USRE35987E - Output pulse compensation for therapeutic-type electronic devices - Google Patents
Output pulse compensation for therapeutic-type electronic devices Download PDFInfo
- Publication number
- USRE35987E USRE35987E US08/385,285 US38528595A USRE35987E US RE35987 E USRE35987 E US RE35987E US 38528595 A US38528595 A US 38528595A US RE35987 E USRE35987 E US RE35987E
- Authority
- US
- United States
- Prior art keywords
- iaddend
- iadd
- intensity
- output
- pulses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
Definitions
- This invention relates to an electronic device for producing a pulse output signal for therapeutic purposes, and, more particularly, relates to output pulse compensation for such a device.
- Electronic devices capable of providing a pulse output signal for therapeutic purposes are now well known, and such devices are known, for example, to include transcutaneous electrical nerve stimulating (TENS) devices and muscle stimulating devices. It is also well known that such devices commonly include externally accessible controls for effecting parameter changes, including changes in pulse width and intensity of the delivered pulses (see, for example, U.S. Pat. No. 4,014,347).
- TENS transcutaneous electrical nerve stimulating
- muscle stimulating devices it is also well known that such devices commonly include externally accessible controls for effecting parameter changes, including changes in pulse width and intensity of the delivered pulses (see, for example, U.S. Pat. No. 4,014,347).
- TENS and muscle stimulator devices commonly use constant current feedback to regulate the charge per pulse.
- the feedback signal representing the peak current
- the reference voltage is usually derived from a variable control device, such as a potentiometer, which serves to control the stimulation intensity.
- stimulation amplitude is commonly controlled by varying the peak current of the rectangular current pulses.
- the pulse width be tuned (i.e., varied) while using the unit.
- the charge per pulse varies directly with the pulse width, unless the peak current is also adjusted whenever the pulse width is changed, the charge per pulse will also change.
- pulse width affects the sensitivity of the intensity control where both are utilized in a device, using a pulse width, for example, of greater than about 200 microseconds, causes conventional amplitude controls to become overly sensitive. As a result, pulse widths greater than about 200 microseconds are difficult to control with an ordinary potentiometer-type amplitude, or intensity, control.
- the pulse width of the pulses being delivered sometimes causes confusion with respect to the amount of charge being delivered, or at least perceived to be delivered. For example, if the pulse is 100 ma peak and 200 microseconds wide, the pulse contains 20 microcoulombs charge. While such a charge would normally be too strong to be tolerated with small electrodes such as are commonly used with TENS units, for example, such a charge could easily and safely be tolerated with comfort if sufficiently large electrodes are utilized (i.e., the area of application is made sufficiently greater).
- the intensity of the delivered output pulses can be controlled, and gradual increase in such intensity is utilized, for example, in the NuWave® TENS unit now being sold by the assignee of this invention.
- This invention provides improved output pulse compensation for therapeutic-type electronic devices. Output pulse compensation is automatically provided upon sensing of predetermined changed conditions being monitored, and such compensation is preferably accomplished using a micro-computer in devices constructed according to this invention.
- the intensity of the pulses then being delivered is quickly reduced and then gradually increased to the full then requested intensity (unless intensity reduction is again effected due to sensing of a condition being monitored) to thus provide a soft-start.
- a predetermined corresponding change in the range of intensities of the pulses then delivered is also effected, based upon the nerve fiber strength-duration curve of the pulses, to thereby maintain the charge delivered per pulse substantially constant, with the percentage of intensity of each pulse being also maintained substantially constant unless a change in percentage is initiated by an intensity control that operates independently of the pulse width control.
- FIG. 1 is a block diagram of a TENS unit having output pulse compensation according to this invention supplied by a micro-computer included as a part of the TENS unit;
- FIG. 2 is a schematic diagram illustrating an output stage as shown in FIG. 1;
- FIGS. 3 through 5 are flow charts illustrating operation of the micro-computer shown in FIG. 1 to control the intensity of the output pubes in response to monitored conditions:
- FIG. 6 is a graph of a typical nerve fiber strength-duration curve
- FIG. 7 is a plot of a strength-duration look-up table based upon the strength-duration curve of FIG. 6;
- FIGS. 8A and 8B show a flow chart illustrating operation of the micro-computer shown in FIG. 1 to effect output pulse compensation by varying the range of intensities of the output pulses due to pulse width adjustment.
- output pulse compensation is automatically provided for a therapeutic-type electronic device when a predetermined change is sensed to occur in a condition being monitored.
- This includes, for example, monitoring of conditions to prevent user discomfort, or possible injury, due to delivery of output pulses at undesirably high intensity levels, as well as monitoring variations imposed by the user, as, for example, varying the requested pulse width of the pulses to be delivered.
- monitored conditions are sensed, or detected, preferably using a micro-computer having appropriate algorithms.
- the algorithms eliminate surprise, and prevent discomfort or possible injury, by resetting the stimulation intensity of the output pulses being then delivered to a low (or zero) level, and then gradually increasing the stimulation intensity up to the level requested by the setting of the intensity control.
- Output pulse compensation is illustrated in FIG. 1 in connection with a TENS device. It is meant to be appreciated, however, that such compensation can be effected with other therapeutic-type devices in the same manner.
- the TENS device illustrated in FIG. 1 is a plural channel device, but it is meant to be realized that a single channel device could also be utilized.
- TENS device 7 includes micro-computer, or controller, 9 that receives an input indicative of intensity, or amplitude, from amplitude control potentiometers 11 and 13 (if plural channels are utilized) and an input indicative of pulse width from pulse width control potentiometer 15.
- TENS device 7 can also receive an input indicative of pulse rate from pulse rate control potentiometer 17, as is conventional.
- control inputs from potentiometers 11, 13, 15 and 17 are coupled to microcomputer 9 (which preferably includes analog-to-digital (A/D) converter 19).
- Micro-computer 9 is connected with power supply 21 (5 volts), and power supply 21 is connected to battery 23 (9 volts) through on-off switch 25.
- Battery 23 also provides power to high voltage power inverter 27, which inverter supplies high voltage to the output stages 29 and 31 (if plural channels are utilized), as is conventional for TENS units.
- the output stage, or stages are preferably conventional asymmetric biphasic, but can also be symmetrical biphasic.
- a multi-mode operation can be established for the device using latch 33 (a 4 bit latch), to hold the then selected mode, and mode switch 35.
- micro-computer 9 generates pulses for each channel utilized (using appropriate algorithms in connection with timer 37, which timer is preferably a part of the micro-computer), and these pulses are coupled to the output stage, or stages, to enable the pulse output signals to be conventionally provided by the device.
