WO1995013549A1 - Surface seismic profile system and method using vertical sensor arrays - Google Patents
Surface seismic profile system and method using vertical sensor arrays Download PDFInfo
- Publication number
- WO1995013549A1 WO1995013549A1 PCT/US1994/011271 US9411271W WO9513549A1 WO 1995013549 A1 WO1995013549 A1 WO 1995013549A1 US 9411271 W US9411271 W US 9411271W WO 9513549 A1 WO9513549 A1 WO 9513549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensors
- spacing distance
- pairs
- pair
- seismic profile
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3808—Seismic data acquisition, e.g. survey design
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/02—Determining slope or direction
- E21B47/022—Determining slope or direction of the borehole, e.g. using geomagnetism
- E21B47/0224—Determining slope or direction of the borehole, e.g. using geomagnetism using seismic or acoustic means
Definitions
- the invention relates to seismic profile systems.
- the invention relates to a surface seismic profile system and method using vertical sensor arrays.
- VSP vertical seismic profile
- Fig. 1 The VSP method reguires the existence of a bore hole 1 drilled to a depth "D" below the surface 3. Bore hole depths vary widely, but the bore hole is typically on the order of several thousand or more feet deep.
- a plurality of sensors 5 are placed at vertically spaced locations within the bore hole.
- the sensors may be geophones secured within the bore hole, or may be hydrophones in the event the bore hole is filled with a liguid.
- a source 7 of seismic energy is placed on the surface at various distances and angular positions with respect to the bore hole, and the signals received by the sensors are collected by a monitor 9.
- the important signals from the standpoint of obtaining an accurate seismic profile are the "primary" reflection signals (shown here as P1-P4) which are reflected off a boundary 11 between different subsurface layers 10 and 12 and are received by the sensors as upgoing waves.
- Direct signals from the source e.g., DI
- DI Direct signals from the source
- the VSP method is, therefore, well suited for obtaining seismic profiles in the vicinity of an existing bore hole. It is, however, severely limited in the horizontal direction because its effectiveness decreases rapidly as the source is moved away from the bore hole. It is also limited in that it requires the existence of a bore hole in the first place. If no bore hole exists in the vicinity to be surveyed, it would most likely not be cost-effective to drill one simply to allow the VSP method to be utilized.
- An application of VSP is also known in the marine environment. In water, the VSP method can be used to advantage because the vertically stacked sensors are no longer limited to a bore hole. As shown in Fig.
- two sensors 5 can be suspended vertically in the water from a buoy 13, which includes a transmitter 13a for relaying data to a recorder (not shown) .
- a boat 14 tows a source 7 underwater in the vicinity of the sensors.
- Primary signal PI is reflected off the boundary 11 between layers 10 and 12 under the sea floor 15 and is received by the sensors 5 as an upgoing wave.
- Multiply reflected signal Rl which has been reflected off the boundary 11 and the air/water boundary 19, is received by the sensors as a downgoing wave, generating what is known as a source ghost.
- Multiply reflected signal Rl is an example of only one multiply reflected signal which may occur; many other multiple reflections occur off the air/water boundary 19, the sea floor 15, and the boundary 11. All of these multiply reflected signals interfere with the primary reflected signals, and thus reduce the accuracy of the data obtained by the survey.
- the horizontal seismic profile (HSP) method illustrated in Fig. 3, employs an array of sensors 5 placed on the surface 3 at predetermined locations with respect to a source 7. Primary signals (P lf P 2 , P 3 ) are reflected off the boundary 11 and are detected by the sensors 5. The source and the sensors can be moved horizontally relatively easily to increase the area of the survey. Thus, the HSP method permits a widely spaced profile. However, the HSP method cannot easily distinguish between primary reflections and multiply reflected waves, because all signals received by the sensors are upgoing. For instance, it is impossible to distinguish between multiply reflected signal Rl and primary reflected signal P3 using the HSP method. Thus, it is difficult to obtain accurate data using this prior art method.
- transition zones that is, those areas which are between the open water and land.
- transition zones are characterized by a relatively shallow layer of water over a layer of mud with harder composite or rock layers underneath (see Fig. 4) .
- the air/water boundary 19, the water/mud boundary 23, and the mud/rock boundary 24 are all efficient reflectors.
