一方向の減圧分布、すなわち減圧勾配とは異 なり、複数の部分減圧ゾーンによって創生されたより高精度な減圧分布である。そし て、通気穴の位置と直径及び Z又は深さを適宜に選ぶことによって、特定の部位を 高!ヽ減圧度にするような減圧分布も容易に創生することが可能である。 [0087] When considering this means from this point, in the present means, by providing a plurality of ventilation holes of different diameter and Z or depth from the outer surface of the bowl to the inside as described above, A plurality of partial pressure reduction zones are formed in the template, and the combined pressure distribution of the entire cavity is created. Therefore, this reduced pressure distribution is different from the simple one-sided reduced pressure distribution by partial pressure reduction disclosed in prior art patent documents, that is, a more accurate reduced pressure distribution created by a plurality of partial pressure reduction zones, different from the pressure reduction gradient. It is. Then, by selecting the position and diameter of the vent hole and Z or depth appropriately, a specific site can be obtained. It is possible to easily create a reduced pressure distribution that makes it high!
[0088] 本手段の効果は直径及び Z又は深さの異なる複数の通気穴を設け、通気性铸型 の外表面カゝら減圧して铸型キヤビティー内に高精度に所定の減圧分布を創生し、そ の結果、乱れのないスムースな湯流れをつくれることである。次にその詳細を述べる。  The effect of this method is to provide a plurality of vent holes different in diameter and Z or depth, and create a predetermined pressure distribution with high accuracy in the wedge-shaped cavity by reducing the pressure on the outer surface of the breathable wedge-shaped surface. The result is a smooth, smooth stream of hot water. The details will be described next.
[0089] 従来の全体減圧铸造法では、前述のようにたとえ注湯前に均一な減圧分布が得ら れていても、注湯開始とともに減圧度は大きく変化し、その変動が溶湯に作用し湯流 れの乱れが発生すると考えられる。このように铸型キヤビティーの減圧度が変化する と、全体減圧では単に減圧分布を均一化する方向に減圧が働くので、必ずしも製品 部のキヤビティー部分を充填するのに適正な減圧分布が得られるとは限らない。  [0089] In the conventional whole decompression construction method, as described above, even if uniform decompression distribution is obtained before pouring, the degree of decompression greatly changes with the start of pouring, and the variation acts on the molten metal and the hot water acts. It is thought that flow disturbance will occur. As described above, when the pressure reduction degree of the wedge-shaped cavity changes, the entire pressure reduction simply acts in the direction to uniformize the pressure reduction distribution, and thus it is necessary that the pressure reduction distribution appropriate for filling the cavity portion of the product part is necessarily obtained. There is no limit.
[0090] 本手段においても、注湯開始後の減圧度の変化は避けられない。しかし、本手段 では、注湯開始前に製品部などの所望のキヤビティー部分が高い減圧度になり、湯 口部付近が低 、減圧度になるような減圧分布が創生できるので、従来の全体減圧铸 造法に比べて、所定の減圧分布を維持する又は回復するという作用の点では明らか に優れていることになる。  [0090] Also in this method, a change in the degree of pressure reduction after the start of pouring is unavoidable. However, according to this method, the desired cavity part such as the product part becomes a high pressure reduction degree before the start of pouring, and a pressure reduction distribution can be created so that the vicinity of the sprue part becomes low and the pressure reduction degree. It is clearly superior to the reduced pressure method in terms of the action of maintaining or recovering a predetermined reduced pressure distribution.
[0091] 本手段によって、基本的には全体減圧でも、複数の直径及び Z又は深さの異なる 通気穴によってその周囲に部分減圧ゾーンを形成することによって、注湯前力も所 定の減圧分布を創生しておけば、注湯開始後の減圧変化にも対応する機能があり、 湯の乱れも少なぐ湯廻り不良やガス欠陥を減少させる効果がある。  [0091] By this means, even if the total pressure is reduced, by creating a partial pressure reduction zone around it by vent holes of different diameters and different depths or depths, the pre-pouring force also creates a specified pressure reduction distribution. If created, it has a function to cope with the pressure reduction change after the start of pouring, and it has the effect of reducing defects in hot water and gas defects, which cause less disturbance of hot water.
[0092] ところで、特許文献 10には図 41に示すように本手段と類似の作用をする空孔部を 設けてこれから吸引減圧する铸造法が開示されている。しかし、その方法では必ず 铸型の堰部から離隔した位置に押湯又ははかせを設け、その近くに空孔部を設けな ければならないという制約がある。本手段ではこのような制約は全くなぐどのような方 案の铸型キヤビティーのレイアウトに対しても対応可能である。  Patent Document 10, as shown in FIG. 41, discloses a forging method in which holes having similar effects to those of the present means are provided, and suction and pressure are reduced from this point. However, in this method, there is a restriction that a feeder or a weir must be provided at a position apart from the heel of the bowl and a cavity should be provided near it. In this method, such restrictions can be applied to the layout of the template-type cavity of any scheme.
[0093] また、特許文献 10では空孔部一つの製品キヤビティーに対して 1個となっている。し かし、本手段では通気穴は複数で铸型全体に配置されており、その直径と深さも所 定の減圧分布を得るように変える点で異なっている。また、特許文献 10は一方向の 減圧勾配を一つの通気穴で創生しょうとしている力 本手段では複数の直径及び Z 又は深さの異なる通気穴を通して部分減圧を行 ヽ、その複合として铸型全体にわた つて高精度な減圧分布を創生して ヽる点で根本的に異なって ヽる。 Further, in Patent Document 10, there is one for each product cavity of one hole portion. However, in this method, a plurality of vent holes are disposed throughout the bowl, and their diameters and depths are also changed in order to obtain a specified depressurization distribution. In addition, in Patent Document 10, a force is applied to create a one-way decompression gradient with one vent hole. In this method, partial decompression is performed through vent holes of different diameters and different Z and depths. Across the whole It is fundamentally different in creating highly accurate decompression distribution.
[0094] 本手段は複数個込めの铸型に対しても、通気穴を铸型の全体にわたって適宜に設 けることによって、容易に所定の減圧分布を創生することができる。この点も従来技術 にはない特徴である。  The present means can easily create a predetermined reduced pressure distribution by appropriately arranging the vent holes throughout the entire mold, even for a multi-piece mold. This point is also a feature that is not present in the prior art.
[0095] また、本手段を拡張展開すると、吸引による減圧のみでなぐ部分的に圧縮空気に よる送気も併用してさらに高精度に減圧分布を創生する減圧铸造法とすることができ る。これについては手段 3において説明する。  In addition, when this method is expanded and expanded, it is possible to create a reduced pressure structure that generates a reduced pressure distribution with higher accuracy by using the compressed air partially in combination with the pressure reduction by suction alone. . This will be described in means 3.
[0096] なお、減圧分布とは铸型キヤビティー内全体の各場所の減圧度の分布を意味し、減 圧勾配とは単に 2つの場所の間の減圧度の差を意味している。したがって、本発明 で述べている減圧分布の方が減圧勾配よりも高精度に铸型キヤビティーの圧力分布 を表現したものである。なお、従来技術では铸型キヤビティーの減圧勾配について述 ベて 、るのみであって、減圧分布にっ 、て述べられた開示文献はな!/、。  The pressure reduction distribution means the distribution of the degree of pressure reduction at each location in the entire cage-type cavity, and the pressure reduction gradient means simply the difference in the degree of pressure reduction between the two locations. Therefore, the pressure reduction distribution described in the present invention expresses the pressure distribution of the wedge-shaped cavity more accurately than the pressure reduction gradient. In the prior art, only the pressure reduction gradient of the vertical cavity cavity is described, and the disclosure document described in the pressure reduction distribution is not! /.
[0097] 以上のように全体減圧において、铸型キヤビティーに対応した適宜の複数の通気 穴を設けて減圧することによって形成される部分減圧作用を利用して、高精度な減 圧分布を創生した減圧铸造法を提供した。詳細は実施例 4で説明する。  As described above, in the overall depressurization, a highly accurate depressurization distribution is created by utilizing the partial depressurization action formed by providing a plurality of appropriate venting holes corresponding to the wedge-shaped cavity and depressurizing. Provided a reduced pressure construction method. Details will be described in the fourth embodiment.
[0098] (手段 3)  (Method 3)
通気性铸型の少なくとも 1つの外表面に、該外表面力 铸型内部へ向力 複数の通 気穴を設け、該複数の通気穴に対し個別に吸弓 I又は送気して铸型内の複数の通気 穴の周囲にそれぞれ部分減圧ゾーンを形成し、通気性铸型のキヤビティーに所定の 減圧分布を創生して溶湯を注湯することを特徴とする減圧铸造法である。  At least one outer surface of the breathable wedge is provided with a plurality of air holes directed to the inner surface of the wedge, and a plurality of air vents are individually supplied to the plurality of air vents so that the inside of the wedge is inhaled. A partial pressure reduction zone is formed around each of the plurality of vent holes, and a predetermined pressure distribution is created in the air-permeable wedge-shaped cavity to pour the molten metal.
[0099] 本手段では、手段 2よりもさらに高精度に铸型キヤビティー内に所定の減圧分布を創 生した減圧铸造法を提供する。  The present means provides a reduced pressure forging method in which a predetermined reduced pressure distribution is created in the vertical cavity with higher accuracy than that of the means 2.
[0100] 本手段では手段 2と同じように複数の通気穴を設け、その複数の通気穴に対して個 別に吸引又は送気を行ってより高精度に所定の減圧勾配を創生して注湯するもので ある。  [0100] In the present means, as in means 2, a plurality of vent holes are provided, and a plurality of suction holes are individually supplied to the plurality of vent holes to create a predetermined pressure reduction gradient with higher accuracy. It is something to drink.
[0101] すなわち、手段 2では複数の直径及び Z又は深さの異なる通気穴を設け、铸型外 表面カゝら全体減圧で所定の減圧分布を得るようにしたが、本手段では各通気穴に対 し個別に吸引又は送気を行って,さらに明確に部分減圧を行い、より高精度に所定の 減圧分布を得るようにしたのである。なお、本手段では各通気穴に対し個別に吸引 又は送気することによって減圧を制御するので、複数の通気穴の直径及び深さは同 じでも異なるものであってもよ 、。 That is, in the means 2, vent holes having a plurality of diameters and different Z or depths are provided to obtain a predetermined depressurization distribution by total pressure reduction of the outer surface of the bowl, but in the present means, each vent hole Apply suction or insufflation separately to make the partial The pressure reduction distribution was obtained. In this method, since the depressurization is controlled by individually suctioning or supplying air to each vent hole, the diameters and depths of the plurality of vent holes may be the same or different.
[0102] なお、吸引に加えて送気も併用したことに関しては、本手段も基本は減圧であるの で吸引が主となるが、複数の通気穴のうち減圧度を下げた 、 (弱くした 、)キヤビティ 一付近の通気穴に対して圧縮空気又は大気圧レベルの空気を送気して、積極的に 減圧度を下げるようにしたものである。勿論、減圧度を下げたい部位に対して吸引も 送気も行わな 、でもよ 、が、吸引を行って 、る通気穴の周囲の部分減圧ゾーンの影 響はその他の通気穴の周囲にも現れるので、この部分もある程度の減圧度となる。こ の対策としてその部位に送気することで減圧度を積極的に下げるようにしたものであ る。  In addition to suction, in addition to air supply, suction is mainly used because this method is basically based on reduced pressure, but the pressure reduction degree is lowered among a plurality of vent holes (weakened ,) Cavity The air pressure hole or air at atmospheric pressure level is sent to the ventilation hole near one position to reduce the pressure reduction degree actively. Of course, neither suction nor insufflation is applied to the area where the degree of pressure reduction is to be reduced, but the effect of the partial pressure reduction zone around the vent hole is the same as for the other vent holes. As it appears, this part also has a certain degree of pressure reduction. As a countermeasure for this, the degree of pressure reduction is positively reduced by insufflating the area.
[0103] これによつて、強い吸引を行っている通気穴に近いキヤビティー部分は高い減圧度 になり、送気を行う通気穴付近のキヤビティー部分はより低い(弱い)減圧度になり、こ の両キヤビティー部分間の減圧勾配をより大きくすることができる。つまり、各通気穴 の吸引又は送気の流量によって、各通気穴の周囲の部分減圧ゾーンに対応する減 圧度が铸型キヤビティーの各部に形成され、その複合としてキヤビティー全体の減圧 分布が創生されるのである。その結果、手段 2よりもさらに高精度に所定の減圧分布 を創生でき、湯流れの乱れの少な 、状態でスムースな注湯を行うことができる。  [0103] As a result, the portion of the cavity close to the vent hole where strong suction is performed has a high degree of pressure reduction, and the portion of the cavity near the vent hole where air is supplied has a low (weak) degree of pressure. The pressure reduction gradient between the two cavity portions can be made larger. That is, by the suction or air flow rate of each vent hole, the pressure reduction degree corresponding to the partial pressure reduction zone around each vent hole is formed in each part of the wedge-shaped cavity, and the combined pressure reduction distribution of the entire cavity is created. It is As a result, it is possible to create a predetermined pressure reduction distribution with higher accuracy than in the second method, and smooth pouring can be performed with less disturbance of the flow of the molten metal.
[0104] 通気穴力 個別に吸引又は送気する方法としては、铸型外表面の複数の通気穴に 対応して複数の減圧ボックスを当接し、該減圧ボックスに吸引口と送気口を設け、該 吸引口を流量制御手段を介して減圧装置に連通させ、また送気口を流量制御手段 を介して空気圧縮装置に連通させることによって行うことができる。詳細は実施例 5及 び 6において説明する。なお、本手段においては吸引送気装置である複数の減圧ボ ックスは設けられた複数の通気穴に当接して用いられるので、通気穴の位置に合せ るための何らかの位置決め手段を有するようにする。  Vent hole force As a method of suctioning or supplying air individually, a plurality of decompression boxes are abutted corresponding to a plurality of ventilation holes on the outer surface of the bowl shape, and a suction port and an air supply port are provided in the decompression box. The suction port can be in communication with the pressure reducing device through the flow control means, and the air supply port can be in communication with the air compression device through the flow control means. Details will be described in Examples 5 and 6. In this case, since a plurality of pressure reducing boxes, which are suction and air supply devices, are used in contact with the plurality of vent holes provided, in this means, some positioning means for aligning with the position of the vent holes is provided. .
[0105] 本手段によって、注湯開始に伴う減圧分布の変動にもさらに速やかに作用して所 定の減圧分布を創生し、湯流れの乱れが少な 、状態で注湯することができる  [0105] By means of this measure, it is possible to act more quickly on the fluctuation of the pressure reduction distribution accompanying the start of pouring to create a predetermined pressure reduction distribution, and it is possible to pour in a state where the disturbance of the hot water flow is small.
[0106] 以上のように、複数の通気穴を設けそれに対して個別に吸引又は送気することによ つて、明確な部分減圧作用を有する減圧铸造法を提供した。詳細は実施例 5及び 6 で説明する。 As described above, by providing a plurality of air vents and suctioning or supplying air to each of them individually. We have provided a vacuum construction method that has a definite partial depressurization effect. Details will be described in Examples 5 and 6.
[0107] (手段 4) (Means 4)
通気性铸型の少なくとも 1つの外表面に、該外表面力 铸型内部へ向力う複数の 通気穴を設け、該通気性铸型の外表面の全体又は一部を仮想的に複数の铸型セグ メントに分割し、該複数の铸型セグメントに対し個別に吸弓 I又は送気して前記複数の 通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、前記通気性铸型のキヤビティー に所定の減圧分布を創生して溶湯を注湯することを特徴とする減圧铸造法である。  At least one outer surface of the breathable wedge is provided with a plurality of air vents directed to the inside of the outer surface force wedge, and all or a portion of the outer surface of the breathable wedge is virtually made of a plurality of wedges. Divided into mold segments, and a plurality of suction segments I are individually supplied to the plurality of wedge-shaped segments to form partial pressure reduction zones around the plurality of vent holes, respectively. The molten metal is poured by creating a reduced pressure distribution.
[0108] 本手段も複数の通気穴を設け、個別に吸引又は送気して複数の通気穴の周囲にそ れぞれ部分減圧ゾーンを形成し、通気性铸型のキヤビティーに所定の減圧分布を創 生して溶湯を注湯することは手段 3と同じである。また、複数の通気穴の直径及び Z 又は深さは手段 3と同じように必ずしも異なる必要はない。手段 3と異なる点は、通気 穴を設ける位置の決め方と個別に吸引又は送気する位置の決め方である。  Also in this method, a plurality of vent holes are provided, and suction or insufflation is individually performed to form a partial decompression zone around each of the plurality of vent holes, and a predetermined decompression distribution is formed in the ventilated wedge-shaped cavity. It is the same as Method 3 to create and pour the molten metal. Also, the diameter and Z or depth of the vent holes do not necessarily have to be as different as the means 3. What differs from measure 3 is how to determine the position where the vent holes are provided and how to determine the position where suction or air is supplied separately.
[0109] 手段 3では複数の通気穴は铸型キヤビティーに合せて所定の減圧分布を得易い適 正な任意の位置に設けられた。また、個別に吸引又は送気するための吸引送気装置 である複数の減圧ボックスは複数の通気穴の位置に対応して铸型表面に当接して用 いられる。したがって、実際の生産ラインにおける多品種の製品の铸造に対応するた めには、通気穴を穿孔する穿孔装置は任意の位置に位置決めが可能な何らかの手 段を必要とする。また、吸引送気装置である複数の減圧ボックスも同じく任意の位置 に位置決めが可能な何らかの手段を必要とする。つまり、手段 3においては、通気穴 の穿孔装置及び複数の減圧ボックスともに何らかの位置決め手段が必要で、装置が 複雑になったり、位置決めのための時間が力かって生産タクトへの対応が十分でな い場合もある。  In means 3, the plurality of vent holes are provided at appropriate positions where it is easy to obtain a predetermined reduced pressure distribution in accordance with the wedge-shaped cavity. Also, a plurality of pressure reducing boxes, which are suction and air supply devices for individually suctioning or supplying air, are used in contact with the bowl-shaped surface corresponding to the positions of the plurality of vent holes. Therefore, in order to cope with the construction of a wide variety of products in an actual production line, the drilling device for drilling the vent hole needs some means capable of positioning at any position. In addition, a plurality of decompression boxes, which are suction and air supply devices, also require some means capable of positioning at arbitrary positions. In other words, means 3 requires some positioning means for both the vent hole drilling device and the plurality of decompression boxes, making the device complicated, and the time for positioning is not enough to cope with production tact. In some cases.
[0110] 本手段では、この点を考慮して次のようにした。まず通気穴を設ける位置の決め方 については、铸型外表面の全体又は一部を仮想的に複数の铸型セグメントに分割し 、その複数の铸型セグメントのうち選択された位置に複数の通気穴を設ける。ここで 仮想的に複数の铸型セグメントに分割するとは、後述の実施例 7の図 8に示すよう〖こ 、铸型外表面を例えば適宜の間隔の複数の縦横の直線で分割することによって区切 られたセグメントを仮に設定することを意味する。また選択された位置とは、铸型キヤ ビティーに対応した所定の減圧分布を得るために可能な限り適正な位置である。この 場合、通気穴の穿孔装置の穿孔具は各铸型セグメントのすべての位置に配置してお き、選択された位置の穿孔具によつて所望の深さの通気穴を設けることができる。こ れによって穿孔装置は固定式とすることができる。また、穿孔装置を位置決めする必 要がな!、ので、生産タクトに対応することも容易である。 In this means, in consideration of this point, the following is taken. First, as to how to determine the position of the vent hole, the whole or a part of the outer surface of the wedge is virtually divided into a plurality of wedge segments, and a plurality of air holes are selected at selected positions among the plurality of wedge segments. Provide Here, “virtually dividing into a plurality of wedge-shaped segments” means “dividing by dividing the wedge-shaped outer surface by a plurality of vertical and horizontal straight lines, for example, with appropriate intervals, as shown in FIG. It means that the set segment is provisionally set. Also, the selected position is the position that is as appropriate as possible in order to obtain a predetermined reduced pressure distribution corresponding to the wedge-shaped cavity. In this case, the perforators of the perforator of the vent holes can be located at all positions of each wedge-shaped segment, and the perforator of the selected position can provide vent holes of a desired depth. The drilling device can then be fixed. Also, since it is necessary to position the drilling device, it is easy to cope with production tact.
[0111] 本手段によるこの通気穴の位置は、定められた複数の铸型セグメントの中力 選択 して決められるので、手段 3の場合のように全く任意の最適位置とはならないため、铸 型キヤビティーに対応した所定の減圧分布を得るという点では手段 3よりも若干劣る。 しかし、この点は、分割する铸型セグメントの大きさを铸型大きさに対応して可能な限 り小さく分割することによって手段 3に近づけることができる。また、すべての铸型セグ メントに対して個別に吸引又は送気するので、この吸引量及び送気量を高精度に制 御することによって手段 3と同程度以上の精度で所定の減圧分布を得ることができる  The position of the vent hole according to this means is determined by selecting the medium force of a plurality of fixed vertical segments, so that it does not become an arbitrary optimum position as in the case of means 3, so that the vertical shape can be obtained. Slightly inferior to Measure 3 in terms of obtaining a predetermined pressure distribution corresponding to the cavity. However, this point can be brought close to the means 3 by dividing the size of the divided vertical segment into as small a size as possible. In addition, since suction or insufflation is individually performed for all vertical segments, by controlling the amount of suction and the amount of insufflation with high accuracy, a predetermined pressure reduction distribution can be performed with the same or higher accuracy as that of the means 3. Can get
[0112] 次に個別に吸引送気する装置の位置の決め方について説明する。本手段では通 気穴の穿孔の際に設定した铸型セグメントと同じすベての位置に個別に吸引送気す る装置である複数の減圧ボックスを配置する。そして、吸引送気にあたっては各減圧 ボックスに対応する位置に通気穴がある又はなしにかかわらずその複数の減圧ボック スをすべて铸型の外表面に当接する。勿論、複数の減圧ボックスを連接させて一体 の装置とし、装置全体を当接してもよい。または、複数の減圧ボックスを別々に昇降 可能にして、通気穴がある位置の減圧ボックスのみを当接してもよい。そして、減圧の ための吸引又は送気は通気穴のあるセグメントは勿論である力 通気穴のないセグメ ントについても必要に応じて吸引又は送気を行う。したがって、通気穴を通しての吸 引又は送気に加えて通気穴のないフラットな铸型部分についても吸引又は送気を行 うことによって、より高精度に所定の減圧分布を得ることができる。 Next, how to determine the position of the device for suction and air supply will be described individually. In this method, a plurality of pressure reduction boxes, which are devices for suctioning and supplying air individually, are arranged at the same positions as the vertical segments set at the time of drilling the air holes. Then, for suction and air supply, regardless of the presence or absence of the vent holes at the positions corresponding to the respective pressure reduction boxes, all the plurality of pressure reduction boxes abut on the outer surface of the bowl. Of course, a plurality of decompression boxes may be connected to form an integral device, and the entire device may be in contact. Alternatively, a plurality of pressure reducing boxes may be separately moved up and down, and only the pressure reducing box at the position where the vent holes are provided may abut. And, for suction or air supply for depressurization, suction or air supply is performed for segments with air holes as well as for segments without air holes as needed. Therefore, predetermined suction pressure distribution can be obtained with higher accuracy by suctioning or feeding air through the vent holes as well as suctioning or feeding the flat bowl-shaped portion without the vent holes.
[0113] このように仮想的に分割した铸型セグメントに対応して複数の減圧ボックスを設ける ことによって、各铸型セグメントに対して個別に吸引又は送気する装置は各通気穴に 合せるという位置決め動作が必要なくなり、装置がシンプルになる。また、位置決め の時間が必要ないので、生産タクトに対応することも容易である。 [0113] By providing a plurality of decompression boxes corresponding to the virtually divided wedge-shaped segments in this manner, it is possible to position the device for individually sucking or feeding air to each wedge-shaped segment to be fitted to each vent hole. The operation is not required and the device is simplified. Also, positioning It is also easy to cope with the production tact, since no time is required.
[0114] なお、铸型セグメントを 1つの铸型外表面の全体又は一部に設定した理由は、望まし くは全体とした方が铸型外表面の全面をカバーできて気密が容易になる。しかし、注 湯口
Figure imgf000022_0001
、場合には、その部分を除!ヽた铸型の一 部に铸型セグメントを設定するようにする。その場合には、铸型セグメントを設定でき ない部分に対しては、適宜の非通気性部材によって被覆して気密を確保する。また は、若干の空気の流入を許容できる時はその部分が開放されていてもよい。
It should be noted that the reason why the wedge-shaped segments are set to all or a part of one wedge-shaped outer surface is that the whole or the whole of the wedge-shaped outer surface can be covered and the air-tightness becomes easier . However, the pouring mouth
Figure imgf000022_0001
If so, set the template segment to a part of the template that excludes that part. In such a case, the air tightness is secured by covering the portion where the wedge-shaped segment can not be set with an appropriate non-air-permeable member. Alternatively, when some air can be allowed to flow, that part may be open.
[0115] また本手段において、通気穴の穿孔は手段 3と同じように最適な位置に位置決め 可能な穿孔装置を用いて行い、一方個別に吸引又は送気する吸引送気装置はであ る複数の減圧ボックスだけを上述のように複数の铸型セグメント上に固定式に配置す ることも可能である。この場合には複数の通気穴は铸型外表面の 、ずれの場所に設 けても、設定された複数の铸型セグメントのいずれかと対応しており、また複数の減 圧ボックスは同じ铸型セグメントに対応して配置されているので、複数の通気穴は複 数の減圧ボックスのいずれかと連通することになり、通気穴を通して吸引又は送気に よる減圧が可能である。  Further, in the present means, the vent holes are bored by using a drilling device which can be positioned at an optimum position as in the case of means 3, while a plurality of suction and air feeding devices for individually sucking or feeding air are used. It is also possible to fixedly arrange only the decompression box of the above on a plurality of wedge-shaped segments as described above. In this case, even if the vent holes are provided at offset locations on the outer surface of the wedge, they correspond to any one of the plurality of wedge segments set, and the pressure reduction boxes have the same wedge shape. Being arranged corresponding to the segments, the plurality of vent holes communicate with any of the plurality of pressure reducing boxes, so that suction or air pressure can be reduced through the vent holes.
[0116] 以上のように、铸型の外表面を仮想的に铸型セグメントに分割し、複数の通気穴を この铸型セグメントに対応させて穿孔して設け、かつ個別に吸弓 I又は送気する複数 の減圧ボックスを各铸型セグメントに対応して設けることによって、上記のような顕著 な効果を得ることができる。すなわち、通気穴の穿孔装置及び個別に吸引又は送気 する装置は位置決めが不要な固定式とすることができ、大幅に単純化される。また、 位置決め動作が不要なので生産タクトにも容易に対応ができる。これらの効果は高 速ィ匕が強く求められる実際の生産ラインへ適用する際の実用性の点で重要なことで ある。  As described above, the outer surface of the bowl is virtually divided into bowl-shaped segments, and a plurality of vent holes are provided corresponding to the bowl-shaped segments and individually provided with a suction bow I or a feeding bow. The remarkable effects as described above can be obtained by providing a plurality of depressurizing boxes to be used corresponding to each wedge-shaped segment. That is, the venting device for the vent and the device for individually aspirating or ventilating can be fixed without requiring positioning, which is greatly simplified. In addition, since the positioning operation is unnecessary, production tact can be easily coped with. These effects are important in terms of practicality when applied to actual production lines where high speed is strongly required.
[0117] また、吸引又は送気を铸型の下部又は側面部から行っても同様な作用、効果を得る ことができる。勿論、複数面から減圧すればさらに高精度に所望の減圧勾配を得るこ とができる力 それだけ工程、装置が複雑になるので 1面で十分である。  The same action and effect can be obtained even if suction or insufflation is performed from the lower or side part of the bowl. Of course, if the pressure is reduced from a plurality of surfaces, the force that can obtain the desired pressure reduction gradient with higher accuracy can be obtained.
[0118] 具体的な吸引又は送気の方法の一例としては、複数の減圧ボックスを側面で連接 して铸型外表面に載置し、その複数の減圧ボックスに吸引口と送気口を設け、吸引 口を流量制御手段を介して減圧装置に連通させ、また送気口を流量制御手段を介 して空気圧縮装置に連通させることによって行うことができる。 As an example of a specific suction or insufflation method, a plurality of decompression boxes are connected side by side and placed on the outer surface of the bowl, and the plurality of decompression boxes are provided with a suction port and an air supply port. , Suction This can be achieved by connecting the port to the pressure reducing device through the flow control means, and connecting the air supply port to the air compression device through the flow control means.
[0119] また、本手段では特殊な場合として铸型に必ずしも通気穴を設けない場合でもほぼ 同じような作用、効果を得ることができる。その理由は、手段 3では通気穴のある位置 のみ減圧ボックスを当接して吸引又は送気しており、铸型外表面のその他の部分は 開放又は全体の気密が可能なチャンバ一等に囲われた全体減圧の状態である。す なわち、铸型キヤビティーの減圧分布の創生は通気穴の位置のみで行なわれて 、る 。これに対し本手段では、複数の減圧ボックスが各铸型セグメントのすべてに配置さ れているので、これらの減圧ボックスで铸型外表面のほぼ全面をカバーしており、铸 型外表面全体を分割して高精度に吸引又は送気できる。したがって、通気穴がない 場合でも铸型キヤビティーに所定の減圧分布に近いもの^ ilj生することができる。  In addition, according to the present means, even when the vent hole is not necessarily provided in the bowl type as a special case, substantially the same action and effect can be obtained. The reason is that means 3 sucks or supplies air only at a position where the vent hole is in contact with the decompression box, and the other part of the outer surface of the bowl is enclosed in a chamber or the like that can be opened or totally sealed. It is in a state of total pressure reduction. That is, the creation of the decompression distribution of the vertical cavity is performed only at the position of the vent hole. On the other hand, in this method, since a plurality of pressure reducing boxes are arranged on all the wedge-shaped segments, these pressure reducing boxes cover almost the entire surface of the wedge-shaped outer surface, It can be divided and suctioned or delivered with high precision. Therefore, even if there is no vent hole, it is possible to generate a wedge-like cavity with a given reduced pressure distribution ^ ilj.
[0120] 以上のように本手段によって通気穴の穿孔装置及び個別に吸引送気するための複 数の減圧ボックスの装置が大幅に単純ィ匕されるとともに、位置決めが不要になること 力も生産タクトへの対応も容易になる。したがって、本発明を実際の高効率の生産が 可能な連続ラインに適用することが極めて容易になる。また、各セグメントに対応した 複数の減圧ボックスで铸型の 1つの外表面全体又は一部を覆って個別に吸引又は 送気するので、铸型キヤビティーの減圧分布の創生を極めて高精度に行うことができ る。詳細は実施例 7及び 8にお 、て説明する。  [0120] As described above, the perforation means of the vent hole and the apparatus of the plurality of pressure reduction boxes for suctioning and supplying air individually are greatly simplified by this means, and the positioning becomes unnecessary. It becomes easy to cope with it. Therefore, it becomes extremely easy to apply the present invention to a continuous line capable of actual high efficiency production. In addition, since a plurality of decompression boxes corresponding to each segment cover the whole or a part of one outer surface of the bowl and suction or supply air individually, creation of the decompression distribution of the bowl-shaped cavity is performed with extremely high accuracy. be able to. Details are described in Examples 7 and 8.
[0121] (手段 5)  (Measure 5)
比重量 γの溶湯を通気性铸型に注湯する铸造法において、該通気性铸型のキヤ ビティーのうち少なくとも溶湯を充填させた 、所望のキヤビティー部分の減圧度を、該 所望のキヤビティー部分への溶湯の流入口力 該所望のキヤビティー部分の最上部 までの高さ Ηによって決まる溶湯静圧 y Hの絶対値以上の値の負圧状態とし、所望 のキヤビティー部分の体積とほぼ等 、体積の溶湯を注湯して、略前記所望のキヤ ビティー部分のみに溶湯を充填させ凝固させることを特徴とする減圧铸造法である。  In the casting method in which a molten metal having a specific weight γ is poured into the air-permeable mold, at least the melt of the air-permeable mold cavity is filled with the desired degree of pressure reduction of the cavity part to the desired cavity part. The inflow force of the molten metal The negative pressure of a value greater than the absolute value of the static metal pressure yH determined by the height to the top of the desired cavity portion is set to a negative pressure value or more, and the volume of the desired cavity portion is approximately equal. The reduced pressure casting method is characterized in that the molten metal is poured, and the molten metal is filled and solidified substantially only in the desired cavity portion.
[0122] 本手段では所望の铸型キヤビティー部分のみに溶湯を充填させる減圧铸造法を提 供する。 In this method, a reduced pressure construction method is provided in which the molten metal is filled only in the desired pot-shaped cavity portion.
[0123] 通常の铸型キヤビティーは一般に製品部、押湯部、湯道部及び湯口部から構成さ れている。また、必要に応じて、不要な溶湯を製品部力も排出するためのは力せ部な どを設けることもある力 ここでは説明を簡単にするために、基本的な製品部、押湯部 、湯道部及び湯口部カゝら構成されているとする。 [0123] A typical boat-shaped cavity generally comprises a product section, a pouring section, a runner section and a sprue section. It is done. In addition, if necessary, a force may be provided to discharge unnecessary molten metal also as a force portion for discharging the product portion force. Here, to simplify the explanation, the basic product portion, the pouring portion, etc. It is assumed that the runner section and the mouth section are configured.
[0124] 減圧铸造法のみでなぐ無減圧の一般铸造法においても注湯はこれらの 4つのキヤ ビティー部分を充填して完了する。そして、凝固完了後これら 4部分のうち必要な製 品部のみを分離して取り出し、仕上を行って最終製品にする。  [0124] In the case of the non-depressurized general construction method which is equal to the reduced-pressure construction method alone, pouring is completed by filling these four cavity parts. Then, after solidification is completed, only the necessary product parts of these four parts are separated and taken out, and finishing is carried out to make a final product.
[0125] つまり、製品部を除く押湯部、湯道部及び湯口部は最終的には不要な部分として 製品から分離され、再びリターン材として再溶解に供されるのである。この不要な部 分のうち押湯部は製品部の健全性を補償するために凝固過程では必要なものであ る力 湯道と湯口は注湯中にキヤビティーの充填のためにのみ必要なものである。  That is, the pouring section, the runner section and the sprue section excluding the product section are finally separated from the product as unnecessary parts, and again subjected to remelting as a return material. Among the unnecessary parts, the pouring section is necessary in the solidification process to compensate for the soundness of the product section. The runners and gates are only necessary for filling the cavity during pouring. It is.
[0126] また、铸鉄铸物などでは凝固過程で黒鉛が晶出して体積膨張が生じるため、溶湯 の収縮分の一部を補償するので、ある条件下では押湯なしでも健全性の高 、铸物を 铸造できることがわ力 ている。つまり、押湯も不要な場合がある。  In addition, in the case of molten iron precipitates and the like, graphite crystallizes in the solidification process and volume expansion occurs, so that a part of the contraction of the molten metal is compensated, and under certain conditions, the soundness is high without pouring. It is powerful to be able to forge gifts. That is, there is also a case where the hot water is not necessary.
[0127] 以上のように従来のいずれの铸造法においても、本来目的とする製品を作るため に、最終的には不必要な湯口部、湯道部及び押湯部にも溶湯を充填するという注湯 過程をとつている。これは極めて不合理なことである。これに対し、減圧铸造法の特 性を生力した何らかの方法によって、製品部のみ又は製品部と押湯部などの必要な 所望のキヤビティー部分のみに溶湯を充填できれば、注入歩留りが大幅に向上する ことはもとより、解枠、仕上などの後工程も大幅に簡略ィ匕することも可能となる。  [0127] As described above, in any of the conventional fabrication methods, in order to make the intended product originally intended, the molten metal is also filled in the unnecessary pouring section, runner section and pouring section in the end. It is in the process of pouring. This is extremely unreasonable. On the other hand, if it is possible to fill the molten metal only in the product part or only the necessary desired cavity parts such as the product part and the pouring part by any method that makes the characteristics of the vacuum construction method live, the injection yield will be greatly improved. Of course, it is also possible to greatly simplify the post-process such as opening the frame and finishing.
[0128] そこで本手段では減圧铸造法の特徴を生かして、所望のキヤビティー部分のみ、例 えば、製品部と押湯部、又は製品部のみに溶湯を充填する方法を提供するものであ る。  Therefore, the present means provides a method of filling a molten metal only in a desired cavity portion, for example, a product portion and a pouring portion, or only a product portion, by utilizing the features of the reduced pressure forming method.
[0129] 本手段ではまず比重量 γの溶湯を注湯するにあたり、少なくとも溶湯を充填させた い所望のキヤビティー部分、例えば製品部と押湯部の減圧度を、該所望のキヤビティ 一部分への溶湯の流入口力 最上部までの高さ Ηによって決まる溶湯静圧 γ Ηの絶 対値以上の値の負圧状態とする。  In this method, when pouring a molten metal having a specific weight γ, the degree of pressure reduction of at least a desired cavity portion to be filled with the molten metal, for example, the product portion and the pouring portion, is the molten metal to the desired cavity portion. The inflow force The height of the topmost part The static pressure of the molten metal determined by Η The negative pressure is a value more than the absolute value of Η.
[0130] そして充填させた 、所望のキヤビティー部分の体積とほぼ等 U、体積の溶湯を注 湯する。本発明において、ほぼ等しい体積とは所望のキヤビティー部分の体積と等し V、かもしくは若干大きな体積を意味する。これは所望のキヤビティー部分の体積は铸 型材料の性質の変化、例えば水分量の変化などで上下型合せの密着度によっても 変動するし、溶湯の充填にともなってキヤビティーの膨張する程度が変動したりするこ とを考慮して決めるべきことを意味する。変動を補償するために若干大きな体積の溶 湯を注湯することが望ま 、。 Then, the volume of the molten metal having a volume substantially equal to that of the volume of the desired cavity portion is filled. In the present invention, approximately equal volume is equal to the volume of the desired cavity portion. V, or slightly larger volume means. This means that the volume of the desired cavity portion also varies depending on the change in the properties of the mold material, such as the change in water content, due to the degree of adhesion between the upper and lower molds, and the degree to which the cavity expands varies with the filling of the molten metal. It means that things should be decided in consideration of the problem. It is desirable to pour a slightly larger volume of hot water to compensate for fluctuations.
[0131] そうすると、少なくとも所望キヤビティー部分は溶湯静圧 y Hの絶対値以上の減圧 度になっているので、溶湯は所望キヤビティー部分の最上部まで吸引されて、所望キ ャビティー部分を充填することができる。溶湯はこのキヤビティー部分を充填する体積 しかな!/、ので、その他の部分の湯口部と湯道部は充填されな ヽこと〖こなる。  Then, at least the desired cavity portion has a pressure reduction degree equal to or higher than the absolute value of the static metal pressure y H, the molten metal may be drawn to the top of the desired cavity portion to fill the desired cavity portion. it can. The molten metal has a volume to fill this cavity portion! /, So the spout portion and runner portion of the other portion will not be filled.
[0132] この状態でもし減圧度を γ Ηより下げれば当然所望キヤビティー部分の製品部と押 湯部の溶湯はその他のキヤビティー部分に流出し、ある高さレベルで全キヤビティー を部分的に充填した状態になり目的は達成できない。  Even in this state, if the degree of pressure reduction is lower than γ, naturally the molten metal in the product part of the desired cavity part and the pouring part flows out to the other cavity parts and partially fills the entire cavity at a certain height level. It becomes a state and the purpose can not be achieved.
[0133] しかし、所望キヤビティー部分に充填した状態で減圧度を γ Η以上に保持すること によって、溶湯は所望キヤビティー部分に固定されたまま凝固が進行する。そして、 少なくとも所望キヤビティー部分とその他のキヤビティー部分の境界部分付近、すな わち、充填された溶湯の湯口側の端部が凝固して流動しなくなるまで減圧を保持す れば、最終的に所望キヤビティー部分のみに溶湯が充填された状態で铸造を完了 することができる。なお本手段においては、凝固とは組織の 100%が固相になること を意味するものではなぐある比率の固相の出現によって減圧を止めても溶湯が流出 しな 、状態になることを意味して 、る。  However, by keeping the degree of reduced pressure at or above γΗ in a state of being filled in the desired cavity portion, solidification of the molten metal proceeds while being fixed to the desired cavity portion. Then, if the reduced pressure is maintained until at least the boundary between the desired cavity portion and the other cavity portion, that is, the end of the molten metal filled on the squeeze side solidifies and does not flow, finally the desired state is obtained. Construction can be completed with the melt filled only in the cavity area. In this method, solidification means that 100% of the tissue becomes a solid phase, meaning that the molten metal does not flow out even if the pressure reduction is stopped due to the appearance of a certain percentage of the solid phase. It is.
[0134] その結果、不要な湯口部と湯道部には溶湯は存在せず、必要部分として充填した 製品部と押湯部のみに溶湯が充填された铸造品を得ることができるのである。  As a result, there is no molten metal in unnecessary sprue parts and runner parts, and it is possible to obtain a fabricated product in which the molten metal is filled only in the product part and the pouring part filled as necessary.
[0135] また、铸鉄铸物では前述のように条件によっては押湯も不要な場合があるので、こ の場合には方案的に押湯なしとして、製品部のみを充填させたい所望のキヤビティ 一部分として設定することができる。  [0135] Further, in the case of the iron and steel product, as described above, the pouring bath may not be necessary under some conditions, and in this case, it is proposed that no pouring bath and only the desired part be filled with the product part. It can be set as a part.
[0136] 以上によって、従来、铸物製品を得るのに不可欠と考えられていた湯口部、湯道部 、場合によっては押湯部もキヤビティー部分はあるが溶湯は充填されずに、製品部と 押湯部、又は製品部のみに溶湯が充填された铸造品を得ることができる。 [0137] この結果、全注湯重量に対する製品重量の割合を示す注入歩留りが大幅に改善さ れる。これを一般的なレベルで推定すると、本手段を用いない铸造法で約 50〜60% 程度のものが本手段の铸造法では 80%以上、又は製品部のみの場合は 90%以上 になると推定され、極めて大きな効果を生み出すことができる。 According to the above, the sprue part, the runner part, and in some cases the feeder part, which are conventionally considered to be essential for obtaining a glazed product, and in some cases the feeder part also has a cavity part, but the molten metal is not filled. It is possible to obtain a forged product in which the molten metal is filled only in the pouring portion or the product portion. As a result, the injection yield, which indicates the ratio of the product weight to the total pouring weight, is significantly improved. If this is estimated at a general level, it is estimated that about 50 to 60% will be 80% or more by this method and 80% or more by the product part alone if this method is not used. Can produce extremely large effects.
[0138] またさらには、凝固、冷却が完了した後の解枠工程においても、不要な部分がない ので、製品の分離、取り出しが極めて容易になり、多大の工数低減又は工程省略と なるものである。  Furthermore, since there is no unnecessary part even in the unframe step after solidification and cooling are completed, it becomes extremely easy to separate and take out the product, resulting in a great reduction of man-hours or process omission. is there.