- micro-computer 9 has also included therein output pulse compensation algorithms and a look-up table with the output being coupled through digital-to-analog (D/A) converter 39 (also preferably a part of micro-computer 9 as shown in FIG. 1).
- Converter 39 supplies a reference voltage to one input of operational amplifier 41.
- the other input of operational amplifier 41 is connected with current sense resistor 43, and the output of operational amplifier 41 is coupled to the output stage, or stages. 29 and 31.
- Output stages 29 and 31 may be identical and output stage 29 is shown in detail in FIG. 2.
- the high voltage is coupled to high voltage gate transistor 47 of output stage 29, and transistor 47 also receives the pulse logic input from micro-computer 9.
- the output pulses are delivered to a user through lead 49, with the return path from the user being through lead 51, capacitor 53, and diode 55 (with lead 49 being connected to the junction of capacitor 53 and diode 55 through bleed resistor 57).
- analog control transistor 59 is connected with the output of operational amplifier 61.
- Amplifier 61 has one input connected to receive a reference voltage and the other input connected with transistor 59 and is connected with ground through sense resistor 63.
- a +5 volt power supply is connected to one side of resistor 65.
- the other side of resistor 65 is connected to one side of diode 67, with the other side of diode 67 being connected to the junction of diode 55 and transistor 59.
- Gate transistor 69 of sample and hold circuit 71 is connected with the junction of resistor 65 and diode 67 through parallel-connected capacitor 73 and resistor 75 (having resistor 77 to ground connected therewith).
- the pulse logic from microcomputer 9 is also coupled to transistor 69, and the output from transistor 69 is stored in capacitor 79, which capacitor is connected with A/D convertor 19 of micro-computer 9.
- microcomputer 9 requires the use of the sample-and-hold circuit to measure the output transistor saturation during pulses for each channel (the circuit is necessary only where the pulse rate of the TENS unit is variable since, if the rate is fixed, a simple R-C averaging circuit attached to the analog control transistor drain could produce an appropriate voltage value proportional to the drain voltage during the pulses).
- the flow chart as shown in FIG. 3, provides a test for output errors
- the flow chart, as shown in FIG. 4 provides for control of the intensity of the delivered output pulses (preferably every ten milliseconds)
- the flow chart, as shown in FIG. 5, provides for mode selection (an intermittent lead routine may also be utilized and differs from the reset routine illustrated in that the intensity is reset to zero and ramp-up requires 2.55 seconds, which is 255 steps of 1/100 second).
- the algorithm is initiated by unit reset, change of operating mode, or intermittent lead detection.
- the initialization of the processor includes slow “ramping” of the intensity setting up to the intensity set by the externally accessible intensity control over a period of 2 seconds.
- the actual intensity is reset to a binary multiplier factor of "55”, which is about 20% of full scale.
- the intensity is ramped up to "255”, which is equivalent to a multiplier of 100% of full scale. So whenever the processor resets, the intensity control (or controls if dual channels are being utilized) is checked, and if it is found that the setting of the control, or controls, is at a significant level, then the intensity is ramped slowly up to that level.
- the output stage analog control transistor drain is monitored by sample-and-hold circuit 71, as shown in FIG. 2.
- Transistor 69 is gated on by the micro-computer during pulses to sample the drain voltage, and this voltage is stored in capacitor 79 until read by A/D converter 19.
- the drain voltage is converted into binary values from 0 to 255.
- Sample and hold circuit 71 measures the drain voltages only in the vicinity of saturation. Drain voltages above about 5 volts are defined as not saturated and produce a maximum A/D output of 255 binary. As can be appreciated from the circuit diagram of FIG. 2, the connection to sample and hold circuit 71 becomes operative only when the drain voltage falls below 5 volts and diode 67 is forward biased.
- Micro-computer 9 sees a range of saturation voltages from 0 to 255 binary.
- a voltage of less than “32” is defined as “hard saturation” while a value of less than “128” is defined as a high impedance electrode circuit. If the value is less than “32”, the soft start reset and ramp sequence is started. However, if the value is just less than "128”, then an electrode alert light (if utilized) is energized and the reset/ramp sequence is not started.
- An alert light indication indicates that leads and/or electrodes have too high an impedance and that the user should recheck the electrode system for such things as continuity and moist skin contact.
- Output pulse compensation is also automatically provided to maintain the charge delivered per pulse substantially constant when a change occurs in the pulse width of the output pulses then being provided by the device.
- the range of the amplitude, or intensity, of the delivered output pulses is adjusted based upon a nerve fiber strength-duration curve, such as illustrated in FIG. 6.
- the curve shown in FIG. 6 illustrates the relationship between the amplitude and the width and the resulting capability to stimulate the nerve fiber. From this curve, it can be seen that if the pulses have too low an amplitude (i.e., less than the "rheobase"), the nerve will never be stimulated, even if the pulse width lasts to infinity.
- Pulse width compensation includes, basically, using an applicable strength-duration curve to vary the range of the peak current delivered as pulses from the device.
- the pulse width as then set, determines the peak current range of the intensity control. For every pulse width, there is a corresponding current range for the intensity control.
- the strength-duration curve shown in FIG. 6 is preferably implemented with a look-up table that can be read by micro-computer 9 and an illustration of such a table, based upon the curve shown in FIG. 6, is set forth in FIG. 7. As illustrated in FIG. 7, at a 50 microsecond pulse width, the intensity is automatically assigned a range of 0 to 100 milliamperes peak, while at 400 microseconds width, the assigned range is 0 to 27 milliamperes peak.
- I current and PW is pulse width.
- the micro-computer determines the appropriate range of current (within which range the intensity varying, or controlling, unit (such as a potentiometer) can operate), and then generates the proper reference voltage within that current range for that pulse width.
- range the intensity varying, or controlling, unit such as a potentiometer
- the binary number produced is coupled through D/A converter 39 to generate a reference voltage to be coupled to operational amplifier 41.
- the reference voltage equals the setting percentage (of the intensity control potentiometer) x maximum peak current x K, where K is a scale factor that converts the value to the correct binary number and subsequent voltage for the particular device design.
- the look-up table establishes a range of the intensities, there is, of course, a family of numerous strength curves .Iadd.one .Iaddend.for each possible intensity percentage setting. This enables smooth control and is normally no more distinguishable to a user than is generating the reference voltage directly using a simple potentiometer.
- the look-up table is not suitable for all pulse shapes since this table was derived for use with an asymmetrical biphasic pulse generated by a capacitive output stage which has an active charge bleeder circuit, such as is commonly found in TENS-type units.
- the active bleeder circuit discharges the charge stored in the output capacitors and tissues during the brief rectangular pulses.
