+

US6065576A - Strut for planar one-way clutch - Google Patents

Strut for planar one-way clutch Download PDF

Info

Publication number
US6065576A
US6065576A US09/045,322 US4532298A US6065576A US 6065576 A US6065576 A US 6065576A US 4532298 A US4532298 A US 4532298A US 6065576 A US6065576 A US 6065576A
Authority
US
United States
Prior art keywords
strut
stock material
lateral edge
station
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/045,322
Inventor
David W. Shaw
Gary B. Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Means Industries Inc
Original Assignee
Means Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Means Industries Inc filed Critical Means Industries Inc
Priority to US09/045,322 priority Critical patent/US6065576A/en
Assigned to MEANS INDUSTRIES, INC. reassignment MEANS INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCOTT, GARY B., SHAW, DAVID W.
Priority to ES99912784T priority patent/ES2252938T3/en
Priority to DE69928380T priority patent/DE69928380T2/en
Priority to JP2000536985A priority patent/JP2002506958A/en
Priority to EP99912784A priority patent/EP1064469B1/en
Priority to AT99912784T priority patent/ATE310182T1/en
Priority to PCT/US1999/006197 priority patent/WO1999047828A1/en
Publication of US6065576A publication Critical patent/US6065576A/en
Application granted granted Critical
Assigned to CITICORP USA, INC. reassignment CITICORP USA, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMSTED INDUSTRIES INCORPORATED, ASF-KEYSTONE, INC., BALTIMORE AIRCOIL COMPANY, INC., BRENCO, INCORPORATED, BURGESS-NORTON MANUFACTURING CO., CONSOLIDATED METCO, INC., MEANS INDUSTRIES, INC., QUALITY BEARING SERVICE OF ARKANSAS, INC., QUALITY BEARING SERVICE OF NEVADA, INC., QUALITY BEARING SERVICE OF VIRGINIA, INC., TRACK ACQUISITION INCORPORATED, UNIT RAIL ANCHOR COMPANY, INC., VARLEN CORPORATION
Assigned to CITIICORP NORTH AMERICA, INC. reassignment CITIICORP NORTH AMERICA, INC. AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT DATED APRIL 6, 2006 Assignors: ABC RAIL PRODUCTS CHINA INVESTMENT CORPORATION, AMCONSTRUCT CORPORATION, AMRAIL CORPORATION, AMSTED INDUSTRIES INCORPORATED, AMVEHICLE CORPORATION, ASF-KEYSTONE MEXICO HOLDING CORP., ASF-KEYSTONE, INC., BALTIMORE AIRCOIL COMPANY, INC., BRENCO, INCORPORATED, BURGESS-NORTON MFG. CO., INC., CALERA ACQUISITION CO., CONSOLIDATED METCO, INC., DIAMOND CHAIN COMPANY, GRIFFIN PIPE PRODUCTS CO., INC., GRIFFIN WHEEL COMPANY, INC., MEANS INDUSTRIES, INC., MERIDIAN RAIL CHINA INVESTMENT CORP., TRANSFORM AUTOMOTIVE LLC, UNITED RAIL ANCHOR COMPANY, INC., VARLEN CORPORATION
Assigned to BANK OF AMERICA, N.A., AS THE SUCCESSOR COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS THE SUCCESSOR COLLATERAL AGENT INTELLECTUAL PROPERTY SECURITY INTEREST ASSIGNMENT AGREEMENT Assignors: CITICORP NORTH AMERICA, INC., AS THE RESIGNING COLLATERAL AGENT (AS SUCCESSOR IN INTEREST OF CITICORP USA, INC.)
Anticipated expiration legal-status Critical
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS SUCCESSOR AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS SUCCESSOR AGENT NOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST AT REEL/FRAME 023471/0036 Assignors: BANK OF AMERICA, N.A., AS THE RESIGNING AGENT
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS SUCCESSOR AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS SUCCESSOR AGENT NOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST AT REEL/FRAME 027253/0488 Assignors: BANK OF AMERICA, N.A., AS THE RESIGNING AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/12Freewheels or freewheel clutches with hinged pawl co-operating with teeth, cogs, or the like
    • F16D41/125Freewheels or freewheel clutches with hinged pawl co-operating with teeth, cogs, or the like the pawl movement having an axial component