[0139] なお、 γ Η以上の値の減圧度の意味であるが、 γは比重量であるので kgfZcm3の 単位を有し、 Hは高さであるので単位は cmである。すなわち、 γ Ηは kgfZcm2の単 位で圧力を意味する。つまり、 γ Ηは所望キヤビティー部分への溶湯の流入ロカも最 上部までの溶湯静圧に相当する圧力である。所望キヤビティー部分をこれ以上の負 の圧力つまり減圧度に保てば溶湯を高さ Ηの状態に保持できるのである。 The degree of pressure reduction is a value of γΗ or more. However, since γ is a specific weight, it has a unit of kgfZ cm 3 , and H has a height, so the unit is cm. That is, γ 意味 means pressure in kgfZ cm 2 units. That is, γ Η is a pressure corresponding to the static pressure of the molten metal up to the top of the molten metal flowing into the desired cavity portion. If the desired cavity portion is maintained at a further negative pressure, i.e., the degree of pressure reduction, the molten metal can be maintained at the level of height.
[0140] 本手段の構成についてさらに詳細に述べる。まず、少なくとも所望キヤビティー部分 の減圧度を溶湯静圧 y Ηの絶対値以上の値にすることである力 注意すべきことは 注湯前にこの減圧状態を創生して ヽても、注湯開始とともに湯口部で減圧度は変化 するので、その影響は所望キヤビティー部分にも何らかの影響が現れ、当該部の減 圧度も変化する。したがって、この変化を予測して注湯中にも注湯完了後にも所望キ ャビティー部分の減圧度を γ Η以上にすることが必要である。なお、実際的には注湯 後には所望のキヤビティー部分は溶湯で充填されているので、所望のキヤビティー部 分の圧力とは正確には所望のキヤビティー部分の周囲の铸型内の減圧度を意味す る。  The configuration of this means will be described in more detail. First, at least the desired cavity has a degree of pressure reduction equal to or greater than the absolute value of the static pressure y of the molten metal. What should be noted is that even if the pressure reduction state is created before pouring, pouring starts At the same time, the degree of pressure reduction changes at the sprue, so that the effect on the desired cavity also has some effect, and the degree of pressure reduction of that portion also changes. Therefore, it is necessary to predict this change and to set the degree of pressure reduction of the desired cavity portion to γΗ or more during and after pouring. In practice, since the desired cavity is filled with the molten metal after pouring, the pressure of the desired cavity means exactly the degree of pressure reduction in the mold around the desired cavity. It will
[0141] 次に、本手段は全体減圧にも、部分減圧にも適用可能である。まず全体減圧に適 用する場合については、铸型は本発明の通気穴を有する铸型及び通気穴を有しな V、通常の铸型ともに用いることができる。 V、ずれの場合も手段 2で述べたように注湯 開始にともなう減圧変化を考慮した上で、少なくとも所望のキヤビティー部分は γ Η以 上の減圧度に保つようにすることが必要である。この点では通気穴を設けた铸型の方 が高精度に铸型キヤビティーの圧力分布を創生しているので対応が容易である。通 気穴なしの铸型では減圧変化に対応するために、部分減圧を併用するなどの付カロ 的な減圧制御を行うようにすることが望まし 、。 Next, this means is applicable to both total pressure reduction and partial pressure reduction. First, for the case of application to the overall depressurization, the wedge type can be used with the wedge type having the vent hole of the present invention and V, which does not have the vent hole, and a normal wedge type. In the case of V, even in the case of deviation, it is necessary to keep at least the desired cavity portion at a degree of pressure reduction of γ 上 or more, taking into consideration the change in pressure reduction associated with the start of pouring as described in means 2. In this respect, the wedge-shaped cavity provided with the air vent creates the pressure distribution of the wedge-shaped cavity with high accuracy, so it is easy to handle. In the case of a bowl without air holes, in order to cope with changes in pressure reduction, partial pressure reduction may be used in combination. Desirable to carry out specific pressure reduction control.
[0142] 次に、本手段には所望キヤビティー部分を重点的に減圧する部分減圧も適用でき る。その際はその他の部分を非通気性の部材でカバーして減圧度を上げるようにす ることが望ましい。所望のキヤビティー部分のみへの溶湯の充填に関しては、部分減 圧の方が全体減圧よりも安定している。  [0142] Next, partial depressurization in which the desired cavity portion is depressurized intensively can be applied to this means. At that time, it is desirable to cover the other parts with a non-air-permeable member to increase the degree of pressure reduction. Partial pressure reduction is more stable than total pressure reduction for filling the molten metal only in the desired cavity area.
[0143] なお、本手段は複数個込めの铸造においては、手段 2乃至 4を適用することで各製 品毎のキヤビティー部分に所定の減圧分布を創生することによって実現できる。この 場合、注湯にあたっては複数の所望のキヤビティー部分の合計の体積量を注湯する 力 複数込めでは注湯する湯口から複数の湯道に分岐するので、溶湯の分配を均 等に行えるように湯道系の工夫が必要である。均等配分の精度が不十分な場合には 、所望のキヤビティー部分の体積の合計よりも少し余裕をみた多めの体積の溶湯を 注湯することによって本手段を実施できる。  Note that this method can be realized by creating a predetermined pressure reduction distribution in the cavity portion of each product by applying the means 2 to 4 in the construction of a plurality of cells. In this case, when pouring water, the total volume of a plurality of desired cavity portions is poured. In the case of multiple loading, since the pouring gate branches into a plurality of runners, distribution of the molten metal can be equally performed. It is necessary to devise a runner system. If the accuracy of the even distribution is insufficient, the method can be implemented by pouring a larger volume of molten metal slightly more than the sum of the volumes of the desired cavity portions.
[0144] 本手段において、注湯完了後に凝固を待つ時間は工程タクトの面でロスタイムであ るので、できるだけ短縮したい要因である。これについては後ほど手段 13乃至 15で その解決手段を説明する。  In this method, the time to wait for solidification after pouring is a loss time in terms of process tact, so it is a factor to be as short as possible. The solution will be described later by means 13 to 15 for this.
[0145] 以上を整理すると、本手段によって極めて高い注入歩留りが得られるとともに、解枠 工程が大幅に簡略化される。また、従来技術の減圧铸造法に比して本手段の特徴 は次のようになる。(1)所望のキヤビティー部分の減圧度を適正な γ Η以上と規定し た。(2)所望のキヤビティー部分とほぼ等しい体積の溶湯を注湯する。(3)注湯後、 凝固まで減圧を保持する。詳細は実施例 10において説明する。  To summarize the above, the present method can achieve extremely high implantation yield and greatly simplify the unframed process. In addition, the features of this method are as follows in comparison with the conventional pressure reduction method. (1) The degree of pressure reduction of the desired cavity portion was defined as an appropriate value of γΗ or more. (2) The molten metal having a volume substantially equal to that of the desired cavity portion is poured. (3) After pouring, maintain the reduced pressure until coagulation. Details will be described in Example 10.
[0146] (手段 6)  (Method 6)
手段 5記載の減圧铸造法にお 、て、溶湯を充填させた!/、所望のキヤビティー部分の 減圧度が溶湯静圧 y Hの絶対値以上の値の負圧状態であり、かつその他のキヤビ ティー部分の減圧度より高いことを特徴とする減圧铸造法である。  In the pressure reduction structure method described in means 5, the molten metal was filled! /, The degree of pressure reduction of the desired cavity portion is a negative pressure state having a value equal to or more than the absolute value of the molten metal static pressure y H, and the other cavities It is a reduced pressure construction method characterized by being higher than the degree of pressure reduction of the tea portion.
[0147] 本手段は手段 5とほぼ同じ構成で、所望のキヤビティー部分の減圧度が溶湯静圧 y Hの絶対値以上の負圧状態であり、かつその他のキヤビティー部分より高くしたも のである。 This means is substantially the same as the means 5 in that the degree of pressure reduction of the desired cavity portion is a negative pressure state equal to or higher than the absolute value of the static metal pressure y H and is higher than the other cavity portions.
[0148] 手段 5で説明したように注湯開始にともなって湯口近傍に発生する減圧度変化は、 所望のキヤビティー部分にも減圧度変化として現れる。そこで、本手段では、注湯開 始に伴う減圧度変化が起こっても、所望のキヤビティー部分の減圧度が γ Η以上に 保てるように、所望のキヤビティー部分の減圧度をあら力じめその他の部分よりも高く したものである。 As described in means 5, the pressure reduction degree change generated near the sprue with the start of pouring is as follows: It also appears as a change in degree of pressure reduction in the desired cavity portion. Therefore, in this method, even if the degree of pressure reduction changes with the start of pouring, the degree of pressure reduction of the desired cavity portion can be maintained so that the degree of pressure reduction of the desired cavity portion can be maintained over γ. It is higher than the part.
[0149] 本手段によって、所望のキヤビティー部分の減圧度が高ぐ湯口部附近が低い減 圧分布になっているので、注湯にともなう減圧変化は小さぐまた回復する作用も大き いので、より安定した注湯が可能になる。詳細は実施例 9において説明する。  [0149] By this means, since the pressure reduction distribution near the mouth where the degree of pressure reduction of the desired cavity part is high is low, the change in pressure reduction upon pouring of water is small and the recovery action is large. Stable pouring is possible. Details will be described in Example 9.
[0150] (手段 7)  (Measure 7)
比重量 Ύの溶湯を通気性铸型に注湯する铸造法において、該通気性铸型のキヤビ ティーのうち溶湯を充填させた 、所望のキヤビティー部分の体積とほぼ等 、体積の 溶湯を注湯開始後、通気性铸型のキヤビティーのうち少なくとも溶湯を充填させた ヽ 所望のキヤビティー部分の減圧度を、該所望のキヤビティー部分への溶湯の流入口 力 所望のキヤビティー部分の最上部までの高さ Ηによって決まる溶湯静圧 γ Ηの絶 対値以上の値の負圧状態とし、略所望のキヤビティー部分のみに溶湯を充填させ凝 固させることを特徴とする減圧铸造法である。 In the casting method of pouring molten metal of specific weight into air-permeable mold, the molten metal is filled with the molten metal in the air-permeable キ -shaped cavity, and the molten metal is poured in a volume approximately equal to the volume of the desired cavity portion. After the start, the pressure reduction degree of the desired cavity portion filled with at least the melt in the air-permeable cage-like cavity is determined by the flow rate of the melt into the desired cavity portion. The height to the top of the desired cavity portion It is a negative pressure state in which the absolute value of the molten metal static pressure γ determined by the crucible is equal to or more than the absolute value, and the molten metal is filled and solidified only in a substantially desired cavity portion.
[0151] 本手段は手段 5及び 6と類似しているが、本手段では所望のキヤビティー部分の体 積とほぼ等しい体積の溶湯をまず注湯開始し、その後、減圧して所望のキヤビティー 部分のみに溶湯を充填する減圧铸造法を提供する。  This means is similar to means 5 and 6, but with this means first pouring of molten metal having a volume approximately equal to the volume of the desired cavity portion is started, and then the pressure is reduced to reduce the desired cavity portion only. Provide a vacuum construction method for filling the molten metal in the
[0152] 本手段では注湯開始前には減圧を行わずに、まず所望のキヤビティー部分の体積 とほぼ等 ヽか又は若干大きな体積の溶湯を注湯開始する。その後適宜のタイミング で減圧を行い、少なくとも所望のキヤビティー部分を溶湯静圧 y Η以上の負圧にする ことによって、所望のキヤビティー部分以外の部分に充填された溶湯を吸引して所望 のキヤビティー部分に充填させるものである。  According to this method, the molten metal having a volume substantially equal to or slightly larger than the volume of the desired cavity portion is first started without pressure reduction before the start of pouring. Thereafter, the pressure is reduced at an appropriate timing, and at least the desired cavity portion is made negative pressure equal to or more than the molten metal static pressure y, so that the molten metal filled in the portion other than the desired cavity portion is sucked to the desired cavity portion. It is made to fill.
[0153] そして、手段 5及び 6と同じように境界部が凝固して溶湯が流動しなくなるまでこの減 圧度を保持する。力べして、本手段によっても手段 5及び 6と同じように所望のキヤビテ ィ一部分のみに溶湯を充填できる。  Then, in the same manner as in the means 5 and 6, this pressure reduction degree is maintained until the boundary is solidified and the molten metal does not flow. By force, this means also allows the filling of the melt to only a portion of the desired cavity, as in means 5 and 6.
[0154] 本手段は、手段 5及び 6において注湯前力 減圧したことによって生じる注湯開始 にともなう減圧変化に対する改善策を提供するものである。すなわち、本手段の特徴 は注湯前には減圧を行わないで注湯し、溶湯がキヤビティー内に入った後に減圧を 開始する。 The present means provides a remedy for the change in pressure reduction associated with the start of pouring which is caused by the pressure reduction before pouring in the means 5 and 6. That is, the features of this means Do not depressurize before pouring, and start depressurization after the molten metal enters the cavity.
[0155] このこと〖こよって、注湯開始にともなう铸型キヤビティーの減圧度の大きな変化は発生 せず、静かに注湯し、その後に減圧して注湯された溶湯を吸引し、最終的に所望の キヤビティーのみに溶湯を充填するのである。  [0155] As a result, no large change in the degree of pressure reduction of the vertical cavity occurs with the start of pouring, and pouring is performed gently, and thereafter the pressure is reduced and the poured molten metal is suctioned, and the final The molten metal is filled only in the desired cavity.
[0156] 溶湯が注湯開始にともなう減圧変化を受けな 、でキヤビティーを充填することがで きることは、注湯の初期に起こり易い溶湯の乱れや、ガスの巻き込みなどの危険性が 大幅に低減できることを意味している。したがって、減圧铸造法に特有な欠陥を防止 できる条件が整 ヽ易 、ことになる。  [0156] The ability of the molten metal to be filled with the cavity without the pressure reduction change caused by the start of pouring means that the danger of the molten metal, which is likely to occur at the initial stage of pouring, and the risk of gas entrainment, etc. It means that it can be reduced. Therefore, the conditions which can prevent the defects peculiar to the decompression forging method are the order and simplicity.
[0157] 本手段は減圧を開始するタイミングと減圧度の上昇速度が重要である。注湯後可 能な限り速やかに減圧を開始し、できる限りゆるや力な減圧の上昇速度で所望のキ ャビティー部分に充填を完了するようにする。減圧を開始するタイミングは必ずしも溶 湯が静止するのを待つ必要はない。製品形状、キヤビティー形状に応じて適宜のタイ ミングで減圧を開始することができる。铸型条件や溶湯の温度、耐酸化性などの条件 力 い場合には、溶湯を注湯後一度静止させた後に減圧して所望のキヤビティー部 分のみに充填することも可能である。  In this means, the timing at which pressure reduction is started and the rate of increase in pressure reduction are important. Initiate decompression as soon as possible after pouring, and make sure that filling of the desired cavity area is completed with as slow as possible a force decompression rate. The timing to start depressurization does not necessarily have to wait for the solution to stop. Depressurization can be started at an appropriate timing according to the product shape and cavity shape. In the case of pressure conditions, temperature of the molten metal, oxidation resistance, etc., it is possible to pour the molten metal once after making it stand still and depressurizing it so as to fill only the desired cavity portion.
[0158] 所望のキヤビティー部分のみへの溶湯の充填は本手段でも手段 5及び 6でも可能で あるが、いずれが適切であるかは、溶湯材質や、溶湯が酸ィ匕し易いかどうか、又は溶 湯の過熱度などによって判断して用いるようにする。詳細は実施例 15において説明 する。  Although filling of the molten metal only in the desired cavity portion can be performed by this means or means 5 and 6, whether the molten metal is suitable or whether the molten metal tends to be oxidized, or which one is appropriate Judge according to the degree of superheat of molten water, etc. and use it. Details will be described in Example 15.
[0159] (手段 8)  [Means 8]
手段 5乃至 7いずれかに記載の減圧铸造法において、通気性铸型の少なくとも 1つ の外表面に、該外表面から铸型内部へ向かう直径及び Z又は深さの異なる複数の 通気穴を設け、通気性铸型の外表面から減圧して铸型内の前記複数の通気穴の周 囲にそれぞれ部分減圧ゾーンを形成し、通気性铸型のキヤビティーに所定の減圧分 布を創生して溶湯を注湯することを特徴とする減圧铸造法である。  In the vacuum forming method according to any one of means 5 to 7, at least one outer surface of the breathable wedge is provided with a plurality of venting holes different in diameter and Z or depth from the outer surface toward the inside of the wedge. A partial pressure reduction zone is formed around each of the plurality of vent holes in the mold, and a predetermined pressure-reduced distribution is created in the breathable mold cavity. It is a pressure reduction method of construction characterized by pouring a molten metal.
[0160] 本手段は手段 5乃至 7 、ずれかに記載の減圧铸造法にお!、て溶湯を所望のキヤビ ティー部分のみに充填するにあたり、手段 2の複数の通気穴を用いた減圧法を適用 したものである。複数の通気穴による複数の部分減圧ゾーンを形成して、高精度な所 定の減圧分布を創生して!/、るので、所望のキヤビティー部分のみへの溶湯の充填が より容易になる。詳細は実施例 9、 13、及び 14において説明する。 In this method, the pressure reduction method using the plurality of vent holes of the means 2 is employed in order to fill the molten metal only in the desired cavity portion in the pressure reduction structure method described in any one of the means 5 to 7 and any one of them. Apply It is By forming a plurality of partial pressure reduction zones by a plurality of vent holes to create a highly accurate predetermined pressure distribution, the filling of the molten metal only in the desired cavity portion becomes easier. Details are described in Examples 9, 13 and 14.
[0161] (手段 9) (Measure 9)
手段 5乃至 7いずれかに記載の減圧铸造法において、前記通気性铸型の少なくとも 1つの外表面に、該外表面力 铸型内部へ向力う複数の通気穴を設け、該複数の通 気穴に対し個別に吸弓 I又は送気して铸型内の複数の通気穴の周囲にそれぞれ部 分減圧ゾーンを形成し、通気性铸型のキヤビティーに所定の減圧分布を創生して溶 湯を注湯することを特徴とする減圧铸造法である。  In the reduced pressure method according to any one of means 5 to 7, at least one outer surface of the air-permeable cage is provided with a plurality of air vents directed to the inside of the outer surface of the cylinder, and the plurality of air passages are formed. Separately create a partial pressure reduction zone around a plurality of air vents in the mold, by suctioning I individually or by supplying air to the hole, and creating a predetermined pressure distribution in the air-permeable mold cavity to dissolve it. It is a decompression construction method characterized by pouring hot water.
[0162] 本手段は手段 5乃至 7 、ずれかに記載の減圧铸造法にお!、て溶湯を所望のキヤビ ティー部分のみに充填するにあたり、手段 3の複数の通気穴を用 V、個別に吸引又は 送気した減圧法を適用したものである。これによつて、より高精度な減圧分布が創生 され、さらに所望のキヤビティー部分のみへの溶湯の充填が容易になる。詳細は実 施例 11において説明する。  [0162] In this method, in the vacuum structure method described in any of the means 5 to 7 and any one of the vent holes of the means 3 for filling the molten metal only in the desired cavity portion, V, individually Suction or insufflation was applied. This creates a more accurate reduced pressure distribution and further facilitates the filling of the molten metal only in the desired cavity portion. Details will be described in Example 11.
[0163] (手段 10)  (Measure 10)
手段 5乃至 7いずれかに記載の減圧铸造法において、通気性铸型の少なくとも 1つ の外表面に、該外表面から铸型内部へ向かう複数の通気穴を設け、該通気性铸型 の外表面の全体又は一部を仮想的に複数の铸型セグメントに分割し、該複数の铸型 セグメントに対し個別に吸弓 I又は送気して前記複数の通気穴の周囲にそれぞれ部分 減圧ゾーンを形成し、前記通気性铸型のキヤビティーに所定の減圧分布を創生して 溶湯を注湯することを特徴とする減圧铸造法である。  In the reduced pressure method according to any one of means 5 to 7, at least one outer surface of the breathable wedge is provided with a plurality of air vents extending from the outer surface toward the inside of the wedge, and the outer surface of the breathable wedge is provided. The whole or a part of the surface is virtually divided into a plurality of wedge-shaped segments, and the plurality of wedge-shaped segments are individually suctioned or insufflated to supply partial decompression zones around the plurality of vent holes. It is a reduced pressure construction method characterized by forming and pouring a molten metal by creating a predetermined pressure reduction distribution in the breathable cage-type cavity.
[0164] 本手段は手段 5乃至 7 、ずれかに記載の減圧铸造法にお!、て溶湯を所望のキヤビ ティー部分のみに充填するにあたり、複数の通気穴と手段 4の仮想的に設けた型セ グメントとを用 ヽて個別に吸弓 I又は送気した減圧法を適用したものである。これによつ て、複数の铸型セグメントによる高精度な減圧分布が創生でき、所望のキヤビティー 部分のみへの溶湯の充填が容易になる。詳細は実施例 12において説明する。  In this method, in the vacuum structure method described in any of the means 5 to 7 and any one of the vent holes and the means 4 virtually provided for filling the molten metal only in the desired cavity portion. In this case, a suction bow I or an air pressure reduction method was separately applied using a type segment. As a result, a highly accurate decompression distribution can be created by the plurality of wedge-shaped segments, and filling of the molten metal only in the desired cavity portion becomes easy. Details are described in Example 12.
[0165] (手段 11)  (Means 11)
手段 5乃至 10 ヽずれかに記載の減圧铸造法にお!ヽて、溶湯を充填させた!/、所望の キヤビティー部分とその他のキヤビティー部分の境界部付近に、非通気性又は铸型 の通気度よりも低い通気度を有しかつ溶湯の熱によって消失又は融解する通気封止 部材を設置して通気性铸型の減圧を行いながら溶湯を注湯することを特徴とする減 圧铸造法である。 By means of the reduced pressure method as described in Means 5 to 10, molten metal was filled! /, Desired In the vicinity of the boundary between the cavity part and the other cavity part, a ventilation sealing member that has a permeability lower than that of non-air permeability or weir type and that loses or melts due to the heat of the molten metal is installed. It is a pressure reduction method characterized in that molten metal is poured while depressurizing the mold.
[0166] 本手段では手段 5乃至 10に記載の減圧铸造法において、所望のキヤビティー部分 の減圧度を安定して高めるために、境界部付近に非通気性又は铸型よりも通気性が 低ぐかつ溶湯の熱によって消失又は融解する通気封止部材を設置して铸型の減圧 を行うようにする。  [0166] In this method, in the decompression forging method described in Measures 5 to 10, in order to stably increase the degree of vacuum of a desired cavity portion, the air permeability is lower in the vicinity of the boundary than in the non-air-permeable state or the cage type. In addition, a vented sealing member that disappears or melts due to the heat of the molten metal is installed to perform a bowl-shaped depressurization.
[0167] 通気封止部材は例えば榭脂材料や金属材料などの非通気性材料でかつ溶湯の 熱によって消失又は融解する材料を用いる。また、铸型よりも低い通気性を有する材 料、例えば布、紙などでもよい。  The air-permeable sealing member uses, for example, a non-air-permeable material such as a resin material or a metal material and a material which disappears or melts due to the heat of the molten metal. In addition, it may be a material having air permeability lower than that of a cocoon, such as cloth and paper.
[0168] 通気封止部材の配置する位置は境界部付近としたが、その位置を湯口側又は製 品側に適宜に変えることは差し支えな 、。要は通気封止部材で所望のキヤビティー 部分とその他のキヤビティー部分を減圧時に圧力的に分離することである。  The position at which the vent sealing member is disposed is in the vicinity of the boundary, but the position may be appropriately changed to the gate side or the product side. The important point is that the vent sealing member separates the desired cavity portion from the other cavity portion at the time of pressure reduction.
[0169] 消失又は溶解するとは、溶湯温度よりも低!ヽ融点のものである。有害なガス等を発 生しな 、、また溶解残渣が残りにく 、ものであればよ!、。  Disappearing or melting means that the melting point is lower than the temperature of the molten metal. Do not generate harmful gases, etc., and if the residue is residual, please do!
[0170] 本手段の通気封止部材の作用、効果は、ひとつには注湯前の所望のキヤビティー 部分の減圧度を速やかにかつ安定に保つことと、もうひとつは注湯開始にともなう湯 口付近の減圧変化が少なくとも溶湯が通気封止部材に到達するまでは所望のキヤビ ティー部分の減圧度に影響しないようにすることである。この結果、所望のキヤビティ 一部分の減圧度を安定して Ί H以上に保つことができるのである。詳細は実施例 16 において説明する。  [0170] The action and effect of the vent sealing member of this means is, in part, to quickly and stably maintain the degree of pressure reduction of the desired cavity portion prior to pouring, and the other is to the vicinity of the sprue at the start of pouring. The reduction in pressure does not affect the degree of pressure reduction of the desired cavity at least until the molten metal reaches the aeration sealing member. As a result, it is possible to stably maintain the degree of pressure reduction of a desired portion of the cavity at Ί H or more. Details will be described in Example 16.
[0171] (手段 12)  (Measure 12)
手段 11記載の減圧铸造法において、通気封止部材は溶湯と接した後、消失又は 融解までの時間が 2秒以上 5秒以下であることを特徴とする減圧铸造法である。  In the reduced pressure structure method as described in Means 11, the time-lapse sealing member is in contact with the molten metal, and the time until disappearance or melting is 2 seconds or more and 5 seconds or less.
[0172] 本手段では手段 11において用いた通気封止部材が溶湯と接した後、消失又は融解 までの時間が 2秒以上 5秒以下である部材を用 V、る。  In this means, after the air-permeable sealing member used in the means 11 comes in contact with the molten metal, a member having a time until disappearance or melting of 2 seconds or more and 5 seconds or less is used.
[0173] この意味は、先にも述べたように減圧状態力 注湯を開始すると、減圧度が大きく 変化するので、その影響を防止するために、注湯した溶湯が所望のキヤビティー部 分以外の部分を充填した状態で 2秒〜 5秒の間一度溶湯を静止させ、その後、通気 封止部材の消失又は融解を待って、静かに γ Ηに減圧された所望のキヤビティー部 分に流入するようにしたものである。 [0173] As described above, this meaning is that the degree of pressure reduction is large when pouring water is started. Since it changes, in order to prevent the influence, the molten metal is allowed to stand still for 2 seconds to 5 seconds with the molten metal filling the portion other than the desired cavity portion, and then the vent sealing member After disappearance or melting, it is made to flow into the desired cavity which has been gently depressurized to γ 静 か.
[0174] これによつて、最初カゝら減圧した铸型に注湯しても、注湯開始にともなって溶湯が 受けた減圧変化の影響を一度溶湯を静止させることによって静圧状態に回復させ、 静かに所望のキヤビティー部分を充填することができるのがひとつの作用である。ま た、もうひとつの作用は、溶湯を静止させることによって、この間に溶湯中の介在物や ガスを浮上分離することである。通気封止部材が消失するまでの時間を 2秒以上とし た理由は、この静圧状態の回復と介在物及びガスの浮上のための時間をとるためで ある。また、 5秒以下としたのは、これ以上長くなると溶湯の温度低下による湯廻り性 が悪化すること、及び溶湯の酸化による酸化物が発生するためである。詳細は実施 例 17において説明する。  [0174] Thus, even if the molten metal is poured into the mold, which has been depressurized at first, the influence of the pressure reduction change received by the molten metal upon the start of pouring is restored to the static pressure state by stopping the molten metal once. One function is to be able to gently fill the desired cavity portion. Another effect is to float and separate inclusions and gases in the melt during this time by making the melt stationary. The reason for setting the time until the vent sealing member disappears to be 2 seconds or more is to take time for recovery of this static pressure state and floating of inclusions and gas. Also, the reason for setting the time to 5 seconds or less is that if it is longer than this time, the meltability deteriorates due to the temperature decrease of the molten metal, and an oxide is generated due to the oxidation of the molten metal. Details will be described in Example 17.
[0175] (手段 13)  (Method 13)
手段 5乃至 12 、ずれかに記載の減圧铸造方法にお!、て、溶湯を充填させた!/ヽ所 望のキヤビティー部分とその他のキヤビティー部分の境界部付近に、溶湯よりも比重 の小さい耐火材料よりなる溶湯遮断部材を境界部付近のキヤビティー下部に設けた 凹部に設置しておき、注湯完了後に溶湯遮断部材が浮力によって浮上し、境界部付 近の溶湯を遮断することを特徴とする減圧铸造法である。  Measures 5 to 12 In the decompression construction method described in any one of the above, the molten metal was filled! / A fireproof having a specific gravity smaller than that of the molten metal in the vicinity of the boundary between the desired cavity part and the other cavity parts A melt blocking member made of a material is placed in a recess provided at the lower part of the cavity near the boundary, and after pouring is completed, the melt blocking member floats up by buoyancy to block the melt near the boundary. It is a reduced pressure construction method.
[0176] 本手段では溶湯よりも比重の小さ!/、耐火材料よりなる溶湯遮断部材を前記境界部 分付近のキヤビティー下部に設けた凹部に設置しておき、注湯完了後に溶湯遮断部 材が浮力によって浮上し、境界部分付近の溶湯を遮断するようにする。  [0176] In this method, a molten metal blocking member made of a refractory material with a specific gravity smaller than that of the molten metal is installed in the recess provided in the lower part of the cavity near the boundary, and the molten metal blocking member It floats by buoyancy and cuts off the molten metal near the boundary.
[0177] この溶湯遮断部材は溶湯が所望のキヤビティー部分に充填が完了した後、境界付 近が凝固して流出しなくなるまでの減圧保持時間を短縮するために設けるものである  The melt blocking member is provided to shorten the reduced pressure holding time until the boundary reaches solidify and does not flow out after the melt is completely filled in the desired cavity portion.
[0178] すなわち、この溶湯遮断部材は注湯中は溶湯の流れを妨げないようにキヤビティー 下部の凹部に設置しておき、注湯完了後に浮力で浮き上がり、その部分を遮断する ものである。これによつて、所望のキヤビティー部分に溶湯を充填した後に減圧を下 げる又は止めた場合でも、 γ Ηの溶湯静圧がこの溶湯遮断部材を押して铸型に密着 させて溶湯の流出を防ぐのである。 That is, the molten metal blocking member is disposed in the recess in the lower part of the cavity so as not to prevent the flow of the molten metal during pouring, and floats by buoyancy after the pouring is completed, and blocks the part. By this, after the desired cavity part is filled with the molten metal, the reduced pressure is reduced. Even when it is broken or stopped, the static pressure of the molten metal in the γ crucible pushes this molten metal blocking member to make it adhere closely to the wedge shape, and prevents the molten metal from flowing out.
[0179] この溶湯遮断部材によって注湯完了後に即時に減圧を完全に止めることはできな いとしても、溶湯は溶湯遮断部材と接することによって急速に凝固して表皮を形成し て、減圧保持時間を大幅に短縮できる。 Even if the melt blocking member can not completely stop depressurization immediately after the completion of pouring, the molten metal solidifies rapidly by coming into contact with the melt blocking member to form a skin, and the depressurization holding time is maintained. Can be significantly shortened.
[0180] この溶湯遮断部材にはできるだけ熱容量の大きな材料を使うことによって、凝固速 度を速めることが可能である。例えば、通常のけい砂に比べ比重の大きなジルコン砂 などを用いると、凝固速度を 2倍程度に早めることもできる。 [0180] The solidification speed can be increased by using a material with the largest possible heat capacity for this melt blocking member. For example, if you use zircon sand, which has a higher specific gravity than ordinary silica sand, it is possible to accelerate the solidification rate to about twice.
[0181] 以上のように、溶湯遮断部材を設置することによって、所望のキヤビティー部分に充 填した溶湯の減圧保持時間を短縮することができる。詳細は実施例 18にお 、て説明 する。 As described above, by installing the molten metal blocking member, the reduced pressure holding time of the molten metal charged in the desired cavity can be shortened. Details are described in Example 18.
[0182] (手段 14) (Means 14)
手段 5乃至 10 ヽずれかに記載の減圧铸造法にお!ヽて、溶湯を充填させた!/、所望の キヤビティー部分とその他のキヤビティー部分の境界部付近のキヤビティー下部に設 けた凹部に、非通気性又は铸型の通気度よりも低い通気度を有しかつ溶湯の熱によ つて消失又は融解する通気封止部材と溶湯よりも比重の小さい耐火材料よりなる溶 湯遮断部材を一体化した封止遮断部材を設置して铸型の減圧を行いながら溶湯を 注湯することを特徴とする減圧铸造法である。  Measure 5 to 10 According to the pressure reduction method as described in any one of the following, the molten metal was filled! /, The recess formed in the lower part of the cavity near the boundary between the desired cavity part and the other cavity part was not An air-sealed sealing member which has an air permeability lower than that of air-permeable or weir-type and which disappears or melts due to the heat of molten metal and a molten metal blocking member made of a refractory material smaller in specific gravity than molten metal are integrated. It is a reduced pressure structure method characterized in that a molten metal is poured while setting a sealing and blocking member and performing pressure reduction of a bowl shape.
[0183] 本手段では、手段 5乃至 10の減圧铸造法において、所望のキヤビティー部分の減 圧度を効率的に高めるために用いた手段 11及び 12の铸造法における通気封止部 材と、手段 13の減圧铸造法にぉ ヽて用いた溶湯遮断部材を一体ィ匕した封止遮断部 材を境界部付近に設置した。  [0183] In the present means, in the reduced pressure forging method of means 5 to 10, a vent sealing member in the forging method of means 11 and 12 used for efficiently increasing the degree of pressure reduction of the desired cavity portion, and means A sealing and blocking member integrally provided with a molten metal blocking member used in the reduced pressure forming method of 13 was placed near the boundary.
[0184] すなわち、例えば、上部を通気封止部材とし、下部を溶湯遮断部材として境界部付 近の凹部に設置するのである。そして、通気封止部材は減圧中の通気を封止して所 望のキヤビティーの減圧を安定して高め、溶湯遮断部材は注湯後に浮上して境界付 近を遮断する作用をするのである。  That is, for example, the upper portion is used as a flow-through sealing member, and the lower portion is installed as a molten metal blocking member in a recess near the boundary portion. Then, the aeration sealing member seals the aeration during depressurization to stably increase the pressure reduction of the desired cavity, and the molten metal blocking member acts to rise after pouring and to shut off the boundary approach.
[0185] 以上のように、両部材を一体ィ匕したので、 2つの機能を具備した部材を凹部に設置 するだけで、通気封止と湯道遮断の両作用を行わせることができる。これによつて通 気封止と湯道遮断に必要な部材の設置が容易になる。詳細は実施例 19にお 、て説 明する。 [0185] As described above, since both members are integrated, it is possible to perform both functions of vent sealing and runner blocking only by installing a member having two functions in the recess. In this way Installation of members necessary for air sealing and runner blocking becomes easy. Details are described in Example 19.
[0186] (手段 15) (Means 15)
手段 5乃至 14 ヽずれかに記載の減圧铸造法にお!ヽて、通気性铸型の外表面から溶 湯を充填させたい所望のキヤビティー部分とその他のキヤビティー部分の境界部付 近に向けて通気穴及び Z又は冷却穴を設けておき、注湯が完了した後、該通気穴 及び Z又は冷却穴から吸引又は送気することによって、前記境界部付近の凝固を促 進させることを特徴とする減圧铸造法である。  Means 5 to 14 According to the decompression construction method described in any one of the following, from the outer surface of the air-permeable mold, toward the boundary between the desired cavity part and the other cavity part to be filled with molten water. A vent hole and a Z or cooling hole are provided, and after pouring is completed, coagulation in the vicinity of the boundary is promoted by suctioning or supplying air from the vent hole and Z or cooling hole. Reduced pressure construction method.
[0187] 本手段では手段 13と同じ目的で所望のキヤビティー部分に充填した溶湯を速やか に凝固させるために、境界部付近に通気穴及び Z又は冷却穴を設けておき、注湯 完了後にこの通気穴及び z又は冷却穴を通して吸引又は送気することによって、境 界付近の凝固を促進する減圧铸造法を提供する。 In this means, in order to rapidly solidify the molten metal charged in the desired cavity for the same purpose as in the means 13, the vent holes and the Z or cooling holes are provided in the vicinity of the boundary, and after pouring is completed Provide vacuum construction that promotes solidification near the boundary by drawing or ventilating holes and holes or cooling holes.
[0188] この通気穴及び Z又は冷却穴は铸型外表面から境界部付近に向かって又は境界 部付近の近傍に設けるものである。通気穴は減圧用に用いるもので、冷却穴は冷却 用に用いるものである。通気穴と冷却穴は別々に設けてもよいし、兼用にしてもよい。 通気穴と冷却穴の直径は可能な限り大きぐまた深さは境界付近のキヤビティーに貫 通しない程度にできる限り深く設ける方が吸引又は送気による冷却効果が大きい。  [0188] The vent holes and the Z or cooling holes are provided from the outer surface of the wedge toward the vicinity of the boundary or in the vicinity of the vicinity of the boundary. The vent holes are used for depressurization, and the cooling holes are used for cooling. The vent holes and the cooling holes may be provided separately or may be combined. If the diameter of the vent holes and cooling holes is as large as possible, and if the depth is as deep as possible without penetrating the cavity near the boundary, the cooling effect by suction or air supply will be greater.
[0189] なお、吸引又は送気することで冷却するが、できれば圧縮空気を送気する方が単 位時間あたりに多量の空気を送気できるので凝固までの時間を短縮できる。  Note that cooling is performed by suction or air supply, but if compressed air can be supplied, a large amount of air can be supplied per unit time, and therefore the time to coagulation can be shortened.
[0190] また、手段 13の溶湯遮断部材と併用すれば個々の手段よりも迅速に境界付近の 凝固を完了させることができる。  [0190] Further, when used in combination with the molten metal blocking member of the means 13, solidification in the vicinity of the boundary can be completed more quickly than in the individual means.
[0191] 本手段及び手段 13によって注湯完了後、境界付近を速やかに凝固させることが可 能となり、減圧保持時間を短縮でき、所望のキヤビティー部分のみへ溶湯を充填する 減圧铸造法の生産効率を高めることができる。詳細は実施例 20において説明する。  [0191] The present means and means 13 make it possible to quickly solidify the vicinity of the boundary after pouring is completed, and the reduced pressure holding time can be shortened, and the molten metal is filled only in the desired cavity portion. Can be enhanced. Details will be described in Example 20.
[0192] (手段 16)  (Mean 16)
手段 1乃至 15いずれかに記載の減圧铸造法において、前記通気性铸型の外表面 から、铸型内にセットした中子の巾木部分及び Z又は铸型の合せ面に連通する送気 穴を設け、該送気穴に圧縮空気を送気しながら溶湯を注湯することを特徴とする減 圧铸造法である。 In any one of the first through fifteenth aspects of the present invention, the air-flowing hole communicating from the outer surface of the air-permeable cage to the core wood portion of the core set in the cage and the mating surface of the Z or the cage. To supply molten metal while supplying compressed air to the air supply hole. It is a crush making method.
[0193] 一般に減圧铸造法においては、キヤビティーが減圧されることによって、中子巾木 部や上下型合せ面の隙間に溶湯が浸入し、バリが発生し易いという問題がある。特 に中子の巾木部は巾木クリアランスが大き 、ときや、中子セットが片寄ったりしたとき などには発生し易い。本手段は铸型の隙間に発生するバリの対策を備えた減圧铸造 法を提供するものである。  In general, in the reduced pressure construction method, there is a problem that the molten metal infiltrates into the gap between the core base wood part and the upper and lower mold mating surfaces by the pressure reduction of the cavity, so that burrs are easily generated. In particular, core base wood has a large base wood clearance, and it tends to occur when the core set is offset. This method is intended to provide a reduced pressure structure method with measures against burrs generated in the gap between the bowls.
[0194] 本手段においては通気性铸型の外表面から、铸型内にセットした中子の巾木部及 び Z又は上下型合せ面に連通する送気穴を設け、この送気穴を通して圧縮空気を 送気することによって溶湯の該部隙間への浸入を防止する。  [0194] In this method, an air supply hole communicating with the core wood part of the core set in the mold and the Z or upper and lower mold mating surfaces is provided from the outer surface of the air-permeable rattan shape, and the air supply hole The supply of compressed air prevents the infiltration of the molten metal into the gap.
[0195] その作用を説明する。通常の減圧铸造法ではキヤビティーのすべての部分が減圧 状態になるので、中子巾木部及び铸型合せ面の隙間に溶湯が吸引されて浸入し易 い。これに対し、この部分に圧縮空気を送気して隙間が負圧にならないように、また 圧縮空気を隙間力 キヤビティーに吹き出すことによって、若干正圧状態として積極 的に溶湯の浸入を止めるのようにするものである。  The operation will be described. In the normal decompression construction method, all parts of the cavity are depressurized, so that the molten metal is easily sucked into the gaps between the core base wood part and the cocoon mating surface. On the other hand, compressed air is supplied to this part so that the gap does not have a negative pressure, and by blowing compressed air into the clearance force cavity, it seems that positive intrusion of the molten metal is positively stopped as a positive pressure state. It is to
[0196] 隙間へ侵入する溶湯の駆動力は、溶湯の静圧による圧力と減圧度を加えたもので ある。したがって、これ以上の正圧を送気して浸入防止の力を作用させれば溶湯の 浸入は阻止できることになる。また、圧縮空気の冷却作用によって溶湯先端は冷され て、溶湯の流動性が低下し隙間に侵入しに《なる。  [0196] The driving force of the molten metal entering the gap is the sum of the pressure and the degree of pressure reduction due to the static pressure of the molten metal. Therefore, if the positive pressure is supplied more than this to exert the force to prevent infiltration, the infiltration of the molten metal can be prevented. In addition, the front end of the molten metal is cooled by the cooling action of the compressed air, the fluidity of the molten metal is reduced, and the molten metal intrudes into the gap.
[0197] 圧縮空気の圧力は、大きすぎるとキヤビティー内の溶湯に空気の巻き込みを生じ、 铸造欠陥の原因となるので、減圧による吸い込みを消し、かつ溶湯静圧に打ち勝つ 程度の適度な正圧とする。  [0197] If the pressure of the compressed air is too large, air will be entrained in the molten metal in the cavity, causing a defect in the structure, so suction absorption due to pressure reduction will be eliminated and a moderate positive pressure that overcomes the static metal pressure. Do.
[0198] 本手段によって、減圧铸造法におけるノ リの発生を防止することができる。この結果 、手段 5乃至 10によって得られる所望のキヤビティー部分のみの铸造品と相俟って、 バリの少ない又はバリのない铸造品が得られ、後工程での仕上作業が大幅に削減さ れるものである。詳細は実施例 21にお 、て説明する。  [0198] By this means, it is possible to prevent the generation of the solder in the reduced pressure forging method. As a result, in combination with the desired cavity portion only, which is obtained by means 5 to 10, a structure with little or no burrs is obtained, and the finishing work in the later steps is significantly reduced. It is. Details are described in Example 21.
[0199] (手段 17)  [0199] (Means 17)
手段 1乃至 16 ヽずれかに記載の減圧铸造法にお!ヽて、铸鉄溶湯を注湯するにあ たり、注湯温度を 1300°C以下としたことを特徴とする減圧铸造法である。 [0200] 本手段では、凝固時の黒鉛ィ匕膨張によって押湯なしで健全な铸物を铸造できる可 能性がある铸鉄溶湯を注湯する場合に、押湯なし铸造を確実にする減圧铸造法を 提供する。 Means 1 to 16 In the decompression construction method as described in any one of the first to 16th aspects, when pouring molten molten iron, the pouring temperature is set to 1300 ° C. or less. . [0200] In this method, when pouring molten molten iron, which may be able to produce a healthy bowl without a feeder due to the expansion of the graphite during solidification, this pressure reduction ensures that the feeder does not have a basin. Provide forgery.