- the pulse width is narrow and pulse rate is low, the charge can be dissipated with a simple resistor.
- the bleeder must actively discharge the capacitance by turning on a bleeder transistor between pulses.
- the time constant and response characteristics of the bleeder circuit partly determine the exact shape of the look-up table curve.
- the equation has the same form as before, but the rheobase has been shifted to account for the different pulse shape.
- a device with output pulse compensation operates in the same manner as does a conventional TENS device, except that compensation is automatically provided by the microcomputer each time the pulse width is changed.
- pulse width compensation will not normally be noticed by a user, particularly since the user is automatically protected, including protection against shock which could otherwise occur, for example, when a large pulse width is selected.
- pulse width compensation it is possible to adjust pulse widths while the device is in use and directly compare different pulse widths independent of the intensity (since the percentage of intensity is maintained constant unless the intensity control is also adjusted). Also, the ability to finely control intensity when utilizing wide pulse widths makes exceptionally wide pulse widths practical for use in a general purpose TENS unit or a muscle stimulator unit.
- intensity control potentiometer which normally has an externally visible indicator associated therewith
- the actual intensity being delivered cannot be correctly portrayed at the intensity control indicator for each of a plurality of pulse widths.
- the range of intensities is thus changed as the pulse width is changed.
- the intensity control potentiometer indicator therefore acts as a percentage indicator that consistently indicates whatever percent of the intensity range is then selected by the intensity control potentiometer.
- amplitude is defined as a family of strength-duration curves, with each curve representing a separate setting of the intensity control.
- this invention provides improved output pulse compensation for an electronic device providing a pulse output for therapeutic purposes.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
I=19.6/(1-e(-0.00305×PW-0.0664)),
I=28.125/(1-e(-0.0046389×PW-1)).
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/385,285 USRE35987E (en) | 1990-06-05 | 1995-02-08 | Output pulse compensation for therapeutic-type electronic devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/533,293 US5184617A (en) | 1990-06-05 | 1990-06-05 | Output pulse compensation for therapeutic-type electronic devices |
US08/385,285 USRE35987E (en) | 1990-06-05 | 1995-02-08 | Output pulse compensation for therapeutic-type electronic devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/533,293 Reissue US5184617A (en) | 1990-06-05 | 1990-06-05 | Output pulse compensation for therapeutic-type electronic devices |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35987E true USRE35987E (en) | 1998-12-08 |
Family
ID=24125323
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/533,293 Ceased US5184617A (en) | 1990-06-05 | 1990-06-05 | Output pulse compensation for therapeutic-type electronic devices |
US08/385,285 Expired - Lifetime USRE35987E (en) | 1990-06-05 | 1995-02-08 | Output pulse compensation for therapeutic-type electronic devices |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/533,293 Ceased US5184617A (en) | 1990-06-05 | 1990-06-05 | Output pulse compensation for therapeutic-type electronic devices |
Country Status (3)
Country | Link |
---|---|
US (2) | US5184617A (en) |
EP (1) | EP0524321A1 (en) |
CA (1) | CA2043813A1 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030074037A1 (en) * | 2001-10-17 | 2003-04-17 | Rehabilicare, Inc. | Electrical nerve stimulation device |
US20040015212A1 (en) * | 2002-05-31 | 2004-01-22 | Empi, Corp. | Electrotherapy stimulation device having electrode peel off detection capabilities |
US20040111130A1 (en) * | 2000-06-19 | 2004-06-10 | Hrdlicka Gregory A. | Trial neuro stimulator with lead diagnostics |
US20040176820A1 (en) * | 2002-06-13 | 2004-09-09 | Paul Edward L. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US20050004628A1 (en) * | 2002-03-15 | 2005-01-06 | Medtronic, Inc | Amplitude ramping of waveforms generated by an implantable medical device |
US20050137649A1 (en) * | 2002-06-13 | 2005-06-23 | Paul Edward L.Jr. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US7187977B2 (en) | 2002-06-13 | 2007-03-06 | Atlantic Medical, Inc. | Transcutaneous electrical nerve stimulation device and method using microcurrent |
US7228179B2 (en) | 2002-07-26 | 2007-06-05 | Advanced Neuromodulation Systems, Inc. | Method and apparatus for providing complex tissue stimulation patterns |
US20070216568A1 (en) * | 2001-11-28 | 2007-09-20 | Martin Kunert | Fmcw Radar with Restricted Emission Time to Avoid Aliasing Effects |
USRE40279E1 (en) | 1997-06-26 | 2008-04-29 | Sherwood Services Ag | Method and system for neural tissue modification |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7620451B2 (en) | 2005-12-29 | 2009-11-17 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
USRE41045E1 (en) | 1996-06-27 | 2009-12-15 | Covidien Ag | Method and apparatus for altering neural tissue function |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
US7937143B2 (en) | 2004-11-02 | 2011-05-03 | Ardian, Inc. | Methods and apparatus for inducing controlled renal neuromodulation |
US20120045026A1 (en) * | 2010-08-20 | 2012-02-23 | Raytheon Company | Recovering distorted digital data |
US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
US8140165B2 (en) | 2005-01-28 | 2012-03-20 | Encore Medical Asset Corporation | Independent protection system for an electrical muscle stimulation apparatus and method of using same |
US8145316B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US8145317B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods for renal neuromodulation |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US8150520B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods for catheter-based renal denervation |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US8620438B1 (en) | 2007-02-13 | 2013-12-31 | Encore Medical Asset Corporation | Method and apparatus for applying neuromuscular electrical stimulation |
US8620423B2 (en) | 2002-04-08 | 2013-12-31 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for thermal modulation of nerves contributing to renal function |
US8626300B2 (en) | 2002-04-08 | 2014-01-07 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for thermally-induced renal neuromodulation |
US8774922B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods |
US8771252B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and devices for renal nerve blocking |
US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
US8818514B2 (en) | 2002-04-08 | 2014-08-26 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for intravascularly-induced neuromodulation |
US8958883B2 (en) | 2005-04-19 | 2015-02-17 | Pierre-Yves Mueller | Electrical stimulation device and method for therapeutic treatment and pain management |
US9192715B2 (en) | 2002-04-08 | 2015-11-24 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal nerve blocking |
US9308043B2 (en) | 2002-04-08 | 2016-04-12 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for monopolar renal neuromodulation |
US9308044B2 (en) | 2002-04-08 | 2016-04-12 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US9327122B2 (en) | 2002-04-08 | 2016-05-03 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US9439726B2 (en) | 2002-04-08 | 2016-09-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US9980766B1 (en) | 2014-03-28 | 2018-05-29 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and systems for renal neuromodulation |
US10080864B2 (en) | 2012-10-19 | 2018-09-25 | Medtronic Ardian Luxembourg S.A.R.L. | Packaging for catheter treatment devices and associated devices, systems, and methods |
US10179020B2 (en) | 2010-10-25 | 2019-01-15 | Medtronic Ardian Luxembourg S.A.R.L. | Devices, systems and methods for evaluation and feedback of neuromodulation treatment |
US10194979B1 (en) | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US10194980B1 (en) | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US10537385B2 (en) | 2008-12-31 | 2020-01-21 | Medtronic Ardian Luxembourg S.A.R.L. | Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility |
US10874455B2 (en) | 2012-03-08 | 2020-12-29 | Medtronic Ardian Luxembourg S.A.R.L. | Ovarian neuromodulation and associated systems and methods |
US11338140B2 (en) | 2012-03-08 | 2022-05-24 | Medtronic Ardian Luxembourg S.A.R.L. | Monitoring of neuromodulation using biomarkers |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA947493B (en) * | 1993-09-29 | 1995-05-29 | Tech Pulse Cc | Nerve stimulation apparatus and method |
US5443486A (en) * | 1994-09-26 | 1995-08-22 | Medtronic, Inc. | Method and apparatus to limit control of parameters of electrical tissue stimulators |
US6181961B1 (en) * | 1997-12-16 | 2001-01-30 | Richard L. Prass | Method and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system |
US6161044A (en) * | 1998-11-23 | 2000-12-12 | Synaptic Corporation | Method and apparatus for treating chronic pain syndromes, tremor, dementia and related disorders and for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation |
AUPQ047899A0 (en) * | 1999-05-21 | 1999-06-10 | Cooke, Michael | A device for use with computer games |
US6662051B1 (en) | 2000-03-31 | 2003-12-09 | Stephen A. Eraker | Programmable pain reduction device |
US6704603B1 (en) | 2000-05-16 | 2004-03-09 | Lockheed Martin Corporation | Adaptive stimulator for relief of symptoms of neurological disorders |
IT1319170B1 (en) | 2000-07-28 | 2003-09-26 | Lorenzo Piccone | APPARATUS ABLE TO MODULATE THE NEUROVEGETATIVE SYSTEM AND INTEGRATE ITS ACTION WITH THAT OF THE CENTRAL NERVOUS SYSTEM: |
US6788976B2 (en) | 2001-11-02 | 2004-09-07 | Lockheed Martin Corporation | Movement timing simulator |
US7050856B2 (en) * | 2002-01-11 | 2006-05-23 | Medtronic, Inc. | Variation of neural-stimulation parameters |
WO2004011087A1 (en) * | 2002-07-29 | 2004-02-05 | Patents Exploitation Company B.V. | System designed to generate programmed sequences of stimuli resulting in controlled and persistent physiological responses in the body |
ATE362781T1 (en) * | 2002-10-24 | 2007-06-15 | Lockheed Corp | SYSTEM FOR TREATING MOVEMENT MALFUNCTIONS |
US20080208288A1 (en) * | 2003-10-24 | 2008-08-28 | Lockheed Martin Corporation | Systems and methods for treating movement disorders |
US7499746B2 (en) | 2004-01-30 | 2009-03-03 | Encore Medical Asset Corporation | Automated adaptive muscle stimulation method and apparatus |
US9913985B2 (en) * | 2006-04-28 | 2018-03-13 | Second Sight Medical Products, Inc. | Method and apparatus to provide safety checks for neural stimulation |
US9764147B2 (en) * | 2009-04-24 | 2017-09-19 | Medtronic, Inc. | Charge-based stimulation intensity programming with pulse amplitude and width adjusted according to a function |
US8498710B2 (en) * | 2009-07-28 | 2013-07-30 | Nevro Corporation | Linked area parameter adjustment for spinal cord stimulation and associated systems and methods |
US9895538B1 (en) | 2013-01-22 | 2018-02-20 | Nevro Corp. | Systems and methods for deploying patient therapy devices |
US9731133B1 (en) | 2013-01-22 | 2017-08-15 | Nevro Corp. | Systems and methods for systematically testing a plurality of therapy programs in patient therapy devices |
US9295840B1 (en) | 2013-01-22 | 2016-03-29 | Nevro Corporation | Systems and methods for automatically programming patient therapy devices |
US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
US11364380B2 (en) | 2015-03-27 | 2022-06-21 | Elwha Llc | Nerve stimulation system, subsystem, headset, and earpiece |
US10327984B2 (en) | 2015-03-27 | 2019-06-25 | Equility Llc | Controlling ear stimulation in response to image analysis |
US10398902B2 (en) | 2015-03-27 | 2019-09-03 | Equility Llc | Neural stimulation method and system with audio output |
US10512783B2 (en) | 2015-03-27 | 2019-12-24 | Equility Llc | User interface method and system for ear stimulation |
US10589105B2 (en) | 2015-03-27 | 2020-03-17 | The Invention Science Fund Ii, Llc | Method and system for controlling ear stimulation |
US9987489B2 (en) * | 2015-03-27 | 2018-06-05 | Elwha Llc | Controlling ear stimulation in response to electrical contact sensing |
US10039928B2 (en) | 2015-03-27 | 2018-08-07 | Equility Llc | Ear stimulation with neural feedback sensing |
US10406376B2 (en) | 2015-03-27 | 2019-09-10 | Equility Llc | Multi-factor control of ear stimulation |
US10300277B1 (en) | 2015-12-14 | 2019-05-28 | Nevro Corp. | Variable amplitude signals for neurological therapy, and associated systems and methods |
CN114243926B (en) * | 2021-12-23 | 2024-01-12 | 广州龙之杰科技有限公司 | Output current control method, device, system and storage medium |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2263205A (en) * | 1939-03-24 | 1941-11-18 | Mine Safety Appliances Co | Apparatus for the treatment of skin diseases |
US2808826A (en) * | 1956-01-19 | 1957-10-08 | Teca Corp | Electro-diagnostic apparatus and a circuit therefor |
US3241557A (en) * | 1962-05-02 | 1966-03-22 | Sutetaro Yamashiki | Low frequency therapeutic equipment |