Definitions

  • the invention relates to "one-way" clutches and, more particularly, to planar one-way clutches wherein a relatively thin, flat strut selectively provides a mechanical couple between the opposed, generally planar faces of a pair of coaxial rotatable members.
  • Clutches are used in a wide variety of applications to selectively couple power from a first rotatable "driving” member, such as a driving disk or plate, to a second, independently-rotatable “driven” member, such as a driven plate or disk.
  • a first rotatable "driving” member such as a driving disk or plate
  • a second, independently-rotatable “driven” member such as a driven plate or disk.
  • the clutch engages” to mechanically couple the driving member to the driven member only when the driving member seeks to rotate in a first direction relative to the driven member. Once so engaged, the clutch will release or decouple the driven member from the driving member only when the driving member rotates in a second, opposite direction relative to the driven member. Further, the clutch otherwise permits the driving member to freely rotate in the second direction relative to the driven member.
  • Such “free-wheeling" of the driving member in the second direction relative to the driven member is also known as the "overrunning" condition.
  • One such known one-way clutch employs juxtaposed, nominally-coaxial driving and driven members featuring generally planar clutch faces in closely-spaced axial opposition.
  • Such "planar" one-way clutches typically include a plurality of recesses or "pockets" formed in the face of the driving member and at least as many recesses or “notches” formed in the face of the driven member.
  • a thin, flat pawl or strut whose width is significantly less than its length, is carried within each of the driving member's pockets such that a first longitudinal end of each strut may readily engage and bear against a radial shoulder defined by its respective pocket in the driving member.
  • the strut's second, opposite longitudinal end is urged towards and against the face of the driven member, for example, by a spring positioned in the pocket beneath the strut.
  • the second end of at least one strut engages and thereafter bears against a radial shoulder defined by a notch in the driven member, whereupon the strut is placed in compression and the driven member is coupled for rotation with the driving member.
  • a ramped surface defined by other portions of the driven member's notches urge the second end of each strut back towards the driving member, whereupon the driving member is permitted to freely rotate in the second direction relative to the driven member.
  • each strut In order to improve the quality of the strut-member engagement, the member-engaging ends of each strut are each provided with a canted surface, each nominally parallel with the other. And, in U.S. Pat. No. 5,597,057, Ruth et al. further teach use of a strut whose first end includes a pair of oppositely-projecting "arms" or “ears,” the top surface of which is ramped to prevent interference between the top of each ear and the driven member as the second end of the strut is biased towards the driven member.
  • each of the driving and driven members extend in a direction substantially normal to each member's generally planar clutch face
  • the ramped top surface of each ear is inclined roughly the same angle as each of the strut's canted end surfaces.
  • a portion of each ear adjacent to the canted surface of the strut's first end is also preferably removed to form a relief which ensures that the strut's ears will not be loaded during clutch engagement.
  • the struts used in these planar one-way clutches are fine blanked in laterally-adjacent pairs from relatively-thin coil stock in a five-step process: (1) the coil stock is coined to provide the appropriate ramp angle on that which will become the strut's ears; (2) the stock is "U"-trimmed to define the outer periphery of the ears; (3) the stock is further trimmed to define the sides of the strut; (4) the edges of the web are formed down as by bending the web over a horn to thereby provide an inverted "V,” each leg of which descends at the nominal angle with which the strut's member-engaging end surfaces are to be formed; and (5) the lateral pair of struts are blanked out of the coil stock in a five-step process: (1) the coil stock is coined to provide the appropriate ramp angle on that which will become the strut's ears; (2) the stock is "U"-trimmed to define the outer periphery of the ears; (3) the stock is further trimmed
  • the canted end surfaces of these blanked prior art struts typically feature about 10 percent breakout and substantial roll over.
  • the resulting end surface distortions reduce the amount of available member-engaging end surface contact area on each strut, even after the costly subsequent machining of the end surfaces.
  • the difficulty of controlling both the down angle of the web as it is bent over the horn and the subsequent angle at which the punch shears each of the strut's end surfaces combines with the end surface distortions to result in reduced dimensional control, including relatively poor control of the angle at which each of the strut's end surfaces is canted, and an attendant loss of parallelism between the strut's end surfaces.
  • a thin, flat strut for a planar one-way clutch is formed from a length of cold-formed metallic stock material such that the strut's diametrical member-engaging end surfaces are coextensive with a pair of lateral edge surfaces of the stock material.
  • at least one lateral edge surface of the stock material includes a substantially planar section which is canted relative to the upper face of the stock material.
  • both lateral edge surfaces of the stock material forming the strut's diametrical, member-engaging surfaces include canted, substantially planar sections, and these substantially planar sections are substantially parallel to one another.
  • the strut preferably includes a pair of oppositely-projecting ears integrally formed on either side of the strut proximate to a first one of the strut's member-engaging surfaces.
  • the ears cooperate with a complementary recess or pocket formed, for example, in the driving member's generally planar clutch face to thereby nominally position and maintain the strut's first member-engaging surface within the pocket.
  • a ramped surface is formed on each ear to obviate any possible interference between the ears and the opposed clutch face of the driven member when the strut otherwise pivots to present its second end surface for engagement with the driven member's notches.
  • a second surface of each ear which is nominally an extension of the first member-engaging surface of the strut, is also preferably trimmed to form a relief on each ear.
  • the reliefs ensure that the ears do not bear coupling loads when the strut couples the driving member to the driven member.
  • a method of making a thin, flat strut includes providing a length of thin, cold-formed stock material having a pair of lateral edge surfaces, wherein at least one lateral edge surface of the stock material includes a substantially planar section; and forming the strut from the stock material such that the diametrical end surfaces of the strut are coextensive with a the lateral edge surfaces of the stock material. More specifically, in an exemplary method of practicing the invention, the strut is formed by advancing stock material through a plurality of die stations, as of a progressive die.
  • the stock material is advanced through a first trimming station for removing material from a lateral edge surface of the stock material at a first location thereof, thereby providing the edge relief on each of what will later become the strut's integral ears, removing material to prevent deleterious flow of material during a subsequent coining step, and defining a pilot hole in the stock material to facilitate registration of the stock material relative to later die stations.
  • the trimmed stock material is thereafter advanced to a second coining station for coining a surface of the stock material adjacent to the first location thereof, whereby the ramped surfaces of what will ultimately be each ear of one strut are formed.
  • a third flattening station the stock is flattened to remove any upward creep induced in the stock material by coining.
  • a fourth cutoff station additional material is removed from the stock material proximate to the first location thereof, whereby the strut is severed from the stock material.