[0201] 一般に減圧铸造法は湯流れ性力 いのであるから、通常の無減圧の铸造法よりも 低温で注湯して十分に铸型キヤビティーを充填できるはずである力 実際は無減圧 の铸造方法と同程度の温度で注湯が行われているのが現状である。そのため、大き なコスト低減の要素を見逃して 、る。  [0201] In general, since the decompression construction method is a hot-water flow method, a force that should be able to be filled at a lower temperature than the normal non-decompression construction method and be able to sufficiently fill the pot-shaped cavity. It is the present condition that pouring is performed at the same temperature. Therefore, we overlook the major cost reduction factor.
[0202] そこで手段 1乃至 14の減圧铸造法によって、注湯中に溶湯の乱れのない安定した 湯流れが得られたので、注湯温度を下げても湯廻り不良やガス欠陥の危険性少な 、 状態で溶湯の充填が可能となったことから、注湯温度を低くしたのである。すなわち、 铸鉄铸物の場合、注湯温度は一般に 1400〜1450°Cである力 本手段の減圧铸造 法においては 1300°C以下とした。  Therefore, since a stable molten metal flow without disturbance of the molten metal was obtained during pouring by means of the decompression construction method of means 1 to 14, there is little risk of defective pouring and gas defects even if the pouring temperature is lowered. Since the filling of the molten metal became possible in the condition, the pouring temperature was lowered. That is, in the case of the iron and steel product, the pouring temperature is generally 1400 ° C. to 1450 ° C. and is 1300 ° C. or less in the reduced pressure fabrication method of this method.
[0203] この低い注湯温度の効果は次のような凝固時の収縮と膨張の収支計算によって明 らカゝ〖こなる。 CE値 =4.5付近の球状黒鉛铸鉄溶湯の場合、注湯温度の融液状態か ら共晶凝固点である約 1150°Cまで、液体収縮 (負の値で示す)する。その値は 100 °Cにっき約 1.5%である。すなわち、 1400ででの注湯では(1400— 1150) X (一 1.5) ,100=— 3.75%でぁる。 1300。Cでの注湯では(1300— 1150) X ( 1.5) ZlOO=— 2.25%である。つまり、注湯温度を 100°C下げることによって 1.5%分だ け液体収縮を減らすことができる。  [0203] The effect of this low pouring temperature can be clearly seen by the balance calculation of contraction and expansion during solidification as follows. In the case of a molten spherical graphite-stearate with a CE value of about 4.5, the liquid shrinks (shown as a negative value) from the molten state at the pouring temperature to about 1150 ° C., which is the eutectic solidification point. The value is about 1.5% at 100 ° C. That is, the pouring at 1400 is (1400-1150) x (1-1.5), 100 =-3.75%. 1300. In pouring in C, it is (1300-1150) X (1.5) ZlOO =-2.25%. That is, by decreasing the pouring temperature by 100 ° C., the liquid shrinkage can be reduced by 1.5%.
[0204] 一方、铸鉄は共晶凝固にともなって黒鉛晶出による約 6.00%の膨張と、オーステ ナイト晶出による約 3.30%の収縮が発生する。  On the other hand, in the case of pig iron, expansion of about 6.00% by graphite crystallization and contraction of about 3.30% by austenite crystallization occur with eutectic solidification.
[0205] 以上の収縮と膨張をすベて合計すると、 1400°C注湯では— 3.75% + 6.00%— 3.  [0205] When the sum of contraction and expansion is completely added, in the case of pouring at 1400 ° C-3.75% + 6.00%-3.
30% =— 1.05%である。すなわち、 1.05%の収縮となる。つまり、铸物製品部は何 らかの溶湯補給をしないと引け巣欠陥が残ることを意味している。このように、通常の 注湯温度ではこの収縮分を補うための押湯が必要である。  30% =-1.05%. That is, the contraction is 1.05%. In other words, the waste products department means that the hollow defects will remain unless some kind of molten metal supply. Thus, at normal pouring temperatures, a feeder for compensating for this contraction is necessary.
[0206] 次に本手段による 1300°C注湯の場合を計算してみる。この場合は、 2.25% + 6.0 0%— 3.30% = +0.45%である。すなわち、 0.45%の膨張となる。つまり、铸物製品 は何らの溶湯の補給を受けな 、でも引け巣は発生しな 、ことになり、押湯なしで健全 な铸物が得られる铸造が可能と 、うことである。 Next, let us calculate the case of pouring at 1300 ° C. by this method. In this case, 2.25% + 6.0 0%-3.30% = + 0.45%. That is, the expansion is 0.45%. In other words, waste products are not supplied with any molten metal, but no sinks are generated, which means that they are healthy without pouring. It is possible that forgeries can be made that will make it possible.
[0207] なお、収縮と膨張の上記計算は単純に溶湯のみの収縮と膨張をもとに計算したも ので、実際の铸造では、铸型の膨張ゃ铸物製品の形状などによって、上記計算通り にはならない。し力し、通常の 1400〜1450°Cの注湯温度を 1300°C以下に下げるこ とにより、 1.5〜2.25%以上の液体収縮分補給をしたことと同等の効果があるという事 実は、引け巣のない健全な铸物の製造に極めて重要なことである。注湯温度の下限 値は材質ゃ铸物形状、大きさにもよるが、 1250°C程度までは可能である。  Since the above calculation of contraction and expansion is simply calculated based on contraction and expansion of only the molten metal, in actual construction, the above-mentioned calculation is carried out according to the shape of the bowl-shaped expanded product or the like. It does not become. The fact that lowering the normal 1400 to 1450 ° C pouring temperature to 1300 ° C or less has the same effect as replenishing the liquid shrinkage for 1.5 to 2.25% or more. It is extremely important for the production of a nest-free and healthy bowl. The lower limit of the pouring temperature depends on the material, shape and size of the material, but can be up to about 1250 ° C.
[0208] 以上のように、適正な減圧分布を創生し、安定した湯流れを実現した上で、注湯温 度を通常の 1400〜 1450°C力ら 1300°C以下にすることによって、押湯なしで健全な 铸物の铸造が可能となるので、先の所望のキヤビティー部分として製品部のみに溶 湯を充填すればよいことになり、大幅な溶湯節減になる。また、押湯なしでよいという ことは、押湯があった空間に製品を余分に込めることができ、さらに高い注入歩留り が得られる。また、注湯温度を従来より下げられるということは、それに対応した温度 分だけ溶解温度が下げられることになるので、溶解費の面でも大幅な原価低減となる ものである。詳細は実施例 22において説明する。  [0208] As described above, after creating an appropriate depressurization distribution and realizing a stable water flow, the pouring temperature is reduced to 1300 ° C or less, which is the usual 1400 to 1450 ° C pressure, or the like. As it becomes possible to construct a healthy bowl without pouring water, it is sufficient to fill the molten metal only in the product section as the desired desired cavity part, which leads to significant savings in molten metal. Also, the absence of a feeder means that the product can be added to the space where the feeder has been placed, resulting in a higher injection yield. In addition, the fact that the pouring temperature can be lowered compared to the conventional method means that the melting temperature can be lowered by the temperature corresponding to it, and therefore the cost of melting will be significantly reduced. Details are described in Example 22.
[0209] (手段 18)  (Measure 18)
手段 3、 4及び 9乃至 17いずれかに記載の減圧铸造法において、注湯後に通気性 铸型の外表面から内部へ向けて設けられた複数の通気穴、冷却穴及び铸型セグメ ント等の各部を通して吸引又は送気されるガス体の流量を制御して、充填された溶 湯の所望の部位力 順次凝固を進行させることを特徴とする減圧铸造法である。  In the decompression structure method described in any one of means 3, 4 and 9 to 17, a plurality of vent holes, cooling holes and wedge segments provided from the outer surface to the inside of the air-permeable wedge after pouring. It is a reduced pressure structure method characterized by controlling the flow rate of a gas body sucked or fed through each part to advance a desired site force of the filled solution sequentially to coagulate.
[0210] 本手段では注湯時に使用した減圧手段をそのまま利用して、注湯後に冷却の制御 を行う減圧铸造法を提供する。  In this method, a decompression structure method in which cooling is controlled after pouring is provided by using the decompression means used at the time of pouring as it is.
[0211] 通常の減圧铸造法では注湯完了後は減圧を止める力、又は単に吸引を続けるか のいずれかである。つまり注湯後の冷却制御はまったく行なわれていない。本手段で は減圧に用いた前記通気穴、冷却穴及び铸型铸型セグメント(以下通気穴等と称す る)を利用して積極的に吸引又は送気を行って冷却を制御し、所望の部位から順次 凝固を進行されるようにする。  [0211] In a normal reduced pressure construction method, after pouring is complete, either the force to stop the pressure reduction or simply continuing the suction is used. In other words, cooling control after pouring is not performed at all. In this method, cooling is controlled by actively performing suction or insufflation using the vent holes, cooling holes, and wedge-shaped wedge segments (hereinafter referred to as vent holes) used for depressurization. Let the coagulation proceed from the site sequentially.
[0212] すなわち、早く凝固させたい部分の通気穴等に強い吸引又は送気を行って、他の 部分よりも早く凝固を進行させる。また、遅く凝固させたい部分の通気穴等に弱い吸 引又は送気を行う、又は吸引も送気も行わないようにする。これによつて、各部の凝 固順序を制御することができる。 That is, strong suction or air supply is performed to a vent hole or the like of a portion to be solidified quickly, The clotting proceeds faster than the part. Also, apply weak suction or air supply to the ventilation holes of the part that you want to solidify slowly, or neither suction nor air supply. In this way, it is possible to control the solidification order of each part.
[0213] この場合、通気穴等の位置、大きさ、深さを勘案してそれぞれの通気穴の吸引又は 送気の強さを決定する。これが通気穴等の穿孔時に位置、大きさ、深さを変えておい たもうひとつの理由である。  In this case, the suction or air supply strength of each ventilation hole is determined in consideration of the position, size, and depth of the ventilation hole or the like. This is another reason for changing the position, size, and depth when drilling vent holes and the like.
[0214] 注湯後の冷却過程での各通気穴等力もの吸引又は送気の流量は、減圧時の減圧 のための吸引又は送気とは異なる。つまり、減圧の時に強い吸引又は送気を行なつ た通気穴等が必ずしも注湯後に強い吸引又は送気を行うとは限らない。注湯後の吸 引又は送気の目的は冷却による望ましい凝固順序をつくることであるので、早く凝固 させた 、部分の通気穴等に強い吸引又は送気を行うのである。  [0214] The flow rate of suction or insufflation of each vent hole in the cooling process after pouring is different from that for suction or insufflation at the time of depressurization. That is, the vent holes etc. which performed strong suction or air supply at the time of depressurization do not necessarily perform strong suction or air supply after pouring. Since the purpose of suction or insufflation after pouring is to create a desirable solidification sequence by cooling, strong suction or insufflation is carried out in the vent holes of parts which are solidified quickly.
[0215] また、铸型の穿孔時に、減圧に用いる通気穴と冷却に用いる通気穴及び Z又は冷 却穴を別々に穿孔しておき、減圧時には減圧用の通気穴を利用し、冷却時には冷 却用の通気穴及び Z又は冷却穴を利用するようにすれば、極めて効率よく減圧と冷 却を行うことができる。  Also, at the time of perforating the bowl shape, the vent holes used for depressurization and the vent holes used for cooling and the Z or cooling holes are separately bored, and the vent holes for depressurization are used at the time of depressurization. It is possible to carry out decompression and cooling extremely efficiently by using the vent holes and Z or cooling holes for retrofitting.
[0216] 吸引と送気では、送気の方が高い圧縮空気を使って多量の送気ができるので、吸 気よりも高速の冷却が可能である。  In the suction and insufflation, since a large amount of insufflation can be performed by using the compressed air which is higher in the insufflation, the cooling can be performed at a higher speed than the insufflation.
[0217] この手段によって、早く凝固させたい所望のキヤビティー部分の凝固を進行させるこ とが可能となるので、例えば、引け巣が残り易い孤立厚肉部を優先的に凝固させて 引け巣を減少させることができる。 [0217] By this means, it becomes possible to advance the solidification of the desired cavity part that is desired to be solidified quickly. For example, the isolated thick part where shrinkage is likely to remain is preferentially solidified to reduce shrinkage. It can be done.
[0218] また、製品の一方の端から押湯側又は湯口側へ順次凝固させる、いわゆる指向性 凝固も可能である。この指向性凝固によって、収縮の不足分が順次補給されることに なり、押湯力ゝらの給湯はわずかでも又はなくとも製品の健全性は確保され易い条件を 得ることができる。 Further, so-called directional solidification is also possible, in which solidification is sequentially performed from one end of the product to the feeder side or the gate side. By this directional solidification, the shrinkage deficiency will be replenished sequentially, and the condition that the soundness of the product can be easily secured can be obtained even if the hot water supply of the feeder is small or not.
[0219] このような所望の部位力も順次凝固させる方法としては、従来はチラ一 (冷し金)に よって局部的に冷却する程度であって、十分な指向性凝固は得られていなかった。  [0219] As a method of sequentially solidifying such a desired site force, it has been a conventional method of locally cooling by chiller (cold metal), and sufficient directional solidification has not been obtained.
[0220] 本手段によって、高精度に制御された状態で所望の部位力 順次凝固が可能とな り、铸物の健全性が大幅に向上する。また、押湯なしで健全な铸物を铸造できる可能 性も大いに高めることができる。これは任意の位置に、直径と深さの異なる複数の通 気穴等を設けて各通気穴から吸引又は送気を行った効果である。詳細は実施例 23 において説明する。 [0220] By means of this method, desired site force sequential solidification can be performed in a highly accurately controlled state, and the soundness of the product is significantly improved. Also, it is possible to forge a healthy bowl without pouring water Sex can also be greatly enhanced. This is an effect obtained by providing a plurality of air holes or the like having different diameters and depths at arbitrary positions and performing suction or air supply from each air vent. Details will be described in Example 23.
[0221] (手段 19) [Means 19]
手段 3、 4及び手段 9乃至 17いずれかに記載の減圧铸造法において、注湯後に通 気性铸型の複数の通気穴、冷却穴及び铸型セグメント等の各部から吸引排出される それぞれのガス体の温度、又は温度と流量のデータをもとに、前記通気性铸型に充 填された溶湯の冷却状態を推算し、通気性铸型の各部への吸引流量及び Z又は送 気流量を制御することによって溶湯の冷却状態を制御することを特徴とする減圧铸 造法である。  In the reduced pressure method according to any one of Means 3 and 4 and Means 9 to 17, each gaseous substance sucked and discharged from each part such as a plurality of ventilating vent holes, cooling holes, and wedge shaped segments after pouring. Based on the temperature or temperature and flow rate data, estimate the cooling condition of the molten metal filled in the air-permeable cage, and control the suction flow and Z or air flow to each part of the air-permeable cage. It is a decompression structure method characterized in that the cooling state of the molten metal is controlled by
[0222] 本手段では手段 18に続き、さらに高精度の凝固制御を行う減圧铸造法を提供する 。すなわち、铸型の各通気穴等から吸引排出されるガス体の温度、又は温度と流量 のデータによって充填された溶湯の冷却状態を推算し、その結果にもとづいて各通 気穴等の吸引又は送気の流量を制御して、溶湯の冷却状態を制御する減圧铸造法 である。  [0222] In the present means, following to the means 18, a reduced pressure forging method for performing coagulation control with high accuracy is provided. That is, the cooling state of the molten metal filled is estimated based on the temperature or temperature and flow rate data of the gas sucked and discharged from each vertical air hole or the like, and suction or air pressure for each air hole or the like is estimated based on the result. This is a reduced pressure construction method in which the cooling condition of the molten metal is controlled by controlling the flow rate of air supply.
[0223] 本手段に利用するガス体は減圧時に吸弓 Iされるもの及び注湯後に冷却過程で吸弓 I されるものの両方である。これらのガス体の温度のみでも各部の凝固状態をある程度 の精度で推算することは可能である。これに流量のデータを加えればさらに高精度な 推算が可能である。  [0223] The gas used for the present means is both one that sucks at the time of depressurization and one that sucks at the cooling process after pouring. It is possible to estimate the solidification state of each part with a certain degree of accuracy only by the temperature of these gas bodies. If the flow rate data is added to this, more accurate estimation is possible.
[0224] 従来の減圧铸造法における通気穴等のない铸型では、铸型全体から吸引するの で、全体としての平均温度はわ力つても、キヤビティー各部の温度分布又は冷却状 態を推算することはできな力つた。  [0224] In the case of the conventional reduced pressure structure method without suction holes etc., suction is performed from the entire shape of the mold, so the temperature distribution or cooling state of each part of the cavity can be estimated even if the average temperature as a whole is strong. I could not do it.
[0225] 本手段では铸型に複数の通気穴等を設け、又は铸型外表面をセグメントに分割し て個別に吸引を行うことによって、各部のガス体の温度及び流量のデータが得られる ことが、このような冷却制御法を適用した減圧铸造法を可能にしたのである。このよう な減圧铸造法は全く新規なものである。これによつて従来技術では注湯後には減圧 を止めるか又は単に吸引をして铸型内で無制御に冷却がなされていたもの力 上記 のように高精度に制御された冷却過程によって铸造技術の革新がなされる。詳細は 実施例 24にお ヽて説明する。 In this method, it is possible to obtain data on the temperature and flow rate of the gas of each part by providing a plurality of vent holes or the like in the bowl or dividing the bowl outer surface into segments and performing suction individually. However, it has made it possible to apply a cooling control method like this to a reduced pressure construction method. Such a reduced pressure construction method is completely new. As a result, in the prior art, the pressure reduction is stopped after pouring, or simply suction is performed and the cooling is performed uncontrollably in the mold. Force by which the cooling process is controlled with high accuracy as described above. Innovation is made. Detail is This will be described in Example 24.
[0226] (手段 20) (Measure 20)
手段 3、 4及び手段 9乃至 18いずれかに記載の減圧铸造法において、注湯後に前 記通気性铸型の複数の通気穴、冷却穴及び铸型セグメント等の各部から吸引排出さ れるそれぞれのガス体の温度、又は温度と流量のデータをもとに、前記通気性铸型 に充填された溶湯の冷却状態を推算し、前記通気性铸型の各部への吸引流量及び Z又は送気流量を制御することによって溶湯の冷却状態を制御して、前記充填され た溶湯の最終凝固組織を調整することを特徴とする減圧铸造法である。  In the reduced pressure method according to any one of means 3 and 4 and means 9 to 18, after pouring, each of suction and discharge from each portion such as the vent holes, the cooling holes and the wedge segments of the air-permeable wedge type described above. Based on the temperature of the gas body or the temperature and flow rate data, the cooling condition of the molten metal filled in the air-permeable cage is estimated, and the suction flow rate and Z or air flow to each part of the air-permeable cage are estimated. Controlling the cooling state of the molten metal by controlling the temperature of the molten metal to adjust the final solidification structure of the filled molten metal.
[0227] 本手段では手段 19によって温度、又は温度と流量のデータによって高精度な冷却 制御を適用した減圧铸造法が可能になったので、これを利用して凝固領域とその後 の組織的な変態領域の冷却を制御して、最終の凝固組織を調整する減圧铸造法を 提供する。 [0227] In this method, the reduced pressure structure method to which high-precision cooling control is applied is enabled by means 19 of temperature or temperature and flow rate data by means 19, and this is used to make a transformation in the solidification region and the subsequent structural transformation. Control the cooling of the area to provide a vacuum forging method to adjust the final solidified tissue.
[0228] 例えば、铸鉄では共晶凝固速度によって黒鉛粒数やオーステナイト結晶粒が変化 し、また共析変態領域の冷却制御によってパーライトの組織変化や、パーライト Zフ エライト量比の変化などが起こる。  For example, in pig iron, the number of graphite grains and austenite grains change depending on the eutectic solidification rate, and the cooling control of the eutectoid transformation region causes the change in pearlite structure and the change in pearlite Z ferrite content ratio, etc. .
[0229] 従来力 このような組織調整は溶湯の化学成分を変えたり、又は一度铸物を凝固 完了させ、再加熱して所定の温度に保持した後、所定の冷却速度で冷却することに よって行なわれていた。 Conventional force [0229] Such structure adjustment changes the chemical composition of the molten metal, or solidifies the solid matter once, and reheats and holds it at a predetermined temperature, and then is cooled at a predetermined cooling rate. It was being done.
[0230] 本手段では注湯完了後の铸型内の冷却過程で、例えば铸鉄では共晶凝固領域及 び Z又は共析変態領域を、通気穴を利用して吸引又は送気することによって冷却制 御を行 ヽ、従来の化学成分の調整や熱処理によって得られるものと同様な組織を得 るようにしたものである。  [0230] In this method, in the cooling process in the mold after the pouring is completed, for example, in the case of pig iron, the eutectic solidification area and Z or the eutectoid transformation area are sucked or supplied using air holes. Cooling control is performed to obtain the same structure as that obtained by conventional adjustment of chemical composition and heat treatment.
[0231] この結果、同じィ匕学成分の溶湯を注湯しても、本手段により冷却速度を制御するこ とによって、異なった所望の金属組織の铸物を得ることができる。つまり、少ない種類 の元湯成分で各種グレードの材質が生産できることになり、操業上多大の効果をもた らすことである。また、熱処理も不要に成り、エネルギーコスト低減及び工程省略が可 能となる。詳細は実施例 25にお 、て説明する。  As a result, even if molten metal of the same metallurgical component is poured, by controlling the cooling rate by this means, it is possible to obtain a different desired metallographic texture. In other words, it is possible to produce various grades of materials with a small amount of former hot water components, and to bring about a great effect in operation. In addition, heat treatment is also unnecessary, and energy costs can be reduced and processes can be omitted. Details are described in Example 25.
[0232] (手段 21) 手段 1乃至 20いずれかに記載の減圧铸造法において、注湯後、注湯口又は湯口部 を、非通気性部材又は铸型よりも通気性の低 ヽ部材で塞 ヽで溶湯の凝固まで減圧 を行うことを特徴とする減圧铸造法である。 (Means 21) In the reduced pressure method according to any one of means 1 to 20, after pouring, the pouring port or the sprue part is closed with a non-air-permeable member or a low-permeability member more permeable than a pot-shaped member. It is a reduced pressure construction method characterized by performing.
[0233] 減圧铸造法では注湯前の状態から注湯後の溶湯充満までの間、減圧度を安定に 保つことが重要である。しかし、前述の通り、注湯にともなって注湯口又は湯口部が 大気に開放されるのでその部分の減圧度が大きく低下し、铸型キヤビティーの減圧 度も変化を受け易くなる。  In the reduced pressure construction method, it is important to keep the degree of reduced pressure stable between the state before pouring and the molten metal filling after pouring. However, as described above, since the pouring port or sprue part is opened to the atmosphere as the pouring takes place, the degree of pressure reduction in that part is greatly reduced, and the degree of pressure reduction of the bowl-shaped cavity is also susceptible to change.
[0234] 本手段では、その改善方法を付加した铸造法を提供する。すなわち、注湯後、注 湯口又は湯口部を、非通気性部材又は铸型よりも通気性の低 、部材で塞 、で溶湯 の凝固まで減圧を行うようにする。これによつて、铸型キヤビティーは再度注湯前とほ ぼ同じ密閉状態になり、その結果、減圧度を安定に保つことができる。また減圧装置 の容量を小さくすることもできる。  The present means provides a forgery method to which the improvement method is added. That is, after pouring, the pouring spout or the sprue portion is decompressed until solidification of the molten metal by closing the pouring sprue or the sprue portion with a non-air-permeable member or a member having lower air permeability than a bowl shape. As a result, the vertical cavity is again in the same sealed state as before pouring, and as a result, the degree of pressure reduction can be kept stable. In addition, the capacity of the pressure reducing device can be reduced.
[0235] 特に所望のキヤビティーのみに溶湯を充填する手段 5乃至 15いずれかに記載の減 圧铸造法においては、注湯後も所望のキヤビティーの減圧度を γ H以上に保持する 必要があるので本手段は有効である。詳細は実施例 26において説明する。  In particular, in the pressure-reduction structuring method described in any of the means 5 to 15 for filling the molten metal only in the desired cavity, it is necessary to maintain the degree of pressure reduction of the desired cavity at or above γ H after pouring. This measure is effective. Details are described in Example 26.
[0236] (手段 22)  (Measure 22)
手段 1乃至 21いずれかに記載の減圧铸造法において、通気性铸型から吸引排出さ れたガス体を、熱交換器で熱交換させる、及び Ζ又は溶解材料の予熱に供すること によって溶湯の熱を回収することを特徴とする铸造システムである。  In any of the vacuum construction methods described in any of the means 1 to 21, the heat of the molten metal is obtained by heat exchange of the gas sucked and discharged from the air-permeable mold in a heat exchanger, and preheating of the crucible or the melting material. It is a forgery system characterized by collecting
[0237] 本手段では注湯力 冷却の過程を通じて吸引排出されるガス体のもつ熱を回収し て利用する铸造システムを提供する。  [0237] In this method, a forgery system is provided that recovers and uses the heat of the gas sucked and discharged through the process of pouring power cooling.
[0238] 本手段では、铸型から吸引排出されるガス体を熱交^^に導き別の流体に熱交換 して回収するようにする及び Ζ又はガス体を直接、溶解原材料の予熱に利用するこ とによって回収するようにする。  [0238] In this method, the gas sucked and discharged from the mold is introduced into heat exchange ^ so as to be recovered by heat exchange with another fluid, and the soot or gas is used directly to preheat the melted raw material. Make it recoverable by
[0239] 従来、一般の無減圧铸造法及び減圧铸造法の!ヽずれの場合でも、注湯された溶 湯のもっている熱のほとんどは铸型材に与えられている。そのため、铸型材は高温に なり、これを再利用するには水や空気で冷却する工程が必要である。また、高温の铸 物も冷却が必要である。つまり、溶解過程で溶湯に与えられた熱は全く回収されずに 最終的には空気中に放散されている。つまり、現在のどの铸造法においても溶湯の 熱の回収率はほとんどゼロである。 [0239] Conventionally, most of the heat possessed by the poured solution is given to the wedge-shaped material, even in the case of the normal pressure-less pressure-reducing or pressure-reducing pressure forming method. Because of this, the template becomes hot, and the process of cooling it with water or air is necessary to reuse it. In addition, high temperature materials also need to be cooled. That is, the heat given to the molten metal in the melting process is not recovered at all. It is finally dissipated in the air. That is, the heat recovery rate of the molten metal is almost zero in any of the present construction methods.
[0240] 本発明の減圧铸造法においては、注湯完了後も冷却を制御するためにガス体の吸 引排出を続けるので、溶湯の熱のかなりの部分はこのガス体の熱として排出される。 したがって、この熱を熱交換器を通して、及び Z又は直接、溶解原材料の予熱に利 用することによって、従来空気中に放散されて 、た熱の一部が回収できるようにする  In the reduced pressure structure method of the present invention, since suction and discharge of the gas are continued to control cooling even after the pouring is completed, a considerable portion of the heat of the molten metal is discharged as the heat of this gas. . Therefore, by using this heat through the heat exchanger and Z or directly to preheat the molten raw material, a portion of the heat dissipated in the conventional air can be recovered
[0241] 以上のように、本手段によって、铸物工場全体をエネルギー効率の高い生産形態 にすることができ、生産コストの面でも、また近年とみに問題となっている COの削減 [0241] As described above, this method makes it possible to put the whole factory into a production form with high energy efficiency, and also in terms of production cost, CO reduction which has been a problem in recent years.
2 の面でも、多大の効果をもたらすものである。詳細は実施例 27において説明する。  The second aspect also brings about a great deal of effects. Details are described in Example 27.
[0242] (手段 23) (Means 23)
铸型の外表面に載置して吸弓 I減圧を行う装置であって、铸型外表面に当接させる 開口端を有する複数の減圧ボックスを铸型の外表面に対して垂直方向に昇降する 手段に取り付けるとともに、前記複数の減圧ボックスのそれぞれに減圧装置に連通し た吸引口及び Z又は空気圧縮装置に連通した送気口を設け、該吸引口と送気口を 流れるガス体の流量を個別に制御する流量制御手段を有することを特徴とする吸引 送気装置である。  It is a device which is placed on the outer surface of a bowl to perform suctioning I pressure reduction, and a plurality of decompression boxes having open ends are moved up and down in a direction perpendicular to the outer surface of the bowl. A suction port in communication with the pressure reducing device and an air feeding port in communication with the Z or air compressor, and the flow rate of the gas flowing through the suction port and the air feeding port. It is a suction and air supply device characterized by having a flow control means for individually controlling the
[0243] 本手段では手段 2乃至 21に用いる铸型外表面からの吸引送気装置を提供する。  [0243] The present means provides a suction and air-feeding device from the outer surface of the bowl used for the means 2 to 21.
[0244] まず本装置の構成について述べる。本装置は铸型外表面に当接させる開口端を 有する複数の減圧ボックス、これを昇降する手段、複数の減圧ボックスのそれぞれに 具備された減圧装置に連通した吸引口又は Z及び空気圧縮装置に連通した送気口 、及び吸引口と送気口を流れるガス体の流量を個別に制御する流量制御手段から 構成されている。 First, the configuration of the present apparatus will be described. The device comprises a plurality of pressure reducing boxes having an open end to be brought into contact with the outer surface of the bowl, a means for raising and lowering the same, a suction port or Z communicating with a pressure reducing device provided in each of the plurality of pressure reducing boxes It comprises a communicating air supply port and flow rate control means for individually controlling the flow rate of the gas flowing through the suction port and the air supply port.
[0245] 次に構成要素の態様につ!、て述べる。複数の減圧ボックスは一端を開口し、铸型 に対し垂直方向に昇降する昇降手段に取り付けられて 、る。複数の減圧ボックスを 昇降手段によって铸型外表面に載置し、その開口端を铸型外表面に当接して用い る。この際、铸型外表面の通気穴の有無は問はないが、好ましい減圧分布を得やす くするためには通気穴がある方が望ましい。 [0246] 複数の減圧ボックスはそれぞれが離隔して 、てもよ 、し、連接して 、てもよ 、。離隔 した場合は手段 2及び 3に記載した減圧铸造法に適用し、連接した場合は手段 4〖こ 記載した減圧铸造法に適用する。 [0245] Next, aspects of the component will be described. The plurality of decompression boxes are open at one end and attached to lifting means vertically moving up and down with respect to the boat. A plurality of decompression boxes are mounted on the outer surface of the bowl by raising and lowering means, and the open end is used in contact with the outer surface of the bowl. At this time, although there is no problem with the presence or absence of the vent holes on the outer surface of the bowl-shaped outer surface, it is preferable to have the vent holes in order to easily obtain a preferable reduced pressure distribution. [0246] Each of the plurality of decompression boxes may be separated from each other, or may be connected to each other. In the case of separation, it is applied to the reduced pressure forging method described in Measures 2 and 3. In the case of being connected, it is applied to the reduced pressure forging method described in Means 4 and 5.
[0247] また、それぞれ減圧ボックスには減圧装置に連通した吸引口又は Z及び空気圧縮 装置に連通した送気口が設けられている。そして、その吸引口と送気口を流れるガス 体の流量を個別に制御する流量制御手段が設けられて 、る。  Each pressure reduction box is provided with a suction port in communication with the pressure reduction device or an air supply port in communication with Z and the air compression device. And, a flow control means is provided to individually control the flow rate of the gas flowing through the suction port and the air supply port.
[0248] 次に本装置の作用について述べる。本装置は主として吸引によって注湯前力 注 湯完了までの減圧を行う装置であるとともに、注湯完了後に吸引及び Z又は送気に よって充填された溶湯の冷却制御を行う装置である。  Next, the operation of the present apparatus will be described. This device is a device that performs pressure reduction to the completion of pouring water mainly by suction, and also controls cooling of molten metal filled by suction and Z or air supply after the completion of pouring.
[0249] まず、減圧する時は、複数の減圧ボックスを昇降手段によって铸型外表面に載置し 、その開口端を铸型外表面に当接する。そして、所望の減圧ボックスの吸引口及び Z又は送気口から吸引及び Z又は送気を行って铸型の減圧をする。この工程は減 圧が目的であるので、吸引が主となる。送気はより好ましい減圧分布を得たい時に、 減圧を下げたい部位に対して行う程度で、主として吸引によって減圧する。  First, when depressurizing, a plurality of decompression boxes are mounted on the outer surface of the bowl by the lifting means, and the open end is brought into contact with the outer surface of the bowl. Then, suction and Z or air supply are performed from the suction port and Z or air supply port of the desired pressure reduction box, and the pressure reduction of the bowl type is performed. As the purpose of this process is to reduce pressure, suction is the main. In order to obtain a more preferable reduced pressure distribution, the insufflation is mainly performed by suction to the extent that the reduced pressure is to be applied to the portion to be reduced.
[0250] 注湯完了後はこのまま铸型に載置し当接して冷却制御に用いることができる。すな わち、早く凝固させたい部位の吸引及び Z又は送気を強くし、その他の部位を弱く又 は吸引送気なしとすることによって、所望の凝固順序を得ることができるのである。こ れによって、いわゆる指向性凝固が可能となる。  [0250] After the pouring is completed, it can be placed and abutted on the bowl shape as it is and used for cooling control. That is, the desired coagulation sequence can be obtained by strengthening the suction and Z or air supply at the site where it is desired to quickly coagulate, and weakening or non-inhaling other areas. This enables so-called directional solidification.
[0251] また、凝固が完了した後は、引き続き少なくとも金属組織的な変態領域を通過する 温度まで、金属組織の調整のために吸引及び Z又は送気を行うことができる。すな わち、特に金属組織の変態が起こる温度領域に対して吸引送気の流量を制御して、 適宜の冷却速度で冷却を進行させるのである。例えば、铸鉄铸物の場合は、共析変 態の起こる 830〜700°Cの範囲の冷却制御が重要で、これによつてパーライト及びフ エライトの組織調整が可能である。  Also, after solidification is completed, suction and Z or air can be performed to adjust the metallographic structure, at least until the temperature passes through the metallographic transformation region. That is, the flow rate of suction and air supply is controlled particularly in the temperature range where transformation of metal structure occurs, and cooling is allowed to proceed at an appropriate cooling rate. For example, in the case of pig iron, cooling control in the range of 830 to 700 ° C. where co-eutectoid transformation occurs is important, and this enables texture adjustment of perlite and ferrite.
[0252] なお、注湯完了後の冷却制御においては、吸引よりも送気の方が冷却効果を大き くすることができる。それは、圧縮空気の方が簡単に高圧で多量の空気を铸型内へ 供給できるからである。したがって、冷却過程では送気を主として用い、吸引を補助 具的に用いるようにすれば所望の冷却パターンを得ることが容易になる。 [0253] 吸引口及び送気口を流れる流量は、それぞれに設けられた流量制御装置によって 制御される。この際、制御方法は簡単には前もって決められた各減圧ボックスの吸引 送気量に従って行うことができる。また、もっと高精度に制御したい場合は、手段 19 に記載の冷却制御方法によって、各減圧ボックスからのガス体の温度、又は温度と 流量の値にもとづいて制御することもできる。 In the cooling control after the completion of pouring, the cooling effect can be greater in air supply than in suction. This is because compressed air can easily supply a large amount of air at high pressure into the bowl. Therefore, it is easy to obtain a desired cooling pattern by mainly using air supply in the cooling process and using suction as an aid. [0253] The flow rate flowing through the suction port and the air supply port is controlled by a flow control device provided for each. At this time, the control method can be easily performed in accordance with the suction and air supply amounts of the respective pressure reduction boxes determined in advance. In addition, when it is desired to control with higher accuracy, it is possible to control by the cooling control method described in means 19 based on the temperature of the gas from each pressure reduction box or the value of the temperature and the flow rate.
[0254] 本装置によって吸引排出されるガス体は、手段 22に記載の溶湯の熱を有効に利用 する铸造システムに用いられる。  [0254] The gaseous body sucked and discharged by the present apparatus is used for a forging system that effectively uses the heat of the molten metal described in means 22.
[0255] 以上のように、本装置は铸型の選択された部位から吸引及び Z又は送気を行うこと ができる装置であり、注湯時にはキヤビティー内に所定の減圧分布を創生し、かつ冷 却過程では所望の冷却パターンを得ることができるものである。この結果、従来の減 圧铸造法が単に減圧して注湯するといぅ铸造法であったものが、本装置と前記各手 段を用いることによって、減圧と冷却が制御できる铸造法へと大きく革新することがで きるのである。詳細は実施例 28において説明する。  [0255] As described above, the present apparatus is an apparatus capable of performing suction and Z or air supply from a selected site of the bowl shape, and creates a predetermined pressure reduction distribution in the cavity when pouring water, and A desired cooling pattern can be obtained in the cooling process. As a result, the conventional pressure reduction method used to be a method in which pressure reduction and cooling can be controlled by using this device and each of the above methods, although the conventional pressure reduction method simply used for pressure reduction and pouring. It is possible to innovate. Details are described in Example 28.
[0256] (手段 24)  [Means 24]
手段 23記載の吸引送気装置において、前記複数の減圧ボックスの位置が铸型の 外表面に対し平行な面で自在に変えられるようにしたことを特徴とする吸弓 I送気装置 である。  In the suction and air feeding device described in means 23, it is characterized in that the positions of the plurality of pressure reducing boxes can be freely changed in a plane parallel to the outer surface of the bowl shape.
[0257] 本手段では手段 22の吸引送気装置の複数の減圧ボックスの位置が铸型の外表面 に対し平行な面で自在に変えられるようにした。すなわち、複数の減圧ボックスを铸 型外表面に対し XYZの 3方向に自在に動かせるようにしたものである。  [0257] In this means, the positions of the plurality of pressure reducing boxes of the suction and air feeding device of means 22 can be freely changed in a plane parallel to the outer surface of the bowl. That is, a plurality of decompression boxes can be freely moved in three directions of X, Y, and Z with respect to the outer surface of the mold.
[0258] 手段 22の装置では複数の減圧ボックスは铸型外表面に垂直方向のみ昇降できる ようになっており、铸型外表面に平行な面での自在性は規定していな力つた。すなわ ち、通気穴を铸型外表面の固定した位置に設ける場合に適用するものであった。  [0258] In the device of means 22, the plurality of pressure reduction boxes can be moved up and down only vertically to the outer surface of the bowl, and the flexibility in a plane parallel to the outer surface of the bowl is not defined. That is, it was applied when the vent was provided at a fixed position on the outer surface of the boat.
[0259] 本手段によって、複数の減圧ボックスは铸型外表面の任意の位置に当接できるよう になったので、铸型外表面に設ける通気穴は任意の個所に設けることができるように なった。  [0259] By this means, a plurality of decompression boxes can be brought into contact with any position on the outer surface of the bowl, so that vent holes provided on the outer surface of the bowl can be provided at any location. The
[0260] 本手段によって、铸型外表面の通気穴を設ける位置の自由度は大きくなり、所望の 減圧勾配を得るのには便利になる。しかし、装置面では手段 22の装置に比べて複雑 になり、また複数の減圧ボックスを铸型外表面に載置する際に、任意の位置に設けら れた複数の通気穴に合せる必要があり、そのための作動時間を要するという短所もあ ることを考慮して用いるべきである。 [0260] By this means, the degree of freedom in providing the vent holes on the outer surface of the bowl-shaped outer surface is increased, which is convenient for obtaining a desired pressure reduction gradient. However, in terms of equipment, it is more complicated than the equipment of means 22 In addition, when placing multiple decompression boxes on the outer surface of the bowl, it is necessary to fit into multiple vent holes provided at arbitrary positions, which also has the disadvantage of requiring an operating time for that. Should be used in consideration of
[0261] その点、手段 22記載の吸引送気装置は固定した位置に複数の減圧ボックスを設け ており、それに対応した位置に設けられた通気穴に当接して用いるので簡便である。 いずれがよいかは製造する铸物の大きさ、形状、材質、数量等の条件によって決め るべきである。詳細は実施例 29において説明する。  [0261] In that respect, the suction and air supply device described in the means 22 is provided with a plurality of pressure reduction boxes at fixed positions, and it is convenient because it abuts on the vent holes provided at the corresponding positions. The choice of which one to use should be decided according to the size, shape, material, quantity, etc. of the container to be manufactured. Details are described in Example 29.
発明の効果  Effect of the invention
[0262] 本発明によって次のような効果が得られた。 The following effects were obtained by the present invention.
[0263] 手段 1によって、(1)通常の通気性铸型を用いて簡単に高効率の生産が可能な連続 ラインが構成できる減圧铸造法を提供した。これによつて減圧铸造法の汎用化が図 れ、铸物製造全般の高精度化が可能となった。  [0263] Means 1 provides (1) a reduced pressure construction method capable of constructing a continuous line capable of easily producing high efficiency using a normal air-permeable mold. As a result, the pressure reduction forging method has been widely used, and it has become possible to improve the accuracy of the overall manufacturing of the objects.
[0264] 手段 2乃至 4及び手段 8乃至 10によって、(2)製品毎の個別対応及び複数個込め への対応が容易にでき、高効率連続ラインに適応可能な減圧铸造法を提供した。  By means of measures 2 to 4 and means 8 to 10, (2) individualized products can be easily dealt with and multiple loads can be easily provided, and a decompression structure method applicable to high-efficiency continuous lines is provided.
[0265] 手段 2乃至 4によって、(3)铸型キヤビティー内に高精度な所定の減圧分布を創生し た減圧铸造法を提供した。これによつて高精度な減圧铸造法が確立でき、薄肉品、 複雑品の铸造がさらに容易になった。また、複数個込めにも容易に対応できるように なった。  [0265] By means of measures 2 to 4, (3) a reduced pressure forging method was provided in which a highly accurate predetermined reduced pressure distribution was created in a wedge-shaped cavity. This made it possible to establish a high-precision reduced pressure construction method, and made it easier to manufacture thin-walled and complex products. In addition, it became possible to easily cope with multiple deliveries.
[0266] 手段 5乃至 15、及び手段 21によって、(4)铸型キヤビティーのうち、所望キヤビティー のみに溶湯を充填する減圧铸造法を提供した。これによつて極めて高歩留りの減圧 铸造法が確立できるとともに、解枠以降の後工程が大幅に簡略化された。  [0266] By means of measures 5 to 15 and means 21, a reduced pressure drilling method was provided in which the molten metal was filled only in the desired cavity among the (4) wedge-shaped cavities. As a result, an extremely high-yield reduced pressure construction method could be established, and the post-process after release was greatly simplified.
[0267] 手段 17乃至 20及び手段 22によって、(5)注湯後から凝固、冷却、解枠までの過程 を制御して高効率、高精度な減圧铸造法を提供した。これによつて溶湯の熱ェネル ギーを十分回収して铸造コストの低減に大きく貢献した。また、環境面で大幅な改善 が図れた。  [0267] By means of measures 17 to 20 and means 22, (5) the process from pouring to pouring, followed by solidification, cooling and releasing frame was controlled to provide a highly efficient and highly accurate reduced pressure structure method. As a result, the thermal energy of the molten metal was sufficiently recovered, which greatly contributed to the reduction of the manufacturing cost. In addition, environmental improvements have been made.
[0268] さらに手段 16及び 17によって、(6)バリを防止できる減圧铸造法並びに低温注湯 する減圧铸造法を提供した。これによつて、ノ リが発生しない、又は押湯の不要な減 圧铸造法が確立された。 [0269] また手段 23及び 24によって、(7)本発明の減圧铸造法に用いる装置を提供した。 これによつて本発明の減圧铸造法が容易に実施できるようになった。 [0268] Further, (6) a reduced pressure construction method capable of preventing burrs and a reduced pressure construction method of pouring at low temperature are provided by means 16 and 17. As a result, no pressure was generated or unnecessary pressure reduction forging of the feeder was established. [0269] Further, means 23 and 24 provided (7) an apparatus used for the reduced pressure forging method of the present invention. As a result, the reduced pressure casting method of the present invention can be easily implemented.