US3645267A (en) * | 1969-10-29 | 1972-02-29 | Medtronic Inc | Medical-electronic stimulator, particularly a carotid sinus nerve stimulator with controlled turn-on amplitude rate |
US3842844A (en) * | 1972-06-30 | 1974-10-22 | Medtronic Inc | Electromedical pulse generator with continuous pulse width adjustment circuitry |
US3901247A (en) * | 1972-01-13 | 1975-08-26 | Medtronic Inc | End of life increased pulse width and rate change apparatus |
US3908669A (en) * | 1973-12-17 | 1975-09-30 | American Acupuncture Medical I | Apparatus for use by physicians in acupuncture research |
US4014347A (en) * | 1975-05-27 | 1977-03-29 | Staodynamics, Inc. | Transcutaneous nerve stimulator device and method |
FR2336286A1 (en) * | 1975-12-27 | 1977-07-22 | Habegger Willy | PERFECTIONED CARRIER TRACK MONORAIL |
US4088141A (en) * | 1976-04-27 | 1978-05-09 | Stimulation Technology, Inc. | Fault circuit for stimulator |
US4141359A (en) * | 1976-08-16 | 1979-02-27 | University Of Utah | Epidermal iontophoresis device |
US4177819A (en) * | 1978-03-30 | 1979-12-11 | Kofsky Harvey I | Muscle stimulating apparatus |
US4210151A (en) * | 1978-09-26 | 1980-07-01 | Stimtech, Inc. | Electronic pain control with scanned output parameters |
US4340063A (en) * | 1980-01-02 | 1982-07-20 | Empi, Inc. | Stimulation device |
FR2504807A1 (en) * | 1981-04-30 | 1982-11-05 | Medtronic Inc | NERVOUS STIMULATOR WITH KEYBOARD-CONTROLLED MICROPROCESSOR |
US4372319A (en) * | 1979-06-15 | 1983-02-08 | Matsushita Electric Works, Ltd. | Low frequency therapeutic instrument |
FR2526180A1 (en) * | 1982-04-30 | 1983-11-04 | Medtronic Inc | DIGITAL CIRCUIT FOR CONTROLLING THE PROGRESSIVE START-UP OF ELECTRIC TISSUE STIMULATORS |
FR2528709A1 (en) * | 1982-06-18 | 1983-12-23 | Biostim Inc | BIOLOGICAL ELECTRIC STIMULATOR |
US4431002A (en) * | 1981-06-08 | 1984-02-14 | Empi Inc. | Modulated deep afferent stimulator |
US4453548A (en) * | 1981-06-08 | 1984-06-12 | Empi, Inc. | Method of improving sensory tolerance with modulated nerve stimulator |
US4539993A (en) * | 1982-11-18 | 1985-09-10 | Medtronic, Inc. | Fail-safe muscle stimulator device |
WO1986002567A1 (en) * | 1984-10-23 | 1986-05-09 | Zion Foundation | Method and apparatus for delivering a prescriptive electrical signal |
EP0269848A1 (en) * | 1986-11-07 | 1988-06-08 | Siemens Aktiengesellschaft | Stimulator |
EP0269844A1 (en) * | 1986-11-07 | 1988-06-08 | Siemens Aktiengesellschaft | Stimulator |
US4759368A (en) * | 1986-12-02 | 1988-07-26 | Medical Designs, Inc. | Transcutaneous nerve stimulator |
EP0339313A1 (en) * | 1988-04-19 | 1989-11-02 | HENNEBERG & BRUNNER | Stimulation apparatus |
US4926865A (en) * | 1987-10-01 | 1990-05-22 | Oman Paul S | Microcomputer-based nerve and muscle stimulator |
US4979507A (en) * | 1988-05-10 | 1990-12-25 | Eckhard Alt | Energy saving cardiac pacemaker |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4340047A (en) * | 1978-10-18 | 1982-07-20 | Robert Tapper | Iontophoretic treatment apparatus |
-
1990
- 1990-06-05 US US07/533,293 patent/US5184617A/en not_active Ceased
-
1991
- 1991-06-04 CA CA002043813A patent/CA2043813A1/en not_active Abandoned
- 1991-06-19 EP EP91110101A patent/EP0524321A1/en not_active Withdrawn
-
1995
- 1995-02-08 US US08/385,285 patent/USRE35987E/en not_active Expired - Lifetime
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2263205A (en) * | 1939-03-24 | 1941-11-18 | Mine Safety Appliances Co | Apparatus for the treatment of skin diseases |
US2808826A (en) * | 1956-01-19 | 1957-10-08 | Teca Corp | Electro-diagnostic apparatus and a circuit therefor |
US3241557A (en) * | 1962-05-02 | 1966-03-22 | Sutetaro Yamashiki | Low frequency therapeutic equipment |
US3645267A (en) * | 1969-10-29 | 1972-02-29 | Medtronic Inc | Medical-electronic stimulator, particularly a carotid sinus nerve stimulator with controlled turn-on amplitude rate |
US3901247A (en) * | 1972-01-13 | 1975-08-26 | Medtronic Inc | End of life increased pulse width and rate change apparatus |
US3842844A (en) * | 1972-06-30 | 1974-10-22 | Medtronic Inc | Electromedical pulse generator with continuous pulse width adjustment circuitry |
US3908669A (en) * | 1973-12-17 | 1975-09-30 | American Acupuncture Medical I | Apparatus for use by physicians in acupuncture research |
US4014347A (en) * | 1975-05-27 | 1977-03-29 | Staodynamics, Inc. | Transcutaneous nerve stimulator device and method |
FR2336286A1 (en) * | 1975-12-27 | 1977-07-22 | Habegger Willy | PERFECTIONED CARRIER TRACK MONORAIL |
US4088141A (en) * | 1976-04-27 | 1978-05-09 | Stimulation Technology, Inc. | Fault circuit for stimulator |
US4141359A (en) * | 1976-08-16 | 1979-02-27 | University Of Utah | Epidermal iontophoresis device |
US4177819A (en) * | 1978-03-30 | 1979-12-11 | Kofsky Harvey I | Muscle stimulating apparatus |
US4210151A (en) * | 1978-09-26 | 1980-07-01 | Stimtech, Inc. | Electronic pain control with scanned output parameters |
US4372319A (en) * | 1979-06-15 | 1983-02-08 | Matsushita Electric Works, Ltd. | Low frequency therapeutic instrument |
US4340063A (en) * | 1980-01-02 | 1982-07-20 | Empi, Inc. | Stimulation device |
FR2504807A1 (en) * | 1981-04-30 | 1982-11-05 | Medtronic Inc | NERVOUS STIMULATOR WITH KEYBOARD-CONTROLLED MICROPROCESSOR |
US4431002A (en) * | 1981-06-08 | 1984-02-14 | Empi Inc. | Modulated deep afferent stimulator |
US4453548A (en) * | 1981-06-08 | 1984-06-12 | Empi, Inc. | Method of improving sensory tolerance with modulated nerve stimulator |
FR2526180A1 (en) * | 1982-04-30 | 1983-11-04 | Medtronic Inc | DIGITAL CIRCUIT FOR CONTROLLING THE PROGRESSIVE START-UP OF ELECTRIC TISSUE STIMULATORS |
US4520825A (en) * | 1982-04-30 | 1985-06-04 | Medtronic, Inc. | Digital circuit for control of gradual turn-on of electrical tissue stimulators |
FR2528709A1 (en) * | 1982-06-18 | 1983-12-23 | Biostim Inc | BIOLOGICAL ELECTRIC STIMULATOR |
US4539993A (en) * | 1982-11-18 | 1985-09-10 | Medtronic, Inc. | Fail-safe muscle stimulator device |
WO1986002567A1 (en) * | 1984-10-23 | 1986-05-09 | Zion Foundation | Method and apparatus for delivering a prescriptive electrical signal |
EP0269848A1 (en) * | 1986-11-07 | 1988-06-08 | Siemens Aktiengesellschaft | Stimulator |
EP0269844A1 (en) * | 1986-11-07 | 1988-06-08 | Siemens Aktiengesellschaft | Stimulator |
US4759368A (en) * | 1986-12-02 | 1988-07-26 | Medical Designs, Inc. | Transcutaneous nerve stimulator |
US4926865A (en) * | 1987-10-01 | 1990-05-22 | Oman Paul S | Microcomputer-based nerve and muscle stimulator |
EP0339313A1 (en) * | 1988-04-19 | 1989-11-02 | HENNEBERG & BRUNNER | Stimulation apparatus |
US4979507A (en) * | 1988-05-10 | 1990-12-25 | Eckhard Alt | Energy saving cardiac pacemaker |
Cited By (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE41045E1 (en) | 1996-06-27 | 2009-12-15 | Covidien Ag | Method and apparatus for altering neural tissue function |