  • the thus-severed sides of each strut have substantially more breakout than the sides of struts produced by prior art fine-blanking processes.
  • FIG. 1 is a side elevational view of an exemplary planar one-way clutch, incorporating struts in accordance with the invention
  • FIG. 2 is an exploded view of the clutch of FIG. 1;
  • FIG. 3 is a sectional view of the exemplary clutch along line 3--3 of FIG. 1 illustrating a strut in its "engaged” or “coupled” condition;
  • FIG. 4 is a sectional view of the exemplary clutch along line 4--4 of FIG. 3;
  • FIG. 5 is a sectional view of the exemplary clutch similar to that own in FIG. 4, but illustrating the strut in the "free-wheeling" or "overrunning" condition;
  • FIG. 6 is a perspective view of an exemplary strut in accordance with the invention.
  • FIG. 7 is a side view of the exemplary strut shown in FIG. 6;
  • FIG. 8 is a top plan view of the exemplary strut shown in FIG. 6.
  • FIG. 9 is a strip layout showing the operations performed at each station within a progressive die, with hatch shading identifying trimming or blanking operations and stippling showing coining or flattening operations.
  • FIGS. 1-5 show an exemplary planar one-way clutch 10 which includes a driving member 12, a driven member 14 and a plurality of struts 16 which operate to mechanically couple the driving member 12 to the driven member 14 only when the driving member 12 rotates in a first direction 18 relative to the driven member 14.
  • the driving member 12 includes a generally planar clutch face 20 having a plurality of recesses or pockets 22 defined therein.
  • Each pocket 22 is adapted to receive and nominally retain a given strut 16 such that a first end surface 24 on the strut 16 is placed in opposition with, and will thereafter operatively engage, a radial shoulder 26 defined in the pocket 22 when the driving member 12 is rotated in the first direction 18.
  • each strut 16 includes a pair of oppositely-projecting ears 28 which extend laterally from the strut 16 proximate to its first end 24.
  • Each strut's the ears 28 cooperatively engage the pocket's complementary radially-inner and radially-outer surfaces 30 to thereby nominally position the first end 24 of the strut in its respective pocket 22.
  • the driven member 14 similarly includes a generally planar clutch face 32 which is placed in closely-spaced axial opposition to the face 20 of the driving member 12.
  • the driven member's clutch face 32 likewise has a plurality of recesses or notches 34 defined therein.
  • Each of the notches 34 in the driven member 14 is adapted to receive the free end of a given strut 16 when the strut's free end is urged into the notch 34, for example, by a spring 38 seated beneath the strut 16 in the driving member's pocket 22.
  • Each notch 34 includes a bearing surface 40 with which to operatively engage a second end surface 36 on the strut 16 when the driving member 12 is rotated in the first direction 18 relative to the driven member 14.
  • the strut's first and second member-engaging end surfaces 24,36 each include substantially planar sections which are canted relative to the upper face 42 of the strut 16, as illustrated in FIGS. 6-8.
  • the substantially planar sections of the strut's first and second end surfaces 24,36 are themselves substantially parallel to one another.
  • the first and second end surfaces 24,36 are canted to a nominal angle of about 16 degrees relative to the strut's upper face 42.
  • a ramped surface 44 is formed on each ear 28 to obviate any possible interference between the ears 28 and the opposed clutch face 32 of the driven member 14 when the strut 16 otherwise pivots upward to present its second end surface 36 for engagement with the driven member's clutch face 32.
  • a second surface 46 of each ear 28 is also preferably trimmed to form a relief on each ear 28. The reliefs formed by the ear's second surfaces 46 ensure that the ears 28 do not bear coupling loads when the strut 16 couples the driving member 12 to the driven member 14.
  • FIG. 9 An exemplary method of making the strut of the invention is illustrated diagrammatically by the strip layout 48 shown in FIG. 9, wherein hatching identifies trimming or blanking operations and stippling identifies coining or flattening operations.
  • the exemplary method includes providing a length of thin, cold-formed stock material 50, such as a cold-drawn or cold-rolled wire of spheroidized and annealed SAE 1065 steel, having its lateral surfaces 52 canted to a predetermined angle; and forming the strut 16 from the stock material 50 such that the diametrical end surfaces 24,36 of the strut 16 are coextensive with the lateral edge surfaces 52 of the stock material 50.
  • the exemplary method of FIG. 9 includes advancing the stock material 50 to a first die station (indicated generally at 54), and trimming the stock material 50 at the first die station 54 to define a pilot hole, to define the second surface 46 on what will later be defined as the strut's oppositely-projecting ears 28, to prepare the stock material 50 for a subsequent coining operation, and to otherwise reduce the amount of web between adjacent struts 16.
  • the exemplary method of FIG. 9 continues by advancing the trimmed stock material 50 to a second station (indicated generally at 56), and coining the upper surface of the stock material 50 at the second station 56 to thereby define the ramped surface 44 on each ear 28 of the strut 16 being formed immediately downstream of the trimmed location 58 on the stock material 50.
  • a second station indicated generally at 56
  • the relief provided by the trimming operation performed at the first station 54 preferably prevents unwanted projections or burrs that might otherwise result from deleterious material flow during coining.
  • the coined stock material 50 is thereafter advanced to a third die station (indicated generally at 60) in which the stock material 50 is flattened to thereby reduce any curvature which might have been induced in the stock material 50 during coining.
  • the flattened stock material 50 is advanced to a fourth cutoff station (indicated generally at 62) wherein additional web material proximate to advanced trimmed location 58 is removed, and the finished strut is severed from the strip.
  • an intended mismatch between the first trimming step and the cutoff step which provides the stepped side surfaces 64 of each strut as seen in FIGS. 6-8, may be used to further prevent the deleterious formation of burrs on the strut 16 during cutoff.
  • a single progressive die (not shown) may be used to combine each of the recited four die stations 54,58,60,62, with each recited advancing step being performed on the stock material 50 simultaneously, with registration of the strip relative to the die being ensured through use of the pilot holes formed at the first die station.
  • the exemplary method produces one strut 16 per stroke of the progressive die, at a substantially higher run rate than that employed in the prior art fine-blanking process for making such struts.
  • a progressive die operating in accordance with the strip layout 48 illustrated in FIG. 9 is capable of at least about 70 strokes per minute.
  • each ejected strut is thereafter tumbled to achieve a suitable edge/corner break, such as a maximum of 0.015 inches; hardened at 1550° F.; oil quenched; and tempered at 350° F. to a minimum hardness of 53 Rockwell-C.
  • the exemplary method of FIG. 9 features significantly tighter dimensional control over the strut's canted end surfaces 24,36, including the degree of parallelism between the canted end surfaces 24,36 and the member-engaging face contact area defined on each canted end surface 24,36, because these end surfaces 24,36 are themselves defined by the dimensions of the raw stock material 50.
  • the "as-drawn" or "as-cold-formed" end surfaces 24,36 of each strut 16 made in accordance with the invention feature a substantially continuous grain structure in which individual grains are extend in substantially parallel relation. In this manner, the exemplary method of FIG. 9 provides both improved strut quality and improved functionality when compared to struts produced by prior art fine-blanking processes.
  • the exemplary method generates less scrap than prior art fine-blanking processes because a substantial portion of the periphery of each strut 16 is defined by the raw stock material rather than as a function of the fine-blanking process.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • Materials For Medical Uses (AREA)
  • Magnetic Heads (AREA)
  • Prostheses (AREA)
  • Pulleys (AREA)