[0270] 以上の結果、従来特殊な铸造法としてほとんど特殊材質、薄肉品、及び複雑品の み適用されていた減圧铸造法が一般の製品にも簡単に適用できるようになった。ま た、従来の減圧铸造法が単に減圧して注湯するといぅ铸造法であったもの力 本発 明を用いることによって、減圧して注湯し、さらに凝固及び冷却も制御できる铸造法 へと大きく革新することができた。  [0270] As a result of the above, it has become possible to easily apply the reduced pressure construction method, which has conventionally been applied only to special materials, thin-walled products, and complex products, as general special construction methods, to general products. In addition, the pressure reduction and pouring process can be performed by using the pressure reduction method according to the present invention, and the solidification method and the cooling can also be controlled. And was able to innovate greatly.
[0271] また、本発明によって、铸造は他の工法に比べコスト面及び品質面で優れた製造 法として広く活用できるようになった。また、従来力も危惧されていた铸造技術の後進 性を打破し、注湯から冷却、解枠まで一貫した制御によって、高効率かつ高品質な 铸物製造が可能になった。  Further, according to the present invention, forging can be widely used as a manufacturing method superior in cost and quality as compared with other methods. In addition, we have overcome the backwardness of the forging technology, which has also been feared in the past, and by making consistent control from pouring to cooling and releasing the frame, it has become possible to produce highly efficient and high-quality waste.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0272] 発明を実施するための最良の形態は、手段 1記載のように铸枠の上面及び Z又は下 面にェヤーシール部材を設けた铸枠に造型された通気性铸型を定盤上に置き、手 段 4記載のように該通気性铸型の少なくとも 1つの外表面の全体又は一部を仮想的 に複数のセグメントに分割して、該複数のセグメントのうち選択された位置に铸型の 外表面から内部へ向かう直径及び Z又は深さの異なる複数の通気穴を設け、手段 2 3記載の吸弓 I送気装置によって該複数のセグメントに対し個別に吸引又は送気して 該複数の通気穴の周囲に複数の部分減圧ゾーンを形成し、前記通気性铸型のキヤ ビティーに所定の減圧分布を創生して、手段 17に記載のように低温で、かつ手段 5 乃至 10記載のように溶湯を所望キヤビティーのみに注湯し、その後、手段 18乃至 20 記載のように指向性凝固、冷却制御、凝固組織調整、及び溶湯の熱を回収すること を行う減圧铸造法である。  [0272] The best mode for carrying out the invention is characterized in that, as described in the means 1, on the surface plate, an air-permeable wedge shaped in a wedge frame provided with a heat seal member on the upper surface and Z or lower surface of the wedge frame. As described in step 4, the whole or a part of at least one outer surface of the breathable wedge is virtually divided into a plurality of segments, and the wedge is formed at a selected position of the plurality of segments. A plurality of air vents of different diameters and depths from the outer surface toward the inside from the inner surface, and suctioning or sending air individually to the plurality of segments by the suction bow I air supply device described in means 23; Forming a plurality of partial depressurization zones around the vent holes of the chamber, creating a predetermined depressurization distribution in the breathable wedge-shaped cavity, at a low temperature as described in means 17, and as described in means 5 to 10 The molten metal is poured into the desired cavity only, and then means 18 20 directional solidification, as described, cooling control, solidification structure adjustment, and a vacuum 铸造 method of performing recovering a melt of heat.
[0273] 以下実施例により本発明を詳細に説明するが、これら実施例により本発明が限定さ れるものではない。  The present invention will be described in detail by way of Examples, but the present invention is not limited by these Examples.
実施例 1  Example 1
[0274] 図 1に実施例 1を示す。本実施例では手段 1を用いて、ェヤーシール部材と気密部 材として減圧フードを使用した減圧铸造法を説明する。 [0275] まず、上下铸枠 2、 3の上面及び Z又は下面に気密を保っためのェヤーシール部材 7、 8、 9を設けた。これは铸型 4の減圧を行うための本発明の構成要素のひとつであ る。そして、生砂を充填して上型 5と下型 6を造型し、これを型合せし定盤 10の上に 置く。この造型工程は最も一般的な生型を用いた高効率の生産が可能な連続ライン の造型形式であって、铸型 4は定盤 10とともに順次注湯、冷却、解枠へと送られる。 定盤 10の代わりに車輪のっ 、た台車を用いても同じである。 Example 1 is shown in FIG. In this embodiment, a pressure-reducing structure method using a pressure-reducing hood as the air seal member and the airtight member will be described using means 1. [0275] First, heat seal members 7, 8, 9 for air-tightness were provided on the upper surface and the Z or lower surface of the upper and lower eyelid frames 2, 3. This is one of the components of the present invention for performing pressure reduction of the trapezoid 4. Then, it is filled with green sand, the upper mold 5 and the lower mold 6 are formed, and this is put together and placed on the surface plate 10. This molding process is a continuous line molding type that enables high-efficiency production using the most common green mold, and the mold 4 is sent to the pouring and cooling, and the frame, sequentially with the platen 10. It is the same as in the case of using wheels and wheels instead of the surface plate 10.
[0276] 铸型 4のキヤビティー 11は製品部 12、押湯部 13、湯道部 14、及び湯口部 15から 構成されている。  [0276] The mold 11 cavity 11 is composed of a product portion 12, a pouring portion 13, a runner portion 14 and a spout portion 15.
[0277] 型合せされた铸型 4の上枠 2の上面に非通気性材料よりなる気密部材として減圧フ ード 16を載置する。減圧フード 16には 1個所吸引穴 17が設けられており、ここに減 圧装置 69に連通された吸引管 18を昇降手段 19によって挿入して減圧を行う。なお 、铸型砂の吸!、込みを防止するために吸引管の途中に適宜のフィルター(図示せず )を設けることが望ましい。  [0277] A decompression head 16 is placed on the upper surface of the upper frame 2 of the mold 4 fitted as a hermetic member made of a non-air-permeable material. A suction hole 17 is provided in the decompression hood 16 at one place, and a suction pipe 18 communicated with the pressure reducing device 69 is inserted therein by the elevating means 19 to perform decompression. In addition, it is desirable to provide an appropriate filter (not shown) in the middle of the suction pipe in order to prevent absorption and intrusion of the sand-shaped sand.
[0278] また、吸引穴 17と吸引管 18との間の気密を保っために耐熱性のパッキン 20が取 付けられている。減圧フード 16の注湯口 21に相当する部分も開口されており、気密 を保っため発泡榭脂 22で覆われて 、る。  Also, in order to maintain the air tightness between the suction hole 17 and the suction pipe 18, a heat resistant packing 20 is attached. A portion corresponding to the pouring port 21 of the decompression hood 16 is also opened and covered with a foam resin 22 to maintain air tightness.
[0279] 次に本構成で作用、効果を説明する。まず、铸型全体の気密性については、定盤 10と下枠 3の接面はェヤーシール部材 9によって気密が保たれている。また、上下铸 型 5、 6の合せ面もェヤーシール部材 8によって気密が保たれている。また、上枠 2と 減圧フード 16の接面も同じくェヤーシール部材 7によって気密が保たれている。  Next, the operation and effect of this configuration will be described. First, with regard to the air tightness of the entire boat, the contact surface between the surface plate 10 and the lower frame 3 is kept airtight by the air seal member 9. Further, the mating surfaces of the upper and lower molds 5 and 6 are also kept airtight by the heat seal member 8. Further, the contact surfaces of the upper frame 2 and the decompression hood 16 are also kept airtight by the air seal member 7 as well.
[0280] そして、吸引穴 17と吸引管 18の間はパッキン 20によって気密が保たれている。ま た、減圧フード 16のもうひとつの開口した部分である注湯口 21は発泡榭脂 22で塞 がれて気密が保たれて 、る。  [0280] And, the air tightness is maintained between the suction hole 17 and the suction pipe 18 by the packing 20. In addition, the pouring spout 21 which is another open part of the decompression hood 16 is closed with the foam resin 22 and the air tightness is maintained.
[0281] したがって、铸型全体は上下铸枠 2、 3、定盤 10、減圧フード 16及びその接面のェ ヤーシール部材 7、 8、 9、並びに吸引穴 17と吸引管 18の接面のパッキン 20及び注 湯口 21の発泡榭脂 22によって気密が保たれている。すなわち、これらの構成要素で 従来の全体減圧铸造法に用いられる気密容器と同様の気密機能を有するものが得 られたことになる。なお、ノ ッキン 20及び発泡榭脂 22は一般的なシール部材であつ て、本発明の不可欠の構成要素ではない。 [0281] Therefore, the entire mold is formed by the upper and lower frames 2, 3, the surface plate 10, the decompression hood 16 and the heat seal members 7, 8, 9 of the contact surface thereof and the packing of the contact surface of the suction hole 17 and the suction pipe 18. Airtightness is maintained by the foam resin 22 of 20 and the pouring spout 21. That is, among these components, one having an airtight function similar to that of the airtight container used in the conventional total pressure reduction method is obtained. Note that knock 20 and foam resin 22 are general seal members. Not an integral component of the present invention.
[0282] そこで、この状態で吸引穴 17を通して減圧を行えば、铸型内のキヤビティー 11は所 定の減圧が得られる。その減圧状態で注湯口 21から溶湯 23を注湯すると、発泡榭 脂 22は消失し、溶湯 23は湯口部 15からキヤビティー 11を順次充填する。  Therefore, if depressurization is performed through the suction holes 17 in this state, the cavity 11 in the mold can obtain a prescribed depressurization. When the molten metal 23 is poured from the pouring spout 21 in the depressurized state, the foamed resin 22 disappears, and the molten metal 23 is sequentially filled with the cavity 11 from the sprue portion 15.
[0283] なお、本実施例では吸引管 18と減圧フード 16は別体とした力 吸引管 18と減圧フ ード 16を一体構造として昇降させてもよい。  [0283] In the present embodiment, the suction pipe 18 and the decompression hood 16 may be separate bodies, and the suction pipe 18 and the decompression hood 16 may be integrally raised and lowered.
[0284] 以上のように通常の铸枠の上下面にェヤーシール部材を設け、上枠の上に減圧フ 一ドを載置し、その吸引穴カゝら減圧して注湯することによって、何ら特殊な気密容器 を用いずに全体減圧铸造法を行うことが可能になった。  [0284] As described above, the heat seal members are provided on the upper and lower surfaces of a normal bowl frame, and the depressurization hood is placed on the upper frame, and the suction hole is pumped down to supply pressure. It has become possible to carry out the entire decompression construction without using a special airtight container.
[0285] 本実施例は量産を目的とした高効率連続ラインに最も一般的に用いられている通 常の铸枠にェヤーシール部材と減圧フードを組合せることによって、気密容器を構 成して 、るので、容易に既存のラインにも適用できると!、う特徴を有するものである。 勿論、新規のラインに適用できることは言うまでもない。すなわち、本実施例の減圧铸 造法によって、従来、専用の気密容器を用いることから、特殊铸造方法として特殊材 質、薄肉品、複雑品などを対象に適用されていた減圧铸造法が、一般の铸造品を生 産する高効率の生産が可能な連続ラインに容易に適用できるようになった。  In the present embodiment, an airtight container is configured by combining an ordinary seal frame most commonly used in a high efficiency continuous line for mass production with an air seal member and a decompression hood. Therefore, it can be applied to existing lines easily! Of course, it goes without saying that the invention can be applied to new lines. That is, according to the decompression construction method of this embodiment, since a dedicated airtight container is conventionally used, the decompression construction method applied to special materials, thin-walled products, complex articles, etc. as a special construction method is generally used. It can be easily applied to continuous lines capable of highly efficient production of producing forged products.
実施例 2  Example 2
[0286] 図 2に実施例 2を示す。本実施例では同じく手段 1を用いて、実施例 1とほぼ同じ構 成で、気密部材として铸型の浮上防止に用いる重錘を利用した減圧铸造法を説明 する。  Example 2 is shown in FIG. In the present embodiment, a pressure reducing structure method using a weight which is substantially the same as that of the embodiment 1 and is used for preventing the floating of the bowl type as the airtight member will be described using the means 1 in the same manner.
[0287] 一般に重錘 24は注湯後の铸型の膨張による上型 5及び上枠 2の浮上現象を防止 するために上型 5又は上枠 2の上に載せるものである。本実施例ではこの重錘 24を 気密部材として上枠 2の上に載せた。重錘 24には吸引穴 17と注湯口 21が設けられ ており、この部分の気密方法は実施例 1と同じである。  In general, the weight 24 is placed on the upper mold 5 or the upper frame 2 in order to prevent the floating phenomenon of the upper mold 5 and the upper frame 2 due to expansion of the mold after pouring. In the present embodiment, the weight 24 is placed on the upper frame 2 as an airtight member. The weight 24 is provided with a suction hole 17 and a pouring port 21. The airtightness method of this portion is the same as that of the first embodiment.
[0288] 実施例 1における減圧フード 16の代わりに重錘 24を用いただけであって、铸型全 体の気密性は全く同じである。この構成で同じく吸引穴 17から減圧を行って注湯す れば実施例 1と同様な減圧铸造法を行うことができる。  [0288] A weight 24 is only used instead of the decompression hood 16 in Example 1, and the airtightness of the entire saddle-shaped body is exactly the same. Similarly, if the pressure is reduced from the suction hole 17 and pouring is performed in the same manner, the same reduced pressure forming method as that of the first embodiment can be performed.
[0289] 本実施例では、铸造において一般的に使用される重錘を気密部材として用いること によって、簡単に減圧铸造法を行うことができた。作用、効果は実施例 1と同じである 実施例 3 In the present embodiment, using a weight generally used in forging as an airtight member It was possible to easily carry out the decompression construction method. The action and effect are the same as in Example 1. Example 3
[0290] 図 3に実施例 3を示す。本実施例では同じく手段 1を用いて、実施例 1及び実施例 2 とほぼ同じ構成で、気密部材として可撓性のビニールを使用した減圧铸造法を説明 する。  Example 3 is shown in FIG. In the present embodiment, a decompression construction method using a flexible vinyl as an airtight member with substantially the same configuration as the embodiment 1 and the embodiment 2 will be described using the means 1 in the same manner.
[0291] 本実施例では、気密部材として薄い可撓性のビニール 25を上型 5の上に被せるこ とによって铸型 4の気密を得るようにした。そして吸引管 18をビニール 25の吸引穴 1 7を通して上型 5の外表面に当接する。  [0291] In the present example, the thin and flexible vinyl 25 is put on the upper mold 5 as an airtight member to obtain the airtightness of the mold 4. Then, the suction pipe 18 is brought into contact with the outer surface of the upper mold 5 through the suction holes 17 of the vinyl 25.
[0292] この状態力も減圧するとビニール 25は上型 5に吸着され铸型全体の気密が保たれる 。そして所定の減圧が得られた後、注湯を行う。本実施例によっても容易に減圧铸造 法を実施することができた。  If the pressure is also reduced, the vinyl 25 is adsorbed to the upper mold 5 and the entire mold is kept airtight. And after a predetermined pressure reduction is obtained, pouring is performed. Also in this example, the reduced pressure construction method could be easily implemented.
[0293] 本実施例では、実施例 1及び実施例 2のように減圧フードや重錘を用いないので減 圧のための構成要素は簡単になった。しかし、ビニールを消耗材として使うので経済 性の面では実施例 1及び実施例 2よりも劣る。  In the present example, the pressure reducing hood and the weight are not used as in the example 1 and the example 2, so the components for pressure reduction are simplified. However, since vinyl is used as a consumable, it is inferior to Examples 1 and 2 in terms of economy.
[0294] なお、ビニールを用いる減圧铸造法は特許文献 6他に消失模型の減圧铸造法とし て開示されているが、その場合には、消失模型を一面が開口した減圧容器に収容し てビニールを開口部に被せ铸型内部又は铸枠側壁カゝら減圧するものである。本実施 例は铸型を収容する減圧容器はまったく用いず、またビニール 25の吸引穴 17を通 して铸型外部から吸引減圧する点において異なっている。  [0294] Although a decompression construction method using vinyl is disclosed in Patent Document 6 and others as a decompression construction method of a loss model, in such a case, the loss model is accommodated in a pressure reduction container with one side open and the vinyl is stored. The pressure is reduced by covering the opening portion with the inside of the crucible or the side wall of the crucible frame. The present embodiment is different from the first embodiment in that the pressure reducing container for accommodating the bowl is not used at all, and the suction and the pressure are reduced from the outside of the bowl through the suction holes 17 of the vinyl 25.
[0295] 以上のように、本実施例も気密部材としてビニールを用いることによって、本発明の 減圧铸造法を行うことができた。実施例 実施例 2、実施例 3ともにェヤーシール部 材と気密部材を用いることによって、高効率の生産が可能な連続ラインに適用できる 減圧铸造法を提供した。  As described above, also in the present example, by using vinyl as the airtight member, the reduced pressure construction method of the present invention could be performed. EXAMPLES Example 2 By using the air seal member and the airtight member in both of Example 2 and Example 3, the reduced pressure forging method applicable to a continuous line capable of highly efficient production was provided.
[0296] このように実施例 1乃至 3によって減圧铸造法が高効率の生産が可能な連続ライン に容易に適用できるようになったということは、これを基本に、後述する実施例と組合 せて、高精度の減圧分布が創生された铸造法、所望のキヤビティー部分のみに溶湯 を充填する铸造法、及び冷却制御を行う铸造法などの技術を含む本発明の減圧铸 造法が一般品にも広く適用できるのでその意義は大きい。 [0296] Thus, the fact that the decompression forging method can be easily applied to a continuous line capable of highly efficient production as described in Examples 1 to 3 is based on this in combination with the examples described later. The pressure reducing crucible of the present invention includes techniques such as a forging method in which a highly accurate reduced pressure distribution is created, a forging method for filling the molten metal only in a desired cavity portion, and a forging method for performing cooling control. Its significance is great because it can be widely applied to general products.
実施例 4  Example 4
[0297] 図 4に実施例 4を示す。本実施例では手段 2を用いて、铸型外表面から内部へ向か う直径及び Z又は深さの異なる複数の通気穴を設け、铸型外表面から吸引減圧する ことによって所定の減圧分布を創生して溶湯を注湯する減圧铸造法を説明する。  A fourth embodiment is shown in FIG. In this embodiment, a plurality of venting holes having different diameters and depths or depths from the outer surface of the bowl to the inside are provided by using the means 2, and a predetermined reduced pressure distribution is obtained by suction and pressure reduction from the outer surface of the bowl. Explain the decompression construction method of creating and pouring molten metal.
[0298] まず、铸型外表面 26から内部へ向力つて、キヤビティー 11の製品部 12、押湯部 13 、湯道部 14の上部に 4つの通気穴 27を設けた。各通気穴の直径及び深さは、製品 部 12と押湯部 13は高い減圧度になるように大きく又は深く設けている。また、湯口部 15側の減圧度が低くなるように湯道部 14の上部の 2つの通気穴は浅く設けている。  First, four ventilation holes 27 were provided in the upper part of the product portion 12 of the cavity 11, the pouring portion 13, and the runner portion 14 in a direction from the bowl-shaped outer surface 26 toward the inside. The diameter and depth of each vent hole are large or deep so that the product portion 12 and the pouring portion 13 have a high degree of pressure reduction. Also, the two vent holes at the top of the runner portion 14 are provided shallow so that the degree of pressure reduction on the side of the sprue portion 15 becomes low.
[0299] 次に、実施例 1と同じ構成で、上枠 2の上面に減圧フード 16を載置し、減圧フード 1 6に設けた吸引穴 17を通して吸引管 18によって減圧を行うようにした。  Next, in the same configuration as in Example 1, the depressurizing hood 16 was placed on the upper surface of the upper frame 2 and depressurization was performed by the aspirating tube 18 through the aspiration holes 17 provided in the depressurizing hood 16.
[0300] 本構成で作用、効果を説明する。減圧装置 69によって所定の減圧を行うと、減圧 は铸型の外表面 26から铸型粒子を通して内部へ作用し、キヤビティー 11が所定の 減圧度になる。したがって、铸型外表面 26とキヤビティー 11の間の铸型厚みが厚い 部位の下にあるキヤビティー部分は铸型粒子の通気抵抗が大きいので減圧作用が 届きにくぐ铸型厚みが薄!、部位のキヤビティー部分は通気抵抗が小さ!、ので減圧 作用が届きやすい。すなわち、铸型各部の铸型厚さの違いによってキヤビティー各 部の減圧度に差が生じることになる。  The operation and effects of this configuration will be described. When a predetermined pressure reduction is performed by the pressure reducing device 69, the pressure reduction acts from the outer surface 26 of the bowl shape through the bowl-shaped particles to the inside, and the cavity 11 reaches a predetermined pressure reduction degree. Therefore, the cavity part under the part where the thickness is thick between the outer surface 26 and the cavity 11 is large because the air flow resistance of the particles is large, so the pressure reduction action is small and the thickness of the part is thin! The air flow resistance is small in the cavity part! Because it is easy to reach the decompression action. That is, a difference in the degree of pressure reduction in each portion of the cavity occurs due to the difference in the thickness of the portion of each portion of the bowl.
[0301] 勿論、铸型全体が完全に気密が保たれておれば、キヤビティー全体は一定時間の 後には均一な減圧度となる。しかし、完全な気密を行おうとすると各部のェヤーシー ルに多大の費用を要することになるので、一般的にはある程度の気密度で減圧が実 施されている。つまり、铸型内部へある程度の空気の流入を許容して減圧铸造が行 われているのである。  [0301] Of course, if the entire mold is completely airtight, the entire cavity will have a uniform degree of pressure reduction after a certain period of time. However, if it is intended to achieve complete airtightness, the cost of each part will be very high, so decompression is generally performed with a certain degree of tightness. In other words, decompression construction is carried out to allow a certain amount of air to flow into the bowl.
[0302] したがって、実際的な減圧铸造ではある程度の空気の流入と減圧による吸引がバ ランスして減圧が行われている。そうすると、前述の各部位の铸型厚みの差によって 各キヤビティー部分の減圧され易さに差が生じることになる。  [0302] Therefore, in a practical reduced pressure structure, pressure reduction is performed by balancing a certain amount of air inflow and suction due to the pressure reduction. In this case, the difference in wedge thickness of each portion described above causes a difference in ease of depressurization of each cavity portion.
[0303] 本実施例ではこの原理を利用して、減圧度を高めたいキヤビティー部分に向力つて 大きな、深い通気穴を設け、その部分の铸型厚みを局部的ではあるが薄くして通気 抵抗を下げることによって減圧度を高めるようにした。 [0303] In this embodiment, by utilizing this principle, a large, deep ventilating hole is formed in the cavity portion where the degree of pressure reduction is desired to be increased, and the wedge-shaped thickness of that portion is locally but thinly ventilated. The pressure reduction degree was increased by lowering the resistance.
[0304] すなわち、本実施例の減圧は基本的には全体減圧であるが、複数の通気穴 27を 通して減圧することによって、各通気穴 27の周囲は選択的に減圧され、部分減圧と 同じ状態になっている。つまり、本実施例の減圧方法は全体減圧と部分減圧の複合 されたものとみなすことができる。  [0304] That is, although the reduced pressure in the present embodiment is basically a total reduced pressure, by reducing the pressure through the plurality of vent holes 27, the periphery of each vent hole 27 is selectively decompressed, It is in the same state. That is, the depressurization method of this embodiment can be regarded as a combination of the overall depressurization and the partial depressurization.
[0305] さらに詳述すると、各通気穴 27の周囲には部分減圧作用によってそれぞれの部分 減圧ゾーンが形成されており、それらの複合としてキヤビティー 11全体の減圧分布が 創生されている。したがって、各通気穴 27の大きさ、深さ及び位置を変えることによつ てキヤビティー 11に所定の減圧分布を創生することができる。本実施例で設けた通 気穴 27はこの考えにもとづいて、製品部 12及び押湯部 13の減圧度が高ぐ湯口部 15側の減圧度が低 、減圧分布になるように設けられて 、る。  [0305] More specifically, partial partial pressure reduction zones form respective partial pressure reduction zones around each vent hole 27, and a pressure reduction distribution of the entire cavity 11 is created as a combination thereof. Therefore, by changing the size, depth and position of each vent hole 27, a predetermined reduced pressure distribution can be created in the cavity 11. Based on this idea, the vent holes 27 provided in this embodiment are provided such that the degree of reduced pressure on the spout portion 15 side where the degree of reduced pressure is high in the product portion 12 and the pouring portion 13 is low and the reduced pressure distribution is obtained. .
[0306] 次に、所定の減圧を行った後、注湯を開始する。ここで注意すべきことは、注湯にと もなつて減圧された铸型の気密は湯口部 15付近で破れ、铸型内の減圧度は大きく 変化する。その結果、キヤビティー 11の減圧分布が変化することになる。これが全体 減圧の問題点のひとつである。  Next, after performing a predetermined pressure reduction, pouring of water is started. What should be noted here is that the air-tightness of the bowl-type that was depressurized due to the pouring of water breaks near the gate 15, and the degree of pressure reduction in the bowl-type changes greatly. As a result, the pressure reduction distribution of the cavity 11 changes. This is one of the problems with overall depressurization.
[0307] しかし、本実施例では複数の通気穴 27によって減圧度は最初力も湯口部 15側が低 ぐ製品部 12と押湯部 13が高い減圧分布が創生されているので、湯口部 15付近の 減圧変化は小さい。し力も最初力 湯口部 15側力 製品部 12へ向力つて減圧度が 高くなるような減圧分布が創生されるように複数の通気穴 27が設けられているので、 湯口部 15付近で発生した減圧変化はすみやかに解消されてもとの減圧分布を回復 するように作用する。  However, in the present embodiment, a high pressure reduction distribution is created by the plurality of vent holes 27 in which the product 12 and the pouring portion 13 have a reduced pressure at the same time at the outlet 15 side. The change in pressure is small. Since a plurality of vent holes 27 are provided so that a pressure reduction distribution is created so that the pressure is directed toward the product part 12 and the pressure reduction degree is increased toward the product part 12 first, the generation occurs near the gate part 15 The reduced pressure changes are promptly resolved and act to restore the original reduced pressure distribution.
[0308] この結果、キヤビティー 11は初期の減圧分布に近い状態が保たれ、注湯された溶 湯は大きな減圧変化の影響を受けることが少ない。したがって、溶湯の流れは乱れ 少なぐかつ創生された減圧分布に吸引誘導されてスムースに製品部を充填すること ができる。  [0308] As a result, the cavity 11 maintains a state close to the initial depressurization distribution, and the poured hot water is hardly affected by a large depressurization change. Therefore, the flow of the molten metal can be suctioned and induced to a turbulent and generated reduced pressure distribution, and the product portion can be smoothly filled.
[0309] ここで、複数の通気穴 27を設けて 、な 、通常の铸型を用いた従来の全体減圧铸 造法ではどのような注湯状況になるかを説明する。この場合は、全体がほぼ均一な 減圧分布になっている状態で注湯をすることを目的としている。しかし、注湯開始とと もに減圧分布は上記のように湯口部 15付近で大きく変化するので、まずこれだけで も初期の目的は達成できていない。また、減圧度はキヤビティー 11全体で均一にな つているので、湯口部 15付近の減圧度は本実施例の場合よりも高いので、その減圧 変化は大きい。したがって、溶湯は大きな減圧変化の影響を受け、流れが乱れ易い ことになる。 [0309] Here, a plurality of vent holes 27 will be provided to describe what kind of pouring situation will occur in the conventional whole decompression construction method using a normal bowl shape. In this case, the purpose is to pour the water in a state where the pressure distribution is almost uniform throughout. However, with pouring start Since the pressure reduction distribution also largely changes near the gate 15 as mentioned above, the initial purpose can not be achieved with this alone. Further, since the degree of pressure reduction is uniform throughout the cavity 11, the degree of pressure reduction near the gate portion 15 is higher than in the case of the present embodiment, so the pressure reduction change is large. Therefore, the molten metal is affected by a large pressure reduction change, and the flow is easily disturbed.
[0310] さらに、この発生した減圧変化に対して、従来の全体減圧铸造法では減圧はあくまで 均一化の方向に作用するので、注湯過程で再度創生される減圧分布は均一に近い ものである。つまり、溶湯をスムースに製品部へ吸引誘導するような減圧分布にはな らない。溶湯の充填は大気圧と溶湯の静圧 (一部は動圧に変換される)に押された形 で行われるだけである。  [0310] Further, since the reduced pressure only acts in the direction of homogenization in the conventional whole reduced pressure structure method with respect to the generated reduced pressure change, the reduced pressure distribution created again in the pouring process is nearly uniform. is there. In other words, it does not have a pressure reduction distribution that causes the molten metal to be smoothly drawn into the product section. The filling of the melt is only performed in the form of pressure at atmospheric pressure and the static pressure of the melt (partly converted to dynamic pressure).
[0311] この状態は単にキヤビティー内の圧力が低いというだけで、何ら溶湯を目的の製品 部に乱れ少なくスムースに吸引誘導する作用はない。し力も、大きな減圧変化は残つ たまま注湯は進行するので、もし薄肉で複雑な形状の製品を铸造するような場合に は溶湯を完全に充填することができない場合も生じる。  In this state, the pressure in the cavity is merely low, and there is no effect of causing any molten metal to be disturbed and smoothly drawn to the target product portion smoothly. In addition, since the pouring proceeds with a large change in pressure, the molten metal may not be completely filled if a thin-walled, complex-shaped product is to be produced.
[0312] なお、本実施例は 1枠に複数個の製品を込めるいわゆる複数個込め铸造において も全く同様に有効である。すなわち、減圧度を高めたい各製品部又は製品部と押湯 部のキヤビティー部分付近に深ぐ大きい通気穴を設けることによって、容易に所定 の減圧分布を創生することができる。  [0312] Note that this embodiment is also effective in a so-called multi-piece structure in which a plurality of products can be contained in one frame. That is, by providing a large vent hole deep in the vicinity of each product portion or product portion desired to increase the degree of pressure reduction and the cavity portion of the pouring portion, a predetermined pressure reduction distribution can be easily created.
[0313] 一方、前述の特許文献のいくつかには部分減圧を用いて減圧勾配を創生する铸造 法が種々開示されている力 それらはいずれも一端力 減圧して単純な一方向の減 圧勾配を創生するものである。また、対象とする製品の込め数に関しても、 1個込めを 対象にしているものがほとんどである。もし複数個込めが可能であっても、部分減圧 のための何らかの補助部材を所要部位に設ける必要があり、多大の工数と費用を要 するもので複数個込めの铸造に対しては実用性に欠ける。  On the other hand, in some of the above-mentioned patent documents, various construction methods for creating a pressure reduction gradient using partial pressure reduction are variously disclosed. All of them are one-way pressure reduction and simple pressure reduction in one direction. It is what creates a gradient. Also, regarding the number of loads for target products, most are for single loads. Even if multiple loading is possible, it is necessary to provide an auxiliary member for partial pressure reduction at the required site, which requires a large number of man-hours and costs, and is practical for the construction of multiple loading. I miss it.
[0314] また、本実施例では減圧フードを铸型上部に載置したが、铸型下部に設けて減圧す ることも可能である。この場合には、铸型上部は何らかの気密部材を載置して気密を 保つようにする。さらに、铸型の種類によっては铸型側面に当接して減圧しても作用 、効果は同じである。 [0315] なお、本実施例では実施例 1と同じ铸枠、铸型の構成で実施した例を示したが、本 発明の铸枠、铸型はこれに限定されるものではない。すなわち、無枠铸型及び上部 を開口した铸枠チャンバ一に造型された铸型などにおいても複数の通気穴を設けて 本実施例と同様な減圧铸造法を行うことができる。また、本実施例では減圧フードを 用いた減圧方法を示したが、これに限定されるものではなぐ铸型外表面から減圧す る方法であれば作用、効果は同じである。 Further, in the present embodiment, the decompression hood is placed on the upper part of the bowl shape, but it is also possible to provide the decompression hood on the lower part of the bowl shape to reduce the pressure. In this case, the upper part of the bowl is placed on an airtight member to keep it airtight. Furthermore, depending on the type of wedge, even if the pressure is reduced by coming into contact with the wedge side, the effect is the same. Although the present embodiment shows an example in which the configuration of the weir frame and weir is the same as in the first embodiment, the weir and weir of the present invention are not limited to this. That is, even in the case of a frameless bowl shape and a bowl shape molded in a bowl frame chamber having an open top, a plurality of vent holes can be provided to perform the same reduced pressure forming method as that of this embodiment. Further, although the pressure reduction method using the pressure reduction hood is shown in the present embodiment, the action and effect are the same as long as the method of reducing pressure from the outer surface of the bowl is not limited thereto.
[0316] 以上のように、本実施例では直径及び Z又は深さの異なる複数の通気穴を設けて 減圧することによって、複数の通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、 その複合としてキヤビティー内に所定の減圧分布を創生して、溶湯の乱れの少な ヽ スムースな注湯が可能となった。  As described above, in the present embodiment, a partial pressure reduction zone is formed around each of the plurality of vent holes by providing and ventilating the plurality of vent holes having different diameters and Z or depth, and By creating a specific pressure reduction distribution in the cavity, smooth pouring with less disturbance of the molten metal became possible.
[0317] 本実施例において、铸型外表面から直径及び Z又は深さの異なる複数の通気穴 を設けて減圧することによって、全体減圧と部分減圧を組合せた一種の複合減圧法 とも言える高精度な減圧铸造法を提供した。  [0317] In the present example, high pressure accuracy which can be said to be a kind of combined pressure reduction method combining total pressure reduction and partial pressure reduction by providing a plurality of vent holes of different diameter and Z or depth from the bowl-shaped outer surface and reducing pressure. Provided a reduced pressure construction method.
実施例 5  Example 5
[0318] 図 5に実施例 5を示す。本実施例では手段 3を用いて、複数の通気穴に対し個別に 吸引して減圧を行う減圧铸造法を説明する。  Example 5 is shown in FIG. In the present embodiment, a pressure reduction structure method in which a plurality of vent holes are suctioned individually for pressure reduction using means 3 will be described.
[0319] まず、铸枠、铸型の構成は実施例 4と同じである。铸型外表面 26から同じく複数の 通気穴 27を設けている。  [0319] First, the configurations of the weir frame and the weir type are the same as in the fourth embodiment. A plurality of vent holes 27 are similarly provided from the bowl-shaped outer surface 26.
[0320] 複数の通気穴 27から個別に吸引減圧するため、铸型と接する開口端を有する複 数の減圧ボックス 28を昇降手段 19によって各通気穴 27の上に当接して載置した。 そして、その複数の減圧ボックス 28はそれぞれ吸引流量制御手段 29を介して減圧 装置 69に連通されている。また、铸型外表面 26の気密を保っために気密フード 30 が減圧ボックス 28の外側に連接されて設けられており、その気密フード 30は上枠 2 の上に載置されている。  [0320] In order to suction and depressurize separately from the plurality of air vents 27, a plurality of pressure reducing boxes 28 having open ends in contact with the bowl shape were placed in contact with the air vents 27 by the lifting means 19. The plurality of pressure reducing boxes 28 are communicated with the pressure reducing device 69 via the suction flow rate control means 29 respectively. In addition, an airtight hood 30 is connected to the outside of the decompression box 28 to keep the outer surface 26 airtight, and the airtight hood 30 is placed on the upper frame 2.
[0321] 本構成で作用、効果を説明する。铸型外表面 26に設けられた複数の通気穴 27は実 施例 4で示したと同じように、製品部 12が高い減圧度になり、湯口部 15側が低い減 圧度になるように設けられている。実施例 4では铸型上面全体を覆う減圧フード 16で 全体減圧を行った力 本実施例では各通気穴 27に対して複数の減圧ボックス 28を 通して個別に吸引流量を制御して減圧するようにした。 The operation and effects of this configuration will be described. As in the fourth embodiment, a plurality of vent holes 27 provided on the outer surface 26 of the bowl is provided so that the product portion 12 has a high degree of pressure reduction and the spout portion 15 has a low degree of pressure reduction. ing. In the fourth embodiment, the force of the entire decompression performed by the vacuum hood 16 covering the entire upper surface of the bowl is used. In this embodiment, a plurality of vacuum boxes 28 are provided for each vent hole 27. The suction flow rate was controlled separately to reduce the pressure through it.
[0322] つまり、減圧を高めたい部位の通気穴に対応する減圧ボックスの吸引流量を多くす ることによって、その通気穴の周囲に形成される部分減圧ゾーンを強くすることができ る。また逆に、減圧度を下げたい(弱くしたい)部位に対応する減圧ボックスの吸引流 量を少なくすることによって、その通気穴の周囲に形成される部分減圧ゾーンを弱く することができる。すなわち、各減圧ボックス 28の吸引流量を個別に制御することに よって各通気穴 27の周囲の部分減圧ゾーンの強さを制御することができるようにした  That is, the partial pressure reduction zone formed around the vent hole can be strengthened by increasing the suction flow rate of the pressure reducing box corresponding to the vent hole of the portion where the pressure reduction is desired to be increased. Conversely, the partial pressure reduction zone formed around the vent hole can be weakened by reducing the suction flow rate of the pressure reduction box corresponding to the portion where the pressure reduction degree is desired to be reduced (weakened). That is, by controlling the suction flow rate of each decompression box 28 individually, it is possible to control the strength of the partial decompression zone around each ventilation hole 27.
[0323] すなわち、本実施例では個別に制御された複数の部分減圧を行っていることにな る。つまり本実施例では、実施例 4で説明した各通気穴 27の直径と深さを変えて得ら れる一種の部分減圧の作用に加え、各通気穴 27から個別に吸引流量を制御して減 圧することによってさらに明確な部分減圧が行えるようにした。その結果、本実施例は 铸型に設けた複数の通気穴 27によるものと、複数の減圧ボックス 28によるものの 2種 類の部分減圧の作用を有するより高精度な減圧铸造法となった。 That is, in the present embodiment, a plurality of partial pressure reductions individually controlled are performed. That is, in this embodiment, in addition to the action of a kind of partial pressure reduction obtained by changing the diameter and depth of each vent hole 27 described in the fourth embodiment, the suction flow rate is controlled separately from each vent hole 27 to reduce The partial pressure can be further clarified by pressure. As a result, in this example, a more accurate reduced pressure structure having two kinds of partial pressure reduction actions by the plurality of vent holes 27 provided in the bowl shape and by the plurality of pressure reduction boxes 28 was achieved.
[0324] 以上の結果、本実施例はキヤビティー 11に所定の減圧分布をより高精度に創生で きるようになり、実施例 4に説明した原理によって、注湯にあたっての減圧変化に対し てもさらに速やかに対応ができ、よりスムースな注湯が実現できるようになった。  [0324] As a result, in the present embodiment, it is possible to create a predetermined decompression distribution with higher accuracy in the cavity 11, and according to the principle described in the fourth embodiment, even with respect to the decompression change at pouring. It is possible to respond more quickly and realize smoother pouring.
[0325] なお、各通気穴 27の直径と深さを同一として、複数の減圧ボックス 28の吸引流量 を制御する方法でも同じ作用、効果を得ることができる。この場合には、通気穴 27の 穿孔装置を簡単ィ匕することができるメリットがある。  The same action and effect can be obtained by the method of controlling the suction flow rates of the plurality of decompression boxes 28 with the same diameter and depth of the vent holes 27. In this case, there is an advantage that the perforation device of the vent hole 27 can be easily connected.
[0326] また、気密フード 30は铸型全体の気密を保っために設けたが、減圧ボックス 28の 数を多くしてひとつの铸型外表面 26を覆うことができる場合や、铸型内へある程度の 空気の流入を許容できる場合には、気密フード 30は設置せずに減圧してもほぼ同 様な作用、効果を得ることができる。  In addition, although the airtight hood 30 is provided to maintain the airtightness of the entire bowl shape, if the number of decompression boxes 28 can be increased to cover one bowl-like outer surface 26, If a certain degree of air flow can be tolerated, the same effect can be obtained even if the air-tight hood 30 is not installed and depressurized.
[0327] 以上のように、複数の通気穴と個別に吸引流量を制御した複数の減圧ボックスを組 合せることによって、より高精度な所定の減圧分布を創生した減圧铸造法を提供した 実施例 6 [0328] 図 6に実施例 6を示す。本実施例では同じく手段 3を用いて,複数の通気穴に対し 個別に吸引又は送気して減圧を行う減圧铸造法を説明する。 [0327] As described above, by combining a plurality of vent holes and a plurality of pressure reduction boxes which individually control the suction flow rate, a pressure reduction structure method is provided in which a predetermined pressure distribution with higher accuracy is created. 6 Example 6 is shown in FIG. In the present embodiment, the same method 3 is used to describe a decompression / construction method in which a plurality of vent holes are individually suctioned or supplied with air to reduce the pressure.
[0329] 本実施例においては铸枠、铸型の構成は実施例 5と同じである。铸型外表面 26か ら同じく複数の通気穴 27を設けている。  [0329] In the present embodiment, the configuration of the weir frame and the weir type is the same as that of the fifth embodiment. A plurality of vent holes 27 are similarly provided from the bowl-shaped outer surface 26.
[0330] 複数の通気穴 27から個別に吸引又は送気するため、铸型と接する開口端を有する 複数の減圧ボックス 28を昇降手段 19によって各通気穴 27の上に当接して載置した 。そして、本実施例では、その複数の減圧ボックス 28にはそれぞれ吸引口 31と送気 口 32が設けられている。各吸引口 31は吸引流量制御手段 29を介して減圧装置 69 に連通されており、また各送気口 32は送気流量制御手段 33を介して空気圧縮装置 70に連通されている。  [0330] In order to suction or supply air separately from the plurality of ventilation holes 27, a plurality of decompression boxes 28 having open ends in contact with the bowl shape were placed on the respective ventilation holes 27 by elevating means 19. Further, in the present embodiment, the suction ports 31 and the air ports 32 are provided in the plurality of pressure reducing boxes 28 respectively. Each suction port 31 is in communication with a pressure reducing device 69 via a suction flow rate control means 29, and each air supply port 32 is in communication with an air compression device 70 via an air flow amount control means 33.
[0331] また、铸型外表面 26の気密を保っために気密フード 30が複数の減圧ボックス 28の 外側に連接されて設けられており、該気密フード 30は上枠 2の上に載置されている。  Further, in order to keep the outer surface 26 airtight, an airtight hood 30 is provided connected to the outside of the plurality of pressure reducing boxes 28, and the airtight hood 30 is placed on the upper frame 2. ing.
[0332] 本構成で作用、効果を説明する。铸型外表面 26に設けられた複数の通気穴 27の作 用は実施例 5と全く同じである。本実施例では、実施例 5で行った吸引のみによる減 圧に加えて各減圧ボックス 28で送気も行えるようにした。  The operation and effect of this configuration will be described. The operation of the plurality of ventilation holes 27 provided in the bowl-shaped outer surface 26 is the same as in the fifth embodiment. In this embodiment, in addition to the pressure reduction only by suction performed in the fifth embodiment, air supply can be performed in each pressure reduction box 28.
[0333] 吸引に加えて送気ができるようにした目的は、所望の減圧分布をさらに高精度で得る ようにするためである。すなわち、減圧度を下げたい部位の通気穴に連通する減圧 ボックス 28から少量の圧縮空気を送気することによって積極的に減圧度を下げること ができるようにした。  [0333] The purpose of enabling air supply in addition to suction is to obtain a desired reduced pressure distribution with higher accuracy. That is, by supplying a small amount of compressed air from the pressure reducing box 28 communicating with the vent hole of the portion where the pressure reducing degree is to be reduced, the pressure reducing degree can be positively reduced.