USRE40279E1 (en) | 1997-06-26 | 2008-04-29 | Sherwood Services Ag | Method and system for neural tissue modification |
US20040111130A1 (en) * | 2000-06-19 | 2004-06-10 | Hrdlicka Gregory A. | Trial neuro stimulator with lead diagnostics |
US7493159B2 (en) | 2000-06-19 | 2009-02-17 | Medtronic, Inc. | Trial neuro stimulator with lead diagnostics |
US20030074037A1 (en) * | 2001-10-17 | 2003-04-17 | Rehabilicare, Inc. | Electrical nerve stimulation device |
US8131374B2 (en) | 2001-10-17 | 2012-03-06 | Encore Medical Asset Corporation | Electrical nerve stimulation device |
US8019426B2 (en) | 2001-10-17 | 2011-09-13 | Encore Medical Asset Corporation | Electrical nerve stimulation device |
US20080114414A1 (en) * | 2001-10-17 | 2008-05-15 | Moore Gary L | Electrical nerve stimulation device |
US7254444B2 (en) | 2001-10-17 | 2007-08-07 | Encore Medical Asset Corporation | Electrical nerve stimulation device |
US20070216568A1 (en) * | 2001-11-28 | 2007-09-20 | Martin Kunert | Fmcw Radar with Restricted Emission Time to Avoid Aliasing Effects |
US20050004628A1 (en) * | 2002-03-15 | 2005-01-06 | Medtronic, Inc | Amplitude ramping of waveforms generated by an implantable medical device |
US7526341B2 (en) * | 2002-03-15 | 2009-04-28 | Medtronic, Inc. | Amplitude ramping of waveforms generated by an implantable medical device |
US9131978B2 (en) | 2002-04-08 | 2015-09-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation |
US9289255B2 (en) | 2002-04-08 | 2016-03-22 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US11033328B2 (en) | 2002-04-08 | 2021-06-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US10850091B2 (en) | 2002-04-08 | 2020-12-01 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US10441356B2 (en) | 2002-04-08 | 2019-10-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation via neuromodulatory agents |
US7647115B2 (en) | 2002-04-08 | 2010-01-12 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US7717948B2 (en) | 2002-04-08 | 2010-05-18 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
US10420606B2 (en) | 2002-04-08 | 2019-09-24 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US10376312B2 (en) | 2002-04-08 | 2019-08-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for monopolar renal neuromodulation |
US10376516B2 (en) | 2002-04-08 | 2019-08-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and devices for renal nerve blocking |
US8131372B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Renal nerve stimulation method for treatment of patients |
US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
US10376311B2 (en) | 2002-04-08 | 2019-08-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravascularly-induced neuromodulation |
US10293190B2 (en) | 2002-04-08 | 2019-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Thermally-induced renal neuromodulation and associated systems and methods |
US8145316B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US8145317B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods for renal neuromodulation |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US8150520B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods for catheter-based renal denervation |
US8150518B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US8175711B2 (en) | 2002-04-08 | 2012-05-08 | Ardian, Inc. | Methods for treating a condition or disease associated with cardio-renal function |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US10272246B2 (en) | 2002-04-08 | 2019-04-30 | Medtronic Adrian Luxembourg S.a.r.l | Methods for extravascular renal neuromodulation |
US10245429B2 (en) | 2002-04-08 | 2019-04-02 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US8444640B2 (en) | 2002-04-08 | 2013-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US8454594B2 (en) | 2002-04-08 | 2013-06-04 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus for performing a non-continuous circumferential treatment of a body lumen |
US8548600B2 (en) | 2002-04-08 | 2013-10-01 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatuses for renal neuromodulation and associated systems and methods |
US8551069B2 (en) | 2002-04-08 | 2013-10-08 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for treating contrast nephropathy |
US10179235B2 (en) | 2002-04-08 | 2019-01-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9308043B2 (en) | 2002-04-08 | 2016-04-12 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for monopolar renal neuromodulation |
US8626300B2 (en) | 2002-04-08 | 2014-01-07 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for thermally-induced renal neuromodulation |
US8684998B2 (en) | 2002-04-08 | 2014-04-01 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for inhibiting renal nerve activity |
US8721637B2 (en) | 2002-04-08 | 2014-05-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons |
US8728138B2 (en) | 2002-04-08 | 2014-05-20 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for thermally-induced renal neuromodulation |
US8728137B2 (en) | 2002-04-08 | 2014-05-20 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for thermally-induced renal neuromodulation |
US8740896B2 (en) | 2002-04-08 | 2014-06-03 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons |
US8768470B2 (en) | 2002-04-08 | 2014-07-01 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for monitoring renal neuromodulation |
US8774922B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods |
US8771252B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and devices for renal nerve blocking |
US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
US8784463B2 (en) | 2002-04-08 | 2014-07-22 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for thermally-induced renal neuromodulation |
US10179028B2 (en) | 2002-04-08 | 2019-01-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating patients via renal neuromodulation |
US8818514B2 (en) | 2002-04-08 | 2014-08-26 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for intravascularly-induced neuromodulation |
US8845629B2 (en) | 2002-04-08 | 2014-09-30 | Medtronic Ardian Luxembourg S.A.R.L. | Ultrasound apparatuses for thermally-induced renal neuromodulation |
US8852163B2 (en) | 2002-04-08 | 2014-10-07 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation via drugs and neuromodulatory agents and associated systems and methods |
US8880186B2 (en) | 2002-04-08 | 2014-11-04 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of patients with chronic heart failure |
US8934978B2 (en) | 2002-04-08 | 2015-01-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US8948865B2 (en) | 2002-04-08 | 2015-02-03 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating heart arrhythmia |