- the desired data are compromised by multiply reflected waves such as R2 which are reflected off the boundary 11, the air/water boundary, the water/mud boundary, and are then received by the sensors. Since this is an upgoing wave, it is virtually impossible to distinguish this wave from an upgoing primary reflection signal.
- Transition zones pose a number of problems which are unique to this geology and are not encountered in typical land and marine applications. As explained above, one of these problems is the existence of multiple efficient reflective layers which cause multiple reflections and thus interfere with the primary reflected wave. In addition, wind and surf noise are problems in transition zones. Further, the existence of a lossy medium (mud) in the near surface results in attenuation of high frequencies. Also, only a small number of sensors are typically available due to logistical problems in deployment.
- mud lossy medium
- the invention relates to a seismic profile system and method which overcome the difficulties discussed above and allow accurate surveying of transition zones.
- the invention comprises a source of seismic energy disposed beneath the air/water boundary; a first pair of sensors arranged in vertical relation and spaced apart by a predetermined vertical spacing distance, the first pair of sensors being disposed below at least two highly reflective boundaries; and a second pair of sensors arranged in vertical relation and spaced apart by the predetermined vertical spacing distance, the second pair of sensors being disposed below the at least two highly reflective boundaries and being horizontally displaced from the first pair of sensors by a predetermined horizontal spacing distance.
- the invention relates to a seismic profile system for use in a transition zone having a mud layer covered by a water layer, the system comprising a source of seismic energy; a first pair of sensors placed in the mud layer in vertical relation and spaced apart by a predetermined vertical spacing distance; and a second pair of sensors placed in the mud layer in vertical relation and spaced apart by the predetermined vertical spacing distance, the second pair of sensors being horizontally displaced from the first pair of sensors by a predetermined horizontal spacing distance.
- the invention relates to a method for obtaining a seismic profile under an air/water boundary, comprising the steps of: placing a first pair of sensors in vertical relation under at least two highly reflective boundaries such that the sensors are spaced apart by a predetermined vertical spacing distance; placing a second pair of sensors in vertical relation under the at least two highly reflective boundaries such that the sensors are spaced apart by the predetermined vertical spacing distance and the second pair of sensors are displaced horizontally from the first pair of sensors by a predetermined horizontal spacing distance; placing a source of seismic energy under the air/water boundary at a first position with respect to the first and second pairs of sensors and collecting data from the first and second pairs of sensors; and placing a source of seismic energy under the air/water boundary at a second position with respect to the first and second pairs of sensors and collecting data from the first and second pairs of sensors.
- the invention relates to a seismic profile system for obtaining a seismic profile, comprising: a source of seismic energy disposed beneath a first reflective boundary; a first pair of sensors arranged in vertical relation and spaced apart by a predetermined vertical spacing distance, the first pair of sensors being disposed below the reflective boundary and at least one additional reflective boundary; and a second pair of sensors arranged in vertical relation and spaced apart by the predetermined vertical spacing distance, the second pair of sensors being disposed below the reflective boundary and the at least one additional reflective boundary and being horizontally displaced from the first pair of sensors by a predetermined horizontal spacing distance.
- Fig. 1 is an illustration of a known vertical seismic profile system
- Fig. 2 is an illustration of a known vertical seismic profile system in water
- Fig. 3 is an illustration of a known horizontal seismic profile system
- Fig. 4 is an illustration of a known seismic profile system applied to a transition zone
- Fig. 5 is an illustration of one embodiment of the seismic profile system of the invention applied to a transition zone
- Fig. 6 is a top view of the system of Fig. 4; and Fig. 7 is a flow chart illustrating processing of data obtained by the system of Fig. 5.
- FIG. 5 and 6 A preferred embodiment of the invention for use in transition zones is shown in Figs. 5 and 6 wherein sensor pairs 25 are disposed in the mud layer at coordinate locations (x,y) .
- the pairs are stacked vertically and include an upper sensor 25U and a lower sensor 25L electrically connected to a transmitter 13a mounted on a buoy 13 (or otherwise connected to a recorder) .
- the spacing between the upper and lower sensors may vary, but is typically on the order of 5 feet or more.
- the upper sensor 25U is preferably placed at least 5 feet into the mud layer. As shown in Fig.
- the sensor pairs are preferably arranged in a grid with a separation in one direction of D_ and in the other orthogonal direction of D y .
- the separation in each orthogonal direction is dependent upon the type of survey desired, but is typically on the order of 100 feet.