Abstract

A strut for mechanically coupling a driving member to a driven member in a planar one-way clutch is formed in a progressive die from a length of cold-formed metallic stock material such that the strut's diametrical member-engaging end surfaces are coextensive with a pair of cold-formed surfaces of the stock material. A pair of oppositely-projecting "ears" are integrally formed on the strut proximate to one of its end surfaces at one station of the progressive die. The ears cooperate with a complementary recess or pocket formed in one member's planar clutch face to thereby nominally position and maintain the strut's first end surface within the pocket. A surface on each ear is preferably coined at another station of the progressive die to thereby provide a relief which prevents deleterious contact between the ears and the opposed clutch face of the other clutch member.

Description

TECHNICAL FIELD
The invention relates to "one-way" clutches and, more particularly, to planar one-way clutches wherein a relatively thin, flat strut selectively provides a mechanical couple between the opposed, generally planar faces of a pair of coaxial rotatable members.
BACKGROUND ART
Clutches are used in a wide variety of applications to selectively couple power from a first rotatable "driving" member, such as a driving disk or plate, to a second, independently-rotatable "driven" member, such as a driven plate or disk. In one known variety of clutches, commonly referred to as "one-way" or "overrunning" clutches, the clutch "engages" to mechanically couple the driving member to the driven member only when the driving member seeks to rotate in a first direction relative to the driven member. Once so engaged, the clutch will release or decouple the driven member from the driving member only when the driving member rotates in a second, opposite direction relative to the driven member. Further, the clutch otherwise permits the driving member to freely rotate in the second direction relative to the driven member. Such "free-wheeling" of the driving member in the second direction relative to the driven member is also known as the "overrunning" condition.
One such known one-way clutch employs juxtaposed, nominally-coaxial driving and driven members featuring generally planar clutch faces in closely-spaced axial opposition. Such "planar" one-way clutches, as taught by Frank in U.S. Pat. No. 5,449,057 and Ruth et al. in U.S. Pat. No. 5,597,057, typically include a plurality of recesses or "pockets" formed in the face of the driving member and at least as many recesses or "notches" formed in the face of the driven member. A thin, flat pawl or strut, whose width is significantly less than its length, is carried within each of the driving member's pockets such that a first longitudinal end of each strut may readily engage and bear against a radial shoulder defined by its respective pocket in the driving member. The strut's second, opposite longitudinal end is urged towards and against the face of the driven member, for example, by a spring positioned in the pocket beneath the strut.
When the driving member rotates in the first direction relative to the driven member, the second end of at least one strut engages and thereafter bears against a radial shoulder defined by a notch in the driven member, whereupon the strut is placed in compression and the driven member is coupled for rotation with the driving member. When the driving member rotates in the second direction relative to the driven member, a ramped surface defined by other portions of the driven member's notches urge the second end of each strut back towards the driving member, whereupon the driving member is permitted to freely rotate in the second direction relative to the driven member.
In order to improve the quality of the strut-member engagement, the member-engaging ends of each strut are each provided with a canted surface, each nominally parallel with the other. And, in U.S. Pat. No. 5,597,057, Ruth et al. further teach use of a strut whose first end includes a pair of oppositely-projecting "arms" or "ears," the top surface of which is ramped to prevent interference between the top of each ear and the driven member as the second end of the strut is biased towards the driven member. By way of example, where the radial shoulders defined in each of the driving and driven members extend in a direction substantially normal to each member's generally planar clutch face, the ramped top surface of each ear is inclined roughly the same angle as each of the strut's canted end surfaces. A portion of each ear adjacent to the canted surface of the strut's first end is also preferably removed to form a relief which ensures that the strut's ears will not be loaded during clutch engagement.
While struts with parallel, canted end surfaces and ramped ears provide these prior art planar one-way clutches with increased performance, the presence of these features significantly increases the manufacturing costs associated with these thin, flat struts. For example, in accordance with one known process, the struts used in these planar one-way clutches are fine blanked in laterally-adjacent pairs from relatively-thin coil stock in a five-step process: (1) the coil stock is coined to provide the appropriate ramp angle on that which will become the strut's ears; (2) the stock is "U"-trimmed to define the outer periphery of the ears; (3) the stock is further trimmed to define the sides of the strut; (4) the edges of the web are formed down as by bending the web over a horn to thereby provide an inverted "V," each leg of which descends at the nominal angle with which the strut's member-engaging end surfaces are to be formed; and (5) the lateral pair of struts are blanked out of the descending legs of the web, one from each leg, as the punch pierces through the web on an angle. As a further disadvantage, this prior art process is performed at a relatively slow rate of perhaps about 18 to 20 strokes per minute.
The canted end surfaces of these blanked prior art struts typically feature about 10 percent breakout and substantial roll over. The resulting end surface distortions reduce the amount of available member-engaging end surface contact area on each strut, even after the costly subsequent machining of the end surfaces. Perhaps more significantly, the difficulty of controlling both the down angle of the web as it is bent over the horn and the subsequent angle at which the punch shears each of the strut's end surfaces combines with the end surface distortions to result in reduced dimensional control, including relatively poor control of the angle at which each of the strut's end surfaces is canted, and an attendant loss of parallelism between the strut's end surfaces.
DISCLOSURE OF INVENTION
It is an object of the invention to provide an improved thin, flat strut for a planar one-way clutch featuring improved member-engaging end surfaces.
It is another object of the invention to provide an improved thin, flat strut for a planar one-way clutch featuring improved parallelism between the strut's member-engaging end surfaces.
It is also an object of the invention to provide a method for making a strut for a planar one-way clutch featuring improved dimensional control of the strut and, particularly, of the strut's canted end surfaces.
It is yet another object of the invention to provide a method for making a strut for a planar one-way clutch featuring reduced cost and complexity when compared with known methods.
It is yet another object of the invention to provide a method for making a strut for a planar one-way clutch which may be operated at a higher run rate than known methods.
Under the invention, a thin, flat strut for a planar one-way clutch is formed from a length of cold-formed metallic stock material such that the strut's diametrical member-engaging end surfaces are coextensive with a pair of lateral edge surfaces of the stock material. Preferably, at least one lateral edge surface of the stock material includes a substantially planar section which is canted relative to the upper face of the stock material. Most preferably, both lateral edge surfaces of the stock material forming the strut's diametrical, member-engaging surfaces include canted, substantially planar sections, and these substantially planar sections are substantially parallel to one another.
In accordance with a feature of the invention, the strut preferably includes a pair of oppositely-projecting ears integrally formed on either side of the strut proximate to a first one of the strut's member-engaging surfaces. The ears cooperate with a complementary recess or pocket formed, for example, in the driving member's generally planar clutch face to thereby nominally position and maintain the strut's first member-engaging surface within the pocket. Preferably, a ramped surface is formed on each ear to obviate any possible interference between the ears and the opposed clutch face of the driven member when the strut otherwise pivots to present its second end surface for engagement with the driven member's notches. A second surface of each ear, which is nominally an extension of the first member-engaging surface of the strut, is also preferably trimmed to form a relief on each ear. The reliefs ensure that the ears do not bear coupling loads when the strut couples the driving member to the driven member.
Under the invention, a method of making a thin, flat strut includes providing a length of thin, cold-formed stock material having a pair of lateral edge surfaces, wherein at least one lateral edge surface of the stock material includes a substantially planar section; and forming the strut from the stock material such that the diametrical end surfaces of the strut are coextensive with a the lateral edge surfaces of the stock material. More specifically, in an exemplary method of practicing the invention, the strut is formed by advancing stock material through a plurality of die stations, as of a progressive die.
By way of example, in the exemplary method for making struts, the stock material is advanced through a first trimming station for removing material from a lateral edge surface of the stock material at a first location thereof, thereby providing the edge relief on each of what will later become the strut's integral ears, removing material to prevent deleterious flow of material during a subsequent coining step, and defining a pilot hole in the stock material to facilitate registration of the stock material relative to later die stations.