[0334] これは、ひとつの通気穴力もの吸引によるその周囲の部分減圧ゾーンの影響は铸型 の各部に及ぶので、減圧を下げたい部位も減圧されることになる。そこで、少量の圧 縮空気を送気してその部位の減圧度を積極的に下げることができるようにしたもので ある。なお、送気にあたっては流量が多すぎると空気が溶湯に巻き込んでガス欠陥 等の原因になるので適宜な流量とする。  [0334] This is because the influence of the partial pressure reduction zone around it by the suction of one vent hole force is applied to each part of the boat, so the part where the pressure reduction is desired to be reduced is also reduced. Therefore, it is possible to supply a small amount of compressed air to actively reduce the degree of pressure reduction at that site. When air flow is too high, air will be caught in the molten metal and cause gas defects etc. Therefore, the flow rate should be appropriate.
[0335] 本実施例では製品部 12と押湯部 13の上部に設けた 3つの通気穴には吸引を行つ て減圧度を高め、湯口部 15に近い通気穴には送気を行って減圧度を下げた。吸引 と送気の状態を減圧ボックス 28の中の矢印の向きと大きさで示した。この結果、铸型 キヤビティー 11の減圧分布がさらに高精度に創生できるようになった。 [0336] 以上のように、複数の通気穴に対して個別に吸引と送気が併用して行えるようにな つたので、実施例 5よりさらに高精度に所定の減圧分布を創生して注湯ができる減圧 铸造法を提供した。 In the present embodiment, suction is performed to the three vent holes provided at the upper portion of the product portion 12 and the pouring portion 13 to increase the degree of pressure reduction, and air is delivered to the vent holes near the sprue portion 15. Reduced the degree of pressure reduction. The states of suction and air supply are indicated by the direction and size of the arrows in the decompression box 28. As a result, the reduced pressure distribution of the wedge-shaped cavity 11 can be created with higher accuracy. [0336] As described above, suction and insufflation can be performed separately for a plurality of vent holes, so a predetermined pressure reduction distribution can be created with higher accuracy than in the fifth embodiment. We provided a decompression method that can produce hot water.
実施例 7  Example 7
[0337] 図 7に実施例 7を示す。本実施例では手段 4を用いて、複数の通気穴を設けるととも に、铸型の外表面のひとつを仮想的に複数の铸型セグメントに分割し、その複数の 铸型セグメントに対し個別に吸弓 I又は送気して部分減圧を行って注湯する減圧铸造 法を説明する。  Example 7 is shown in FIG. In the present embodiment, a plurality of vent holes are provided by means 4 and one of the outer surfaces of the cage is virtually divided into a plurality of cage segments, and the plurality of cage segments are individually divided. Suction bow I or air supply and partial pressure reduction and pouring is explained.
[0338] 本実施例にお!ヽては铸枠、铸型の構成は実施例 6と同じである。また、铸型外表面 26に複数の通気穴 27を設けて 、る。この複数の通気穴 27は铸型外表面 26を仮想 的に铸型セグメントに分割し、その中の選択された位置に設けられている。  [0338] In this embodiment, the configuration of the weir frame and the weir type is the same as that of the sixth embodiment. Also, a plurality of vent holes 27 are provided in the bowl-shaped outer surface 26. The plurality of vent holes 27 virtually divides the wedge-shaped outer surface 26 into wedge-shaped segments and is provided at selected positions therein.
[0339] 本実施例においても铸型と接する開口端を有する複数の減圧ボックス 28を用いる 力 複数の減圧ボックス 28は側面で連接されており、全体でほぼひとつの铸型外表 面 26を覆うようになっている。つまり、ひとつの铸型外表面 26を仮想的に所定の大き さの铸型セグメントに分割し、各铸型セグメントに対応するすべての位置に複数の減 圧ボックス 28が連接されて配置された構成となっている。つまり、複数の通気穴 27と 複数の減圧ボックス 28は同一の铸型セグメントに対応した位置に穿孔及び設置され ており、複数の通気穴 27と複数の減圧ボックス 28は連通されることになる。  Also in the present embodiment, a plurality of pressure reducing boxes 28 having an open end in contact with the bowl shape is used. The plurality of pressure reducing boxes 28 are connected on the side, and a total of approximately one bowl shape outer surface 26 is covered. It has become. In other words, one wedge-shaped outer surface 26 is virtually divided into wedge-shaped segments of a predetermined size, and a plurality of pressure reducing boxes 28 are arranged in a connected manner at all positions corresponding to each wedge-shaped segment. It has become. That is, the plurality of vent holes 27 and the plurality of pressure reducing boxes 28 are perforated and installed at positions corresponding to the same vertical segment, and the plurality of vent holes 27 and the plurality of pressure reducing boxes 28 are communicated.
[0340] そして、铸型全体の気密を保っために複数の減圧ボックス 28の周囲に気密フード 30が取付けられて ヽる。複数の減圧ボックス 28は昇降手段 19によって铸型外表面 2 6に当接して載置されている。なお、本実施例の構成では、複数の減圧ボックス 28で ひとつの铸型外表面 26のほぼ全体を覆っているので、気密フード 30は必ずしも必 要としない場合もある。  [0340] Then, the airtight hood 30 is attached around the plurality of pressure reducing boxes 28 in order to maintain the airtightness of the entire mold. A plurality of pressure reducing boxes 28 are placed in contact with the outer surface 26 of the bowl by the lifting means 19. Note that, in the configuration of the present embodiment, since almost the entire outer surface 26 is covered with the plurality of pressure reducing boxes 28, the airtight hood 30 may not be necessarily required.
[0341] 複数の減圧ボックス 28には実施例 6と同様にそれぞれ吸引口 31と送気口 32が設 けられている。各吸引口 31は吸引流量制御手段 29を介して減圧装置 69に連通され ており、また各送気口 32は送気流量制御手段 33を介して空気圧縮装置 70に連通さ れている。  As in the sixth embodiment, suction ports 31 and air ports 32 are provided in the plurality of pressure reducing boxes 28 respectively. Each suction port 31 is in communication with a pressure reducing device 69 via a suction flow rate control means 29, and each air supply port 32 is in communication with an air compression device 70 via an air flow amount control means 33.
[0342] この構成で作用、効果を説明する。複数の減圧ボックス 28は铸型外表面 26のほぼ 全体を覆っているので、各減圧ボックス 28から個別に吸引又は送気することによって 、各铸型セグメントに部分減圧を行うことができる。そしてこの複数の部分減圧の複合 として铸型全体の減圧分布、すなわちキヤビティー 11の減圧分布が創生されることに なる。 [0342] The operation and effect of this configuration will be described. Multiple pressure reduction boxes 28 are approximately on the outer surface 26 of the bowl Since the whole is covered, partial pressure reduction can be performed on each wedge-shaped segment by suctioning or supplying air from each pressure reduction box 28 individually. Then, as a combination of the plurality of partial pressure reductions, the pressure reduction distribution of the entire mold, that is, the pressure reduction distribution of the cavity 11 will be created.
[0343] 複数の減圧ボックス 28は通気穴 27が設けられている铸型セグメントにも、通気穴が 設けられていない铸型セグメントにも配置されており、通気穴の有無にかかわらずす ベての減圧ボックス 28で吸引又は送気が可能である。したがって、铸型外表面 26の ほぼ全体がセグメントに分割されて個別に部分減圧されるので、極めて高精度にキヤ ビティー 11全体の減圧分布を創生できる。  [0343] The plurality of decompression boxes 28 are arranged both in the vertical segment where the vent holes 27 are provided and in the vertical segment where the vent holes are not provided. Suction or insufflation is possible in the decompression box 28 of Therefore, since almost the entire wedge-shaped outer surface 26 is divided into segments and the partial pressure is reduced individually, it is possible to create the reduced pressure distribution of the entire cavity 11 with extremely high accuracy.
[0344] 複数の通気穴 27の配置、直径、及び深さは実施例 5、 6と同様に所定の減圧分布 が得られる適正な構成として 、る。通気穴 27の設けられて 、る部位は減圧によって 通気穴 27の周囲に強い部分減圧ゾーンを形成し、当然キヤビティー 11の減圧分布 に強く影響する。したがって、通気穴 27の有無、配置、キヤビティー 11の形状等を考 慮して各減圧ボックス 28の吸引及び Z又は送気の流量を制御することによって高精 度な部分減圧を行うことができる。その結果、铸型キヤビティー 11に高精度な所定の 減圧分布を創生することができる。これが本実施例の大きな特徴のひとつである。  The arrangement, the diameter, and the depth of the plurality of vent holes 27 are the same as in the fifth and sixth embodiments as appropriate configurations to obtain a predetermined decompression distribution. The vent holes 27 are provided, and by virtue of the pressure reduction, a strong partial pressure reduction zone is formed around the vent holes 27, and naturally the pressure reduction distribution of the cavity 11 is strongly affected. Therefore, highly accurate partial pressure reduction can be performed by controlling the flow rate of suction and Z or air supply of each pressure reduction box 28 in consideration of the presence or absence of the vent hole 27, the arrangement, the shape of the cavity 11, and the like. As a result, it is possible to create a highly accurate predetermined decompression distribution in the wedge-shaped cavity 11. This is one of the major features of this embodiment.
[0345] 本実施例のもうひとつの大きな特徴は、ひとつの铸型外表面の全体を仮想的に铸型 セグメントに分割したことによって、実際に本発明を高効率の生産が可能な連続ライ ンに適用するにあたって、複数の通気穴の穿孔装置及び複数の減圧ボックスの装置 が大幅にシンプルになることである。  [0345] Another major feature of the present embodiment is that the entire outer surface of one wedge is virtually divided into wedge-shaped segments, so that the present invention can be actually produced in a continuous line capable of highly efficient production. In the application of the above, the device for drilling multiple vent holes and the device for multiple decompression boxes will be greatly simplified.
[0346] まず通気穴の穿孔については、穿孔具は各铸型セグメントに対応したすべての位置 に配置させておき、所望の部位を選んで穿孔することができる。これによつて、実施 例 5、 6では選ばれた通気穴の位置に穿孔装置の穿孔具を移動する手段及び位置 決めする手段が必要であつたが、本実施例では不要になる。したがって、実際の高 効率の生産が可能な連続ラインのタクトへの対応性が向上した。  [0346] First, for ventilating holes, the drilling tools can be placed at all positions corresponding to each wedge-shaped segment, and a desired site can be selected and drilled. As a result, in the fifth and sixth embodiments, means for moving and positioning the drilling tool of the drilling device to the selected vent hole position are required, but in the present embodiment, it is not necessary. Therefore, the response to the tact of continuous lines capable of actual high-efficiency production has been improved.
[0347] また、減圧ボックスの装置についても、実施例 5、 6では設けられた通気穴の位置に 複数の減圧ボックスを移動する手段と位置決めする手段が必要である力 本実施例 では複数の減圧ボックスは铸型セグメントに対応して連接して設けられており、かつ ひとつの铸型外表面を覆うように配置されているので、通気穴に合せるための移動と 位置決めは全く不要で、減圧ボックス全体を铸型上面に載置するだけである。この点 でも、本実施例は高効率の生産が可能な連続ラインのタクトへの対応性が高いとい える。 Further, with regard to the device of the decompression box, in the fifth and sixth embodiments, means for moving the plurality of decompression boxes to the position of the vent hole and means for positioning are required. The boxes are provided in connection corresponding to the vertical segments and As it is arranged to cover one wedge-shaped outer surface, no movement and positioning to align with the vents is required, just placing the entire decompression box on the wedge-shaped upper surface. Also in this respect, it can be said that the present embodiment is highly adaptable to the tact of continuous lines capable of highly efficient production.
[0348] またさらに本実施例のもうひとつの特徴は、铸型を仮想的に铸型セグメントに分割し て吸引又は送気を行うことにより、図 8に示すようなキヤビティー配置の複数個込めの 铸型においても容易に本実施例を適用が可能で、所定の減圧分布を得ることができ ることである。  Furthermore, another feature of this embodiment is that, by virtually dividing the eaves into eaves and performing suction or insufflation, a plurality of cavity arrangements as shown in FIG. The present embodiment can be easily applied to the boat type, and a predetermined depressurized distribution can be obtained.
[0349] すなわち、図 8では铸型外表面は縦 4 X横 4= 16個の仮想的な铸型セグメント 34に 分割して吸引又は送気されるようになっており、各製品部とその端面側を強く吸引し( 記号 Sで示す)、押湯部を中程度に吸引し (記号 Mで示す)、湯口部付近を弱く吸引 する(記号 Wで示す)ことで、各製品ブロックとも、低減圧の湯口部から高減圧の製品 部へ向力 減圧分布を容易に創生できる。このような複数個込めの铸型に対する本 実施例のような高精度な減圧分布は、従来の減圧铸造法では、まったく実現できて いな力つたことである。なお、複数個込めの铸型に対しては、実施例 5、 6でも対応は 可能である力 前述のように本実施例の方が高効率の生産が可能な連続ラインにへ の対応性が高い。  That is, in FIG. 8, the outer surface of the wedge is divided into 4 × 4 = 16 virtual wedge segments 34 so as to be suctioned or supplied with air, and each product portion The end face side is strongly sucked (indicated by symbol S), the feeder is sucked moderately (indicated by symbol M), and the area near the spruce is weakly sucked (indicated by symbol W). A downward pressure distribution can be easily created from the low pressure gate to the high pressure product area. Such a highly accurate decompression distribution as in the present embodiment for the multi-fill bowl type is a force which can not be realized at all by the conventional decompression forging method. It should be noted that, even in the fifth and sixth embodiments, it is possible to cope with the multi-fill vertical type, as described above, the present embodiment is compatible with a continuous line capable of high efficiency production. high.
[0350] 以上のように、铸型外表面のひとつを仮想的に複数の铸型セグメントに分割し、そ の各铸型セグメントに対応した位置に通気穴を選択して設け、同じく各铸型セグメント に対応した位置に複数の減圧ボックスを連接して配置して吸弓 I又は送気して減圧を 行いながら注湯することによって、高精度な減圧分布を創生でき、かつ実際の高効 率の生産が可能な連続ラインへの対応性が高い減圧铸造法を提供した。  As described above, one of the outer surface of the wedge is virtually divided into a plurality of wedge segments, and vent holes are selected and provided at positions corresponding to the respective wedge segments. A plurality of decompression boxes are arranged at a position corresponding to the segment, and by pouring it while suctioning or supplying air and decompressing, a highly accurate decompression distribution can be created, and an actual high efficiency is achieved. We have provided a low pressure forging method that is highly responsive to continuous lines capable of producing rates.
実施例 8  Example 8
[0351] 図 9に実施例 8を示す。本実施例では手段 4を用いて、铸型外表面に通気穴を設 けていない場合に、铸型の外表面のひとつを仮想的に複数の铸型セグメントに分割 し、その複数の铸型セグメントに対し個別に吸弓 I又は送気して減圧して注湯する減 圧铸造法を説明する。  Example 9 is shown in FIG. In this embodiment, when the ventilation hole is not provided on the outer surface of the bowl, one of the outer surface of the bowl is virtually divided into a plurality of the bowl-shaped segments by using the means 4. Explain the pressure reducing forging method in which the suction bow I or air supply, pressure reduction and pouring are performed individually to the segments.
[0352] 本実施例にお!ヽては铸枠、铸型、複数の減圧ボックス、気密ボックスの構成は実施 例 7と同じである。但し、铸型外表面 26には通気穴は設けていない。つまり、手段 4の 特殊な実施例である。 [0352] In the present embodiment, the configuration of the weir frame, weir type, multiple decompression boxes, and airtight box is implemented. Same as Example 7. However, vent holes are not provided in the bowl-shaped outer surface 26. That is, it is a special embodiment of means 4.
[0353] この構成で作用、効果を説明する。本実施例では通気穴は設けられていないが、 铸型外表面 26はほぼ全体が複数の減圧ボックス 28によって覆われているので、各 減圧ボックス 28から吸引又は送気することによって、各铸型セグメントに対して部分 減圧を行うことができる。この場合には、各減圧ボックス 28の下部の铸型内にはそれ ぞれの減圧ボックス 28の吸引流量又は送気流量に応じた複数の部分減圧ゾーンが 形成されること〖こなる。  [0353] The operation and effect of this configuration will be described. Although the vent hole is not provided in the present embodiment, since the wedge-shaped outer surface 26 is almost entirely covered by the plurality of pressure reducing boxes 28, each wedge shape is suctioned or supplied from each pressure reducing box 28. Partial decompression can be performed on the segment. In this case, a plurality of partial pressure reduction zones corresponding to the suction flow rate or the air flow amount of each pressure reduction box 28 are formed in the lower part of each pressure reduction box 28 in the mold.
[0354] そしてその結果、キヤビティー 11にその複数の部分減圧ゾーンの複合としての減圧 分布が創生される。本実施例では通気穴が設けられていないので、上型 5の各部の 厚みは所定の減圧分布を得易い形にはなっていない。しかし、铸型のほぼ全体を複 数の減圧ボックス 28で覆って ヽるので、減圧度を高めた!/、部位の減圧ボックスの吸 引流量を多くし、中程度の減圧度としたい部位の吸引流量を少なくし、減圧度を低く したい部位には少量の送気を行うなど吸引と送気を適正に調整することによって、所 定の減圧分布を得ることができる。  [0354] As a result, a decompression distribution as a composite of the plurality of partial decompression zones is created in the cavity 11. In the present embodiment, since the vent holes are not provided, the thickness of each part of the upper die 5 is not in a form that facilitates obtaining a predetermined reduced pressure distribution. However, since the entire area of the bowl is covered with multiple pressure reduction boxes 28, the degree of pressure reduction is increased! /, The suction flow rate of the area pressure reduction box is increased, and the area with a medium degree of pressure reduction is desired. By appropriately adjusting suction and insufflation such as supplying a small amount of air to a portion where the suction flow rate is reduced and the degree of reduced pressure is desired to be reduced, a specified reduced pressure distribution can be obtained.
[0355] 本実施例では通気穴が設けられて 、な 、ので、上記のように所定の減圧分布を得 るのに、各減圧ボックスの吸引流量及び送気流量の制御に依存することになる力 そ の代わり通気穴を設ける必要がな 、ので、铸型の製作が容易になると 、う利点がある 。すなわち、通常の铸型をそのまま使用することができる。  [0355] In the present embodiment, the vent holes are provided, and therefore, to obtain the predetermined depressurization distribution as described above, it depends on the control of the suction flow rate and the air flow rate of each depressurization box. Since it is necessary to provide a ventilation hole instead of force, there is an advantage if it becomes easy to manufacture a mold. That is, a normal template can be used as it is.
[0356] 以上のように、通気穴のない铸型においても铸型外表面を仮想的に複数の铸型セ グメントに分割し、それぞれの铸型セグメント対して連接された複数の減圧ボックスを 当接して吸引又は送気して減圧し、高精度に所定の減圧分布を得ることができた。こ の減圧状態で注湯し、湯流れの乱れ少なくスムースにキヤビティーを充填することが できるようになった。  [0356] As described above, even in the case of a cage without vent holes, the cage outer surface is virtually divided into a plurality of caged segments, and a plurality of decompression boxes connected to each cage segment are provided. Then, the pressure was reduced by suction or air supply to a predetermined pressure distribution with high accuracy. Pouring water under this reduced pressure condition made it possible to fill the cavity smoothly and with less disturbance of the water flow.
[0357] 本実施例の効果は、铸型に何ら通気穴を設けることなぐ全くの通常の铸型に対し て、セグメント状の連接された複数の減圧ボックスによって吸引又は送気することによ つて、高精度な減圧分布が得られるようになり、減圧铸造法の汎用化が容易になった ことである。 実施例 9 [0357] The effect of the present embodiment is that suction and air supply by a plurality of segment-like connected pressure reduction boxes are performed on a normal normal type without providing any ventilation holes in the type. This means that high-precision pressure distribution can be obtained, and generalization of the pressure reduction method has become easy. Example 9
[0358] 図 10と図 11に実施例 9を示す。図 10は注湯中の状態を、図 11は注湯後の状態を 示す。本実施例では手段 6を用いて、铸型キヤビティーのうち製品部と押湯部を充填 させたい所望のキヤビティー部分として、その部分のみに溶湯を充填させ凝固させる 減圧铸造法を説明する。  Example 9 is shown in FIG. 10 and FIG. Figure 10 shows the condition during pouring and Figure 11 shows the condition after pouring. In this embodiment, a pressure-reducing structure method is described in which a molten metal is filled and solidified only in a portion as a desired cavity portion desired to fill the product portion and the pouring portion in the vertical cavity using means 6.
[0359] 铸枠、铸型、及び減圧方法の構成は実施例 4と同じである。本実施例では所望の キヤビティー部分 35の減圧度がその他のキヤビティー部分 38より高くなるように複数 の通気穴 27を配置して設けている。なお、本発明の铸枠及び铸型は本実施例の铸 枠及び铸型に限定されるものではない。以下の実施例においても同じである。  [0359] The configurations of the weir frame, weir type and decompression method are the same as in Example 4. In this embodiment, a plurality of vent holes 27 are provided so that the degree of pressure reduction of the desired cavity 35 is higher than that of the other cavities 38. Note that the heddle frame and heddle type of the present invention are not limited to the heddle frame and heddle type of this embodiment. The same applies to the following embodiments.
[0360] まず、キヤビティー 11の減圧度を、充填した 、所望キヤビティー部分 35への溶湯の 流入口 36から該キヤビティー部分の最上部 37までの高さ Hによって決まる溶湯静圧 γ Ηの絶対値以上の減圧度の負圧状態にする。ここで、 γは溶湯の比重量である。 この減圧度は少なくとも充填した 、所望キヤビティー部分 35のみでよ 、が、本実施例 では全体減圧であるのでキヤビティー全体はほぼこの減圧度以上になっている。  First, the degree of reduced pressure of cavity 11 is equal to or more than the absolute value of static metal pressure γ of molten metal determined by the height H from the inlet 36 of the molten metal to the desired cavity 35 to the top 37 of the cavity. The negative pressure of the degree of pressure reduction. Here, γ is the specific weight of the molten metal. The degree of vacuum is at least filled with the desired cavity 35 alone, but in the present embodiment, the entire cavity is almost equal to or higher than the degree of vacuum because it is a total vacuum.
[0361] y Hの値は例えば比重量 γ =0.007kgf/cm3の铸鉄溶湯の場合、所望のキヤビティ 一部分への流入口 36から最上部 37までの高さを例えば H= 10cmとすると、 γ Η = 0.007 X 10 = 0.07kgf/cm2 = 6865Pa= 52.5mmHg の減圧度となる。したがって、 これ以上に減圧すれば所望のキヤビティー部分 35のみに溶湯を充填することができ る。実操業においては、注湯にともなう減圧変化、キヤビティー形状及び溶湯材質な どの諸条件を考慮して適宜の安全率を乗じた減圧度とする。 [0361] The value of y H is, for example, in the case of molten pig iron having a specific weight γ = 0.007 kgf / cm 3 , assuming that the height from the inlet 36 to the top of the desired cavity 36 to the top 37 is H = 10 cm, for example The pressure reduction degree is as follows: γ Η = 0.007 × 10 = 0.07 kgf / cm 2 = 6865 Pa = 52.5 mmHg. Therefore, if the pressure is reduced further than this, it is possible to fill the molten metal only in the desired cavity portion 35. In actual operation, the pressure reduction degree is calculated by multiplying the appropriate safety factor in consideration of various conditions such as pressure reduction change with pouring, cavity shape, and material of molten metal.
[0362] 次に、所望のキヤビティー部分 35の体積とほぼ等しいか、又は若干大きな体積の 溶湯 23を注湯すると、溶湯 23は湯口部 15から湯道部 14を流れ所望のキヤビティー 部分 35である製品部 12と押湯部 13に充填される。少なくとも製品部 12と押湯部 13 は減圧度が γ Η以上になっているので、溶湯 23は所望のキヤビティー部分 35の最 上部 37まで充填される。注湯した溶湯量は製品部 12と押湯部 13の体積の量しかな いので、当然、この部分のみが充填され、湯道部 14と湯口部 15には溶湯はない。な お、本実施例では注湯にあたり、 1枠分を計量した小さな取鍋を用いたが、数枠分の 溶湯を入れた大きな取鍋で所望量を計量して注湯することも当然可能である。以下 の実施例においても同様である。 Next, when the molten metal 23 having a volume substantially equal to or slightly larger than the volume of the desired cavity 35 is poured, the molten metal 23 flows from the sprue 15 through the runner 14 and is the desired cavity 35 The product section 12 and the feeder section 13 are filled. Since at least the product portion 12 and the feeder portion 13 have a degree of pressure reduction of γΗ or more, the molten metal 23 is filled up to the top 37 of the desired cavity portion 35. Since the amount of molten metal poured is only the volume of the product portion 12 and the pouring portion 13, naturally, only this portion is filled, and there is no molten metal in the runner portion 14 and the sprue portion 15. In this example, although a small ladle measuring one frame was used for pouring, it is naturally possible to measure and pour a desired amount with a large ladle containing several frames worth of molten metal. It is. Less than The same applies to the embodiments of the invention.
[0363] その後、充填された溶湯 23が凝固するまでこの減圧を保持して所望のキヤビティー 部分 35である製品部 12と押湯部 13のみの铸造品を得ることができる。溶湯 23が凝 固するまでとは、必ずしも充填した溶湯 23が完全に凝固する必要はなぐ少なくとも 所望のキヤビティー部分 35とその他の部分 38の境界部 39付近の溶湯力 減圧を止 めても湯口部 15側に流出しな ヽ程度に凝固するまで減圧を保持すればよ!ヽ。  Thereafter, the reduced pressure is maintained until the filled molten metal 23 solidifies, and it is possible to obtain a structure having only the desired cavity portion 35, ie, the product portion 12 and the pouring portion 13. Until the molten metal 23 solidifies, it is not always necessary to solidify the filled molten metal 23 completely. At least the desired portion of the interface between the cavity 35 and the other part 38 Keep the reduced pressure until it solidifies to the extent that it does not flow out to the 15 side!
[0364] ここで、減圧度 γ Ηの意味は、製品部 12と押湯部 13に充填された溶湯 23が前述 の境界部 39付近力も流出しょうとする溶湯圧力である。したがって、これ以上の減圧 度に保持すれば溶湯 23は流出することはない。  Here, the meaning of the pressure reduction degree γΗ is the melt pressure at which the melt 23 filled in the product portion 12 and the pouring portion 13 flows out also in the vicinity of the boundary portion 39 described above. Therefore, the molten metal 23 will not flow out if it is maintained at a pressure reduction degree higher than this.
[0365] ところで、この減圧度 γ Ηであるが、注湯前にこの減圧度以上に保たれていても、 注湯開始とともに铸型内の減圧は湯口部 15付近で破れ、キヤビティー 11の減圧度も 変化することになる。したがって、減圧度を γ Η以上に保つにはこの減圧変化を考慮 して減圧を行う必要がある。  By the way, although this pressure reduction degree is γΗ, even if it is kept above this pressure reduction degree before pouring water, the pressure reduction inside the mold is broken near the sprue portion 15 with the start of pouring and the pressure reduction degree of cavity 11 Will also change. Therefore, in order to keep the degree of pressure reduction at or above γΗ, it is necessary to perform pressure reduction in consideration of this pressure reduction change.
[0366] 一般に、通常の全体減圧の铸造法では、注湯にともなって減圧が変化した後は、 全体を均一な減圧度にするように減圧が作用するので、溶湯を所望のキヤビティー に積極的に吸引誘導する減圧分布は創生されない。したがって、この点を考慮して 減圧を制御する必要がある。  [0366] Generally, in the general overall pressure reduction method, after the pressure reduction changes along with pouring, since the pressure reduction acts so as to make the entire pressure uniformly reduced, the molten metal is made aggressive to the desired cavity. Aspiration-induced reduced pressure distribution is not created. Therefore, it is necessary to control depressurization in consideration of this point.
[0367] しかし、本実施例では全体減圧ではある力 複数の通気穴 27によって溶湯を充填し た 、所望のキヤビティー部分 35である製品部 12と押湯部 13の減圧度が高ぐ湯口 部 15側が低い減圧分布が創生されているので、注湯にともなう減圧変化にも対応が 可能である。なお、本実施例は図 10に示すように複数の通気穴 27の直径及び深さ を変えているので、手段 8にも対応している。  However, in the present embodiment, a desired cavity portion 35 filled with the molten metal by a plurality of vent holes 27 having a certain pressure in the overall depressurization is a spout portion 15 in which the degree of decompression of the product portion 12 and the feeder 13 is high. Since a low pressure distribution is created on the side, it is possible to cope with the pressure change caused by pouring water. In this embodiment, as shown in FIG. 10, since the diameters and depths of the plurality of vent holes 27 are changed, the present embodiment also corresponds to the means 8.
[0368] 以上のように、少なくとも所望のキヤビティー部分の減圧度を γ Η以上にして、所望 のキヤビティー部分とほぼ等 、体積の溶湯を注湯し、凝固までその減圧を保持する ことによって、所望のキヤビティー部分のみの铸造品を得ることができた。  [0368] As described above, the desired degree of pressure reduction of the cavity portion is at least γγ or more, and the molten metal having a volume substantially equal to that of the desired cavity portion is poured, and the reduced pressure is maintained until solidification. It was possible to obtain a fabricated product of only the part of the cavity.
[0369] この結果、製品重量 Ζ注入重量で示される注入歩留りが大幅に向上する。また湯 口部と湯道部はキヤビティーはあるが溶湯は充填されて 、な 、ので、解枠時には全く 存在しないことになり、解枠工程及びリターン材の処置も大幅に簡略ィ匕される。 [0370] 以上のように本実施例によって、従来の铸造法に比べ、注入歩留り及び後工程の面 などで革新的な向上効果をもたらし、製造コストを大幅に低減できる減圧铸造法を提 供した。 [0369] As a result, the injection yield indicated by product weight 重量 injection weight is greatly improved. In addition, since the sprue part and the runner part are filled with molten metal although there is a cavity, they will not exist at all at the time of unwinding, and the treatment of the unwinding process and the return material will be greatly simplified. [0370] As described above, according to this example, a reduced pressure structure method capable of significantly reducing the manufacturing cost by providing innovative improvement effects in terms of implantation yield and post-process compared to the conventional structure method is provided. .
実施例 10  Example 10
[0371] 図 12と図 13に実施例 10を示す。図 12は注湯中の状態を、図 13は注湯後の状態 を示す。本実施例では手段 5を用いて、通気穴を設けていない铸型の場合について 、キヤビティーのうち製品部と押湯部を所望のキヤビティー部分として、その部分のみ に溶湯を充填させ凝固させる減圧铸造法を説明する。  Example 10 is shown in FIG. 12 and FIG. Figure 12 shows the condition during pouring and Figure 13 shows the condition after pouring. In this embodiment, in the case of the mold type where the vent holes are not provided by using the means 5, a pressure reduction structure in which the product portion and the pouring portion in the cavity are filled with the molten metal only in that portion as the desired cavity portion and solidified. Explain the law.
[0372] 铸枠、铸型、及び減圧方法の構成は実施例 1と同じである。本実施例では通気穴 は設けていない。  The configurations of the weir frame, weir type and decompression method are the same as in the first embodiment. The vent holes are not provided in this embodiment.
[0373] 本実施例でも減圧方法は実施例 9と全く同じである。まず、キヤビティー 11の減圧 度を、充填した 、所望キヤビティー部分 35への溶湯の流入口 36から該キヤビティー 部分の最上部 37までの高さ Hによって決まる溶湯静圧 γ Ηの絶対値以上の減圧度 の負圧状態にする。次に、所望のキヤビティー部分 35の体積とほぼ等しい体積の溶 湯 23注湯すると、溶湯 23は湯口部 15から湯道部 14を流れ所望のキヤビティー部分 35である製品部 12と押湯部 13に充填される。そして、所望のキヤビティー部分 35と その他のキヤビティー部分 38の境界部 39付近が凝固するまで減圧を保持することに よってよつて、所望のキヤビティー部分 35のみに溶湯が充填された铸造品を得ること ができる。  Also in this example, the depressurization method is exactly the same as in Example 9. First, the pressure reduction degree of the cavity 11 is determined by the absolute value of the static metal pressure γ of the molten metal, which is determined by the height H from the inlet 36 of the molten metal to the desired cavity 35 to the top 37 of the cavity. To a negative pressure condition. Next, when pouring molten metal 23 having a volume substantially equal to the volume of the desired cavity 35, the molten metal 23 flows from the spout 15 through the runner 14 and is the desired cavity 35, the product 12 and the feeder 13 Be filled with Then, by maintaining the reduced pressure until the solidification near the boundary 39 between the desired cavity portion 35 and the other cavity portions 38, it is possible to obtain a structure in which the molten metal is filled only in the desired cavity portion 35. it can.
[0374] このように本実施例でも実施例 9と同じように所望のキヤビティー部分 35のみに溶 湯を充填することができる。しかし、実施例 9と本実施例では注湯の安定性に若干の 相違がある。すなわち、先に述べたように、このような全体減圧では注湯開始にともな つて湯口部 15付近で減圧は破れ、減圧分布が大きく変化することに対する対応性に 差がある。実施例 9では複数の通気穴を所望のキヤビティー部分 35の減圧度が他の キヤビティー部分 38よりも高くなるように設けているので、注湯開始にともなう減圧変 化に対してもこれを補正して適正な減圧分布を回復することが容易である。  Thus, in the present example as well as in Example 9, only the desired cavity portion 35 can be filled with the molten water. However, in Example 9 and the present Example, there is a slight difference in the stability of pouring. That is, as described above, with such a total pressure reduction, the pressure reduction breaks near the gate 15 with the start of pouring, and there is a difference in the responsiveness to a large change in the pressure distribution. In the ninth embodiment, a plurality of vent holes are provided so that the degree of pressure reduction of the desired cavity 35 is higher than that of the other cavities 38, so this is corrected also for the change in pressure due to the start of pouring. It is easy to restore the proper depressurization distribution.
[0375] 本実施例では通気穴が設けられていないので、铸型キヤビティー全体は均一な減圧 分布に近!ヽものが創生されており、減圧変化に対して溶湯の充填に適正な減圧分布 に回復させる作用は弱い。しかし、減圧を適正に調整することによって所望のキヤビ ティー部分のみの充填は可能である。本実施例の特徴は通気穴なしの通常の铸型 が適用できることで、その点では実施例 9よりも汎用性が高い。 [0375] In the present embodiment, since the vent holes are not provided, the entire saddle-shaped cavity is close to uniform decompression distribution! A pottery has been created, and the pressure reduction distribution appropriate for filling the molten metal against pressure reduction change The recovery effect is weak. However, by properly adjusting the reduced pressure, it is possible to fill only the desired cavity portion. The feature of this embodiment is that a normal wedge without vent holes can be applied, and in this respect, it is more versatile than the ninth embodiment.
[0376] また、本実施例の注湯時の安定性の問題は一例として次のようにして改善すること ができる。例えば、全体減圧に加えて所望のキヤビティー部分付近に別の吸引減圧 手段を設けることが有効である。つまり、注湯にともなって減圧度が変化した時に、こ の別の吸引減圧手段によって少なくとも所望のキヤビティー部分付近の減圧分布を 適正に保つようにするのである。これによつて注湯の安定性は大幅に改善される。 [0376] Further, the stability problem at the time of pouring in the present embodiment can be improved as follows, as an example. For example, it is effective to provide another suction and decompression means near the desired cavity in addition to the overall vacuum. That is, when the degree of pressure reduction changes with the pouring of water, the pressure reduction distribution near at least the desired cavity portion is properly maintained by the other suction and pressure reduction means. This will greatly improve the stability of pouring.
[0377] 以上のように本実施例の特徴は、铸型に何らの通気穴を設けることなぐすなわち 通常の铸型を用いて、少なくとも所望のキヤビティー部分の減圧度を γ Hの値以上に 安定に保ち、所望のキヤビティー部分とほぼ等 、体積の溶湯を注湯することによつ て、所望のキヤビティー部分のみに溶湯が充填された铸造品を得ることができること である。 [0377] As described above, the feature of the present embodiment is that by providing no vent holes in the wedge shape, that is, by using a normal wedge shape, the degree of pressure reduction of at least the desired cavity portion is stabilized at or above the value of γH. By holding the volume of the molten metal so that the volume of the molten metal is approximately equal to that of the desired cavity portion, it is possible to obtain a fabricated product in which the molten metal is filled only in the desired cavity portion.
実施例 11  Example 11
[0378] 図 14と図 15に実施例 11を示す。図 14は注湯中の状態を、図 15は注湯後の状態 を示す。本実施例では手段 9を用いて、実施例 6と同じ構成で所望のキヤビティー部 分のみに注湯する減圧铸造法を説明する。  Example 11 is shown in FIG. 14 and FIG. Figure 14 shows the condition during pouring and Figure 15 shows the condition after pouring. In this embodiment, a pressure-reducing structure method in which only a desired cavity portion is poured with the same configuration as that of the embodiment 6 will be described by using the means 9.
[0379] 本実施例では複数の通気穴 27が設けられており、所望のキヤビティー部分 35であ る製品部 12と押湯部 13の減圧度を高くするように、該部の通気穴は大きぐ深く穿孔 されている。また、各通気穴 27は吸引又は送気が可能な複数の減圧ボックス 28に連 通されており、その吸引流量及び送気流量は個別に制御されているので、各通気穴 27からの減圧は個別に制御できるようになって 、る。  [0379] In the present embodiment, a plurality of vent holes 27 are provided, and the vent holes of the product portion 12 and the feeder 13 which are the desired cavity portions 35 have large sizes so as to increase the degree of pressure reduction. It is deeply perforated. In addition, since each vent hole 27 is communicated to a plurality of pressure reducing boxes 28 capable of suction or air supply, and the suction flow rate and the air flow amount are individually controlled, the pressure reduction from each vent hole 27 is It becomes possible to control individually.
[0380] つまり、各通気穴 27の大きさと深さによる各部位の減圧度の調整と、各減圧ボック ス 28の吸引流量及び送気流量の制御による減圧度の調整と!/、う 2種類の調整手段 で各部位の減圧度を調整することができる。  [0380] That is, adjustment of the degree of pressure reduction of each part by the size and depth of each ventilation hole 27, and adjustment of the degree of pressure reduction by control of suction flow rate and air flow amount of each pressure reduction box 28! The pressure reduction degree of each part can be adjusted by the adjustment means of
[0381] まず上記の減圧手段を用いて製品部 12と押湯部 13の減圧度を γ Η以上とし、湯口 部 15の減圧度をこれより低ぐできるだけ大気圧に近い減圧度とする。湯口部 15の 減圧度を低くするために該部の通気穴には少量の圧縮空気の送気を行っている。つ まり、湯口部 15側力も製品部 12へ向力つて減圧度が高くなるような減圧分布を創生 している。 First, the pressure reduction degree of the product portion 12 and the pouring portion 13 is set to γ or more using the above-mentioned pressure reduction means, and the pressure reduction degree of the sprue portion 15 is made as low as possible. A small amount of compressed air is supplied to the vent holes of the spout portion 15 in order to reduce the degree of pressure reduction. One In addition, the force on the side of the sprue 15 is also directed toward the product 12 to create a pressure reduction distribution such that the degree of pressure reduction is high.
[0382] そして、製品部 12と押湯部 13の体積とほぼ等 ヽ体積の溶湯 23を注湯する。溶湯 23はキヤビティー 11の減圧分布に吸引誘導されて製品部 12と押湯部 13に充填され る。当然、湯道部 14と湯口部 15には溶湯は充填されない。つまり、製品部 12と押湯 部 13のみの铸造品が得られる。  Then, molten metal 23 having a volume substantially equal to the volume of product section 12 and feeder 13 is poured. The molten metal 23 is drawn by suction to the reduced pressure distribution of the cavity 11 and is filled in the product portion 12 and the pouring portion 13. Naturally, the molten metal is not filled in the runner portion 14 and the gate portion 15. That is, a manufactured product of only the product section 12 and the feeder section 13 can be obtained.
[0383] ここで、注湯過程を考察する。注湯開始とともに湯口部 15付近で初期状態の減圧 は破れ、キヤビティー 11の減圧度も変化する。しかし、本実施例では初期状態から湯 口部 15付近は減圧度を低くして大気圧に近 、減圧度にしているので、キヤビティー 1 1の減圧度変化は小さい。  Here, the pouring process is considered. With the start of pouring, the pressure reduction in the initial state is broken near the gate 15, and the pressure reduction degree of the cavity 11 also changes. However, in the present embodiment, since the degree of pressure reduction is lowered near the gate 15 from the initial state to be close to the atmospheric pressure and the pressure degree is reduced, the change in the degree of pressure reduction of the cavity 11 is small.
[0384] この点が前の実施例 10と異なるところである。すなわち、実施例 10では全体減圧を 用いていたため、注湯開始にともなう減圧度の変化がやや大き力つた。しかるに本実 施例では最初力 湯口部 15付近の減圧度は低く設定されているので、減圧度の変 ィ匕は小さいのである。  [0384] This point is a difference from the previous example 10. That is, since the entire depressurization was used in Example 10, the change in the degree of depressurization with the start of pouring was slightly large. However, in the present embodiment, since the degree of pressure reduction near the gate portion 15 is set low at first, the change in the degree of pressure reduction is small.
[0385] この結果、本実施例では溶湯が受ける減圧変化が小さく、湯流れの乱れが少なく、 より静かにスムースな充填が可能となる。  As a result, in this example, the change in pressure reduction to which the molten metal is subjected is small, the disturbance of the flow of the molten metal is small, and the filling can be performed more smoothly and smoothly.
[0386] 以上のように、複数の通気穴と複数の減圧ボックスによる 2種類の減圧度調整によ つて、所望のキヤビティー部分の減圧度を高ぐ湯口部付近を低くするような減圧分 布を設けて注湯することによって、所望のキヤビティー部分のみにより容易に溶湯を 充填することができた。 [0386] As described above, a pressure reduction distribution that lowers the vicinity of the sprue that increases the degree of pressure reduction of the desired cavity by adjusting the two types of pressure reduction with the plurality of vent holes and the plurality of pressure reduction boxes. By installing and pouring, the molten metal could be easily filled only with the desired cavity portion.
[0387] なお、本実施例では複数の通気穴と複数の減圧ボックスによる減圧度調整を併用 したが、所望のキヤビティー部分の減圧度を高ぐその他の部分を低くするような減圧 分布を創生できればほぼ同じ作用、効果が得られる。  In the present embodiment, although the adjustment of the degree of pressure reduction by the plurality of vent holes and the plurality of pressure reduction boxes is used in combination, a pressure reduction distribution is created so as to lower other portions that increase the degree of pressure reduction of the desired cavity portion. If possible, almost the same action and effect can be obtained.
[0388] 例えば、通気穴付铸型と全体減圧の組合せ、通気穴なし铸型と実施例 7で用いた セグメント状の減圧ボックスの組合せ、通気穴なし铸型で部分減圧と全体減圧の組 合せなど、前述のような減圧分布を創生できる減圧方法であればほぼ同様な作用、 効果を得ることができる。  [0388] For example, a combination of a vent hole-shaped wedge and total pressure reduction, a combination of a vent-less hole shaped wedge and a segment-like pressure reduction box used in Example 7, a combination of a partial pressure reduction and a total pressure reduction without vent hole. If the decompression method can create the above-mentioned decompression distribution, almost the same action and effect can be obtained.