- the spacing between sensor pairs in one direction (D y ) is smaller than in the other, although this is not required. While only two columns and six rows are shown in Fig. 6, the size of the grid may be varied depending on the geological/geophysical objectives and cost considerations.
- the source of seismic energy is preferably placed in the mud layer (position 27 in Fig. 5) and may, for instance, be a dynamite charge.
- the source can be placed within the water layer at position 28.
- the signal of interest is the primary reflected signal PI, which is reflected off the boundary 11 and detected directly by each of the sensors 25U, 25L.
- a multiply reflected wave Rl which is reflected off the water/mud boundary 23, may potentially cause ghosting, but can be filtered out by distinguishing between upgoing and downgoing waves.
- the multiply reflected wave which causes the most severe problems in transition zone environments is R2, i.e., the wave which is reflected off the air/water boundary 19 and again off the water/mud boundary 23.
- this wave has a large amplitude and hence has the potential to significantly distort the data. Moreover, because the wave is upgoing after it is reflected off the water/mud boundary, it is impossible to filter this wave out by distinguishing between upgoing and downgoing waves.
- the invention overcomes this problem by placing both the sensors 25U, 25L below both the mud/water boundary and the air/water boundary.
- the upgoing multiply reflected wave R2 is not problematic.
- a preferred method involves the use of a vibrating ram available from G&A Augers in LaRose, Louisiana.
- the vibrating ram is a 40 to 60 foot pipe with gears welded along its length driven by a diesel engine through a gear box.
- a hydrophone or marsh geophone is inserted into the end of the pipe, and a disposable anchor/point is placed over the end of the pipe, covering and protecting the inserted device.
- the pipe is then rammed into the earth to the desired depth. When the ram is pulled back up, the suction created pulls the anchor/point off and the loaded device out of the pipe.
- the ram can also be used for placing a source such as an explosive charge, and in this respect as the pipe travels upward, the suction closes the hole behind it, providing a good explosive tamping seal.
- the vibrating ram allows crews to place 40 to 60 foot holes into sedimentary type earth in a short period of time, thus providing significant cost savings over conventional methods.
- the ram may also, for instance, be mounted on a small self-propelled barge or marsh buggy for use in marsh regions such as those found in southern Louisiana. The ram would not, however, be effective in areas having other than sedimentary type earth.
- Rotary drills are commonly used in seismic exploration and involve simply a drill bit and drill stem rotated by an engine.
- Water flush drills are usually portable devices which use a water pump to send a stream of water through a stem. The stem is pointed at the earth and the water flushes its way through sedimentary earth, thereby creating a hole for placement of the sensors or the charge.
- measurements are then taken with the source in a first location such as point A in Fig. 6. Subsequently, the source is moved across the grid generally perpendicular to the closely spaced axis of the grid (the Y axis in Fig. 6) to a second location (point B) .
- the source is then moved laterally to another point along the grid (point C) , and is then moved back across the grid (point D) . This procedure is repeated for a desired number of crossings, depending upon sensor spacing, the number of sensors in the grid and the requirements of the survey being conducted. It will be appreciated that measurements may be taken with the source at any point within or in the vicinity of the grid as is necessary to meet the desired objectives. Also, in the event that an explosive is used as the source, it will be appreciated that the source itself is not actually moved, but instead multiple sources are employed at the various locations.
- the raw data from the various sensors are collected and stored by a recorder 27 in a conventional manner.
- the procedure illustrated in the flow chart of Fig. 7 is executed by a data processing device (not shown) .
- the data are input to the processor in state ST1.
- the data are read in shot gather format, i.e., trace-by-trace and shot-by-shot.
- the number of traces for one shot corresponds to the number of recorded channels.
- trace editing is performed in state ST2.
- each trace and each shot are inspected for noise, and the noisy traces and shots are edited by removing spikes in some instances or, in very noisy cases, zeroing the data.
- state ST3 the data are sorted for wavefield separation.
- the data are sorted to obtain first the traces which correspond to the upper sensors, followed by the traces corresponding to the lower sensors. Then, in state ST4, the time delay for the seismic wavefield to travel from the lower sensor to the upper sensor of each sensor pair is computed using a cross-correlation technique. Based on this, the interval velocity of the medium in which the upper and lower sensors are deployed is statistically estimated (ST5) . Wavefield separation is achieved in state ST6.