The trimmed stock material is thereafter advanced to a second coining station for coining a surface of the stock material adjacent to the first location thereof, whereby the ramped surfaces of what will ultimately be each ear of one strut are formed. In a third flattening station, the stock is flattened to remove any upward creep induced in the stock material by coining. In a fourth cutoff station, additional material is removed from the stock material proximate to the first location thereof, whereby the strut is severed from the stock material. As a further feature of the method of the invention, the thus-severed sides of each strut have substantially more breakout than the sides of struts produced by prior art fine-blanking processes.
While an exemplary strut and an exemplary method for making the same are illustrated and disclosed, such disclosure should not be construed to limit the claims. It is anticipated that various modifications and alternative designs may be made without departing from the scope of the invention.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a side elevational view of an exemplary planar one-way clutch, incorporating struts in accordance with the invention;
FIG. 2 is an exploded view of the clutch of FIG. 1;
FIG. 3 is a sectional view of the exemplary clutch along line 3--3 of FIG. 1 illustrating a strut in its "engaged" or "coupled" condition;
FIG. 4 is a sectional view of the exemplary clutch along line 4--4 of FIG. 3;
FIG. 5 is a sectional view of the exemplary clutch similar to that own in FIG. 4, but illustrating the strut in the "free-wheeling" or "overrunning" condition;
FIG. 6 is a perspective view of an exemplary strut in accordance with the invention;
FIG. 7 is a side view of the exemplary strut shown in FIG. 6;
FIG. 8 is a top plan view of the exemplary strut shown in FIG. 6; and
FIG. 9 is a strip layout showing the operations performed at each station within a progressive die, with hatch shading identifying trimming or blanking operations and stippling showing coining or flattening operations.
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to the drawings, FIGS. 1-5 show an exemplary planar one-way clutch 10 which includes a driving member 12, a driven member 14 and a plurality of struts 16 which operate to mechanically couple the driving member 12 to the driven member 14 only when the driving member 12 rotates in a first direction 18 relative to the driven member 14.
More specifically, the driving member 12 includes a generally planar clutch face 20 having a plurality of recesses or pockets 22 defined therein. Each pocket 22 is adapted to receive and nominally retain a given strut 16 such that a first end surface 24 on the strut 16 is placed in opposition with, and will thereafter operatively engage, a radial shoulder 26 defined in the pocket 22 when the driving member 12 is rotated in the first direction 18.
While the invention contemplates use of any suitable arrangement whereby each strut's first end surface 24 is nominally positioned within the strut's respective pocket 22, in the illustrated exemplary clutch 10, each strut 16 includes a pair of oppositely-projecting ears 28 which extend laterally from the strut 16 proximate to its first end 24. Each strut's the ears 28 cooperatively engage the pocket's complementary radially-inner and radially-outer surfaces 30 to thereby nominally position the first end 24 of the strut in its respective pocket 22.
The driven member 14 similarly includes a generally planar clutch face 32 which is placed in closely-spaced axial opposition to the face 20 of the driving member 12. The driven member's clutch face 32 likewise has a plurality of recesses or notches 34 defined therein. Each of the notches 34 in the driven member 14 is adapted to receive the free end of a given strut 16 when the strut's free end is urged into the notch 34, for example, by a spring 38 seated beneath the strut 16 in the driving member's pocket 22. Each notch 34 includes a bearing surface 40 with which to operatively engage a second end surface 36 on the strut 16 when the driving member 12 is rotated in the first direction 18 relative to the driven member 14.
As seen more clearly in the enlarged views of the strut 16 shown in FIGS. 6-8, the strut's first and second member-engaging end surfaces 24,36 each include substantially planar sections which are canted relative to the upper face 42 of the strut 16, as illustrated in FIGS. 6-8. The substantially planar sections of the strut's first and second end surfaces 24,36 are themselves substantially parallel to one another. In the exemplary clutch illustrated in the Drawings, the first and second end surfaces 24,36 are canted to a nominal angle of about 16 degrees relative to the strut's upper face 42.
In accordance with another feature of the invention, a ramped surface 44 is formed on each ear 28 to obviate any possible interference between the ears 28 and the opposed clutch face 32 of the driven member 14 when the strut 16 otherwise pivots upward to present its second end surface 36 for engagement with the driven member's clutch face 32. A second surface 46 of each ear 28 is also preferably trimmed to form a relief on each ear 28. The reliefs formed by the ear's second surfaces 46 ensure that the ears 28 do not bear coupling loads when the strut 16 couples the driving member 12 to the driven member 14.
An exemplary method of making the strut of the invention is illustrated diagrammatically by the strip layout 48 shown in FIG. 9, wherein hatching identifies trimming or blanking operations and stippling identifies coining or flattening operations. The exemplary method includes providing a length of thin, cold-formed stock material 50, such as a cold-drawn or cold-rolled wire of spheroidized and annealed SAE 1065 steel, having its lateral surfaces 52 canted to a predetermined angle; and forming the strut 16 from the stock material 50 such that the diametrical end surfaces 24,36 of the strut 16 are coextensive with the lateral edge surfaces 52 of the stock material 50.
More specifically, the exemplary method of FIG. 9 includes advancing the stock material 50 to a first die station (indicated generally at 54), and trimming the stock material 50 at the first die station 54 to define a pilot hole, to define the second surface 46 on what will later be defined as the strut's oppositely-projecting ears 28, to prepare the stock material 50 for a subsequent coining operation, and to otherwise reduce the amount of web between adjacent struts 16.
The exemplary method of FIG. 9 continues by advancing the trimmed stock material 50 to a second station (indicated generally at 56), and coining the upper surface of the stock material 50 at the second station 56 to thereby define the ramped surface 44 on each ear 28 of the strut 16 being formed immediately downstream of the trimmed location 58 on the stock material 50. In this regard, it is noted that the relief provided by the trimming operation performed at the first station 54 preferably prevents unwanted projections or burrs that might otherwise result from deleterious material flow during coining.
The coined stock material 50 is thereafter advanced to a third die station (indicated generally at 60) in which the stock material 50 is flattened to thereby reduce any curvature which might have been induced in the stock material 50 during coining. Lastly, the flattened stock material 50 is advanced to a fourth cutoff station (indicated generally at 62) wherein additional web material proximate to advanced trimmed location 58 is removed, and the finished strut is severed from the strip. In this regard, it is noted that an intended mismatch between the first trimming step and the cutoff step, which provides the stepped side surfaces 64 of each strut as seen in FIGS. 6-8, may be used to further prevent the deleterious formation of burrs on the strut 16 during cutoff.
As noted above, in the exemplary method, a single progressive die (not shown) may be used to combine each of the recited four die stations 54,58,60,62, with each recited advancing step being performed on the stock material 50 simultaneously, with registration of the strip relative to the die being ensured through use of the pilot holes formed at the first die station. As a result, in accordance with another feature of the invention, the exemplary method produces one strut 16 per stroke of the progressive die, at a substantially higher run rate than that employed in the prior art fine-blanking process for making such struts. By way of example, it is presently estimated that a progressive die operating in accordance with the strip layout 48 illustrated in FIG. 9 is capable of at least about 70 strokes per minute.
It will be appreciated that the strut 16 produced in accordance with the exemplary method of FIG. 9 may undergo further processing in a manner known to those of ordinary skill. Thus, in the exemplary method wherein the stock is spheroidized and annealed SAE 1065 steel, each ejected strut is thereafter tumbled to achieve a suitable edge/corner break, such as a maximum of 0.015 inches; hardened at 1550° F.; oil quenched; and tempered at 350° F. to a minimum hardness of 53 Rockwell-C.
In accordance with a feature of the invention, the exemplary method of FIG. 9 features significantly tighter dimensional control over the strut's canted end surfaces 24,36, including the degree of parallelism between the canted end surfaces 24,36 and the member-engaging face contact area defined on each canted end surface 24,36, because these end surfaces 24,36 are themselves defined by the dimensions of the raw stock material 50. Moreover, the "as-drawn" or "as-cold-formed" end surfaces 24,36 of each strut 16 made in accordance with the invention feature a substantially continuous grain structure in which individual grains are extend in substantially parallel relation. In this manner, the exemplary method of FIG. 9 provides both improved strut quality and improved functionality when compared to struts produced by prior art fine-blanking processes.
In accordance with yet another feature of the invention, the exemplary method generates less scrap than prior art fine-blanking processes because a substantial portion of the periphery of each strut 16 is defined by the raw stock material rather than as a function of the fine-blanking process.
While an exemplary strut and method of making the same have been illustrated and described, it is not intended that the exemplary strut and method illustrate and describe all possible forms of the invention. Rather, it is intended that the following claims cover all modifications and alternative designs, and all equivalents, that fall within the spirit and scope of this invention.