実施例 12 [0389] 図 16と図 17に実施例 12を示す。図 16は注湯中の状態を、図 17は注湯後の状態 を示す。本実施例では手段 10を用いて、実施例 7と同じ構成で仮想的に設けた複数 の铸型セグメントから減圧して所望のキヤビティー部分のみに注湯する減圧铸造法を 説明する。 Example 12 Example 12 is shown in FIG. 16 and FIG. Figure 16 shows the condition during pouring and Figure 17 shows the condition after pouring. In the present embodiment, a pressure-reducing structure in which the pressure is reduced from a plurality of cage-shaped segments virtually provided in the same configuration as that of the embodiment 7 using the means 10 and only the desired cavity portion is poured will be described.
[0390] 本実施例では铸枠、铸型の構成は実施例 7と同じである。また所望のキヤビティー 部分 35の減圧度が高くなるように複数の通気穴 27を設けている。本実施例では実 施例 7にお 、て用いた仮想的に分割した複数の铸型セグメント 34の上に載置された 複数の減圧ボックス 28によって吸引又は送気することによって減圧しながら所望のキ ャビティー部分 35のみへの注湯を行った。  [0390] In the present embodiment, the configuration of the shed frame and the boat type is the same as that of the seventh embodiment. Also, a plurality of vent holes 27 are provided to increase the degree of pressure reduction of the desired cavity portion 35. In the present embodiment, in the seventh embodiment, a plurality of decompression boxes 28 placed on the plurality of virtually divided vertical segments 34 used in the embodiment are used while being decompressed by suction or supply of air. Water was poured only to the cavity part 35.
[0391] 本実施例では実施例 7で述べたように複数の減圧ボックス 28によってひとつの铸型 外表面 26が覆われているので、铸型の各セグメントを分割して部分減圧を行うことが でき、より高精度にキヤビティーの減圧分布を創生できる。したがって、所望のキヤビ ティー部分 35のみへの注湯がさらに確実になった。  [0391] In the present embodiment, as described in the seventh embodiment, since one wedge-shaped outer surface 26 is covered by a plurality of pressure reducing boxes 28, partial pressure reduction can be performed by dividing each wedge-shaped segment. It is possible to create a reduced pressure distribution of the cavity with higher accuracy. Therefore, pouring of only the desired cavity portion 35 was further ensured.
実施例 13  Example 13
[0392] 図 18と図 19に実施例 13を示す。図 18は注湯中の状態を、図 19は注湯後の状態 を示す。本実施例では同じく手段 8を用いて、型合せ面が垂直な铸型を用いるいわ ゆる縦型铸造において所望のキヤビティー部分のみに溶湯を充填する減圧铸造法 を説明する。  Example 13 is shown in FIG. 18 and FIG. Figure 18 shows the condition during pouring and Figure 19 shows the condition after pouring. In the present embodiment, similarly, means 8 is used to describe a reduced pressure forming method in which a molten metal is filled only in a desired cavity portion in a so-called vertical structure using a vertical mold-matching surface.
[0393] まず、本実施例の铸型 4の構成を述べる。铸型キヤビティーは 4個の製品部 12とそ れぞれの上部に設けられた 4個の押湯部 13、それに溶湯を充填するための湯口部 1 5と湯道部 14より構成されている。そして、製品部 12は各 2個ずつ上段と下段に配置 されている。ここで、通常の縦型铸造と異なる点は、湯道部 14と湯口部 15は上段用 と下段用の 2組が独立して配置されていることである。  First, the configuration of the template 4 of this example will be described. The vertical cavity consists of 4 product parts 12 and 4 pouring parts 13 provided at the top of each, spout part 15 for filling it with molten metal, and runner part 14 . The product sections 12 are arranged two each in the upper and lower parts. Here, the point different from the usual vertical type structure is that the runner portion 14 and the gate portion 15 are independently arranged in two sets for the upper stage and the lower stage.
[0394] 次に、減圧を行うための通気穴の配置を説明する。通気穴 27は上段に対しては铸 型上面 42から各押湯部 13の上部に向力つて設けられている。また、下段に対しては 各押湯部 13の上部力も水平にのびる通気穴 40と垂直にのびる通気穴 41によって铸 型上面 42と連通して ヽる。縦型铸型ではこれらの通気穴は造型によって成型するこ とがでさる。 [0395] また、各通気穴には減圧装置 69に連通された減圧ボックス 28が当接して載置され ており、各通気穴を通して減圧できるようになつている。 Next, the arrangement of vent holes for depressurization will be described. The vent holes 27 are provided from the upper surface 42 of the upper portion to the upper portions of the respective pouring holes 13 in the upper stage. Further, for the lower part, the upper force of each feeder 13 is also communicated with the upper surface 42 by the vent hole 41 extending vertically and the vent hole 40 extending horizontally. In vertical weirs these vents can be molded by molding. [0395] Further, the decompression box 28 communicated with the decompression device 69 is placed in contact with each vent hole so that the pressure can be reduced through each vent hole.
[0396] 铸型の外面の状態を説明する。一般に縦型铸造に用いられる铸型 4は、上面は開 放、下面は铸型搬送具 43が設けられており、ある程度の隙間がある。また、側面は 铸型のクランプ部材 44が設けられており、これもある程度の隙間がある。  [0396] The condition of the outer surface of the cage is described. Generally, the vertical mold 4 used for the vertical structure has an open upper surface and a lower transfer tool 43 on the lower surface, and there is a gap to some extent. Further, the side surface is provided with a wedge-shaped clamp member 44, which also has a certain degree of clearance.
[0397] 本実施例では下面と側面のこれら周辺部材の隙間からのある程度の空気流入を許 容しながら所望のキヤビティー部分である製品部 12と押湯部 13を所定の減圧度 γ Η 以上にするようにした。ここで γは注湯する溶湯の比重量、 Ηは製品部 12への溶湯 の流入口 36から押湯部 13の最上部 37までの高さである。  [0397] In the present embodiment, the product portion 12 and the pouring portion 13 which are desired cavity portions are allowed to have a predetermined degree of pressure reduction Η or more while permitting a certain amount of air inflow from the gaps between the lower and side peripheral members. It was made to do. Here, γ is the specific weight of the molten metal to be poured, and Η is the height from the molten metal inflow port 36 to the product section 12 to the top 37 of the feeder section 13.
[0398] この構成で作用効果を説明する。まず、減圧ボックス 28によって減圧し、製品部 12 と押湯部 13の減圧度を γ Η以上にする。そして、最初に下段の 2組の製品部 12と押 湯部 13とほぼ等しい体積の溶湯を注湯すると、製品部 12と押湯部 13は γ Η以上の 減圧度に保たれて 、るので、溶湯は湯口部 15から湯道部 14を通って製品部 12と押 湯部 13のみを充填される。次に、同じようにして、上段の 2組の製品部 12と押湯部 1 3にももうひとつの湯口部 15から溶湯を充填する。  The operation and effect will be described with this configuration. First, the pressure is reduced by the pressure reducing box 28 so that the degree of pressure reduction of the product portion 12 and the pouring portion 13 is equal to or more than γ. When you first pour molten metal with a volume approximately equal to that of the lower two sets of product 12 and feeder 13, the product 12 and feeder 13 are maintained at a degree of pressure reduction equal to or greater than γ, so The molten metal passes from the sprue portion 15 through the runner portion 14 and fills only the product portion 12 and the pouring portion 13. Next, in the same manner, the upper two sets of the product portion 12 and the feeder portion 13 are filled with the molten metal from the other gate portion 15 as well.
[0399] 力くして、所望のキヤビティー部分 35である上下各 2組の製品部 12と押湯部 13のみ に溶湯を充填することができた。なお、上下の注湯する順序はいずれが先であっても 作用は同じである。  [0399] By force, molten metal could be filled only in the desired two cavity parts 35, ie, the upper and lower two sets of the product part 12 and the feeder part 13. The action is the same regardless of the order of pouring in the top and bottom.
[0400] 溶湯の充填完了後は製品部 12への溶湯の流入口 36が凝固するまで減圧を保持 することによって、製品部 12と押湯部 13のみに溶湯が充填された铸造品を得ること ができる。  [0400] After filling of the molten metal is completed, the reduced pressure is maintained until the molten metal inflow port 36 to the product part 12 solidifies to obtain a structure in which the molten metal is filled only in the product part 12 and the feeder 13 Can.
[0401] なお、本実施例では下段の減圧も铸型上面 42から行ったが、側面のクランプ部材 44の部分に減圧ボックス 28を配置して減圧することも可能である。  In the present embodiment, although the pressure reduction at the lower stage is also performed from the bowl-shaped upper surface 42, it is also possible to arrange the pressure reduction box 28 in the side of the clamp member 44 and reduce the pressure.
[0402] 以上のように、水平割铸型のみでなぐ縦型铸型においても通気穴と減圧ボックス を用いることによって所望のキヤビティー部分のみに溶湯を充填することができた。な お、铸型の下面及び側面の隙間をなくして気密性を上げれば、減圧が容易になり、 本実施例をさらに容易に実施することができる。  As described above, it was possible to fill the molten metal only in the desired cavity portion by using the vent holes and the pressure reduction box even in the vertical scissor type which is only a horizontal split type. If air tightness is improved by eliminating the gap between the lower surface and the side surface of the bowl shape, the pressure reduction becomes easy, and this embodiment can be implemented more easily.
実施例 14 [0403] 図 20と図 21に実施例 14を示す。図 20は注湯中の状態を、図 21は注湯後の状態 を示す。本実施例では同じく手段 8を用いて、铸型が金型の場合に通気穴を設けて 所望のキヤビティー部分のみに溶湯を充填する減圧铸造法を説明する。 Example 14 Example 14 is shown in FIG. 20 and FIG. Figure 20 shows the condition during pouring, and Figure 21 shows the condition after pouring. In the present embodiment, similarly, means 8 is used to describe a reduced pressure forming method in which a vent hole is provided when the mold is a mold to fill the molten metal only in a desired cavity portion.
[0404] まず、金型 45の所望のキヤビティー部分 35である製品部 12と押湯部 13付近に上 型の上面力も通気穴 27を設ける。この通気穴 27は金型に外表面から穿孔された穿 孔穴 46と、その先端に設けられた溶湯が通過しない程度の隙間を有するベント 47か ら構成されている。したがって、金型本体は通気性がないが、この通気穴 27を通して キヤビティー 11を減圧ができるようになって 、る。  [0404] First, the upper surface force of the upper die is also provided with a vent hole 27 in the vicinity of the product portion 12 which is the desired cavity portion 35 of the mold 45 and the pouring portion 13. The vent hole 27 is composed of a hole 46 drilled from the outer surface of the mold and a vent 47 having a clearance to the extent that the molten metal provided at the tip does not pass. Therefore, although the mold body is not breathable, the cavity 11 can be depressurized through the vent holes 27.
[0405] また、金型の上下の合せ面にはェヤーシール部材 8が配置されており、気密が保 持できるようになつている。  [0405] In addition, an air seal member 8 is disposed on the upper and lower mating surfaces of the mold so that air tightness can be maintained.
[0406] 金型は気密容器 48に収容されている。また、気密容器 48には 1個所吸引穴 17が 設けられており、その吸引穴 17から減圧装置 69に連通された吸引管 18を挿入し、 その先端に取付けられた減圧ボックス 28を通気穴 27に当接して吸引減圧ができるよ うになつている。  [0406] The mold is housed in an airtight container 48. In addition, a suction hole 17 is provided in the airtight container 48 at one place, and the suction pipe 18 communicated with the pressure reducing device 69 is inserted from the suction hole 17 and the pressure reducing box 28 attached to the tip is vented 27 It comes in contact with the equipment so that suction and pressure reduction can be performed.
[0407] 本構成で作用、効果を説明する。まず、減圧装置 69を作動し、少なくとも所望のキ ャビティー部分 35である製品部 12と押湯部 13の減圧度を γ H以上にする。本実施 例では、製品部 12と押湯部 13から減圧しているので該部の減圧度が高ぐ湯口部 1 5側が低!、減圧分布が創生されて!ヽる。  The operation and effects of this configuration will be described. First, the pressure reducing device 69 is operated to set the degree of pressure reduction of at least the product portion 12 which is the desired cavity portion 35 and the pouring portion 13 to γ H or more. In this embodiment, since the pressure is reduced from the product portion 12 and the pouring portion 13, the degree of reduced pressure of the portion is high!
[0408] この状態で所望のキヤビティー部分 35とほぼ同体積の溶湯を注湯すると、溶湯は 減圧分布に吸引誘導されて製品部 12と押湯部 13を充填する。当然、湯道部 14と湯 口部 15には溶湯は存在しない。つまり、所望のキヤビティー部分 35のみに溶湯の充 填ができた。その後、少なくとも充填された溶湯の境界部 39付近が凝固するまで減 圧を保持する。  [0408] In this state, when a molten metal having substantially the same volume as the desired cavity 35 is poured, the molten metal is drawn and induced to a reduced pressure distribution, and the product 12 and the feeder 13 are filled. Naturally, there is no molten metal in the runner section 14 and the gate section 15. That is, the molten metal could be filled only in the desired cavity portion 35. Thereafter, the reduced pressure is maintained until at least the vicinity of the boundary portion 39 of the filled molten metal solidifies.
[0409] なお、本実施例では铸型全体を覆う気密容器を用いて減圧したが、これに限定さ れるものではなぐ実施例 1のように減圧フードを用いて減圧しても作用、効果はほぼ 同じである。  [0409] In the present example, although the pressure was reduced using an airtight container that covers the entire mold, even if the pressure is reduced using a reduced pressure hood as in Example 1, the function and effect are not limited. It is almost the same.
[0410] 以上のように、金型においても通気穴と適宜の減圧方法を組合せて用いることによ つて、所望のキヤビティー部分のみに溶湯を充填することが可能である。 [0411] 本実施例の意味するところは、いかなる铸型であっても複数の通気穴を適宜に設け ることによって、一般の通気性铸型と同じように本発明の所望のキヤビティー部分の みへ溶湯を充填する減圧铸造法を適用できると 、うことである。 As described above, it is possible to fill the molten metal only in the desired cavity portion by using the vent hole and the appropriate pressure reduction method in combination also in the mold. [0411] The meaning of the present embodiment is that only the desired cavity portion of the present invention is provided in the same manner as a general breathable cage, by appropriately providing a plurality of vent holes regardless of the shape of the bowl. It is said that it is possible to apply a reduced pressure construction method in which the molten metal is filled.
実施例 15  Example 15
[0412] 図 22と図 23に実施例 15を示す。図 22は注湯中の状態を、図 23は注湯後の状態 を示す。本実施例では手段 7を用いて、注湯開始後に減圧して所望のキヤビティー 部分のみに注湯する減圧铸造法を説明する。  Example 15 is shown in FIG. 22 and FIG. Figure 22 shows the condition during pouring and Figure 23 shows the condition after pouring. In this embodiment, a pressure-reducing structure in which the pressure is reduced after pouring is started and only a desired cavity portion is poured is described using means 7.
[0413] 铸枠、铸型、の構成は実施例 5と同じである。減圧は減圧装置 69に連通された複 数の減圧ボックス 28を上型 5に載置して行った。 The configuration of the heddle frame and the crest type is the same as that of the fifth embodiment. The pressure was reduced by placing a plurality of pressure reducing boxes 28 communicated with the pressure reducing device 69 on the upper mold 5.
[0414] 今までの実施例では減圧して所定の減圧度になって力ゝら注湯を行った力 本実施 例ではその順序を逆にした。つまり、最初は減圧をせず、所望のキヤビティー部分 35 とほぼ同体積の溶湯 23を注湯する。すると、溶湯 23は図 22のようにキヤビティー 11 全体に分散して充填される。 In the previous embodiments, the pressure was reduced to a predetermined pressure, and the force was poured by force. In this embodiment, the order was reversed. That is, at first, the pressure is not reduced, and the molten metal 23 having approximately the same volume as the desired cavity 35 is poured. Then, the molten metal 23 is dispersed and filled throughout the cavity 11 as shown in FIG.
[0415] 次に、減圧を開始し、所望のキヤビティー部分 35の減圧度を γ Η以上まで高めるとNext, depressurization is started, and the degree of depressurization of the desired cavity 35 is increased to γΗ or more.
、溶湯 23は所望のキヤビティー部分 35である製品部 12と押湯部 13に吸引誘導され て充填される。この状態で凝固するまで減圧度を γ Η以上に保持すれば製品部 12と 押湯部 13のみの铸造品が得られる。 The molten metal 23 is sucked and introduced into the product portion 12 and the pouring portion 13 which are the desired cavity portions 35. In this state, if the degree of pressure reduction is maintained at or above γΗ until solidification, a manufactured product of only the product portion 12 and the pouring portion 13 can be obtained.
[0416] なお、図 22は説明上、溶湯 22が静止した状態を示したものである力 減圧開始は 必ずしも溶湯 23の静止を待つ必要はなぐ注湯開始後の適宜のタイミングで開始す ることがでさる。 Note that FIG. 22 shows the state in which the molten metal 22 is at rest for the sake of explanation. The pressure reduction start does not necessarily have to wait for the stationary state of the molten metal 23 to start at an appropriate timing after the pouring start. It is
[0417] このように注湯後に減圧しても前述の注湯前に減圧する実施例 9乃至 14と同じよう に所望のキヤビティー部分のみに充填が可能である。次にその違いについて説明す る。  As described above, even if the pressure is reduced after pouring, it is possible to fill only the desired cavity portion as in Examples 9 to 14 in which the pressure is reduced before pouring. Next, I will explain the difference.
[0418] まず、減圧を行った後に注湯する場合は、注湯開始とともに減圧は湯口部 15付近 で破れ、減圧変化が生じる。この作用で溶湯の流れは乱れを生じ易い。次に注湯後 に減圧する場合は、注湯にともなう減圧変化はないので溶湯は何らの減圧変化によ る作用を受けることはない。つまり、注湯にともなう減圧変化について言えば、注湯後 に減圧した方が溶湯の流れの乱れは少なく好ましいことになる。 [0419] しかし、注湯後に減圧する方法では、初期の減圧がされていないので、注湯速度 は減圧後に注湯する方法よりも低い。また、減圧を開始するタイミングが遅れると、溶 湯の酸化や温度低下が発生し、铸造欠陥の原因となる。したがって、酸化し易い溶 湯や低温注湯するような場合、また製品の形状、肉厚、さらにはキヤビティーのレイァ ゥトなどの条件によっては適用が難しい場合がある。 [0418] First, when pouring water after depressurization, the decompression is broken near the gate portion 15 with the start of pouring, and a pressure change occurs. The flow of the molten metal tends to be disturbed by this action. Next, when depressurizing after pouring, the molten metal is not affected by any depressurizing change because there is no change in depressurization accompanying pouring. In other words, speaking of the pressure reduction change caused by the pouring, it is preferable to reduce the pressure after pouring because the disturbance of the flow of the molten metal is small. However, in the method of depressurization after pouring, since the initial depressurization is not performed, the pouring speed is lower than the method of pouring after depressurization. In addition, if the timing to start depressurization is delayed, oxidation of the molten metal and temperature decrease will occur, which may cause forging defects. Therefore, it may be difficult to apply depending on conditions such as the shape and thickness of the product, and also the layout of the cavity, in the case of pouring easily oxidizable solution or low temperature pouring.
[0420] 以上のように、減圧して注湯する方法でも注湯開始後に減圧する方法でも、いずれ によっても所望のキヤビティー部分のみの充填が可能である。どちらを適用するかは 上記のように溶湯及び铸型の諸条件を考慮して用いることが望ま U、。  [0420] As described above, it is possible to fill only the desired cavity portion by either the method of reducing pressure and pouring or the method of reducing pressure after the start of pouring. As mentioned above, it is desirable to use it taking into consideration the conditions of the molten metal and crucible type U ,.
実施例 16  Example 16
[0421] 図 24に実施例 16を示す。本実施例では手段 11を用いて、減圧して所望のキヤビテ ィ一部分に注湯する铸造法にお 、て、所望のキヤビティー部分の減圧度を安定して 高めるために所望のキヤビティー部分とその他のキヤビティー部分の境界部付近に 非通気性又は铸型の通気度よりも低!、通気度を有し、かつ溶湯の熱によって消失又 は融解する通気封止部材を設置した減圧铸造法を説明する。  Example 16 is shown in FIG. In the present embodiment, in order to stably increase the degree of pressure reduction of the desired cavity portion, the desired cavity portion and the other portions are formed in accordance with the construction method in which the pressure is reduced and the desired cavity portion is poured using means 11. Explain the reduced pressure construction method in which a ventilation sealing member is installed near the boundary of the cavity, which has air permeability lower than that of air-impermeable or wedge-shaped, and which loses or melts due to the heat of the molten metal. .
[0422] 铸型、铸枠及び減圧手段の構成は実施例 5と同じである。すなわち、铸型外表面 2 6から複数の通気穴 27を設け、これに対応する複数の減圧ボックス 28によって減圧 した。本構成では所望のキヤビティー部分 35である製品部 12と押湯部 13の減圧度 が高!、減圧分布が創生されて 、る。  The configurations of the boat type, the boat frame and the pressure reducing means are the same as in the fifth embodiment. That is, a plurality of vent holes 27 were provided from the bowl-shaped outer surface 26 and the pressure was reduced by the corresponding plurality of pressure reducing boxes 28. In this configuration, the degree of reduced pressure of the product portion 12 and the feeder 13 which are the desired cavity portion 35 is high! The reduced pressure distribution is created.
[0423] そして、所望のキヤビティー部分 35とその他のキヤビティー部分 38の境界部 39付 近の铸型上下に凹部 49を成型し、そこに通気封止部材として 50mm X 50mm X厚さ 15mmの発泡榭脂 50を設置した。  Then, concave portions 49 are formed on the upper and lower sides near the boundary 39 between the desired cavity portion 35 and the other cavity portions 38, and a 50 mm × 50 mm × 15 mm thick foam is formed thereon as a vent sealing member. 50 fats were installed.
[0424] この状態で減圧を開始すると、キヤビティー 11は発泡榭脂 50によって所望のキヤビ ティー部分 35とその他のキヤビティー部分 38に分割されているので、所望のキヤビテ ィ一部分 35の減圧度をその他のキヤビティー部分 38の影響を受けることが少ない状 態で速やかに安定して高めることができる。これが通気封止部材のひとつの作用で ある。  [0424] When decompression is started in this state, since cavity 11 is divided by foam resin 50 into the desired cavity portion 35 and the other cavity portion 38, the degree of vacuum of the desired cavity portion 35 It can be quickly and stably improved with less influence from the Cavity part 38. This is one of the functions of the vent sealing member.
[0425] 次に所望のキヤビティー部分 35が所定の減圧度 γ Η以上になった後に、所望のキ ャビティー部分 35とほぼ等しい体積の溶湯 23を注湯すると、溶湯 23は発泡榭脂 50 に到達し瞬時にこれを消失させ、所望のキヤビティー部分 35を充填する。 [0425] Next, when the desired cavity 35 is filled with a molten metal 23 having a volume substantially equal to that of the desired cavity 35 after reaching a predetermined degree of pressure reduction γ or more, the molten metal 23 is foamed resin 50 And disappear immediately, filling the desired cavity 35.
[0426] 注湯にともなって湯口部 15側で減圧変化が起こるが、少なくとも溶湯が発泡榭脂 5 0に到達するまでの間、その減圧変化の影響は所望のキヤビティー部分 35には現れ ない。したがってこの間、所望のキヤビティー部分 35は安定して所定の減圧度を保 つことができる。これが通気封止部材のもうひとつの作用である。 [0426] Although the reduced pressure changes on the side of the sprue 15 accompanying pouring, at least until the molten metal reaches the foamed resin 50, the influence of the reduced pressure does not appear in the desired cavity 35. Therefore, during this time, the desired cavity 35 can be stably maintained at a predetermined degree of pressure reduction. This is another function of the vent sealing member.
[0427] 以上のように、通気封止部材は注湯前後にお 、て所望のキヤビティー部分の減圧 度を安定ィ匕させる作用を有するものである。これによつて、所望のキヤビティー部分 への溶湯の充填力 複数の通気穴と減圧ボックスによる好ましい減圧分布にカ卩えて、 さらに安定して実施できるようになつた。 As described above, the vent sealing member functions to stabilize the degree of pressure reduction of a desired cavity portion before and after pouring. As a result, the filling power of the molten metal to the desired cavity portion can be made more stable by covering the preferable reduced pressure distribution by the plurality of vent holes and the reduced pressure box.
[0428] なお、本実施例では減圧に複数の減圧ボックスを用いた力 所望のキヤビティー部 分に対する部分減圧の場合及び全体減圧の場合においても、通気封止部材は同様 に作用する。 In this example, the vent sealing member works in the same manner in the case of partial pressure reduction with respect to the desired cavity portion by using a plurality of pressure reduction boxes for pressure reduction and in the case of total pressure reduction.
[0429] また、通気封止部材は所望のキヤビティー部分を湯口部側と分離してその減圧度 を安定に保つことが機能であるので、金属片、板材等の非通気性部材又は铸型より 通気性の低 ヽ部材であれば同じ作用、効果を得ることができる。  Further, the function of the vent sealing member is to separate the desired cavity part from the sprue side and keep the degree of pressure reduction stable, so from the non-air-permeable member such as metal piece, plate material or wedge type The same function and effect can be obtained if it is a low-permeability breathable member.
実施例 17  Example 17
[0430] 図 25に実施例 17を示す。本実施例では手段 12を用いて、減圧して所望のキヤビ ティーに注湯する減圧铸造法において、実施例 16に記載したように境界部付近に設 ける通気封止部材を、溶湯が該部材に接して力 消失又は融解するまでの時間が 2 秒以上 5秒以下である部材とした減圧铸造法を説明する。  Example 17 is shown in FIG. In this embodiment, in the reduced pressure casting method in which the pressure is reduced and the desired cavity is poured using the means 12, as described in the embodiment 16, the air-permeable sealing member provided in the vicinity of the boundary portion is made of molten metal. Next, I will explain the decompression forging method using a member whose time until the force disappears or melts for 2 seconds to 5 seconds.
[0431] 铸型、铸枠及び減圧手段の構成は実施例 16と同じである。すなわち、铸型外表面 2 6から複数の通気穴 27を設け、それに対応する複数の減圧ボックス 28によって減圧 した。そして、凹部 49に通気封止部材として 50mm X 50mm X厚さ 4mmの鋼板 51を 設!^し 7こ。  [0431] The configurations of the boat type, the boat frame and the pressure reducing means are the same as in the sixteenth embodiment. That is, a plurality of vent holes 27 were provided from the bowl-shaped outer surface 26 and depressurized by the corresponding depressurizing boxes 28. Then, install 50 mm x 50 mm x 4 mm thick steel plate 51 in the recess 49 as a vented sealing member!
[0432] 本構成で作用、効果を説明する。この鋼板 51は減圧の安定ィ匕の面では実施例 11 の発泡樹脂と全く同じ作用である。しかし本実施例では溶湯が鋼板 51に到達してか ら、鋼板 51が融解して溶湯が所望のキヤビティー部分 35に流入し始めるまでに約 3 禾少かかるようにした。 [0433] 溶湯が鋼板 51に到達した状態を図 25に示している。すなわち、溶湯はこの約 3秒 の間、図のように所望のキヤビティー部分 35を除 、た部分を充填して静止して!/、る。 したがって、注湯にともなって溶湯の流れが乱れても、この状態で溶湯は一度静止す ることによって、溶湯の流れの乱れはほとんど完全に解消される。つまり、注湯にとも なう溶湯の動圧は静圧に変換される。これがこの通気封止部材である鋼板 51のひと つの作用である。 The operation and effects of this configuration will be described. This steel plate 51 has exactly the same action as the foamed resin of Example 11 in terms of pressure stability and stability. However, in the present embodiment, after the molten metal reaches the steel plate 51, it takes about three minutes before the steel plate 51 melts and the molten metal starts to flow into the desired cavity portion 35. A state where the molten metal has reached the steel plate 51 is shown in FIG. That is, for about 3 seconds, the molten metal fills up the remaining portion of the desired cavity 35 as shown in the figure and stands still! /. Therefore, even if the flow of the molten metal is disturbed due to the pouring, when the molten metal stops once in this state, the disturbance of the flow of the molten metal is almost completely eliminated. That is, the dynamic pressure of the molten metal as it is poured is converted to static pressure. This is one of the functions of the steel plate 51 which is the vent sealing member.
[0434] そして、鋼板 51の融解によって溶湯が所望のキヤビティー部分 35に流入が可能にな ると、所望のキヤビティー部分 35の減圧と溶湯の静圧によって溶湯の流れの乱れ少 なぐスムースに充填が行われるのである。  [0434] Then, when the molten metal is allowed to flow into the desired cavity portion 35 by melting the steel plate 51, the pressure reduction of the desired cavity portion 35 and the static pressure of the molten metal cause turbulence in the molten metal flow and smooth filling. It is done.
[0435] また、溶湯がこのように一度静止することのもうひとつの作用は、注湯にともなって 溶湯の中に巻き込まれた介在物及び空気などが、溶湯との比重差で浮上して分離 する時間が与えられることである。このことによって、铸物製品の健全性を高めること ができる。本実施例では溶湯が静止する時間を約 3秒とした力 2秒以上 5秒以下が 適正である。下限の 2秒は溶湯の静圧回復と介在物等の浮上のために最低必要な 時間である。また上限の 5秒は溶湯の温度低下や酸ィ匕を防止するために設定したも のである。  [0435] Also, another function of the molten metal being at rest once is that the inclusions and air etc. which are caught in the molten metal as the molten metal separates and floats up due to the specific gravity difference with the molten metal. It is time given to This can enhance the soundness of the product. In the present embodiment, a force of 2 seconds to 5 seconds in which the time for which the molten metal is at rest is approximately 3 seconds is appropriate. The lower limit of 2 seconds is the minimum required time for recovery of the static pressure of the molten metal and floating of inclusions. The upper limit of 5 seconds is set to prevent the temperature drop of the molten metal and acidity.
[0436] 以上のように、本実施例の通気封止部材は、溶湯を一時静止させることによって静 圧状態での充填を可能とするとともに、注湯初期に溶湯へ混入した介在物等を浮上 させ欠陥を減少させる作用を有するものである。その結果、所望のキヤビティー部分 への充填がさらに安定して実施できるようになった。  As described above, the gas-passing sealing member of the present embodiment enables filling in a static pressure state by temporarily stopping the molten metal, and floats up inclusions and the like mixed in the molten metal at the initial pouring. And the effect of reducing defects. As a result, the filling of the desired cavity part can be performed more stably.
実施例 18  Example 18
[0437] 図 26と図 27に実施例 18を示す。図 26は注湯前の状態を、図 27は注湯後の状態を 示す。本実施例では手段 13を用いて、減圧して所望のキヤビティーに注湯する減圧 铸造法において、所望のキヤビティー部分に充填された溶湯が早く凝固するように、 境界部付近のキヤビティーの凹部に溶湯遮断部材を設置した減圧铸造法を説明す る。  Example 18 is shown in FIG. 26 and FIG. Figure 26 shows the condition before pouring, and Figure 27 shows the condition after pouring. In this embodiment, in the pressure reduction method of reducing pressure and pouring to a desired cavity using the means 13, the molten metal in the cavity recess of the vicinity of the boundary portion so that the molten metal filled in the desired cavity portion solidifies quickly. Explain the reduced pressure construction method with the blocking member installed.
[0438] 铸型、铸枠及び減圧手段の構成は実施例 5と同じである。すなわち、铸型の外表 面 26から複数の通気穴 27を設け、それに対応する複数の減圧ボックス 28によって 減圧した。 [0438] The configurations of the boat type, the boat frame and the pressure reducing means are the same as in the fifth embodiment. That is, a plurality of vent holes 27 are provided from the bowl-shaped outer surface 26, and a plurality of pressure reducing boxes 28 corresponding thereto are provided. Depressurized.
[0439] 本実施例では、所望のキヤビティー部分 35とその他のキヤビティー部分 38の境界 部 39付近の下部及び上部に凹部 49を設け、溶湯遮断部材としてシェル砂で成型し た 50mm X 50mm X厚み 15mmのシェル片 52をキヤビティー下部の凹部 49に納まる ように設置した。  In this example, a recess 49 is provided in the lower and upper portions near the boundary 39 between the desired cavity 35 and the other cavities 38, and it is molded with shell sand as a molten metal blocking member 50 mm X 50 mm X thickness 15 mm A shell piece 52 was placed to fit in the recess 49 in the lower part of the cavity.
[0440] 本構成で作用、効果を説明する。所定の減圧を行った後、所望のキヤビティー部分 35とほぼ等しい体積の溶湯 23を注湯すると、溶湯 23は前記実施例に示したように 所望のキヤビティー部分 35を充填する。注湯中、キヤビティー下部の凹部 49に設置 されたシェル片 52は、溶湯の流れを邪魔することなく凹部 49に留まっている。注湯が 完了後、シェル片 52は図 27に示すように浮力によってキヤビティー上部の凹部まで 上昇して静止する。  [0440] The operation and effect of this configuration will be described. After a predetermined pressure reduction, when the molten metal 23 having a volume substantially equal to that of the desired cavity 35 is poured, the molten metal 23 fills the desired cavity 35 as shown in the previous embodiment. During pouring, the shell piece 52 placed in the recess 49 at the bottom of the cavity remains in the recess 49 without disturbing the flow of the molten metal. After pouring is complete, as shown in FIG. 27, the shell piece 52 ascends to the recess at the top of the cavity and rests by buoyancy.
[0441] この状態で減圧を保持すると溶湯の凝固が進行するが、シェル片 52に接した溶湯 はシェル片 52に熱を奪われるので、シェル片 52がない場合よりも速やかに凝固が進 行する。したがって、減圧を保持する時間を短縮することができる。  If decompression is maintained in this state, solidification of the molten metal proceeds, but since the molten metal in contact with the shell piece 52 is deprived of heat by the shell piece 52, solidification proceeds more quickly than in the case without the shell piece 52. Do. Therefore, the time to hold a reduced pressure can be shortened.
[0442] また、注湯が完了してシェル片 52が浮上した後、減圧が γ Η以下に下がった場合 でも、溶湯の静圧によってシェル片 52はキヤビティー上下の凹部 49の中で湯口部 1 5側へ押付けられ、溶湯の流出を防ぐように作用する。この押付け力は溶湯の流出を 完全に止め得るものではないが、若干の減圧低下であれば流出を防止できる。  In addition, even if the reduced pressure falls below γΗ after the pouring is completed and the shell piece 52 comes up, the shell piece 52 is in the recess 49 in the upper and lower cavities due to the static pressure of the molten metal 1 It is pressed to the 5 side and works to prevent the outflow of the molten metal. This pressing force can not completely stop the outflow of the molten metal, but a slight reduction in pressure can prevent the outflow.
[0443] なお、この溶湯遮断部材は溶湯よりも比重が小さぐ耐火性のものであればその作 用、効果は同じである。溶湯遮断部材及び凹部の形状は本実施例に限定されるもの ではなぐ適宜の形状の組合せで同じ作用、効果を得ることができる。  The operation and effect of the molten metal blocking member are the same as long as it is a fire-resistant material whose specific gravity is smaller than that of the molten metal. The shapes of the melt blocking member and the recess are not limited to those of this embodiment. The same operation and effect can be obtained by combining appropriate shapes.
[0444] 以上のように、溶湯遮断部材を境界部付近のキヤビティーの凹部に設置することによ つて注湯後の減圧保持時間を短縮することができ、生産効率を高めることができた。 本実施例によって、所望のキヤビティー部分のみへ溶湯の充填を行う本発明の減圧 铸造方法において、一つの課題である注湯後、凝固するまで一定の減圧保持時間 を必要とする問題を解決又は低減することができた。  As described above, by disposing the molten metal blocking member in the cavity concave portion in the vicinity of the boundary, the reduced pressure holding time after pouring can be shortened, and the production efficiency can be improved. This embodiment solves or reduces the problem of requiring a certain reduced pressure holding time until solidification after pouring, which is one of the problems in the reduced pressure method according to the present invention, in which the molten metal is filled only in the desired cavity portion. We were able to.
実施例 19  Example 19
[0445] 図 28に実施例 19を示す。本実施例では手段 14を用いて、減圧して所望のキヤビテ ィ一に注湯する減圧铸造法において、減圧を安定して行い、かつ所望のキヤビティ 一部分に充填された溶湯が早く凝固するように、所望のキヤビティー部分とその他の キヤビティー部分の境界部付近に前記実施例 16及び 18で用いた通気封止部材と 溶湯遮断部材を一体化した封止遮断部材を設置する減圧铸造法を説明する。 Example 19 is shown in FIG. In the present embodiment, the pressure is reduced to the desired cavity using the means 14. In the vacuum construction method in which pouring is performed, pressure reduction is stably performed, and near the boundary between the desired cavity portion and the other cavity portion so that the molten metal filled in the desired cavity portion solidifies quickly. A reduced pressure construction method will be described in which a sealing and blocking member in which the through-flow sealing member and the molten metal blocking member used in Examples 16 and 18 are integrated is installed.
[0446] 铸型、铸枠及び減圧手段の構成は実施例 16と同じである。すなわち、铸型外表面 26から複数の通気穴 27を設け、それに対応する複数の減圧ボックス 28によって減 圧した。 [0446] The configurations of the crucible, the collar frame and the pressure reducing means are the same as in the sixteenth embodiment. That is, a plurality of vent holes 27 were provided from the bowl-shaped outer surface 26, and the pressure was reduced by the corresponding plurality of pressure reducing boxes 28.
[0447] 本実施例では、通気封止部材として発泡榭脂 50を、溶湯遮断部材としてシェル片 5 2を用い、発泡榭脂 50を上部に、シェル片 52を下部にして一体ィ匕した封止遮断部材 53を所望のキヤビティー部分 35とその他のキヤビティー部分 38の境界部 39付近の キヤビティーの凹部 49に設置した。  [0447] In the present example, the foam resin 50 is used as the air-permeable sealing member, the shell piece 52 is used as the molten metal blocking member, the foam resin 50 is the upper part, and the shell piece 52 is the lower part. A blocking member 53 is placed in the recess 49 of the cavity near the boundary 39 of the desired cavity 35 and other cavities 38.
[0448] この封止遮断部材 53の作用、効果は実施例 16及び 18に示した通気封止部材と 溶湯遮断部材の 2つの部材の効果を複合させたものである。すなわち、減圧時は発 泡榭脂 50でキヤビティーの減圧の安定ィ匕をはかり、注湯後はシェル片 52が浮上して 境界部 39付近の凝固を促進する。なお、発泡榭脂 50の代わりに実施例 17の鋼板 5 1を用いても作用、効果は同じである。  The operation and effects of the sealing and blocking member 53 are obtained by combining the effects of the two members of the through-flow sealing member and the molten metal blocking member shown in the embodiments 16 and 18. That is, at the time of pressure reduction, the stability of the pressure reduction of the cavity is measured with the foam resin 50, and after pouring, the shell piece 52 comes up to promote coagulation in the vicinity of the boundary 39. In addition, even if it uses the steel plate 51 of Example 17 instead of the foamed resin 50, the effect | action and effect are the same.
[0449] この結果、 2つの作用をもつ部材を一体として設置でき、作業性が改善された。そし て、注湯時の溶湯の流れの乱れを少なくでき、また、注湯後の減圧保持時間を短縮 して生産効率を高めることができるようになった。  [0449] As a result, members having two functions can be installed as one, and the workability is improved. Then, the disturbance of the flow of the molten metal at the time of pouring can be reduced, and the reduced pressure holding time after pouring can be shortened to improve the production efficiency.
実施例 20  Example 20
[0450] 図 29に実施例 20を示す。本実施例では手段 15を用いて、減圧して所望のキヤビテ ィ一に注湯する減圧铸造法にお!ヽて、所望のキヤビティー部分に充填された溶湯が 早く凝固するように、境界部付近の通気穴及び Z又は冷却穴から強い送気を行って 急冷する減圧铸造法を説明する。  Example 20 is shown in FIG. In this embodiment, the pressure reducing structure method for reducing the pressure and pouring the desired cavity by using the means 15! Next, a reduced pressure structure method will be described in which quenching is performed by supplying strong air from the vent holes and Z or cooling holes near the boundary to rapidly solidify the molten metal filled in the desired cavity.
[0451] 铸型、铸枠及び減圧手段の構成は実施例 6と同じである。すなわち、铸型外表面 2 6から複数の通気穴 27を設け、それに対応する複数の減圧ボックス 28によって減圧 した。  [0451] The configurations of the boat type, the boat frame and the pressure reducing means are the same as in the sixth embodiment. That is, a plurality of vent holes 27 were provided from the bowl-shaped outer surface 26 and depressurized by the corresponding depressurizing boxes 28.
[0452] 本実施例では、铸型外表面 26から溶湯を充填させたい所望のキヤビティー部分 35 とその他のキヤビティー部分 38の境界部 39付近に向けて他の部位よりも大きぐ深 い冷却穴 54を設けた。 [0452] In the present embodiment, the desired cavity portion to which the molten metal is to be filled from the bowl-shaped outer surface 26 35 A deep cooling hole 54 which is larger than the other part is provided near the boundary 39 of the other cavity 38 and the other cavity 38.
[0453] 所定の減圧を行った後、所望のキヤビティー部分 35とほぼ等しい体積の溶湯を注 湯すると、溶湯は前記実施例に示したように所望のキヤビティー部分 35を充填する。 その後、各通気穴 27を通して吸引又は送気して冷却することができるが、その際、境 界部 39付近に設けた大きな、深 、冷却穴 54対しては大量の圧縮空気を送気して境 界部 39付近を速やかに冷却するようにした。なお、冷却穴 54に対して強い吸引を行 つて冷却速度を高めることもできるが、一般には圧縮空気を送気する方が冷却速度 を高めることができる。  After a predetermined pressure reduction, when a molten metal having a volume substantially equal to that of the desired cavity 35 is poured, the molten metal fills the desired cavity 35 as shown in the above embodiment. Then, it can be cooled by suction or air supply through each air vent 27. At that time, a large amount of compressed air is supplied to the large, deep, cooling holes 54 provided near the boundary 39. The area around the boundary 39 was quickly cooled. Although strong suction can be performed to the cooling holes 54 to increase the cooling rate, in general, the cooling rate can be increased by supplying compressed air.
[0454] このように、境界部 39付近に大きな、深 、冷却穴 54を設け、減圧ボックス 28から大 量の送気を行うことによって、境界部 39付近を速やかに凝固させ、減圧保持時間を 短縮することができる。  [0454] Thus, a large, deep cooling hole 54 is provided near the boundary 39, and a large amount of air is supplied from the decompression box 28 to rapidly solidify the vicinity of the boundary 39, and the decompression holding time is maintained. It can be shortened.
[0455] なお、境界部付近に設ける冷却穴はキヤビティー形状の制約等がある場合は必ず しも大きく、深い必要はなぐ適宜の大きさと深さとし、該部の冷却の速さは減圧ボック スからの吸引又は送気の流量で調節することもできる。また、冷却穴が設けられない 場合は、境界部付近の通気穴から吸引又は送気して冷却することもできる。  [0455] The cooling hole provided near the boundary is always large if there is a constraint on the cavity shape, etc. The depth and depth of the cooling hole should be appropriate, and the cooling speed of the part should be from the pressure reduction box. It can also be adjusted by the flow rate of suction or insufflation. Also, if no cooling holes are provided, it can be cooled by suction or air supply from the vent holes near the boundary.