- W D (z lf z 2 ) - Wu(z lf z 2 ) u ⁇ z ) W D ⁇ z lt z 2 )S ⁇ z 2 ) - Sjz 2 W D ( ⁇ r z 2 ) - Wu(z 1 ,z 2 )
- a deconvolution operator is computed from the downgoing wavefield, and this deconvolution operator is applied to the upgoing wavefield for deconvolution of the upgoing wavefield (ST8) .
- a refraction statics computation is performed when necessary. To do this, the first arrivals are picked and, based on these, a model of the near surface is derived. The shot and sensor pair statics are estimated from this model and are then applied to each trace.
- the seismic data are sorted into common midpoint gathers and the stacking velocities are computed at certain locations along the line. Using the stacking velocities, move-out corrections are computed and applied to each seismic trace.
- Residual static corrections are then computed for each source and source pair (ST11) . This can be done in multiple iterations until an optimum solution is found. The residual statics are then applied to each seismic trace. Subsequently, the seismic traces which belong to the same common mid ⁇ point position are stacked together (ST12) and the stacked traces are migrated to the proper space and time position using a wave equation migration algorithm (ST13) . The migrated section is then properly filtered, normalized, and displayed as the final result (ST14) .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Mining & Mineral Resources (AREA)
- Oceanography (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU80743/94A AU682728B2 (en) | 1993-11-10 | 1994-10-04 | Surface seismic profile system and method using vertical sensor arrays |
EP94931797A EP0731928B1 (en) | 1993-11-10 | 1994-10-04 | Surface seismic profile system and method using vertical sensor arrays |
PCT/US1994/011271 WO1995013549A1 (en) | 1993-11-10 | 1994-10-04 | Surface seismic profile system and method using vertical sensor arrays |
NO19961850A NO318812B1 (en) | 1993-11-10 | 1996-05-07 | Seismic profiling system and method using vertical sensor groups located below a water-sludge boundary layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/150,229 | 1993-11-10 | ||
PCT/US1994/011271 WO1995013549A1 (en) | 1993-11-10 | 1994-10-04 | Surface seismic profile system and method using vertical sensor arrays |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995013549A1 true WO1995013549A1 (en) | 1995-05-18 |
Family
ID=22243076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/011271 WO1995013549A1 (en) | 1993-11-10 | 1994-10-04 | Surface seismic profile system and method using vertical sensor arrays |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU682728B2 (en) |
WO (1) | WO1995013549A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2360358A (en) * | 1999-12-03 | 2001-09-19 | Petroleo Brasileiro Sa | A method for the measurement of multidirectional far-field source signatures from seismic surveys |
WO2001075481A2 (en) * | 2000-04-03 | 2001-10-11 | Schlumberger Technology Corporation | A seismic source, a marine seismic surveying arrangement, a method of operating a marine seismic source, and a method of de-ghosting seismic data |
US8559267B2 (en) | 2006-10-26 | 2013-10-15 | Schlumberger Technology Corporation | Methods and apparatus of borehole seismic surveys |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4405036A (en) * | 1980-12-11 | 1983-09-20 | Marathon Oil Company | Seafloor velocity and amplitude measurement apparatus method |
US4516227A (en) * | 1981-12-04 | 1985-05-07 | Marathon Oil Company | Subocean bottom explosive seismic system |
US4558437A (en) * | 1982-04-05 | 1985-12-10 | Marathon Oil Company | Seafloor velocity and amplitude measurement apparatus and method therefor |
US5253223A (en) * | 1989-10-26 | 1993-10-12 | Den Norske Stats Oljeselskap A.S. | Seismic device |
US5253217A (en) * | 1989-04-14 | 1993-10-12 | Atlantic Richfield Company | Method for seismic exploration including compensation for near surface effects |
-
1994
- 1994-10-04 WO PCT/US1994/011271 patent/WO1995013549A1/en active IP Right Grant
- 1994-10-04 AU AU80743/94A patent/AU682728B2/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4405036A (en) * | 1980-12-11 | 1983-09-20 | Marathon Oil Company | Seafloor velocity and amplitude measurement apparatus method |
US4516227A (en) * | 1981-12-04 | 1985-05-07 | Marathon Oil Company | Subocean bottom explosive seismic system |
US4558437A (en) * | 1982-04-05 | 1985-12-10 | Marathon Oil Company | Seafloor velocity and amplitude measurement apparatus and method therefor |