Claims (16)

What is claimed is:
1. A thin, flat strut for a planar one-way clutch comprising a first end surface and a second end surface diametrically opposite the first end surface, wherein the strut is formed from a length of cold-formed metallic stock material having a pair of cold-formed lateral edge surfaces such that the first and second end surfaces of the strut are coextensive with the lateral edge surfaces of the stock material, and wherein at least one lateral edge surface of the stock material includes a substantially planar section.
2. The strut of claim 1, wherein the stock material includes an upper face, and wherein the substantially planar section of the at least one lateral edge surface of the stock material is canted relative to a the upper face of the stock material.
3. The strut of claim 1, wherein the lateral edge surfaces of the stock material each include a substantially planar section, and wherein the substantially planar sections of the lateral edge surfaces of the stock material are in substantially parallel relation.
4. The strut of claim 1, including a pair of oppositely-projecting integrally formed ears proximate to the first end surface of the strut.
5. A method of making a thin, flat strut for a planar one-way clutch, wherein the strut includes a pair of diametrical end surfaces, the method comprising:
providing a length of thin, cold-formed stock material having a pair of cold-formed lateral edge surfaces, wherein at least one lateral edge surface of the stock material includes a substantially planar section;
forming the strut from the stock material such that the diametrical end surfaces of the strut are coextensive with the lateral edge surfaces of the stock material.
6. The method of claim 5, wherein forming includes advancing the stock material through a plurality of die stations.
7. The method of claim 6, wherein a first one of the plurality of die stations includes a trimming station for removing material from each lateral edge surface of the stock material at a first location.
8. The method of claim 7, wherein a second one of the plurality of die stations includes a coining station after the trimming station for coining a surface of the stock material proximate to the first location thereof.
9. The method of claim 8, wherein a third one of the plurality of die stations includes a flattening station after the coining station for flattening the stock material.
10. The method of claim 9, wherein a fourth one of the plurality of die stations includes a cutoff station for removing additional material from the stock material proximate to the first location thereof, whereby the strut is severed from the stock material.
11. A method of making a thin, flat strut for a planar one-way clutch, wherein the strut includes a pair of canted end surfaces in substantially parallel relation, the method comprising:
providing a length of thin, cold-formed stock material having a pair of cold-formed lateral edge surfaces, wherein the lateral edge surfaces of the stock material include substantially planar sections in substantially parallel relation with one another; and
forming the strut from the stock material such that the diametrical end surfaces of the strut are coextensive with the lateral edge surfaces of the stock material.
12. The method of claim 11, wherein forming includes advancing the stock material through a plurality of die stations.
13. The method of claim 12, wherein a first one of the plurality of die stations includes a trimming station for removing material from each lateral edge surface of the stock material at a first location.
14. The method of claim 13, wherein a second one of the plurality of die stations includes a coining station after the trimming station for coining a surface of the stock material proximate to the first location thereof.
15. The method of claim 14, wherein a third one of the plurality of die stations includes a flattening station after the coining station for flattening the stock material.
16. The method of claim 15, wherein a fourth one of the plurality of die stations includes a cutoff station for removing additional material from the stock material proximate to the first location thereof, whereby the strut is severed from the stock material.
US09/045,322 1998-03-20 1998-03-20 Strut for planar one-way clutch Expired - Lifetime US6065576A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/045,322 US6065576A (en) 1998-03-20 1998-03-20 Strut for planar one-way clutch
PCT/US1999/006197 WO1999047828A1 (en) 1998-03-20 1999-03-22 Strut for planar one-way clutch
DE69928380T DE69928380T2 (en) 1998-03-20 1999-03-22 DAMPER FOR FREEWHEEL CLUTCH
JP2000536985A JP2002506958A (en) 1998-03-20 1999-03-22 Strut for one-way flat clutch
EP99912784A EP1064469B1 (en) 1998-03-20 1999-03-22 Strut for planar one-way clutch
AT99912784T ATE310182T1 (en) 1998-03-20 1999-03-22 DAMPER FOR ONE WAY CLUTCH
ES99912784T ES2252938T3 (en) 1998-03-20 1999-03-22 POINT FOR A PLANAR UNIDIRECTIONAL CLUTCH.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/045,322 US6065576A (en) 1998-03-20 1998-03-20 Strut for planar one-way clutch

Publications (1)

Publication Number Publication Date
US6065576A true US6065576A (en) 2000-05-23

Family

ID=21937220

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/045,322 Expired - Lifetime US6065576A (en) 1998-03-20 1998-03-20 Strut for planar one-way clutch

Country Status (7)