US8958871B2 (en) | 2002-04-08 | 2015-02-17 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US10179027B2 (en) | 2002-04-08 | 2019-01-15 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter apparatuses having expandable baskets for renal neuromodulation and associated systems and methods |
US8983595B2 (en) | 2002-04-08 | 2015-03-17 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of patients with chronic heart failure |
US8986294B2 (en) | 2002-04-08 | 2015-03-24 | Medtronic Ardian Luxembourg S.a.rl. | Apparatuses for thermally-induced renal neuromodulation |
US9023037B2 (en) | 2002-04-08 | 2015-05-05 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatus for renal neuromodulation |
US9072527B2 (en) | 2002-04-08 | 2015-07-07 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatuses and methods for renal neuromodulation |
US10130792B2 (en) | 2002-04-08 | 2018-11-20 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation using neuromodulatory agents or drugs |
US9125661B2 (en) | 2002-04-08 | 2015-09-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US10124195B2 (en) | 2002-04-08 | 2018-11-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for thermally-induced renal neuromodulation |
US9138281B2 (en) | 2002-04-08 | 2015-09-22 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation via catheter apparatuses having expandable baskets |
US9186198B2 (en) | 2002-04-08 | 2015-11-17 | Medtronic Ardian Luxembourg S.A.R.L. | Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods |
US9186213B2 (en) | 2002-04-08 | 2015-11-17 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation |
US9192715B2 (en) | 2002-04-08 | 2015-11-24 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal nerve blocking |
US9265558B2 (en) | 2002-04-08 | 2016-02-23 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation |
US10111707B2 (en) | 2002-04-08 | 2018-10-30 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of human patients |
US8620423B2 (en) | 2002-04-08 | 2013-12-31 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for thermal modulation of nerves contributing to renal function |
US9308044B2 (en) | 2002-04-08 | 2016-04-12 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US9314630B2 (en) | 2002-04-08 | 2016-04-19 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of patients |
US9320561B2 (en) | 2002-04-08 | 2016-04-26 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation |
US9327122B2 (en) | 2002-04-08 | 2016-05-03 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US9326817B2 (en) | 2002-04-08 | 2016-05-03 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for treating heart arrhythmia |
US10105180B2 (en) | 2002-04-08 | 2018-10-23 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravascularly-induced neuromodulation |
US9364280B2 (en) | 2002-04-08 | 2016-06-14 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US10039596B2 (en) | 2002-04-08 | 2018-08-07 | Medtronic Ardian Luxembourg S.A.R.L. | Apparatus for renal neuromodulation via an intra-to-extravascular approach |
US9439726B2 (en) | 2002-04-08 | 2016-09-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US9445867B1 (en) | 2002-04-08 | 2016-09-20 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation via catheters having expandable treatment members |
US9456869B2 (en) | 2002-04-08 | 2016-10-04 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for bilateral renal neuromodulation |
US9463066B2 (en) | 2002-04-08 | 2016-10-11 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation |
US9468497B2 (en) | 2002-04-08 | 2016-10-18 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for monopolar renal neuromodulation |
US9474563B2 (en) | 2002-04-08 | 2016-10-25 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9636174B2 (en) | 2002-04-08 | 2017-05-02 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US10034708B2 (en) | 2002-04-08 | 2018-07-31 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for thermally-induced renal neuromodulation |
US9968611B2 (en) | 2002-04-08 | 2018-05-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and devices for renal nerve blocking |
US9675413B2 (en) | 2002-04-08 | 2017-06-13 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US9707035B2 (en) | 2002-04-08 | 2017-07-18 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US9731132B2 (en) | 2002-04-08 | 2017-08-15 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for renal neuromodulation |
US9743983B2 (en) | 2002-04-08 | 2017-08-29 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of patients |
US9757193B2 (en) | 2002-04-08 | 2017-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatus for renal neuromodulation |
US9757192B2 (en) | 2002-04-08 | 2017-09-12 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of patients |
US9956410B2 (en) | 2002-04-08 | 2018-05-01 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for renal neuromodulation |
US9814873B2 (en) | 2002-04-08 | 2017-11-14 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9827040B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for intravascularly-induced neuromodulation |
US9827041B2 (en) | 2002-04-08 | 2017-11-28 | Medtronic Ardian Luxembourg S.A.R.L. | Balloon catheter apparatuses for renal denervation |
US9895195B2 (en) | 2002-04-08 | 2018-02-20 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for therapeutic renal neuromodulation |
US9907611B2 (en) | 2002-04-08 | 2018-03-06 | Medtronic Ardian Luxembourg S.A.R.L. | Renal neuromodulation for treatment of patients |
US20040015212A1 (en) * | 2002-05-31 | 2004-01-22 | Empi, Corp. | Electrotherapy stimulation device having electrode peel off detection capabilities |
US7187977B2 (en) | 2002-06-13 | 2007-03-06 | Atlantic Medical, Inc. | Transcutaneous electrical nerve stimulation device and method using microcurrent |
US7158834B2 (en) | 2002-06-13 | 2007-01-02 | Atlantic Medical, Inc. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US20050137649A1 (en) * | 2002-06-13 | 2005-06-23 | Paul Edward L.Jr. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US20040176820A1 (en) * | 2002-06-13 | 2004-09-09 | Paul Edward L. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US7228179B2 (en) | 2002-07-26 | 2007-06-05 | Advanced Neuromodulation Systems, Inc. | Method and apparatus for providing complex tissue stimulation patterns |
US8805545B2 (en) | 2004-10-05 | 2014-08-12 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for multi-vessel renal neuromodulation |
US10537734B2 (en) | 2004-10-05 | 2020-01-21 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for multi-vessel renal neuromodulation |
US9402992B2 (en) | 2004-10-05 | 2016-08-02 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for multi-vessel renal neuromodulation |