US5253217A (en) * | 1989-04-14 | 1993-10-12 | Atlantic Richfield Company | Method for seismic exploration including compensation for near surface effects |
US5253223A (en) * | 1989-10-26 | 1993-10-12 | Den Norske Stats Oljeselskap A.S. | Seismic device |
Non-Patent Citations (1)
Title |
---|
See also references of EP0731928A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2360358A (en) * | 1999-12-03 | 2001-09-19 | Petroleo Brasileiro Sa | A method for the measurement of multidirectional far-field source signatures from seismic surveys |
GB2360358B (en) * | 1999-12-03 | 2003-10-01 | Petroleo Brasileiro Sa | A method for the measurement of multidirectional far-field source signatures from seismic surveys |
WO2001075481A2 (en) * | 2000-04-03 | 2001-10-11 | Schlumberger Technology Corporation | A seismic source, a marine seismic surveying arrangement, a method of operating a marine seismic source, and a method of de-ghosting seismic data |
WO2001075481A3 (en) * | 2000-04-03 | 2002-04-04 | Schlumberger Technology Corp | A seismic source, a marine seismic surveying arrangement, a method of operating a marine seismic source, and a method of de-ghosting seismic data |
GB2376301A (en) * | 2000-04-03 | 2002-12-11 | Schlumberger Technology Corp | A seismic source a marine seismic surveying arrangement a method of operating a marine seismic source and a method of de-ghosting seismic data |
GB2376301B (en) * | 2000-04-03 | 2004-03-03 | Schlumberger Technology Corp | A seismic source a marine seismic surveying arrangement a method of operating a marine seismic source and a method of de-ghosting seismic data |
US8559267B2 (en) | 2006-10-26 | 2013-10-15 | Schlumberger Technology Corporation | Methods and apparatus of borehole seismic surveys |
Also Published As
Publication number | Publication date |
---|---|
AU682728B2 (en) | 1997-10-16 |
AU8074394A (en) | 1995-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2342765C (en) | Vertical seismic profiling in a drilling tool | |
EP0294158B1 (en) | Method of vertical seismic profiling | |
US5581514A (en) | Surface seismic profile system and method using vertical sensor | |
US5191557A (en) | Signal processing to enable utilization of a rig reference sensor with a drill bit seismic source | |
US5012453A (en) | Inverse vertical seismic profiling while drilling | |
US4926391A (en) | Signal processing to enable utilization of a rig reference sensor with a drill bit seismic source | |
EP2530492B1 (en) | Method for determining geometric caracteristics of a hydraulic fracture | |
US5481501A (en) | Method for simulating crosswell seismic data | |
US5461594A (en) | Method of acquiring and processing seismic data recorded on receivers disposed vertically in the earth to monitor the displacement of fluids in a reservoir | |
US7466626B2 (en) | Seismic surveying arrangement | |
US5050130A (en) | Signal processing to enable utilization of a rig reference sensor with a drill bit seismic source | |
US6894949B2 (en) | Walkaway tomographic monitoring | |
US5200928A (en) | Method for using mode converted P- to S- wave data to delineate an anomalous geologic structure | |
EP0349262B1 (en) | Method for reducing drill string multiples in field signals | |
CA1281120C (en) | Signal processing to enable utilization of a rig reference sensor with a drill bit seismic source | |
AU682728B2 (en) | Surface seismic profile system and method using vertical sensor arrays | |
Blackburn et al. | Borehole seismic surveys: Beyond the vertical profile | |
AU2011268412B2 (en) | Look-ahead seismic while drilling | |
Esmersoy et al. | Sonic imaging: a tool for high-resolution reservoir description | |
EP0731928B1 (en) | Surface seismic profile system and method using vertical sensor arrays | |
US5214252A (en) | Logging method and device in well bores utilizing directional emission and/or reception means | |
Cosma et al. | Multi-azimuth VSP methods for fractured rock characterization | |
Dobecki | High Resolution in Saturated Sediments-a case for shear wave reflection | |
Hardage | Seismic prediction of overpressure conditions ahead of the bit in real drill time | |
Cosma et al. | Reassessment of seismic reflection data from the Finnsjön study site and prospectives for future surveys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LT LU MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994931797 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1994931797 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1994931797 Country of ref document: EP |