Country Link
US (1) US6065576A (en)
EP (1) EP1064469B1 (en)
JP (1) JP2002506958A (en)
AT (1) ATE310182T1 (en)
DE (1) DE69928380T2 (en)
ES (1) ES2252938T3 (en)
WO (1) WO1999047828A1 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090593A1 (en) * 2000-05-25 2001-11-29 Means Industries, Inc. Planar one-way clutch
US6386349B1 (en) * 2001-01-17 2002-05-14 Means Industries, Inc. Compact clutch assembly featuring dual selectively-operative one-way clutches
US20020108831A1 (en) * 2001-02-12 2002-08-15 Brice Pawley One-way clutch assembly featuring improved strut stability
US20040083836A1 (en) * 2002-11-06 2004-05-06 Transvantage, L.L.C. Continuously variable mechanical transmission
US20040261555A1 (en) * 2003-06-25 2004-12-30 Janson David Allen Layshaft automatic transmission having power-on shifting
US6896111B2 (en) 2002-04-05 2005-05-24 Exp, L.P. One-way drive device with reduced engagement impact
US6907971B2 (en) 2001-12-28 2005-06-21 Stackpole Limited One-way clutch
US20050204841A1 (en) * 2004-03-18 2005-09-22 Reid Baldwin Ranged single clutch layshaft powershift automatic transmission
US20060278487A1 (en) * 2005-06-09 2006-12-14 Means Industries, Inc. Overrunning radial coupling assembly and method for controlling the engagement of inner and outer members of the assembly
US20060278486A1 (en) * 2005-06-09 2006-12-14 Means Industries, Inc. Overrunning coupling assembly and method for controlling the engagement of planar members
US20070056825A1 (en) * 2005-09-14 2007-03-15 Means Industries, Inc. Overrunning coupling assembly including clustered pawls and method for controlling the engagement of planar members
US20090159391A1 (en) * 2007-12-19 2009-06-25 Means Industries, Inc. Overrunning Coupling Assembly
US20090211863A1 (en) * 2008-02-21 2009-08-27 Means Industries, Inc. Controllable Overrunning Coupling Assembly
US20120145505A1 (en) * 2010-12-10 2012-06-14 Means Industries, Inc. Strut for a controllable one-way clutch
WO2013040135A1 (en) 2011-09-13 2013-03-21 Means Industries, Inc. Coupling assembly having an overrun mode and ratcheting reverse strut or radial ratchet for use therein
US8813929B2 (en) 2010-12-10 2014-08-26 Means Industries, Inc. Controllable coupling assembly
US8888637B2 (en) 2010-12-10 2014-11-18 Means Industries, Inc. Vehicle drive system including a transmission
US8899395B2 (en) 2013-01-22 2014-12-02 Gm Global Technology Operations, Llc Selectable one-way torque transmitting device using control rail
CN104179818A (en) * 2014-08-22 2014-12-03 周士健 Controllable disc clutch
US9022194B2 (en) 2013-06-17 2015-05-05 Allison Transmission, Inc. System and method for actuating a mechanical diode clutch assembly
US9051980B2 (en) 2013-04-26 2015-06-09 Gm Global Technology Operations, Llc Direction selectable sprag
US9109636B2 (en) 2007-10-12 2015-08-18 Means Industries, Inc. Electromechanically actuated coupling and control assembly
US20150232173A1 (en) * 2014-02-19 2015-08-20 Honeywell International Inc. Aircraft wheel driving system
US9127724B2 (en) 2010-12-10 2015-09-08 Means Industries, Inc. Electromechanical apparatus for use with a coupling assembly and controllable coupling assembly including such apparatus
US9186977B2 (en) 2011-08-26 2015-11-17 Means Industries, Inc. Drive system including a transmission for a hybrid electric vehicle
US20150345610A1 (en) * 2012-12-19 2015-12-03 Schaeffler Technologies AG & Co. KG Decoupler for damping a torque transmission between a drive shaft of a motor vehicle and a belt pulley
US9222529B2 (en) 2013-06-17 2015-12-29 Allison Transmission, Inc. Actuation mechanism for a mechanical diode assembly
US9234552B2 (en) 2010-12-10 2016-01-12 Means Industries, Inc. Magnetic system for controlling the operating mode of an overrunning coupling assembly and overrunning coupling and magnetic control assembly having same
US9249836B2 (en) 2013-08-15 2016-02-02 Means Industries, Inc. Coupling assembly having reduced undesirable noise and contact stress caused by a transition between operating modes of the assembly
US9255614B2 (en) 2010-12-10 2016-02-09 Means Industries, Inc. Electronic vehicular transmission and coupling and control assembly for use therein
US9303699B2 (en) 2010-12-10 2016-04-05 Means Industries, Inc. Electromechanical assembly to control the operating mode of a coupling apparatus
US9371868B2 (en) 2013-08-27 2016-06-21 Means Industries, Inc. Coupling member subassembly for use in controllable coupling assembly and electromechanical apparatus having a pair of simultaneously actuated elements for use in the subassembly
US9377061B2 (en) 2010-12-10 2016-06-28 Means Industries, Inc. Electromagnetic system for controlling the operating mode of an overrunning coupling assembly and overrunning coupling and control assembly including the system
US9435387B2 (en) 2010-12-10 2016-09-06 Means Industries, Inc. Device and apparatus for controlling the operating mode of a coupling assembly, coupling and control assembly and electric motor disconnect and pass through assemblies
US9482297B2 (en) 2015-04-01 2016-11-01 Means Industries, Inc. Controllable coupling assembly having forward and reverse backlash
US9482294B2 (en) 2014-02-19 2016-11-01 Means Industries, Inc. Coupling and control assembly including a sensor
US9541141B2 (en) 2010-12-10 2017-01-10 Means Industries, Inc. Electronic vehicular transmission, controllable coupling assembly and coupling member for use in the assembly
US9562574B2 (en) 2014-02-19 2017-02-07 Means Industries, Inc. Controllable coupling assembly and coupling member for use in the assembly
US9616557B2 (en) 2013-03-14 2017-04-11 Black & Decker Inc. Nosepiece and magazine for power screwdriver
US9638266B2 (en) 2010-12-10 2017-05-02 Means Industries, Inc. Electronic vehicular transmission including a sensor and coupling and control assembly for use therein
US9874252B2 (en) 2010-12-10 2018-01-23 Means Industries, Inc. Electronic, high-efficiency vehicular transmission, overrunning, non-friction coupling and control assembly and switchable linear actuator device for use therein
US9909631B2 (en) 2014-11-07 2018-03-06 Means Industries, Inc. Apparatus for controllably actuating a selectable coupling assembly having multiple operating modes
WO2018144185A1 (en) 2017-02-02 2018-08-09 Means Industries, Inc. Overrunning, non-friction coupling and control assemblies and switchable linear actuator device and reciprocating electromechanical apparatus for use therein
US20180328419A1 (en) * 2017-05-15 2018-11-15 Means Industries, Inc. Overrunning coupling and control assembly, coupling assembly and locking member for use therein having improved dynamics with regards to locking member laydown speed
US10145428B2 (en) 2016-02-04 2018-12-04 Means Industries, Inc. Coupling assembly having an overrun mode and channeled locking member for use therein
US10316904B2 (en) 2016-09-28 2019-06-11 Means Industries, Inc. Coupling assembly having an overrun mode and appendaged locking member for use therein
US10359085B2 (en) 2017-06-07 2019-07-23 Ford Global Technologies, Llc Pin-mounted rocker
US20190360537A1 (en) * 2018-05-22 2019-11-28 Schaeffler Technologies AG & Co. KG Split race for wedge clutch bearing assembly
US10533618B2 (en) 2013-09-26 2020-01-14 Means Industries, Inc. Overrunning, non-friction coupling and control assembly, engageable coupling assembly and locking member for use in the assemblies
EP3611395A1 (en) 2015-04-01 2020-02-19 Means Industries, Inc. Electronic vehicular transmission, controllable coupling assembly and coupling member for use in the assembly
US10590999B2 (en) 2017-06-01 2020-03-17 Means Industries, Inc. Overrunning, non-friction, radial coupling and control assembly and switchable linear actuator device for use in the assembly
US10619681B2 (en) 2014-09-16 2020-04-14 Means Industries, Inc. Overrunning, non-friction coupling and control assemblies and switchable linear actuator device and reciprocating electromechanical apparatus for use therein
US10677296B2 (en) 2010-12-10 2020-06-09 Means Industries, Inc. Electronic, high-efficiency vehicular transmission, overrunning, non-friction coupling and control assembly and switchable linear actuator device for use therein
US11035423B2 (en) 2017-02-02 2021-06-15 Means Industries, Inc. Non-friction coupling and control assembly, engageable coupling assembly and locking member for use in the assemblies
DE102021102824A1 (en) 2020-02-12 2021-08-12 Means Industries, Inc. ELECTRODYNAMIC CLUTCH AND CONTROL ASSEMBLY AND SWITCHABLE LINEAR ACTUATOR FOR USE IN THIS
DE102021107969A1 (en) 2020-03-31 2021-09-30 Means Industries, Inc. COUPLING AND CONTROL UNIT WITH A CONTACTLESS, INDUCTIVE POSITION SENSOR
DE102021104228A1 (en) 2020-03-31 2021-09-30 Means Industries, Inc. Coupling and control arrangement with a non-contact, linear inductive position sensor
DE112020000732T5 (en) 2019-02-08 2021-10-28 Means Industries, Inc. FRICTION-FREE CLUTCH AND CONTROL ARRANGEMENT, LOCKING CLUTCH ARRANGEMENT AND LOCKING PART FOR USE IN THE ARRANGEMENTS
US11215245B2 (en) 2019-12-03 2022-01-04 Means Industries, Inc. Coupling and control assembly including controllable coupling assembly having speed sensor and methods of controlling the controllable coupling assembly using information from the speed sensor for park/hill-hold operations
US11346404B2 (en) 2018-10-09 2022-05-31 Means Industries, Inc. Coupling and control assembly for use in a motor vehicle
US11542992B2 (en) 2020-03-31 2023-01-03 Means Industries, Inc. Coupling and control assembly including a non-contact, linear inductive position sensor
DE112021003092T5 (en) 2020-06-02 2023-04-06 Means Industries, Inc. COUPLING ASSEMBLY AND RATCHET LATCHING ELEMENT FOR USE THEREOF
US11874142B2 (en) 2020-03-31 2024-01-16 Means Industries, Inc. Coupling and control assembly including a position sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1013449C2 (en) 1999-11-01 2001-05-02 Skf Eng & Res Centre Bv One way coupling.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791188A (en) * 1971-10-26 1974-02-12 E Deussen Method of die-forming parts with improved grain structure
US3844155A (en) * 1970-04-09 1974-10-29 Reynolds Metals Co Method of making a slug having controlled grain direction
US5070978A (en) * 1990-04-19 1991-12-10 Pires Paul B One way drive device
US5449057A (en) * 1993-10-26 1995-09-12 Frank; Arthur R. One-way clutch apparatus
US5476165A (en) * 1993-11-02 1995-12-19 Nsk-Warner K.K. Fixing structure for outer ring member in one-way clutch
US5597057A (en) * 1993-10-26 1997-01-28 Brenco, Inc. One-way clutch apparatus
US5632179A (en) * 1993-12-08 1997-05-27 Koyo Seiko Co., Ltd. Method of manufacturing an engaging element for one way clutch improving squareness of cam face relative to side surfaces
US5640874A (en) * 1995-06-02 1997-06-24 United States Surgical Corporation Progressive die/carrier apparatus and method of forming surgical needles and/or incision members
US5855263A (en) * 1996-12-20 1999-01-05 Eaton Corporation One-way clutch and torque converter stator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844155A (en) * 1970-04-09 1974-10-29 Reynolds Metals Co Method of making a slug having controlled grain direction
US3791188A (en) * 1971-10-26 1974-02-12 E Deussen Method of die-forming parts with improved grain structure
US5070978A (en) * 1990-04-19 1991-12-10 Pires Paul B One way drive device
US5449057A (en) * 1993-10-26 1995-09-12 Frank; Arthur R. One-way clutch apparatus
US5597057A (en) * 1993-10-26 1997-01-28 Brenco, Inc. One-way clutch apparatus
US5476165A (en) * 1993-11-02 1995-12-19 Nsk-Warner K.K. Fixing structure for outer ring member in one-way clutch
US5632179A (en) * 1993-12-08 1997-05-27 Koyo Seiko Co., Ltd. Method of manufacturing an engaging element for one way clutch improving squareness of cam face relative to side surfaces
US5640874A (en) * 1995-06-02 1997-06-24 United States Surgical Corporation Progressive die/carrier apparatus and method of forming surgical needles and/or incision members
US5855263A (en) * 1996-12-20 1999-01-05 Eaton Corporation One-way clutch and torque converter stator