US8433423B2 (en) | 2004-10-05 | 2013-04-30 | Ardian, Inc. | Methods for multi-vessel renal neuromodulation |
US9108040B2 (en) | 2004-10-05 | 2015-08-18 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for multi-vessel renal neuromodulation |
US9950161B2 (en) | 2004-10-05 | 2018-04-24 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for multi-vessel renal neuromodulation |
US7937143B2 (en) | 2004-11-02 | 2011-05-03 | Ardian, Inc. | Methods and apparatus for inducing controlled renal neuromodulation |
US9808619B2 (en) | 2005-01-28 | 2017-11-07 | Encore Medical Asset Corporation | Independent protection system for an electrical muscle stimulation apparatus and method of using same |
US8140165B2 (en) | 2005-01-28 | 2012-03-20 | Encore Medical Asset Corporation | Independent protection system for an electrical muscle stimulation apparatus and method of using same |
US9669212B2 (en) | 2005-04-19 | 2017-06-06 | Djo, Llc | Electrical stimulation device and method for therapeutic treatment and pain management |
US8958883B2 (en) | 2005-04-19 | 2015-02-17 | Pierre-Yves Mueller | Electrical stimulation device and method for therapeutic treatment and pain management |
US10328260B2 (en) | 2005-04-19 | 2019-06-25 | Djo, Llc | Electrical stimulation device and method for therapeutic treatment and pain management |
US7620451B2 (en) | 2005-12-29 | 2009-11-17 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US8620438B1 (en) | 2007-02-13 | 2013-12-31 | Encore Medical Asset Corporation | Method and apparatus for applying neuromuscular electrical stimulation |
US9352151B2 (en) | 2007-02-13 | 2016-05-31 | Encore Medical Asset Corporation | Method and apparatus for applying neuromuscular electrical stimulation |
US9669211B2 (en) | 2007-02-13 | 2017-06-06 | Encore Medical Asset Corporation | Method and apparatus for applying neuromuscular electrical stimulation |
US10561460B2 (en) | 2008-12-31 | 2020-02-18 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation systems and methods for treatment of sexual dysfunction |
US10537385B2 (en) | 2008-12-31 | 2020-01-21 | Medtronic Ardian Luxembourg S.A.R.L. | Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility |
US20120045026A1 (en) * | 2010-08-20 | 2012-02-23 | Raytheon Company | Recovering distorted digital data |
US8428204B2 (en) * | 2010-08-20 | 2013-04-23 | Raytheon Company | Recovering distorted digital data |
US10179020B2 (en) | 2010-10-25 | 2019-01-15 | Medtronic Ardian Luxembourg S.A.R.L. | Devices, systems and methods for evaluation and feedback of neuromodulation treatment |
US10874455B2 (en) | 2012-03-08 | 2020-12-29 | Medtronic Ardian Luxembourg S.A.R.L. | Ovarian neuromodulation and associated systems and methods |
US11338140B2 (en) | 2012-03-08 | 2022-05-24 | Medtronic Ardian Luxembourg S.A.R.L. | Monitoring of neuromodulation using biomarkers |
US10080864B2 (en) | 2012-10-19 | 2018-09-25 | Medtronic Ardian Luxembourg S.A.R.L. | Packaging for catheter treatment devices and associated devices, systems, and methods |
US10194979B1 (en) | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
US9980766B1 (en) | 2014-03-28 | 2018-05-29 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and systems for renal neuromodulation |
US10194980B1 (en) | 2014-03-28 | 2019-02-05 | Medtronic Ardian Luxembourg S.A.R.L. | Methods for catheter-based renal neuromodulation |
Also Published As
Publication number | Publication date |
---|---|
US5184617A (en) | 1993-02-09 |
CA2043813A1 (en) | 1991-12-06 |
EP0524321A1 (en) | 1993-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE35987E (en) | Output pulse compensation for therapeutic-type electronic devices | |
US5069211A (en) | Microprocessor controlled electronic stimulating device having biphasic pulse output | |
US4917093A (en) | Biological tissue stimulator with adjustable high voltage power supply dependent upon load impedance | |
US20230293889A1 (en) | Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes | |
US5065083A (en) | Microprocessor controlled electronic stimulating device having a battery management system and method therefor | |
US5222494A (en) | Implantable tissue stimulator output stabilization system | |
US6185450B1 (en) | Digital sliding pole fast-restore for an electrocardiograph display | |
US5063929A (en) | Electronic stimulating device having timed treatment of varying intensity and method therefor | |
CA1189148A (en) | Pulsed stimulator with peak current indicator | |
US9776006B2 (en) | Systems and methods for adjusting electrical therapy based on impedance changes | |
US6052622A (en) | Heart stimulator with an evoked response detector | |
US5246418A (en) | Iontophresis system having features for reducing skin irritation | |
CA2376877C (en) | Stimulus output monitor and control circuit for electrical tissue stimulator | |
US5431682A (en) | Implantable heart defibrillator | |
US8788032B2 (en) | Method and circuitry for measurement of stimulation current | |
US4719922A (en) | Stimulator apparatus | |
EP0593745B1 (en) | Work-modulated pacing rate deceleration | |
EP0626181B1 (en) | Method and device for monitoring electrodes of electrical heart stimulators | |
EP0547482B1 (en) | Iontophoresis system having features for reducing skin irritation | |
WO2000067840A1 (en) | Adaptive evoked response sensing for automatic capture verification | |
US4102347A (en) | Electronic pain control system | |
US5127402A (en) | System and method for maintaining stimulation pulse amplitude at battery depletion by self-regulating current drain usage | |
US3842844A (en) | Electromedical pulse generator with continuous pulse width adjustment circuitry | |
US5144948A (en) | Apparatus for stimulating living tissue with means to control stimulating pulse time interval | |
US6618621B1 (en) | Pacemaker with stimulation threshold measuring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: REHABILLICARE, INC. 1811 OLD HIGHWAY 8NEW BRIGHTON Free format text: NUNC PRO TUNC ASSIGNMENT EFFECTIVE DATE 3/18/98.;ASSIGNOR:STAODYN, INC. /AR;REEL/FRAME:011682/0185 Effective date: 20010329 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
AS | Assignment |
Owner name: CREDIT SUISSE, AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:ENCORE MEDICAL ASSET CORPORATION;REEL/FRAME:020234/0433 Effective date: 20071120 |
|
AS | Assignment |
Owner name: RIKCO INTERNATIONAL, LLC, WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, AS COLLATERAL AGENT;REEL/FRAME:035706/0497 Effective date: 20150507 Owner name: ENCORE MEDICAL ASSET CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, AS COLLATERAL AGENT;REEL/FRAME:035706/0497 Effective date: 20150507 Owner name: DJO, LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, AS COLLATERAL AGENT;REEL/FRAME:035706/0497 Effective date: 20150507 |