[0456] 以上のように、実施例 18の溶湯遮断部材及び本実施例の境界部付近の通気穴及 び Z又は冷却穴力 冷却することによって、所望のキヤビティー部分のみへ溶湯を充 填する減圧铸造法のひとつの課題であった減圧保持時間が大幅に短縮された。 実施例 21  [0456] As described above, decompression is performed such that the molten metal is charged only in the desired cavity portion by cooling the melt blocking member of Example 18 and the vent holes and Z or cooling hole force in the vicinity of the boundary portion of this example. The reduced pressure holding time, which was one of the problems of the forging method, has been greatly reduced. Example 21
[0457] 図 30に実施例 21を示す。本実施例では手段 16を用いて、減圧铸造法において铸 型隙間に発生しやすいバリを防止する減圧铸造法を説明する。  Example 21 is shown in FIG. In the present embodiment, means 16 is used to explain a decompression fork method for preventing burrs which are easily generated in the gap in the vacuum forging method.
[0458] 铸型及び铸枠の基本構成は実施例 1と同じである。本実施例ではバリの防止方法 の原理がわ力り易いように、铸型上部に減圧フード 16を載置して铸型を全体減圧す る場合について説明する。  [0458] The basic configurations of the boat type and the boat frame are the same as in the first embodiment. In this embodiment, in order to facilitate the principle of the method of preventing burrs, a case is described in which the pressure reducing hood 16 is placed on the upper part of the bowl and the entire bowl is depressurized.
[0459] 铸型には中子の巾木部 55に連通する送気穴 57と、上下铸型の合せ面 56に連通 する送気穴 58を設ける。そして、減圧フード 16の 2個所に設けた給気穴 59を通して 送気管 60を送気穴 57、 58に連通させて圧縮空気を送気するようにした。 [0460] 本構成で作用、効果を説明する。一般に減圧铸造法では铸型を減圧すると、中子 の巾木部 55や上下铸型の合せ面 56などの隙間も減圧状態になり、溶湯が浸入しや すぐバリが発生する可能性が高くなる。 [0459] The bowl type is provided with an air supply hole 57 communicating with the core wood part 55 and an air supply hole 58 communicating with the upper and lower bowl mating surfaces 56. Then, the air supply pipe 60 is communicated with the air supply holes 57, 58 through the air supply holes 59 provided at two points of the decompression hood 16 so as to supply compressed air. [0460] The operation and effect of this configuration will be described. In general, in the decompression construction method, when the pressure is reduced, the gaps such as the core wood part 55 and the upper and lower facings 56 are also reduced in pressure, and the possibility that the molten metal will immediately generate burrs increases. .
[0461] そこで、本実施例では前述のように 2つの送気穴 57及び 58からこれらの隙間に圧 縮空気を送気して、浸入する溶湯を止めるようにした。すなわち、圧縮空気の送気に よって、これらの隙間の圧力は減圧による負圧にならずに正圧に保たれるので、溶湯 の浸入を阻止する作用を働力せることができる。また、圧縮空気が浸入してくる溶湯 を冷却して流動性を低下させるので、溶湯はさらに隙間へ浸入しにくくなる。  Therefore, in the present embodiment, compressed air is supplied to these gaps from the two air supply holes 57 and 58 as described above to stop the invading molten metal. That is, since the pressure of these gaps is maintained at a positive pressure without being a negative pressure due to the pressure reduction due to the air supply of the compressed air, it is possible to exert an action of preventing the entry of the molten metal. In addition, since the molten metal which compressed air infiltrates is cooled to lower the fluidity, the molten metal is more difficult to infiltrate into the gap.
[0462] 以上のように、バリが発生しやす 、減圧铸造法にお!、ても、バリの発生しやす 、部 位に送気穴を設け、そこに圧縮空気を送気することによってノ リを防止できた。ノ リの 発生がなくなつたことは、従来一般的に行っている後工程でのノ リ除去作業がなくな り、大幅なコスト低減と工程短縮の効果をもたらすものである。  [0462] As described above, burrs are likely to be generated, the pressure reduction method is also suitable, but even burrs are likely to be generated, by providing air holes in the part and supplying compressed air to the holes. I was able to prevent The elimination of the generation of the solder eliminates the work of removing the solder in the post process generally performed conventionally, and brings about the effect of significant cost reduction and process shortening.
[0463] なお、本実施例では 1個の製品を铸造する場合について示したが、複数個の場合 も同様に、必要部位に外表面に連通した送気穴を設けて圧縮空気を送気してバリを 防止できる。  Although the present embodiment shows a case where one product is manufactured, similarly, in the case of a plurality of products, an air supply hole communicating with the outer surface is provided at a necessary portion to supply compressed air. Can prevent burrs.
その場合には、実施例 7で用いたようなセグメント状の複数の減圧ボックスを用いて、 送気を行うことが最も有効である。  In that case, it is most effective to use a plurality of segmented pressure reducing boxes as used in Example 7 to supply air.
実施例 22  Example 22
[0464] 図 31に実施例 22を示す。本実施例では手段 17を用いて、減圧铸造法において球 状黒鉛铸鉄を注湯するにあたり、実施例 1乃至 21によってキヤビティーに高精度の 所定の減圧分布を創生した減圧铸造法が得られたことから、注湯温度を 1300°C以 下とした減圧铸造法を説明する。  Example 22 is shown in FIG. In this embodiment, when pouring the spherical graphite pig iron in the vacuum construction method using the means 17, the vacuum construction method in which the predetermined vacuum distribution with high accuracy is created in the cavity is obtained by Examples 1 to 21. As a result, we will explain the reduced pressure construction method where the pouring temperature is below 1300 ° C.
[0465] 铸型及び铸枠の基本構成は実施例 15と同じである。本実施例では、引け巣に対 する注湯温度の効果を明確にするために、 2つの铸型、 Aと Bを用意し、両铸型とも 押湯なしで注湯した。 Aは通常の铸造で無減圧で注湯し、 Bは本発明による減圧铸 造法で減圧して注湯した。また、注湯温度は Aでは一般的な 1400°C、 Bでは本発明 によって高精度な減圧分布が創生でき安定した湯廻りが得られることから 1300°Cと した。 [0466] 溶湯は球状黒鉛铸鉄で化学成分は C3.70%、 Si2.62%、 Mn0.30%、 Cu0.05%、 PO.032%, SO.008%, MgO.045%である。球状ィ匕は FeSiMg合金を用いて行つ た。また、製品の重量は 5.2kgである。 [0465] The basic configurations of the boat type and the boat frame are the same as in the fifteenth embodiment. In this example, in order to clarify the effect of the pouring temperature on the collapse, two pots A and B were prepared, and both pots were poured without pouring. A was poured by a normal structure without pressure reduction, and B was poured by pressure reduction by a pressure reduction method according to the present invention. Further, the pouring temperature was set to 1,300 ° C., since a general reduced pressure distribution can be created at A: 1,400 ° C., and a highly accurate decompression distribution can be created according to the present invention; [0466] The molten metal is spheroidal graphite pig iron, and the chemical composition is 3.70% C, 2.62% Si, 0.30% Mn, 0.05% Cu, PO. 032%, SO. 008%, MgO. 045%. The spherical shape was made using a FeSiMg alloy. The product weighs 5.2 kg.
[0467] 铸造後、製品を切断し、引け巣の面積を浸透探傷法により測定した結果、 Aでは 7 85mm2, Bでは 52mm2であった。つまり、注湯温度を 1400。C力ら 1300。Cへ 100。C 下げることによって、引け巣を約 1Z15に減少させることができた。 Bは完全な無欠陥 ではないが、実用的な強度ではほとんど無欠陥品とほぼ同等のものである。 [0467] After the forging, the product was cut, and the area of the scabs was measured by a penetration test. As a result, A was 85 mm 2 and B was 52 mm 2 . In other words, the pouring temperature is 1400. C Force et al. 1300. To C 100. By lowering C, it was possible to reduce the shrinkage to about 1Z15. Although B is not completely free of defects, it has almost the same practical strength as almost no defects in practical strength.
[0468] この結果を考察する。球状黒鉛铸鉄では注湯後、共晶温度 1150°Cでの凝固完了 までの間に、液体収縮、黒鉛ィ匕による膨張及びオーステナイト晶出による収縮が生じ る。詳細の計算は前述の手段 15に記載した通りである力 これら膨張と収縮の合計 は、 Aの 1400°C注湯では— 1.05%であり、 Bの 1300°C注湯では + 0.45%である。  [0468] Consider this result. In the case of spheroidal graphite pig iron, after pouring, during the completion of solidification at a eutectic temperature of 1150 ° C., liquid contraction, expansion by graphite and contraction due to austenite crystallization occur. The calculation of the details is as described in means 15 above. Force The sum of these expansions and contractions is -1.05% for the 1400 ° C pour of A and + 0.45% for the 1300 ° C pour of B .
[0469] したがって、 Aでは合計が収縮となり引け巣が残ることになるので、引け巣をなくすた めには押湯が必要であることを意味する。一方、 Bでは合計が膨張となり押湯がなく ても引け巣は発生しな 、ことを意味して 、る。  [0469] Therefore, in A, the sum shrinks and shrinkage cavities remain, which means that a pouring bath is necessary to eliminate shrinkage cavities. On the other hand, in B, the total is expanded, and even if there is no hot water, shrinkage cavities do not occur, which means.
[0470] ただし、これは単純な溶湯の膨張と収縮の計算のみからの判断である。引け巣の発 生にはその他に、铸型の膨張、凝固表皮の形成の速さ及び発生ガスなどの影響があ る。これらの要因が前述の溶湯の膨張と収縮の合計値に加算されて作用し、このよう な結果になったものと思われる。  [0470] However, this is a judgment based solely on simple calculations of expansion and contraction of the molten metal. In addition, there are other influences on the occurrence of shrinkage, such as the swelling of the cocoon shape, the speed of formation of the solidified epidermis, and the generated gas. These factors are considered to be the result of adding and acting on the sum of expansion and contraction of the above-mentioned melt.
[0471] しかし、注湯温度を 100°C下げることは収縮率で 1.5%の差に相当し、これを単純 計算すると、 5.2kgの製品において Aと Bの場合の引け巣の体積差は、溶湯の比重を 7.0とすると、 5200Z7.0 X 1.5Zl00= l l. lcm3となる。つまり、例えば lcm3の立 方体で約 11個分に相当するほど大きな引け巣の差となる。注湯温度を 100°C下げる 効果はこれほど大き 、のである。 However, lowering the pouring temperature by 100 ° C. corresponds to a difference of 1.5% in the contraction rate, and the simple calculation of this shows that the volume difference between the hollows in the case of A and B for the product of 5.2 kg is When the specific gravity of the molten metal to 7.0, the 5200Z7.0 X 1.5Zl00 = l l. lcm 3. In other words, for example, in a 1 cm 3 cube, the difference in the size of the sinkhole is as large as about 11 units. The effect of lowering the pouring temperature by 100 ° C is so great.
[0472] 本実施例の結果は、 Bの減圧铸造法での 1300°C注湯では引け巣は皆無にはなら な力つた力 Aの無減圧での 1400°C注湯に比べ引け巣の面積はは約 1Z15になり 、ほとんど引け巣ゼロに近いものが得られた。これは本発明の減圧铸造法によって湯 廻りがよくなり、注湯温度を 100°C下げることが可能になったことによる効果である。 本発明者の実験では、複数の減圧ボックスを用いる減圧方法などで、減圧を適正に 行えば 1250°Cでも湯廻り不良なく注湯が可能であることを確認している。このような 低温注湯ではさらに引け巣欠陥を減少させることができる。 [0472] The result of this example is that, in the case of the 1300 ° C. pouring in B's reduced pressure method, the number of shattering spots is negligible, compared with the force of A. The area became about 1Z15, and one with almost no shrinkage was obtained. This is an effect of the reduced pressure casting method according to the present invention, which improves the hot water pouring and makes it possible to lower the pouring temperature by 100 ° C. In the experiments of the present inventor, decompression is properly performed by a decompression method using a plurality of decompression boxes, etc. It has been confirmed that pouring at 1250 ° C is possible without failure. Such low temperature pouring can further reduce shrinkage defects.
[0473] なお、本実施例に加えて、後述する実施例 23及び 24などの冷却制御を併用する ことによって、さらに引け巣欠陥の少ない铸造法とすることができる。  [0473] In addition to the present embodiment, the combined use of the cooling control of Embodiments 23 and 24, etc. described later can yield a forging method with a further reduced number of hollow defects.
[0474] 以上のように、本発明の減圧铸造法と低温注湯を組合せることによって、球状黒鉛 铸鉄では押湯なしで無欠陥に近い铸物製品を得ることができた。なお、これは普通 铸鉄 (ねずみ铸鉄)、特殊铸鉄などを含め、铸鉄全般に適用することができる。特に 普通铸鉄においては、凝固形態が球状黒鉛铸鉄のマツシー型凝固に比べて、表皮 生成型凝固となるのでさらに引け巣の発生は少なくなり、本実施例がより容易に適用 できる。  [0474] As described above, by combining the low pressure steelmaking method of the present invention and low temperature pouring, a spherical graphite pig iron can be obtained as a defect-free container product without pouring. In addition, this can be applied to pig iron in general, including ordinary pig iron (maze iron) and special pig iron. In particular, in the case of ordinary pig iron, since the solidification form is skin-forming solidification compared to the matsushi-type solidification of the spheroidal graphite pig iron, the occurrence of shrinkage spots is further reduced, and the present embodiment can be applied more easily.
[0475] このように、押湯なしで铸物が製造できることになれば、まず、必要な溶湯量を低減 できるという直接効果が得られる。さらに、もとのキヤビティーで押湯があった場所がス ペースになるので、製品を追加して込めることができ、生産効率を向上することができ る。また、押湯がないので解枠後の工程も製品部のみとなり、単純化されるという効果 ち得られる。  [0475] As described above, if a pottery can be produced without a feeder, a direct effect can be obtained, first of all, by reducing the amount of molten metal required. In addition, since the space where the hot water was poured by the original cavity space, it is possible to add products and improve production efficiency. In addition, since there is no pouring, the process after unwinding is also limited to the product part, and the effect is simplified.
[0476] 以上のように、本実施例の铸鉄の減圧铸造法は、世界の自動車、建設、機械など の分野で年間約 5000万トン生産されている铸鉄部品の製造効率を大幅に高めるこ とがでさるちのである。  [0476] As described above, the decompression construction method of the pig iron of the present example significantly enhances the production efficiency of the pig iron parts that are produced about 50 million tons annually in the fields of automobiles, construction, machinery and the like in the world. This is a salute.
実施例 23  Example 23
[0477] 図 32に実施例 23を示す。本実施例では手段 18を用いて、減圧铸造法において注 湯後に複数の通気穴、冷却穴及び铸型セグメントを通して吸引又は送気されるガス 体の流量を制御して、充填された溶湯の所望の部位力 順次凝固を進行させる減圧 铸造法を説明する。  Example 23 is shown in FIG. In this embodiment, the means 18 is used to control the flow rate of the gas drawn or fed through the vent holes, the cooling holes and the wedge-shaped segments after pouring in the reduced pressure drilling method, thereby making it desirable to fill the molten metal. We will explain the pressure reduction method to make the solidification progress sequentially.
[0478] 铸型、铸枠及び減圧手段の基本構成は実施例 7と同じである。本実施例では、セ グメントの選択された部位に複数の通気穴 27を設け、铸型上に載置された複数の減 圧ボックス 28によって吸引又は送気を行って注湯中及び注湯後の冷却を行った。  [0478] The basic configurations of the boat type, the boat frame and the pressure reducing means are the same as in the seventh embodiment. In the present embodiment, a plurality of vent holes 27 are provided at selected portions of the segment, and suction or air is supplied by a plurality of pressure reducing boxes 28 placed on the boat to pour and after pouring. Cooling was done.
[0479] まず、注湯前の減圧は前記実施例で述べたと同様に、製品部 12と押湯部 13の減 圧度を高ぐ湯口部 15側の減圧度を低い減圧分布を設定した。所定の減圧後、所 望のキヤビティー部分 35とほぼ等 、体積の溶湯を注湯して、所望のキヤビティー部 分 35のみに充填した。 First, the pressure reduction before pouring is set to a pressure reduction distribution with a low degree of pressure reduction on the side of the sprue 15 where the pressure reduction degree of the product section 12 and the pouring section 13 is increased as described in the above examples. After predetermined pressure reduction A molten metal having a volume substantially equal to that of the desired cavity 35 was poured and filled only in the desired cavity 35.
[0480] ところで、一般に铸造において引け巣を防止する方法のひとつとして、製品部 12の 冷却を押湯部 13から遠い部分力 順次押湯に向力つて冷却される、いわゆる指向性 凝固となるように押湯や冷し金などの位置、大きさ及び数が工夫されている。しかし、 これらの方法は製品形状からくる制約があり、必ずしも望ましい指向性凝固は得られ ていない。  [0480] By the way, as one of the methods for preventing shrinkage in general in the forging, so-called directional solidification is achieved in which cooling of the product portion 12 is partially cooled away from the feeder 13 and sequentially cooled toward the pouring. The position, size and number of the hot water and cold metal are devised. However, these methods have limitations due to the product shape, and the desired directional solidification is not necessarily obtained.
[0481] 本実施例では注湯完了後、高精度な指向性凝固を可能にするため、铸型外表面 2 6から複数の通気穴 27を設け、注湯後、製品部 12の押湯部 13から最も遠い部位へ 多量の圧縮空気を送気し、以下順次製品部 12、押湯部 13に流量を下げた圧縮空 気を送気した。そして、湯口部 15付近は弱い吸引を行った。また、溶湯を充填したい 所望のキヤビティー部分 35とその他のキヤビティー部分 38の境界部 39付近は減圧 保持時間を短縮させるため、早く凝固させるように冷却の初期に多量の圧縮空気を : ^し 7こ。  In the present embodiment, in order to enable directional solidification with high accuracy after pouring is completed, a plurality of vent holes 27 are provided from the bowl-shaped outer surface 26 and after pouring, the pouring portion of the product portion 12 is carried out. A large amount of compressed air was supplied to the farthest area from 13 and compressed air with a reduced flow rate was supplied to the product section 12 and the pouring section 13 sequentially. Then, the area around the gate 15 was subjected to weak suction. Also, in order to shorten the pressure reduction holding time near the boundary 39 between the desired cavity part 35 to be filled with the molten metal and the other cavity part 38, a large amount of compressed air can be set early in the cooling process to shorten solidification time: .
[0482] この結果、各部位の冷却速度は図 32の最下段に示したようになり、押湯部 12から 最も遠い部分力 順次凝固するような指向性凝固を行うことができた。これによつて、 製品部 12は端面側力 凝固して収縮分が順次隣接部位力 供給されて健全性が向 上した。場合によっては、押湯を小さく又は除去することも可能である。  As a result, the cooling rate of each part was as shown in the lowermost part of FIG. 32, and it was possible to perform directional solidification such that the partial force farthest from the feeder 12 was sequentially solidified. As a result, the product portion 12 is solidified on the end face side, and the contractions are sequentially supplied to the adjacent site force to improve the soundness. In some cases, it is also possible to reduce or eliminate the feeder.
[0483] なお、溶湯を充填したい所望のキヤビティー部分 35とその他のキヤビティー部分 38 の境界部 39付近は初期の急冷によって冷却速度が上がるので、境界部 39の急冷 は押湯部 13の冷却速度が上がらないように、境界部 39付近が凝固するまでの最小 の時間とする。  It should be noted that since the cooling rate is increased by the initial quenching in the vicinity of the boundary 39 between the desired cavity portion 35 to which the molten metal is desired to be filled and the other cavity 38, the cooling speed of the boundary portion 39 is equal to the cooling speed of the feeder 13. The minimum time for solidification around the boundary 39 is set so as not to rise.
[0484] なお、本実施例では減圧と送気に同一の通気穴を使用した力 可能であれば、通 気穴は望ましい減圧分布を得るためのものと、本実施例に示すような指向性凝固を 得るための冷却穴との両方を設けておくことが望ましい。また、各通気穴及び冷却穴 力 の吸引又は送気の流量は製品各部の肉厚やその位置関係などを考慮して決め るようにする。  [0484] In the present embodiment, if the same vent hole is used for pressure reduction and air supply, if possible, the air holes are for obtaining a desired pressure reduction distribution and directivity as shown in the present embodiment. It is desirable to provide both cooling holes to obtain solidification. In addition, the flow rate of suction or air supply for each ventilation hole and cooling hole force should be determined in consideration of the thickness of each part of the product and its positional relationship.
[0485] 以上のような高精度の指向性凝固が可能となったのは、通気穴及び冷却穴の位置、 大きさ、深さなどをキヤビティーのレイアウトに応じて適切に設け、複数の減圧ボックス によって適性に吸引又は送気を行ったことによるものである。通常の押湯や冷し金な どによる対策では決して得られな 、ものである。 [0485] The above-mentioned directional solidification with high accuracy is made possible by the positions of the vent holes and the cooling holes, This is because the size, depth, etc. were appropriately provided according to the layout of the cavity, and suction or air supply was appropriately performed by a plurality of pressure reduction boxes. It is something that can not be obtained by measures such as normal pouring and cooling.
[0486] なお、本実施例は複数込めの場合にも大きな効果をもたらす。つまり、複数込めの 場合に通常の押湯や冷し金で指向性凝固を得ようとすると、押湯や冷し金をたくさん 用いることになり、溶湯量及び工数が多大になる傾向がある。しかし、本実施例を用 いれば、実施例 7の図 8に示したように、キヤビティーの複数の製品ブロック毎に本実 施例のような通気穴及び Z又は冷却穴を設け、減圧ボックスによって吸引又は送気 を行えばょ 、ので、容易に指向性凝固を得ることができる。  Note that this embodiment also brings about a great effect in the case of multiple loading. That is, in the case of multiple filling, if it is intended to obtain directional solidification with a normal feeder or chiller, a lot of feeder or chiller will be used, and the amount of molten metal and the number of man-hours tend to be large. However, if this embodiment is used, as shown in FIG. 8 of the seventh embodiment, vent holes and Z or cooling holes as in this embodiment are provided for each of a plurality of product blocks of the cavity, and As aspiration or insufflation is performed, directional coagulation can be easily obtained.
[0487] 以上のように、本発明の減圧铸造法は注湯過程とともに、冷却過程も高精度に制 御可能で、铸造の最も望ましい指向性凝固を容易に行うことができる。この結果、欠 陥を低減し、また押湯を削減又は省略できると 、う多大の効果を提供するものである 実施例 24  As described above, the decompression forging method of the present invention can control the cooling process with high accuracy as well as the pouring process, and can easily perform the most desirable directional solidification of the forging. As a result, if defects can be reduced and pouring can be reduced or omitted, a great effect can be provided.
[0488] 図 33に実施例 24を示す。本実施例では手段 19を用いて、減圧铸造法において注 湯後に通気性铸型の複数の通気穴、冷却穴及び铸型セグメント等の各部から吸引 排出されるそれぞれのガス体の温度、又は温度と流量のデータをもとに、溶湯の冷 却状態を制御する減圧铸造法につ!、て説明する。  [0488] Figure 24 shows Example 24. In this embodiment, the temperature or temperature of each gas body sucked and discharged from each part such as a plurality of vent holes, cooling holes, and wedge segments after pouring in the reduced pressure method using the means 19 according to the present invention. We will explain the pressure reduction construction method to control the cooling state of the molten metal based on the data of and flow rate.
[0489] 铸型、铸枠及び減圧手段の基本構成は実施例 23と同じである。本実施例では、铸 型 ML各部から吸引排出されるガス体の流れ 79及び送気される圧縮空気の流れ 80 、並びに制御信号の流れ 81及びデータ信号の流れ 91を図 33に示すように構成した 。図では 1個の減圧ボックス VBにつ!/、て示して!/、る。  [0489] The basic configurations of the boat type, the boat frame and the depressurizing means are the same as in the twenty-third embodiment. In this embodiment, the flow 79 of the gas body sucked and discharged from each part of the vertical ML, the flow 80 of the compressed air supplied, and the flow 81 of the control signal and the flow 91 of the data signal are configured as shown in FIG. did . In the figure, one decompression box VB is shown! /!
[0490] すなわち、铸型 ML各部から吸引排出されるガス体は各減圧ボックス VBを通って吸 引流量 ·温度測定手段 VMに導かれて流量と温度が測定され、そのデータ信号 91 は演算手段 CLに送られる。そして、演算手段 CLで各部の冷却状態が推算される。  [0490] That is, the gas sucked and discharged from each part of the bowl-shaped ML is drawn to the suction flow rate · temperature measurement means VM through each decompression box VB to measure the flow rate and temperature, and the data signal 91 is calculated It is sent to CL. Then, the cooling state of each part is estimated by the calculation means CL.
[0491] 一方、送気される圧縮空気は送気流量 ·温度測定手段 CMによって流量と温度が測 定され、そのデータ信号 91は演算手段 CLに送られる。そして、演算手段 CLで各部 の冷却状態の推算のための補助データとなる。 [0492] このようにして、複数の減圧ボックス VBからのガス体及び圧縮空気の温度と流量の データにもとづいて、演算手段 CLで各部の凝固状態を推算する。その結果にしたが つて、望ま 、冷却状態に近づけるための制御信号 81が吸引流量制御手段 VC及 び送気流量制御手段 CCに送られる。そして、各制御手段によって流量が制御され て吸引又は送気が行われる。 On the other hand, the flow rate and temperature of the compressed air to be supplied are measured by the air flow rate and temperature measurement means CM, and the data signal 91 is sent to the calculation means CL. Then, the calculation means CL serves as auxiliary data for estimating the cooling state of each part. In this manner, the solidification state of each part is estimated by the calculation means CL based on the data of the temperature and flow rate of the gas and compressed air from the plurality of pressure reduction boxes VB. According to the result, a control signal 81 for approaching the cooling condition is desirably sent to the suction flow control means VC and the air flow control means CC. Then, the flow rate is controlled by each control means to perform suction or air supply.
[0493] このように、複数の通気穴と減圧ボックス VBを通るガス体と圧縮空気の温度と流量 を測定することによって、铸型各部の冷却状態が推算でき、その結果にしたがってさ らに吸引及び Z又は送気の流量を制御して望ましい冷却状態を得ることができた。  Thus, by measuring the temperature and flow rate of the gas and compressed air passing through the vent holes and the decompression box VB, it is possible to estimate the cooling state of each part of the bowl, and further suction according to the result. And Z or the flow rate of the air supply could be controlled to obtain the desired cooling condition.
[0494] このような冷却制御された減圧铸造法が可能となったのは、基本的には铸型に設 けた複数の通気穴とそれに対応する複数の減圧ボックスの効果である。本実施例は 複数の減圧ボックスを用いることによって可能である力 特に実施例 7のようなセグメ ント状の減圧ボックスを用いる方法が最適である。すなわち、この場合には铸型の一 面全体を分割して吸引又は送気し、各部位力も多くのデータが得られるので、高精 度に冷却状態の推算ができ、その結果、高精度に冷却制御ができるようになった。  [0494] It is basically the effects of a plurality of vent holes provided in a bowl shape and a plurality of corresponding pressure reduction boxes that made such a cooling-controlled pressure reduction structure possible. The force which can be achieved by using a plurality of decompression boxes in this embodiment In particular, the method using a segmented decompression box as in embodiment 7 is most suitable. That is, in this case, the entire surface of the bowl is divided and suctioned or fed, and a large amount of data can be obtained for each part force, so that the cooling state can be estimated with high accuracy, and as a result, high accuracy can be obtained. It became possible to control the cooling.
[0495] なお、本実施例ではガス体及び圧縮空気の温度と流量の両方のデータを測定した 力 温度のみでもほぼ同じような作用、効果を得ることができる。  In the present embodiment, substantially the same action and effect can be obtained with only the force temperature obtained by measuring both the temperature and flow rate data of the gas and compressed air.
[0496] 以上のように本発明によって、従来全く実施されていな力つた注湯後の冷却制御を 高精度にかつ容易に適用した減圧铸造法が可能になった。このことは、従来、铸造 一般において、注湯後は自然冷却に依存していた铸造技術の空白部分に対して、 自由に冷却制御ができる技術を提供したことになり、铸造技術の進歩の面でその意 義は大きい。  As described above, according to the present invention, it is possible to realize a reduced pressure structure method in which the cooling control after pouring, which has never been carried out conventionally, is applied with high precision and easily. This means that, in the past, in general, for the blank part of the forging technology that relied on natural cooling after pouring, it provided a technology that allows for free cooling control, and this is an aspect of the advancement of forging technology So the meaning is big.
実施例 25  Example 25
[0497] 図 34及び図 35に実施例 25を示す。本実施例では手段 20によって実施例 24に示し た冷却制御方法を適用した減圧铸造法において、充填された溶湯の最終凝固組織 を調整する減圧铸造法を説明する。  [0497] Example 25 is shown in Figs. 34 and 35. In this embodiment, in the reduced pressure structure method to which the cooling control method shown in the twenty fourth embodiment is applied by means 20, the reduced pressure structure method for adjusting the final solidified structure of the filled molten metal will be described.
[0498] 铸型、铸枠及び減圧手段の基本構成は実施例 23と同じである。本実施例では、減 圧して球状黒鉛铸鉄を注湯した後、解枠までの過程で重要な凝固領域又は変態領 域の冷却を制御して所望の最終凝固組織を得るようにした。溶湯は実施例 22と同じ 成分の球状黒鉛铸鉄で、通常の自然冷却では FCD500相当の材質が得られるもの である。 The basic configuration of the boat type, the boat frame and the pressure reducing means is the same as that of the twenty-third embodiment. In this example, after the pressure was reduced and the spheroidal graphite pig iron was poured, the cooling of the important solidification area or transformation area was controlled in the process up to the release frame to obtain the desired final solidification structure. Molten metal is the same as Example 22 It is a component of spherical graphite pig iron, and the material equivalent to FCD 500 can be obtained by ordinary natural cooling.
[0499] 本実施例では注湯後、複数の通気穴及びこれに対応する複数の減圧ボックスから のガス体及び圧縮空気の温度及び流量のデータにもとづき、実施例 24に示した冷 却制御方法によって、通常よりも高速の冷却を行った。  [0499] In the present embodiment, the cooling control method shown in Embodiment 24 is based on the data of the temperature and flow rate of the gas and compressed air from the plurality of vent holes and the plurality of pressure reduction boxes corresponding thereto after pouring. The cooling was faster than usual.
[0500] 図 34に本実施例の冷却曲線を示した。図には上記の铸鉄溶湯において通常の無 減圧の铸造を行って铸型内で自然冷却したときの自然冷却曲線 84と、本実施例に よる制御冷却をしたときの制御冷却曲線 85を示した。铸鉄の場合、共晶温度で全体 の凝固が完了するまでの領域と、その後、オーステナイトがパーライトとフェライトに変 態する共析変態領域 83の冷却速度が最終凝固組織を決める重要な要因である。  [0500] FIG. 34 shows the cooling curve of this example. The figure shows a natural cooling curve 84 when the above molten molten iron is subjected to a normal pressureless structure and naturally cooled in the mold, and a control cooling curve 85 when the controlled cooling according to this embodiment is performed. The In the case of pig iron, the cooling rate of the area until the entire solidification is completed at the eutectic temperature and the eutectoid transformation area 83 where the austenite is transformed into pearlite and ferrite is the important factor that determines the final solidified structure. .
[0501] 図 34からわ力るように、本実施例の制御冷却では通常冷却に比べ、共晶温度領域 及び共析変態領域 83の冷却速度が大きくなつて 、る。  As seen from FIG. 34, in the controlled cooling of this example, the cooling rate of the eutectic temperature range and the eutectoid transformation range 83 is larger than that of the normal cooling.
[0502] 両冷却の最終凝固組織及び機械的性質を図 35及び表 1に示す。制御冷却したと きの金属組織 87は自然冷却したときの金属組織 86に比べ、パーライトが多くフェライ トが少ない組織になっている。また、機械的性質は自然冷却が FCD500相当である のに対して、制御冷却では FCD700相当で、引張強さ及び耐力が高ぐかつ伸びも 自然冷却と同程度の数値を示している。一般に引張強さが上がると伸びは低下する のであるが、制御冷却によってパーライトが緻密になっているので、このような伸びが 得られたものである。  [0502] The final solidified structure and mechanical properties of both coolings are shown in FIG. The metallographic structure 87 in controlled cooling is a structure with many pearlite and less ferrite as compared to the metallographic structure 86 in natural cooling. The mechanical properties of natural cooling are equivalent to FCD 500, while those of controlled cooling are equivalent to FCD 700, and the tensile strength and yield strength are high, and the elongation is as good as natural cooling. In general, although the elongation decreases as the tensile strength increases, such elongation is obtained because the pearlite is compacted by controlled cooling.
[0503] すなわち、同じ溶湯を注湯して解枠までの過程を冷却制御することによって、通常 の铸造よりも高強度高靭性の材質を得ることができた。  [0503] That is, by pouring the same molten metal and performing cooling control on the process up to the release frame, it was possible to obtain a material with higher strength and toughness than that of the ordinary structure.
[0504] 表 1
Figure imgf000081_0001
[0504] Table 1
Figure imgf000081_0001
[0505] 一般に铸物材質のつくり分けは、溶湯成分の変更や、凝固した铸物を熱処理するこ となどによって行われている。しかし、前者では準備する溶湯の種類が多くなり作業 上の煩雑さをまねいている。また、後者では再度の加熱のための大量の熱エネルギ 一を消費することになるし、熱処理という余分な工程が必要になることなどから、大き なコスト増加の要因となっている。 [0505] In general, the formation of the material of the bowl is carried out by changing the components of the molten metal, heat treating the solidified bowl, and the like. However, in the former, there are many types of molten metal to prepare, and it is complicated in operation. Also in the latter, a large amount of heat energy for heating again This will consume a lot of money and require an extra process such as heat treatment, which is a major cause of cost increase.
[0506] 本実施例に示すような、注湯力 解枠までの間に铸型内で冷却制御することによつ て、最終の凝固組織を調整して所望の材質を得る铸造法は全く実施されていなかつ た。したがって本実施例は、現状技術における準備する溶湯の種類の多さや、熱処 理工程の問題を解決するものである。  [0506] As described in the present embodiment, there is absolutely no tweaking method to obtain the desired material by adjusting the final solidified structure by controlling the cooling in the mold until the pouring force is released. It has not been implemented. Therefore, the present embodiment solves the problems of the various types of molten metals to be prepared in the state of the art and the heat treatment process.
実施例 26  Example 26
[0507] 図 36に実施例 26を示す。本実施例では手段 21を用いて、注湯後、注湯口又は湯 口部を、非通気性部材又は铸型よりも通気性の低 、部材で塞 、で溶湯の凝固まで 減圧を行う減圧铸造法を説明する。  Example 26 is shown in FIG. In this embodiment, after the pouring, using the method 21, the pouring spout or the spout portion is lower in air permeability than the non-air-permeable member or the bowl type, and the member is closed. Explain the law.
[0508] 铸枠、铸型、及び減圧方法の構成は実施例 9と同じである。注湯前の状態は実施 例 9の図 10と同じである。図 36は注湯後の状態を示す。本実施例では铸型キヤビテ ィ一のうち製品部と押湯部を充填させたい所望のキヤビティー部分として、その部分 のみに溶湯を充填させ凝固させる場合において、注湯後の減圧度を安定に保つ効 果が大き!ヽ減圧铸造法を説明する。  [0508] The configurations of the weir frame, weir type and decompression method are the same as in Example 9. The condition before pouring is the same as FIG. 10 of the ninth embodiment. Figure 36 shows the condition after pouring. In this embodiment, as the desired cavity portion to be filled with the product portion and the pouring portion in the vertical cavity type I, when the molten metal is filled and solidified only in that portion, the degree of reduced pressure after pouring is kept stable. The effect is great! Explain the pressure reduction construction method.
[0509] 実施例 9で説明したように、注湯後、溶湯を充填させた!/、所望のキヤビティー部分の 減圧度を γ Η以上に保持すれば所期の目的を達成することができる。しかし、注湯に ともなって注湯口又は湯口部が大気に開放されるのでその部分の減圧度が大きく低 下し、铸型キヤビティーの減圧度も変化を受け易くなる。  [0509] As described in Example 9, after pouring, the molten metal was filled! / The desired purpose can be achieved by maintaining the degree of pressure reduction of the desired cavity portion at or above γΗ. However, since the pouring port or sprue part is opened to the atmosphere along with the pouring, the degree of pressure reduction of that part is greatly reduced, and the degree of pressure reduction of the wedge-shaped cavity is also susceptible to change.
[0510] そこで、本実施例では、注湯後、注湯口 21を非通気性部材 92で塞 ヽで溶湯の凝固 まで減圧を行うようにした。これによつて、铸型キヤビティーは注湯前とほぼ同じ密閉 状態になり、その結果、減圧度を安定に保つことができる。また減圧装置の容量を小 さくすることもできる。なお、非通気性部材 92で塞ぐ場所は、本実施例のように注湯 口 21でもよいし、湯口部 15でも効果は同じである。  Therefore, in the present embodiment, after pouring, the pouring port 21 is closed by the non-air-permeable member 92, and the pressure is reduced until solidification of the molten metal. As a result, the vertical cavity will be in the same sealed state as before pouring water, and as a result, the degree of pressure reduction can be kept stable. In addition, the capacity of the decompression device can be reduced. The place to be closed by the non-air-permeable member 92 may be the pouring port 21 as in this embodiment, and the same effect is obtained at the spout portion 15.
[0511] 非通気性部材としては、金属、榭脂、ゴム、板等が適当である。また、ある程度の空 気の流入が許容できるときは、铸型よりも通気性の低い部材、例えば布、細粒铸型な どでも一定の効果を得ることができる。  As the non-air-permeable member, metal, resin, rubber, plate or the like is suitable. In addition, when the inflow of air to some extent is acceptable, a certain effect can be obtained even with a member having lower air permeability than a bowl-like, for example, a cloth, a fine-grain bowl-like or the like.
[0512] 以上のように減圧铸造法において、注湯後に適切な非通気性部材又は铸型よりも 通気性の低 、部材で注湯口又は湯口部を塞 、で密閉状態をつくることによって、安 定した減圧状態を保持できるようになった。この铸造法は減圧铸造法全般に有効で あるが、特に所望のキヤビティー部分のみに溶湯を充填させ凝固させる減圧铸造法 には効果が大きい。 [0512] As described above, in the decompression forging method, a suitable non-air-permeable member or pot-shaped after pouring is more suitable than By closing the pouring port or sprue part with a low breathability member, it became possible to maintain a stable reduced pressure state. This forging method is effective for the reduced pressure method in general, but is particularly effective for the reduced pressure method for filling and solidifying the molten metal only in the desired cavity portion.
実施例 27  Example 27
[0513] 図 37に実施例 27を示す。本実施例では手段 22を用いて、铸型から吸引排出された ガス体を、熱交換装置 72で熱交換させる、及び Z又は原材料予熱装置 71に供給す ることによって溶湯の熱を回収して有効に利用する铸造システムについて説明する。 铸型、铸枠及び減圧手段の基本構成は実施例 23と同じである。  Example 27 is shown in FIG. In the present embodiment, the means 22 is used to heat exchange the gas body sucked and discharged from the mold by the heat exchange device 72 and supply the heat to the Z or raw material preheating device 71 to recover the heat of the molten metal. Describe the forgery system that is effectively used. The basic configurations of the boat type, the boat frame and the pressure reducing means are the same as in the twenty-third embodiment.
[0514] 従来、铸造法一般において、注湯された溶湯はその熱を铸型に与えて凝固し、最終 的に溶湯に残った熱と铸型の熱は空気又は水によって冷却される。したがって、溶 解に要した熱量は全く回収されることなく空中に放散されているのである。つまり、铸 造におけるエネルギー回収率はほとんどゼロということである。  Conventionally, in the case of the general method of construction, the poured melt is solidified by giving its heat to the mold, and finally the heat remaining in the melt and the heat of the mold are cooled by air or water. Therefore, the heat required for melting is dissipated into the air without being recovered at all. In other words, the energy recovery rate in construction is almost zero.
[0515] 本実施例では図 37に示すように铸型の上部に載置された吸引送気手段 61によつ て吸引排出されたガス体を、熱交換装置 72で熱交換させる、及び Z又は原材料予 熱装置 71に供給するように配管を行った。これによつてキヤビティーに注湯された溶 湯の熱を有効に利用することができるようになった。  [0515] In the present embodiment, as shown in FIG. 37, the gas body sucked and discharged by the suction and air feeding means 61 placed on the upper part of the bowl shape is subjected to heat exchange with the heat exchange device 72; Alternatively, piping was performed to supply raw material preheating device 71. This makes it possible to effectively use the heat of the molten water poured into the cavity.
[0516] 従来、減圧铸造法は高効率連続ラインには適用されることが少なかったこと、及び 減圧铸造方法を採用していても注湯後には吸引減圧を止めていたことなどのため、 このような溶湯の熱の回収はほとんど考えられな力つた。本発明によって減圧铸造方 法が高効率連続ラインにも容易に適用できるようになり、また、注湯後の冷却制御が 実施可能になったことから、このように吸引排出される多量のガス体を介して溶湯の 熱を回収できるようになったのである。  [0516] In the past, reduced pressure construction was less frequently applied to high-efficiency continuous lines, and even if pressure reduction construction was adopted, suction and pressure reduction was stopped after pouring, etc. Such recovery of the heat of the molten metal was almost unthinkable. According to the present invention, the reduced pressure casting method can be easily applied to a high efficiency continuous line, and since the cooling control after pouring becomes feasible, a large amount of gas bodies thus sucked and discharged can be obtained. It became possible to recover the heat of the molten metal through the
[0517] 以上のように、本発明の铸造システムは前述の高精度な減圧制御、冷却制御とあい まって溶湯の熱エネルギーの回収の面でも多大の効果を提供するもので、総合的な 高精度、高効率の減圧铸造法を提供した。  As described above, the structure system of the present invention, together with the above-mentioned high-precision pressure reduction control and cooling control, provides a great effect also in the recovery of the thermal energy of the molten metal, and the overall high quality An accurate, high-efficiency reduced pressure construction method was provided.
[0518] このように溶湯の熱を回収できることは、省エネルギーや COの削減が地球規模で  [0518] The ability to recover the heat of molten metal in this way means that energy saving and reduction of CO
2  2
求められる 21世紀の铸造工場にとって、大きな革新技術のひとつとなるものである。 実施例 28 It is one of the major innovation technologies for the 21st century forged factories that are required. Example 28
[0519] 図 38に実施例 28を示す。本実施例では手段 23を用いて、本発明に用いる注湯時 の減圧と注湯後の冷却のための吸引送気装置について説明する。  [0519] Fig. 38 shows Example 28. In the present embodiment, a suction / air supply device for pressure reduction during pouring and cooling after pouring will be described using means 23.
[0520] 本実施例では、まず铸型外表面 26に当接させる開口端 62を有する複数の減圧ボ ックス 28を铸型外表面 26に対して垂直方向に昇降する昇降手段 19に取付けた。複 数の減圧ボックス 28は側面で連接させて 1つの铸型外表面 26の湯口部 15を除く全 面を覆うようにした。すなわち、一つの铸型外表面 26を仮想的に複数の铸型セグメン トに分割し、その各部から吸弓 I又は送気ができるようにした。  [0520] In the present embodiment, first, a plurality of pressure reducing boxes 28 each having an open end 62 to be brought into contact with the bowl-shaped outer surface 26 are attached to the lifting means 19 for lifting and lowering vertically with respect to the bowl-shaped outer surface 26. A plurality of decompression boxes 28 are connected sideways so as to cover the entire surface of one bowl-shaped outer surface 26 except for the gate portion 15. That is, one wedge-shaped outer surface 26 is virtually divided into a plurality of wedge-shaped segments so that the suction bow I or air can be supplied from each portion.
[0521] 次に、複数の減圧ボックス 28には開口端 62の反対側に吸引口 31と送気口 32が設 けられており、これらが複数の減圧ボックス 28の上部に設けられた吸引室 63と送気 室 64にそれぞれ連通されている。なお、吸引口 31は吸引室 63と直接連通している 力 送気口 32は吸引室 63を通った連通管 65によって送気室 64に連通している。  Next, in the plurality of decompression boxes 28, the suction port 31 and the air supply port 32 are provided on the opposite side of the opening end 62, and these are provided in the upper part of the plurality of decompression boxes 28. It communicates with 63 and the air supply chamber 64 respectively. The suction port 31 is in direct communication with the suction chamber 63, and the force supply port 32 is in communication with the air supply chamber 64 through a communication pipe 65 passing through the suction chamber 63.
[0522] また、吸引室 63と送気室 64には、それぞれ吸引量と送気量を個別に制御する吸 引流量制御手段 29及び送気流量制御手段 33が押付け弁の機構で昇降自在手段 6 6に設けられている。そして、吸引室 63は減圧装置に、送気室 64は空気圧縮装置に 連通されている。なお、吸引流量制御手段 29及び送気流量制御手段 33は必ずしも 本実施例に示す押付け弁機構のものに限定されるものではなぐいかなる制御手段 でも作用、効果は同じである。  In the suction chamber 63 and the air supply chamber 64, suction flow rate control means 29 and suction air flow amount control means 33 for individually controlling the suction amount and the air supply amount respectively can be moved up and down by the mechanism of the pressing valve. It is provided at six six. The suction chamber 63 is in communication with the pressure reducing device, and the air feeding chamber 64 is in communication with the air compression device. The suction flow rate control means 29 and the air flow amount control means 33 are not necessarily limited to those of the pressing valve mechanism shown in this embodiment, and any control means other than the suction flow rate control means 29 and the air flow amount control means 33 have the same action and effect.
[0523] 本構成で装置の作用、効果を説明する。複数の減圧ボックス 28は 1つの铸型外表 面 26を覆うように配置されており、これをその铸型外表面 26に当接して載置し減圧 を行う。その際、铸型には選択された位置に複数の通気穴 27を設けておき、所定の 減圧分布が得られるように、各減圧ボックス 28の吸引流量及び送気流量を流量制御 手段 29及び 33で制御する。  The operation and effects of the apparatus will be described with this configuration. A plurality of pressure reducing boxes 28 are disposed so as to cover one wedge outer surface 26, and this is placed in contact with the wedge outer surface 26 to perform pressure reduction. At that time, a plurality of vent holes 27 are provided at selected positions in the bowl shape, and the suction flow rate and the air flow rate of each pressure reduction box 28 are controlled by flow control means 29 and 33 so that a predetermined pressure reduction distribution can be obtained. Control.
[0524] 複数の減圧ボックス 28のうちの幾つかは通気穴がない部位に当接されることになる 力 その部位に対しても必要であれば吸引又は送気を行うことができる。これが、複 数の減圧ボックス 28を連接して铸型外表面 26を覆うようにした効果である。  [0524] Some of the plurality of decompression boxes 28 will be brought into contact with the site without vent holes. Force can be applied to the site if necessary. This is an effect of connecting the plurality of pressure reducing boxes 28 to cover the wedge-shaped outer surface 26.
[0525] 注湯時の減圧の場合には、吸引を主とし、送気は減圧度を下げたい部位に補助的 に用いる。また、注湯後の冷却においては、吸気と送気を組合せて用いる。特に強い 冷却を与えた 、部位には送気を行った方が冷却効果は大き 、。 [0525] In the case of depressurization at the time of pouring, suction is mainly used, and air supply is supplementarily used at a site where the degree of depressurization is to be reduced. In addition, in the cooling after pouring, a combination of intake and air supply is used. Especially strong The cooling effect is greater if the air is supplied to the part where the cooling was given.
[0526] なお、本装置と同様な構成は既に実施例 7で示している。実施例 7では吸引及び送 気の流量制御手段は、本実施例のような吸引室 63と送気室 64を設けず、各減圧ボ ッタスの吸引口と送気穴にそれぞれ直接に設けている。実施例 7の吸引送気装置も 作用、効果は本実施例と全く同じである。また、実施例 5のように送気口を設けないで 吸気口のみで吸引減圧を行なうこともできる。  The configuration similar to that of the present apparatus is already shown in the seventh embodiment. In the seventh embodiment, flow control means for suction and air supply are provided directly in the suction port and air supply hole of each decompression pottery without providing the suction chamber 63 and the air supply chamber 64 as in this embodiment. . The suction and air supply device of the seventh embodiment also works and the effect is exactly the same as that of the present embodiment. Also, as in the fifth embodiment, suction and pressure reduction can be performed only with the air intake port without providing the air supply port.
[0527] また、本実施例では複数の減圧ボックスを側面で連接して铸型の外表面を覆うよう にしたが、実施例 11に示したように連接させな 、で離隔した複数の減圧ボックスとし て用いることもできる。この場合には、複数の減圧ボックスを铸型外表面に設けた複 数の通気穴に合せて当接し吸引又は送気を行うようにする。  Further, in the present embodiment, a plurality of pressure reducing boxes are connected sideways to cover the outer surface of the bowl shape, but as shown in Example 11, a plurality of separated pressure reducing boxes are connected without being connected. It can also be used as In this case, a plurality of pressure reducing boxes are brought into contact with a plurality of vent holes provided on the outer surface of the bowl so as to perform suction or air supply.
[0528] この場合には吸引又は送気する減圧ボックスの数が少ないので、本実施例よりも吸 引又は送気の総合的な制御精度はやや劣るが、通気穴の位置、大きさ及び深さ等を 適正にすることによってほぼ同様な減圧と冷却の効果を得ることができる。  In this case, since the number of vacuum boxes for suction or air supply is small, the overall control accuracy of suction or air supply is slightly inferior to that of the present embodiment, but the position, size and depth of the vent hole are small. By making the height and the like appropriate, it is possible to obtain almost the same effects of pressure reduction and cooling.
[0529] 以上のように、本実施例の吸引送気装置によって、高精度な減圧制御と冷却制御 が可能になった。本装置は本発明の高精度な減圧铸造方法の基本要素のひとつで ある。  As described above, highly accurate pressure reduction control and cooling control become possible by the suction and air supply device of the present embodiment. This device is one of the basic elements of the high-precision reduced pressure fabrication method of the present invention.
実施例 29  Example 29
[0530] 図 39に実施例 29を示す。本実施例では手段 24を用いて、実施例 28に示した吸 引送気装置において、複数の減圧ボックスの位置が铸型外表面に対し平行な面で 自在に変えられるようにした吸引送気装置を説明する。  [0530] Fig. 39 shows Example 29. In this embodiment, in the suction and air feeding device shown in the twenty-eighth embodiment using means 24, suction and air feeding where the positions of a plurality of pressure reducing boxes can be freely changed in a plane parallel to the outer surface of the bowl. The apparatus will be described.
[0531] 本実施例では、複数の減圧ボックスが離隔して用いられる場合であって、各減圧ボ ッタスの位置が铸型に設けられた複数の通気穴に当接できるように、铸型外表面に 対し平行な面で自在に変えられるようにした。 [0531] In the present example, a plurality of decompression boxes are used separately, and the position of each decompression pump can be in contact with a plurality of ventilation holes provided in the paddle. It was possible to change freely in the plane parallel to the surface.
[0532] すなわち、図 39に示すように 2本の横桁 66の上に 4本の縦桁 67を載置し、各縦桁That is, as shown in FIG. 39, four stringers 67 are placed on two stringers 66, each stringer
67が横桁 66の上を X方向 88に自在に移動可能の構成にした。また、 4個の減圧ボ ックス 28は縦桁 67の上に取付けられており、縦桁 67に沿って Y方向 89に自在に移 動可能の構成にした。 67 is configured to be freely movable in the X direction 88 above the crossbeam 66. In addition, four decompression boxes 28 are mounted on the longitudinal girder 67 so as to be freely movable in the Y direction 89 along the longitudinal girder 67.
[0533] これによつて、 4個の減圧ボックス 28は XY方向に自在に位置決めが可能になり、铸 型に設ける複数の通気穴がどの位置であっても、容易に当接して載置できるようにな つた。なを、減圧ボックスの移動手段は本実施例に示した横桁及び縦桁を用いた手 段に限定されるものではなぐ XY方向に自在に移動できる手段であれば作用、効果 は同じである。 [0533] As a result, the four decompression boxes 28 can be freely positioned in the X and Y directions. The multiple vent holes provided in the mold can be placed in contact with each other easily at any position. In addition, the moving means of the decompression box is not limited to the means using the cross beam and the longitudinal beam shown in the present embodiment, and the action and effect are the same if it is a means which can freely move in the XY direction. .
図面の簡単な説明 Brief description of the drawings
圆 1]本発明の実施例 1を示す図である。 Fig. 1 is a view showing Embodiment 1 of the present invention.
圆 2]本発明の実施例 2を示す図である。 Fig. 2 is a view showing Embodiment 2 of the present invention.
圆 3]本発明の実施例 3を示す図である。 3] A diagram showing Embodiment 3 of the present invention.
圆 4]本発明の実施例 4を示す図である。 Fig. 4 is a view showing Example 4 of the present invention.
圆 5]本発明の実施例 5を示す図である。 Fig. 5 is a view showing Example 5 of the present invention.
圆 6]本発明の実施例 6を示す図である。 [6] It is a figure showing Example 6 of the present invention.
圆 7]本発明の実施例 7を示す図である。 [7] It is a figure showing Example 7 of the present invention.
[図 8]本発明の実施例 7の複数個込めのセグメントを示す図である。  FIG. 8 is a view showing a plurality of embedded segments according to Embodiment 7 of the present invention.
圆 9]本発明の実施例 8を示す図である。 9] A diagram showing Embodiment 8 of the present invention.
[図 10]本発明の実施例 9の注湯中の状態を示す図である。 FIG. 10 is a view showing a state during pouring of Embodiment 9 of the present invention.
圆 11]本発明の実施例 9の注湯後の状態を示す図である。 [FIG. 11] A diagram showing a state after pouring of water in Example 9 of the present invention.
[図 12]本発明の実施例 10の注湯中の状態を示す図である。 FIG. 12 is a view showing a state during pouring of Embodiment 10 of the present invention.
[図 13]本発明の実施例 10の注湯後の状態を示す図である。 FIG. 13 is a view showing a state after pouring of water in Example 10 of the present invention.
[図 14]本発明の実施例 11の注湯中の状態を示す図である。 FIG. 14 is a view showing a state during pouring of Embodiment 11 of the present invention.
[図 15]本発明の実施例 11の注湯後の状態を示す図である。 FIG. 15 is a view showing a state after pouring of water in Example 11 of the present invention.
[図 16]本発明の実施例 12の注湯中の状態を示す図である。 FIG. 16 is a view showing a state during pouring of Embodiment 12 of the present invention.
圆 17]本発明の実施例 12の注湯後の状態を示す図である。 圆 17] It is a figure which shows the state after pouring of Example 12 of this invention.
[図 18]本発明の実施例 13の注湯中の状態を示す図である。 FIG. 18 is a view showing a state during pouring of Embodiment 13 of the present invention.
[図 19]本発明の実施例 13の注湯後の状態を示す図である。 FIG. 19 is a view showing a state after pouring of water in Example 13 of the present invention.
[図 20]本発明の実施例 14の注湯中の状態を示す図である。 FIG. 20 is a view showing a state during pouring of Embodiment 14 of the present invention.
圆 21]本発明の実施例 14の注湯後の状態を示す図である。 圆 21] It is a figure showing the state after pouring of Embodiment 14 of the present invention.
[図 22]本発明の実施例 15の注湯中の状態を示す図である。 FIG. 22 is a view showing a state during pouring of Embodiment 15 of the present invention.
[図 23]本発明の実施例 15の注湯後の状態を示す図である。 [図 24]本発明の実施例 16を示す図である。 FIG. 23 is a view showing a state after pouring the melt in Example 15 of the present invention. FIG. 24 is a drawing showing Embodiment 16 of the present invention.
圆 25]本発明の実施例 17を示す図である。 [25] This is a diagram showing Embodiment 17 of the present invention.
[図 26]本発明の実施例 18の注湯中の状態を示す図である。  FIG. 26 is a view showing the state during pouring of Embodiment 18 of the present invention.
[図 27]本発明の実施例 18の注湯後の状態を示す図である。  FIG. 27 is a view showing the state after pouring of the example 18 of the present invention.
圆 28]本発明の実施例 19を示す図である。 圆 28] A diagram showing Embodiment 19 of the present invention.
[図 29]本発明の実施例 20を示す図である。  FIG. 29 shows Example 20 of the present invention.
圆 30]本発明の実施例 21を示す図である。 Fig. 30 is a diagram showing Embodiment 21 of the present invention.
圆 31]本発明の実施例 22を示す図である。 Fig. 31 is a diagram showing Embodiment 22 of the present invention.
圆 32]本発明の実施例 23を示す図である。 圆 32] is a drawing showing Embodiment 23 of the present invention.
圆 33]本発明の実施例 24を示す図である。 33] A diagram showing Embodiment 24 of the present invention.
[図 34]本発明の実施例 25の冷却曲線を示す図である。  FIG. 34 is a diagram showing a cooling curve of Example 25 of the present invention.
圆 35]本発明の実施例 25の凝固組織を示す図である。 Fig. 35 is a view showing coagulated tissue of Example 25 of the present invention.
[図 36]本発明の実施例 26を示す図である。  FIG. 36 shows Example 26 of the present invention.
圆 37]本発明の実施例 27を示す図である。 [37] It is a figure showing Example 27 of the present invention.
圆 38]本発明の実施例 28を示す図である。 [38] is a diagram showing Embodiment 28 of the present invention.
[図 39]本発明の実施例 29を示す図である。  FIG. 39 is a diagram showing Embodiment 29 of the present invention.
[図 40]従来技術の気密容器を用いた全体減圧铸造法を示す図である。 圆 41]従来技術の空孔部を用いた部分減圧铸造法を示す図である。 符号の説明  [Fig. 40] This is a view showing the whole pressure reducing forging method using the airtight container of the prior art. 41] It is a figure which shows the partial pressure reduction structure method using the void | hole part of a prior art. Explanation of sign
1 铸枠  1 fence frame
2 上枠  2 upper frame
3 下枠  3 lower frame
4 铸型  4 bowl type
5 上型  5 upper type
6 下型  6 Lower type
7 ェヤーシール部材(上)  7 Heat seal member (upper)
8 ェヤーシール部材(中)  8 Phase seal member (middle)
9 ェヤーシール部材(上) 定盤 9 Fare seal member (top) Plate
キヤビティー The cay
製品部 Product department
押湯部 Hot water part
湯道部 Runner club
湯口部 Gate
減圧フード Decompression hood
吸引穴 Suction hole
吸引管 Suction tube
昇降手段 Lifting means
パッキン Packing
注湯口 Pouring mouth
発泡榭脂 Foam resin
溶湯 Molten metal
重錘 Weight
ビニール Vinyl
铸型外表面 Wedge-shaped outer surface
通気穴 Vent hole
減圧ボックス Decompression box
吸引流量制御手段 Suction flow control means
気密フード Airtight hood
吸引口 Suction port
送気口 Air supply port
送気流量制御手段 Air flow control means
錄型セグメント Vertical segment
所望のキヤビティー部分 Desired portion of the cavity
所望のキヤビティー部分への流入口 所望のキヤビティー部分の最上部 8 その他のキヤビティー部分9 境界部Inlet to desired portion of cavity Top of desired portion of cavity 8 Other Cavity Part 9 Boundaries
0 水平にのびる通気穴0 vent holes extending horizontally
1 垂直にのびる通気穴1 Ventilation holes extending vertically
2 铸型上面2 bowl top
3 铸型搬送具3 Vertical transport tool
4 クランプ部材4 Clamp member
5 金型5 Mold
6 穿孔穴6 drilled holes
7 ベント7 vents
8 気密容器8 airtight container
9 凹部9 recess
0 通気封止部材としての発泡榭脂1 通気封止部材としての鋼板2 湯道遮断部材としてのシェル片3 封止遮断部材0 Foam resin as a vent sealing member 1 Steel plate as a vent sealing member 2 Shell piece as a runner blocking member 3 Sealing blocking member
4 冷却穴4 cooling holes
5 中子の巾木部 5 core core part
铸型の合せ面Bonding surface of a bowl
7 巾木部に連通する送気穴8 合せ面に連通する送気穴9 給気穴7 Air supply hole 8 communicating with base wood part Air supply hole 9 communicating with mating surface 9 Air supply hole
0 送気管0 Air tube
1 吸引送気手段1 Suction air supply means
2 開口端2 Open end
3 吸引室3 suction chamber
4 送¼至4th delivery
5 連通管 昇降自在手段 5 Connecting pipe Liftable means
横桁 Cross beam
縦桁 Vertical digit
減圧装置 Pressure reducing device
空気圧縮装置 Air compressor
原材料予熱装置 Raw material preheating device
熱交換装置 Heat exchange device
気密カバー材 Airtight cover material
押湯又は吐かせ Hot water or vomit
空孔部 Hole part
中子 Core
フイノレター Hino letter
仮想の铸型分割線 吸引排出されるガス体の流れ 圧縮空気の流れ Imaginary ridge-shaped dividing line Flow of gas sucked and discharged Flow of compressed air
制御信号の流れ Control signal flow
共晶温度線 Eutectic temperature line
共析変態領域 Eutectoid transformation region
自然冷却曲線 Natural cooling curve
制御冷却曲線 Control cooling curve
自然冷却したときの金属組織 制御冷却したときの金属糸且織Metal structure in natural cooling. Metallic yarn in controlled cooling.
X方向 X direction
Y方向  Y direction
昇降手段の昇降方向 データ信号の流れ 非通気性部材 Direction of elevation of elevation means Flow of data signal Non-air permeable member
強い減圧をするセグメント M 中程度の減圧をするセグメントSegment for strong pressure reduction M Medium pressure reduction segment
W 弱い減圧をするセグメント W A weak pressure reduction segment
E 冷却速度  E Cooling rate
F 铸枠内面からの距離  F Distance from the inside of the heddle frame
ML 铸型  ML type
VB 減圧ボックス  VB decompression box
CM 送気流量 ·温度測定手段  CM air flow · Temperature measuring means
CC 送気流量制御手段  CC air flow control means
CE 空気圧縮装置  CE air compressor
VM 吸引流量,温度制御手段  VM suction flow, temperature control means
VC 吸引流量制御手段  VC suction flow control means
VE 減圧装置  VE decompression device
CL 演算手段  CL operation means
TP 温度 (°C)  TP temperature (° C)
TM 時間  TM time
X1、X2、X3、X4 铸型の X方向の分割 Yl, Y2、 Υ3、 Υ4 铸型の Υ方向の分割  Division in the X direction of X1, X2, X3, X4 form Yl, Y2, Υ3, Division of the form in Υ4 form

Claims

請求の範囲 The scope of the claims
[1] 铸枠の上面及び Z又は下面にェヤーシール部材を設け、該铸枠に造型された通 気性铸型を型合せして定盤上に置くとともに、該通気性铸型の上面に非通気性材料 よりなる気密部材を載置し、該気密部材の少なくとも 1個所に設けられた吸引穴を通 して前記通気性铸型の減圧を行いながら溶湯を注湯することを特徴とする減圧铸造 法。  [1] A light seal member is provided on the upper surface and the Z or lower surface of the rod frame, and the air-permeable rod formed on the rod frame is placed on the platen and the air-permeable rod is not ventilated on the upper surface. The pressure-reducing structure is characterized in that an airtight member made of an insulating material is placed, and the molten metal is poured while depressurizing the air-permeable wedge through the suction holes provided in at least one place of the airtight member. Law.
[2] 通気性铸型の少なくとも 1つの外表面に、該外表面力も铸型内部へ向力 直径及 び Z又は深さの異なる複数の通気穴を設け、前記通気性铸型の外表面から減圧し て铸型内の前記複数の通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、前記通 気性铸型のキヤビティーに所定の減圧分布^ iij生して溶湯を注湯することを特徴と する減圧铸造法。  [2] At least one outer surface of the breathable cage is provided with a plurality of vent holes different in diameter and Z or depth from the outer surface of the outer surface force, and from the outer surface of the breathable cage. A partial pressure reduction zone is formed around each of the plurality of vent holes in the mold, and the molten metal is poured in a predetermined pressure reduction distribution ^ iij in the air-permeable mold type cavity. Reduced pressure construction method.
[3] 通気性铸型の少なくとも 1つの外表面に、該外表面から铸型内部へ向かう複数の通 気穴を設け、該複数の通気穴に対し個別に吸弓 I又は送気して铸型内の前記複数の 通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、前記通気性铸型のキヤビティー に所定の減圧分布を創生して溶湯を注湯することを特徴とする減圧铸造法。  [3] At least one outer surface of the air-permeable cage is provided with a plurality of air holes directed from the outer surface toward the inner side of the cylinder, and the plurality of air holes are individually bowed or insufflated. A partial pressure reduction zone is formed around each of the plurality of vent holes in the mold, and a predetermined pressure distribution is created in the gas-permeable mold cavity to pour a molten metal.
[4] 通気性铸型の少なくとも 1つの外表面に、該外表面から铸型内部へ向かう複数の通 気穴を設け、該通気性铸型の外表面の全体又は一部を仮想的に複数の铸型セグメ ントに分割し、該複数の铸型セグメントに対し個別に吸引又は送気して前記複数の 通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、前記通気性铸型のキヤビティー に所定の減圧分布を創生して溶湯を注湯することを特徴とする減圧铸造法。  [4] At least one outer surface of the breathable cage is provided with a plurality of air holes extending from the outer surface toward the interior of the cage, and a plurality of all or part of the outer surface of the breathable cage is virtually provided. Divided into vertical segments and suction or supply air separately to the plurality of vertical segments to form partial pressure reduction zones around the plurality of vent holes, respectively. A decompression structure method characterized in that a molten metal is poured by creating a decompression distribution of
[5] 比重量 γの溶湯を通気性铸型に注湯する铸造法にぉ 、て、該通気性铸型のキヤ ビティーのうち少なくとも溶湯を充填させた 、所望のキヤビティー部分の減圧度を、該 所望のキヤビティー部分への溶湯の流入口力 該所望のキヤビティー部分の最上部 までの高さ Ηによって決まる溶湯静圧 γ Ηの絶対値以上の値の負圧状態とし、前記 所望のキヤビティー部分の体積とほぼ等 、体積の溶湯を注湯して、略前記所望の キヤビティー部分のみに溶湯を充填させ凝固させることを特徴とする減圧铸造法。  [5] According to the construction method of pouring molten metal of specific weight γ into air-permeable mold, at least the melt of the air-permeable mold-shaped cavity is filled with the desired degree of pressure reduction of the cavity portion, The inflow force of the molten metal to the desired cavity portion The height of the desired portion to the top of the desired cavity portion The static pressure of the molten metal determined by Η The negative pressure is set to a value greater than the absolute value of γΗ A molten metal having a volume substantially equal to that of the volume is poured, and the molten metal is filled and solidified only in the desired cavity portion.
[6] 請求項 5記載の減圧铸造法において、前記溶湯を充填させたい所望のキヤビティ 一部分の減圧度が溶湯静圧 y Ηの絶対値以上の値の負圧状態であり、かつその他 のキヤビティー部分の減圧度より高いことを特徴とする減圧铸造法。 [6] In the reduced pressure drilling method according to claim 5, the desired cavity to be filled with the molten metal is a negative pressure state in which a partial pressure reduction degree is a value equal to or more than the absolute value of the molten metal static pressure y and others A reduced pressure construction method characterized in that it is higher than the degree of pressure reduction of the cavity portion of
[7] 比重量 γの溶湯を通気性铸型に注湯する铸造法にぉ 、て、該通気性铸型のキヤ ビティーのうち溶湯を充填させた 、所望のキヤビティー部分の体積とほぼ等 、体積 の溶湯を注湯開始後、前記通気性铸型のキヤビティーのうち少なくとも溶湯を充填さ せた 、所望のキヤビティー部分の減圧度を、該所望のキヤビティー部分への溶湯の 流入口力 所望のキヤビティー部分の最上部までの高さ Ηによって決まる溶湯静圧 Ύ Ηの絶対値以上の値の負圧状態とし、略前記所望のキヤビティー部分のみに溶湯 を充填させ凝固させることを特徴とする減圧铸造法。  [7] According to the construction method of pouring a molten metal having a specific weight γ into an air-permeable mold, the volume of the desired cavity portion filled with the molten metal of the air-permeable mold-type cavity is approximately equal to the volume After starting pouring of a volume of molten metal, the pressure reduction degree of the desired cavity portion filled with at least the molten metal of the air-permeable cage-type cavity is determined by the melt flow-in force of the molten metal to the desired cavity portion. The reduced pressure structure method is characterized in that the negative pressure is set to a value equal to or more than the absolute value of the static metal static pressure determined by the height to the top of the part, and the molten metal is filled and solidified substantially only in the desired cavity. .
[8] 請求項 5乃至 7 、ずれかに記載の減圧铸造法にお!、て、前記通気性铸型の少なく とも 1つの外表面に、該外表面力 铸型内部へ向力 直径及び Ζ又は深さの異なる 複数の通気穴を設け、前記通気性铸型の外表面から減圧して铸型内の前記複数の 通気穴の周囲にそれぞれ部分減圧ゾーンを形成し、前記通気性铸型のキヤビティー に所定の減圧分布を創生して溶湯を注湯することを特徴とする減圧铸造法。  [8] In the decompression structure method according to any one of claims 5 to 7, at least one outer surface of the air-permeable wedge, the outer surface force, the inward force, the diameter and the wedge. Alternatively, a plurality of vent holes of different depths may be provided, and a partial pressure reduction zone may be formed around each of the plurality of vent holes in the mold by reducing the pressure from the outer surface of the breathable mold. A decompression structure method characterized in that a molten metal is poured by creating a predetermined decompression distribution in a cavity.
[9] 請求項 5乃至 7 、ずれかに記載の減圧铸造法にお!、て、前記通気性铸型の少なくと も 1つの外表面に、該外表面から铸型内部へ向かう複数の通気穴を設け、該複数の 通気穴に対し個別に吸弓 I又は送気して铸型内の前記複数の通気穴の周囲にそれ ぞれ部分減圧ゾーンを形成し、前記通気性铸型のキヤビティーに所定の減圧分布を 創生して溶湯を注湯することを特徴とする減圧铸造法。  [9] The pressure-reducing construction method according to any one of claims 5 to 7, wherein at least one outer surface of the breathable cage is a plurality of vents directed from the outer surface toward the interior of the cage. A hole is formed, and a plurality of suction holes I are individually supplied to the plurality of vent holes, and a partial pressure reduction zone is formed around the plurality of vent holes in the mold, and the breathable pot-shaped cavity is formed. The pressure reduction structure method characterized in that a molten metal is poured by creating a predetermined pressure reduction distribution.
[10] 請求項 5乃至 7いずれかに記載の減圧铸造法において、通気性铸型の少なくとも 1 つの外表面に、該外表面から铸型内部へ向かう複数の通気穴を設け、該通気性铸 型の外表面の全体又は一部を仮想的に複数の铸型セグメントに分割し、該複数の铸 型セグメントに対し個別に吸弓 I又は送気して前記複数の通気穴の周囲にそれぞれ部 分減圧ゾーンを形成し、前記通気性铸型のキヤビティーに所定の減圧分布を創生し て溶湯を注湯することを特徴とする減圧铸造法。  [10] In the reduced pressure method according to any one of claims 5 to 7, at least one outer surface of the breathable wedge is provided with a plurality of vent holes extending from the outer surface to the inside of the wedge, The whole or a part of the outer surface of the mold is virtually divided into a plurality of wedge-shaped segments, and the plurality of wedge-shaped segments are individually suctioned I or insufflated so as to respectively surround the plurality of vent holes. A reduced pressure construction method characterized in that a partial pressure reduction zone is formed, a predetermined pressure reduction distribution is created in the air-permeable wedge-shaped cavity, and a molten metal is poured.
[11] 請求項 5乃至 10いずれかに記載の減圧铸造法において、前記溶湯を充填させた Vヽ所望のキヤビティー部分とその他のキヤビティー部分の境界部付近に、非通気性 又は铸型の通気度よりも低い通気度を有しかつ溶湯の熱によって消失又は融解する 通気封止部材を設置して铸型の減圧を行いながら溶湯を注湯することを特徴とする 減圧铸造法。 [11] In the reduced pressure structure method according to any one of claims 5 to 10, non-air-permeable or weir-shaped air permeability in the vicinity of the boundary between the desired cavity portion filled with the molten metal and the other cavity portion. It is characterized in that the molten metal is poured while performing a pressure reduction of a bowl shape by installing a gas-permeable sealing member which has a lower air permeability than the above and which disappears or melts due to the heat of the molten metal. Reduced pressure construction method.
[12] 請求項 11記載の減圧铸造法において、前記通気封止部材は溶湯と接した後、消 失又は融解までの時間が 2秒以上 5秒以下であることを特徴とする減圧铸造法。  [12] The reduced pressure structure method according to claim 11, characterized in that a time until the elimination or melting is 2 seconds or more and 5 seconds or less after the aeration and sealing member is in contact with the molten metal.
[13] 請求項 5乃至 12いずれかに記載の減圧铸造法において、前記溶湯を充填させた V、所望のキヤビティー部分とその他のキヤビティー部分の境界部付近に、溶湯よりも 比重の小さい耐火材料よりなる溶湯遮断部材を前記境界部付近のキヤビティー下部 に設けた凹部に設置しておき、注湯完了後に前記溶湯遮断部材が浮力によって浮 上し、前記境界部付近の溶湯を遮断することを特徴とする減圧铸造法。  [13] In the reduced pressure construction method according to any one of claims 5 to 12, V filled with the molten metal, a refractory material having a specific gravity smaller than that of the molten metal in the vicinity of the boundary between the desired cavity part and the other cavity parts. The molten metal blocking member is disposed in the recess provided in the lower portion of the cavity near the boundary, and the molten metal blocking member floats by buoyancy after pouring is completed, and blocks the molten metal in the vicinity of the boundary. Decompression construction method.
[14] 請求項 5乃至 10いずれかに記載の減圧铸造法において、前記溶湯を充填させた い所望のキヤビティー部分と前記その他のキヤビティー部分の境界部付近のキヤビテ ィー下部に設けた凹部に、非通気性又は铸型の通気度よりも低い通気度を有しかつ 溶湯の熱によって消失又は融解する通気封止部材と溶湯よりも比重の小さい耐火材 料よりなる溶湯遮断部材を一体化した封止遮断部材を設置して铸型の減圧を行いな 力 溶湯を注湯することを特徴とする減圧铸造法。  [14] The reduced-pressure structure method according to any one of claims 5 to 10, wherein a recess is provided in the lower part of the cavity near the boundary between the desired cavity to be filled with the molten metal and the other cavity; Seal that integrates an air-permeable sealing member that has an air permeability lower than that of non-air-permeable or cage-type and that loses or melts due to the heat of the molten metal and a molten metal blocking member made of a refractory material smaller in specific gravity than molten metal. A pressure reduction structure method characterized in that a shutoff member is installed and pressure reduction is not performed by pouring a molten metal.
[15] 請求項 5乃至 14いずれかに記載の減圧铸造法において、前記通気性铸型の外表 面力 前記溶湯を充填させたい所望のキヤビティー部分とその他のキヤビティー部分 の境界部付近に向けて通気穴及び Z又は冷却穴を設けておき、注湯が完了した後 、該通気穴及び Z又は冷却穴から吸引又は送気することによって、前記境界部付近 の凝固を促進させることを特徴とする減圧铸造法。  [15] In the reduced pressure structure method according to any one of claims 5 to 14, the outer surface force of the air-permeable mold is ventilated to the vicinity of the boundary between the desired cavity part to be filled with the molten metal and the other cavity part. Holes and Z or cooling holes are provided, and after pouring is completed, suction or air is supplied from the vent holes and Z or cooling holes to promote coagulation in the vicinity of the boundary. Construction method.
[16] 請求項 1乃至 15いずれかに記載の減圧铸造法において、前記通気性铸型の外表 面から、铸型内にセットした中子の巾木部分及び Z又は铸型の合せ面に連通する送 気穴を設け、該送気穴に圧縮空気を送気しながら溶湯を注湯することを特徴とする 減圧铸造法。  [16] In the reduced pressure method according to any one of claims 1 to 15, the outer surface of the breathable cage is communicated with the core wood portion of the core set in the cage and the mating surface of the Z or the cage. A decompression hole is provided, and molten metal is poured while supplying compressed air to the air delivery hole.
[17] 請求項 1乃至 16いずれかに記載の減圧铸造法において、铸鉄溶湯を注湯するに あたり、注湯温度を 1300°C以下としたことを特徴とする減圧铸造法。  [17] The reduced pressure forming method according to any one of claims 1 to 16, characterized in that the pouring temperature is set to 1300 ° C. or less when pouring molten molten iron.
[18] 請求項 3、 4及び請求項 9乃至 17いずれかに記載の減圧铸造法において、注湯後 に前記通気性铸型の外表面から内部へ向けて設けられた複数の通気穴、冷却穴、 及び铸型セグメント等の各部を通して吸引又は送気されるガス体の流量を制御して、 前記充填された溶湯の所望の部位力 順次凝固を進行させることを特徴とする減圧 铸造法。 [18] In the reduced pressure construction method according to any one of claims 3 and 4 and claims 9 to 17, a plurality of vent holes provided from the outer surface to the inside of the breathable cage after pouring, cooling By controlling the flow rate of the gas that is sucked or fed through each part such as the hole and the wedge-shaped segment, Desired site force of the filled molten metal The solidification is gradually progressed.
[19] 請求項 3、 4及び請求項 9乃至 17いずれかに記載の減圧铸造法において、注湯後 に前記通気性铸型の複数の通気穴、冷却穴及び铸型セグメント等の各部から吸引 排出されるそれぞれのガス体の温度、又は温度と流量のデータをもとに、前記通気 性铸型に充填された溶湯の冷却状態を推算し、前記通気性铸型の各部への吸引流 量及び Z又は送気流量を制御することによって溶湯の冷却状態を制御することを特 徴とする減圧铸造法。  [19] In the reduced pressure structure method according to any one of claims 3 and 4 and claims 9 to 17, after pouring, suction is performed from each of the vent holes, the cooling holes and the wedge segments. Based on the temperature of each gas body to be discharged, or the temperature and flow rate data, the cooling state of the molten metal filled in the air-permeable cage is estimated, and the suction flow rate to each part of the air-permeable cage is calculated. And Z or the reduced pressure structure method characterized by controlling the cooling state of the molten metal by controlling the amount of air flow.
[20] 請求項 3、 4及び請求項 9乃至 18いずれかに記載の減圧铸造法において、注湯後 に前記通気性铸型の複数の通気穴、冷却穴及び铸型セグメント等の各部から吸引 排出されるそれぞれのガス体の温度、又は温度と流量のデータをもとに、前記通気 性铸型に充填された溶湯の冷却状態を推算し、前記通気性铸型の各部への吸引流 量及び Z又は送気流量を制御することによって溶湯の冷却状態を制御して、前記充 填された溶湯の最終凝固組織を調整することを特徴とする減圧铸造法。  [20] In the reduced pressure structure method according to any one of claims 3 and 4 and claims 9 to 18, after pouring, suction is performed from each part such as the vent holes, the cooling holes and the wedge segments. Based on the temperature of each gas body to be discharged, or the temperature and flow rate data, the cooling state of the molten metal filled in the air-permeable cage is estimated, and the suction flow rate to each part of the air-permeable cage is calculated. And Z or controlling the amount of air flow to control the cooling state of the molten metal to adjust the final solidification structure of the charged molten metal.
[21] 請求項 1乃至 20いずれかに記載の減圧铸造法において、注湯後に注湯口又は湯 口部を、非通気性部材又は铸型よりも通気性の低 、部材で塞 、で溶湯の凝固まで 減圧を行うことを特徴とする減圧铸造法。  [21] In the reduced pressure method according to any one of claims 1 to 20, after pouring, the pouring port or the spout portion is closed by a member which is less permeable than a non-air-permeable member or a bowl-shaped member. A reduced pressure construction method characterized in that the pressure is reduced until solidification.
[22] 請求項 1乃至 21いずれかに記載の減圧铸造法において、前記通気性铸型から吸引 排出されたガス体を、熱交換器で熱交換させる、及び Z又は溶解材料の予熱に供す ることによって溶湯の熱を回収することを特徴とする铸造システム。  [22] In the reduced pressure structure method according to any one of claims 1 to 21, the gas sucked and discharged from the air-permeable mold is subjected to heat exchange in a heat exchanger, and subjected to preheating of Z or dissolved material. A manufacturing system characterized in that the heat of the molten metal is recovered by that.
[23] 铸型の外表面に載置して吸引減圧を行う装置であって、铸型外表面に当接させる 開口端を有する複数の減圧ボックスを铸型の外表面に対して垂直方向に昇降する 手段に取付けるとともに、前記複数の減圧ボックスのそれぞれに減圧装置に連通し た吸引口及び Z又は空気圧縮装置に連通した送気口を設け、該吸引口と送気口を 流れるガス体の流量を個別に制御する流量制御手段を有することを特徴とする吸引 送気装置。  [23] A device for performing suction and depressurization by being placed on the outer surface of a bowl, and a plurality of decompression boxes having open ends being brought into contact with the outer surface of the bowl in a direction perpendicular to the outer surface of the bowl. Each of the plurality of decompression boxes is provided with a suction port in communication with the decompression device and an air feed port in communication with the Z or air compression device, and each of the plurality of pressure reducing boxes is provided A suction and insufflation apparatus characterized by having a flow control means for individually controlling a flow rate.
[24] 請求項 23記載の吸引送気装置において、前記複数の減圧ボックスの位置が铸型 の外表面に対し平行な面で自在に変えられるようにしたことを特徴とする吸引送気装 [24] A suction and air supply apparatus according to claim 23, characterized in that the positions of the plurality of pressure reduction boxes can be freely changed in a plane parallel to the outer surface of the bowl.
PCT/JP2005/013618 2004-08-03 2005-07-26 Vacuum casting method, casting system, and suction and/or supply device of the casting system WO2006013749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531397A JP4076568B2 (en) 2004-08-03 2005-07-26 Vacuum casting method, casting system and vacuum casting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004226332 2004-08-03
JP2004-226332 2004-08-03

Publications (1)

Publication Number Publication Date
WO2006013749A1 true WO2006013749A1 (en) 2006-02-09

Family

ID=35787039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013618 WO2006013749A1 (en) 2004-08-03 2005-07-26 Vacuum casting method, casting system, and suction and/or supply device of the casting system

Country Status (2)

Country Link
JP (1) JP4076568B2 (en)
WO (1) WO2006013749A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012045A4 (en) * 2013-06-20 2017-01-18 Hitachi Metals, Ltd. Cast article manufacturing method
JPWO2014203956A1 (en) * 2013-06-20 2017-02-23 日立金属株式会社 Casting article manufacturing method, casting apparatus, and air supply nozzle used in the casting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391447B1 (en) * 2012-03-12 2014-05-07 성상미 Manufacturing method of retort for smelting of magnesium with reinforce

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056439A (en) * 1983-09-09 1985-04-02 Toyota Motor Corp Gypsum mold for vacuum casting
JPS60238076A (en) * 1984-05-10 1985-11-26 Nissan Motor Co Ltd Vacuum casting method
JPS6178550A (en) * 1984-09-21 1986-04-22 Hitachi Metals Ltd Casting method of thin walled casting
JPS6426046A (en) * 1987-02-06 1989-01-27 Hitachi Metals Ltd Flywheel gear and its manufacture
JPH0471767A (en) * 1990-07-12 1992-03-06 Toyota Motor Corp Vacuum casting machine with molten metal leakage detection instrument
JPH05277698A (en) * 1992-04-02 1993-10-26 Hitachi Metals Ltd Vacuum casting method
JPH08150462A (en) * 1994-11-28 1996-06-11 Hitachi Metals Ltd Mold for reduced pressure casting
JPH10263790A (en) * 1997-03-24 1998-10-06 Hitachi Metals Ltd Automatic casting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056439A (en) * 1983-09-09 1985-04-02 Toyota Motor Corp Gypsum mold for vacuum casting
JPS60238076A (en) * 1984-05-10 1985-11-26 Nissan Motor Co Ltd Vacuum casting method
JPS6178550A (en) * 1984-09-21 1986-04-22 Hitachi Metals Ltd Casting method of thin walled casting
JPS6426046A (en) * 1987-02-06 1989-01-27 Hitachi Metals Ltd Flywheel gear and its manufacture
JPH0471767A (en) * 1990-07-12 1992-03-06 Toyota Motor Corp Vacuum casting machine with molten metal leakage detection instrument
JPH05277698A (en) * 1992-04-02 1993-10-26 Hitachi Metals Ltd Vacuum casting method
JPH08150462A (en) * 1994-11-28 1996-06-11 Hitachi Metals Ltd Mold for reduced pressure casting
JPH10263790A (en) * 1997-03-24 1998-10-06 Hitachi Metals Ltd Automatic casting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012045A4 (en) * 2013-06-20 2017-01-18 Hitachi Metals, Ltd. Cast article manufacturing method
JPWO2014203956A1 (en) * 2013-06-20 2017-02-23 日立金属株式会社 Casting article manufacturing method, casting apparatus, and air supply nozzle used in the casting apparatus

Also Published As

Publication number Publication date
JPWO2006013749A1 (en) 2008-07-31
JP4076568B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
WO2007032174A1 (en) Casting method
CN1190285C (en) Antigravitational vacuum method and apparatus for asting Mg allor or Al alloy with lost mould
US6637497B2 (en) Automotive and aerospace materials in a continuous, pressurized mold filling and casting machine
JP2007075862A5 (en)
JP5858382B2 (en) Mold, cast steel manufacturing method and mold manufacturing method
CN110976814B (en) A kind of semi-continuous anti-gravity casting method of aluminum alloy automobile frame
JP4507209B2 (en) Full mold casting method and mold used in the casting method
WO2005095022A1 (en) Method and device for pouring molten metal in vacuum molding and casting
WO2006013749A1 (en) Vacuum casting method, casting system, and suction and/or supply device of the casting system
CN102912172A (en) Method and device for manufacturing foam metal by assistance of magnetic field
CN112692272B (en) Two-dimensional casting forming device and method for metal cast ingot
WO2005061153A1 (en) Metal casting apparatus and method
JP4789241B2 (en) Tire mold casting method
JPH1015656A (en) Pressure casting method and apparatus
EP1085955B1 (en) Investment casting using pour cup reservoir with inverted melt feed gate
CN106270434A (en) A Novel Amorphous Master Alloy Ingot Continuous Casting System and Its Application Method
CN104588611B (en) A kind of pressure casting apparatus and pressure casting processes
CN211614215U (en) A gypsum type vacuum casting pressure solidification casting device
CN2585721Y (en) Casting equipment for Mg/Al alloy antigravity vacuum vanishing die
WO1994020240A1 (en) Vacuum suction casting apparatus and method using the same
JP3794033B2 (en) Vacuum suction casting method and apparatus
CN220739438U (en) Nitrogen protection device for pressurizing chamber of holding furnace of cast aluminum low-pressure casting machine
JPH03165961A (en) Method and apparatus for casting with pressurizing
CN206839129U (en) A kind of bimetal composite casting system
Campbell Counter gravity casting

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531397

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载