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505721B1 (en) * 2000-05-25 2003-01-14 Means Industries, Inc. Planar one-way clutch
WO2001090593A1 (en) * 2000-05-25 2001-11-29 Means Industries, Inc. Planar one-way clutch
US6386349B1 (en) * 2001-01-17 2002-05-14 Means Industries, Inc. Compact clutch assembly featuring dual selectively-operative one-way clutches
US20020108831A1 (en) * 2001-02-12 2002-08-15 Brice Pawley One-way clutch assembly featuring improved strut stability
WO2002064988A2 (en) * 2001-02-12 2002-08-22 Means Industries, Inc. One-way clutch assembly featuring improved strut stability
WO2002064988A3 (en) * 2001-02-12 2003-03-06 Means Ind Inc One-way clutch assembly featuring improved strut stability
US6571926B2 (en) * 2001-02-12 2003-06-03 Means Industries, Inc. One-way clutch assembly featuring improved strut stability
US6907971B2 (en) 2001-12-28 2005-06-21 Stackpole Limited One-way clutch
US6896111B2 (en) 2002-04-05 2005-05-24 Exp, L.P. One-way drive device with reduced engagement impact
US7213694B2 (en) 2002-04-05 2007-05-08 Exp, L.P. One-way drive device with reduced engagement impact
US20050199465A1 (en) * 2002-04-05 2005-09-15 Fitz Frank A. One-way drive device with reduced engagement impact
US20040083836A1 (en) * 2002-11-06 2004-05-06 Transvantage, L.L.C. Continuously variable mechanical transmission
WO2004044454A3 (en) * 2002-11-06 2005-03-24 Transrevolution Inc Continuously variable mechanical transmission
WO2004044454A2 (en) * 2002-11-06 2004-05-27 Transrevolution, Inc. Continuously variable mechanical transmission
US6886424B2 (en) * 2003-06-25 2005-05-03 Ford Global Technologies, Llc Layshaft automatic transmission having power-on shifting
US20040261555A1 (en) * 2003-06-25 2004-12-30 Janson David Allen Layshaft automatic transmission having power-on shifting
US7080566B2 (en) 2004-03-18 2006-07-25 Ford Global Technologies, Llc Ranged single clutch layshaft powershift automatic transmission
US20050204841A1 (en) * 2004-03-18 2005-09-22 Reid Baldwin Ranged single clutch layshaft powershift automatic transmission
US20060278487A1 (en) * 2005-06-09 2006-12-14 Means Industries, Inc. Overrunning radial coupling assembly and method for controlling the engagement of inner and outer members of the assembly
US20060278486A1 (en) * 2005-06-09 2006-12-14 Means Industries, Inc. Overrunning coupling assembly and method for controlling the engagement of planar members
US7258214B2 (en) 2005-06-09 2007-08-21 Means Industries, Inc. Overrunning coupling assembly and method for controlling the engagement of planar members
US7484605B2 (en) 2005-06-09 2009-02-03 Means Industries, Inc. Overrunning radial coupling assembly and method for controlling the engagement of inner and outer members of the assembly
US20070056825A1 (en) * 2005-09-14 2007-03-15 Means Industries, Inc. Overrunning coupling assembly including clustered pawls and method for controlling the engagement of planar members
US7344010B2 (en) 2005-09-14 2008-03-18 Means Industries, Inc. Overrunning coupling assembly including clustered pawls and method for controlling the engagement of planar members
US9109636B2 (en) 2007-10-12 2015-08-18 Means Industries, Inc. Electromechanically actuated coupling and control assembly
US20090159391A1 (en) * 2007-12-19 2009-06-25 Means Industries, Inc. Overrunning Coupling Assembly
US8051959B2 (en) 2007-12-19 2011-11-08 Means Industries, Inc. Controllable or selectable bi-directional overrunning coupling assembly
US20090211863A1 (en) * 2008-02-21 2009-08-27 Means Industries, Inc. Controllable Overrunning Coupling Assembly
US8079453B2 (en) 2008-02-21 2011-12-20 Means Industries, Inc. Controllable overrunning coupling assembly
US9255614B2 (en) 2010-12-10 2016-02-09 Means Industries, Inc. Electronic vehicular transmission and coupling and control assembly for use therein
US9377061B2 (en) 2010-12-10 2016-06-28 Means Industries, Inc. Electromagnetic system for controlling the operating mode of an overrunning coupling assembly and overrunning coupling and control assembly including the system
US8646587B2 (en) * 2010-12-10 2014-02-11 Means Industries, Inc. Strut for a controllable one-way clutch
US8813929B2 (en) 2010-12-10 2014-08-26 Means Industries, Inc. Controllable coupling assembly
US9541141B2 (en) 2010-12-10 2017-01-10 Means Industries, Inc. Electronic vehicular transmission, controllable coupling assembly and coupling member for use in the assembly
US8888637B2 (en) 2010-12-10 2014-11-18 Means Industries, Inc. Vehicle drive system including a transmission
US9435387B2 (en) 2010-12-10 2016-09-06 Means Industries, Inc. Device and apparatus for controlling the operating mode of a coupling assembly, coupling and control assembly and electric motor disconnect and pass through assemblies
US9234552B2 (en) 2010-12-10 2016-01-12 Means Industries, Inc. Magnetic system for controlling the operating mode of an overrunning coupling assembly and overrunning coupling and magnetic control assembly having same
US10677296B2 (en) 2010-12-10 2020-06-09 Means Industries, Inc. Electronic, high-efficiency vehicular transmission, overrunning, non-friction coupling and control assembly and switchable linear actuator device for use therein
US9638266B2 (en) 2010-12-10 2017-05-02 Means Industries, Inc. Electronic vehicular transmission including a sensor and coupling and control assembly for use therein
US9303699B2 (en) 2010-12-10 2016-04-05 Means Industries, Inc. Electromechanical assembly to control the operating mode of a coupling apparatus
US20120145505A1 (en) * 2010-12-10 2012-06-14 Means Industries, Inc. Strut for a controllable one-way clutch
US9127724B2 (en) 2010-12-10 2015-09-08 Means Industries, Inc. Electromechanical apparatus for use with a coupling assembly and controllable coupling assembly including such apparatus
US9874252B2 (en) 2010-12-10 2018-01-23 Means Industries, Inc. Electronic, high-efficiency vehicular transmission, overrunning, non-friction coupling and control assembly and switchable linear actuator device for use therein
US9186977B2 (en) 2011-08-26 2015-11-17 Means Industries, Inc. Drive system including a transmission for a hybrid electric vehicle
WO2013032684A1 (en) * 2011-08-26 2013-03-07 Means Industries, Inc. Strut for a controllable one-way clutch
WO2013040135A1 (en) 2011-09-13 2013-03-21 Means Industries, Inc. Coupling assembly having an overrun mode and ratcheting reverse strut or radial ratchet for use therein
US8844693B2 (en) 2011-09-13 2014-09-30 Means Industries, Inc. Coupling assembly having an overrun mode and ratcheting reverse strut or radial ratchet for use therein
US20150345610A1 (en) * 2012-12-19 2015-12-03 Schaeffler Technologies AG & Co. KG Decoupler for damping a torque transmission between a drive shaft of a motor vehicle and a belt pulley
US9528590B2 (en) * 2012-12-19 2016-12-27 Schaeffler Technologies AG & Co. KG Decoupler for damping a torque transmission between a drive shaft of a motor vehicle and a belt pulley
US8899395B2 (en) 2013-01-22 2014-12-02 Gm Global Technology Operations, Llc Selectable one-way torque transmitting device using control rail
US10406661B2 (en) 2013-03-14 2019-09-10 Black & Decker Inc. Nosepiece and magazine for power screwdriver
US11673241B2 (en) 2013-03-14 2023-06-13 Black & Decker Inc. Nosepiece and magazine for power screwdriver
US9616557B2 (en) 2013-03-14 2017-04-11 Black & Decker Inc. Nosepiece and magazine for power screwdriver
US9051980B2 (en) 2013-04-26 2015-06-09 Gm Global Technology Operations, Llc Direction selectable sprag
US9222529B2 (en) 2013-06-17 2015-12-29 Allison Transmission, Inc. Actuation mechanism for a mechanical diode assembly
US9022194B2 (en) 2013-06-17 2015-05-05 Allison Transmission, Inc. System and method for actuating a mechanical diode clutch assembly
US10012270B2 (en) 2013-06-17 2018-07-03 Allison Transmission, Inc. Actuation mechanism for a mechanical diode assembly
US9249836B2 (en) 2013-08-15 2016-02-02 Means Industries, Inc. Coupling assembly having reduced undesirable noise and contact stress caused by a transition between operating modes of the assembly
US9371868B2 (en) 2013-08-27 2016-06-21 Means Industries, Inc. Coupling member subassembly for use in controllable coupling assembly and electromechanical apparatus having a pair of simultaneously actuated elements for use in the subassembly
US10533618B2 (en) 2013-09-26 2020-01-14 Means Industries, Inc. Overrunning, non-friction coupling and control assembly, engageable coupling assembly and locking member for use in the assemblies
US9482294B2 (en) 2014-02-19 2016-11-01 Means Industries, Inc. Coupling and control assembly including a sensor
US20150232173A1 (en) * 2014-02-19 2015-08-20 Honeywell International Inc. Aircraft wheel driving system
US9550564B2 (en) * 2014-02-19 2017-01-24 Honeywell International Inc. Aircraft wheel driving system
US9562574B2 (en) 2014-02-19 2017-02-07 Means Industries, Inc. Controllable coupling assembly and coupling member for use in the assembly
CN104179818A (en) * 2014-08-22 2014-12-03 周士健 Controllable disc clutch
CN104179818B (en) * 2014-08-22 2017-05-03 周士健 Controllable disc clutch
US10619681B2 (en) 2014-09-16 2020-04-14 Means Industries, Inc. Overrunning, non-friction coupling and control assemblies and switchable linear actuator device and reciprocating electromechanical apparatus for use therein
US9909631B2 (en) 2014-11-07 2018-03-06 Means Industries, Inc. Apparatus for controllably actuating a selectable coupling assembly having multiple operating modes
EP3611395A1 (en) 2015-04-01 2020-02-19 Means Industries, Inc. Electronic vehicular transmission, controllable coupling assembly and coupling member for use in the assembly
US9482297B2 (en) 2015-04-01 2016-11-01 Means Industries, Inc. Controllable coupling assembly having forward and reverse backlash
US10145428B2 (en) 2016-02-04 2018-12-04 Means Industries, Inc. Coupling assembly having an overrun mode and channeled locking member for use therein
US10539198B2 (en) 2016-02-04 2020-01-21 Means Industries, Inc. Coupling assembly having an overrun mode and channeled locking member for use therein
US10316904B2 (en) 2016-09-28 2019-06-11 Means Industries, Inc. Coupling assembly having an overrun mode and appendaged locking member for use therein
WO2018144185A1 (en) 2017-02-02 2018-08-09 Means Industries, Inc. Overrunning, non-friction coupling and control assemblies and switchable linear actuator device and reciprocating electromechanical apparatus for use therein
US11035423B2 (en) 2017-02-02 2021-06-15 Means Industries, Inc. Non-friction coupling and control assembly, engageable coupling assembly and locking member for use in the assemblies
US10711853B2 (en) * 2017-05-15 2020-07-14 Means Industries, Inc. Overrunning coupling and control assembly, coupling assembly and locking member for use therein having improved dynamics with regards to locking member laydown speed
US20180328419A1 (en) * 2017-05-15 2018-11-15 Means Industries, Inc. Overrunning coupling and control assembly, coupling assembly and locking member for use therein having improved dynamics with regards to locking member laydown speed
US10590999B2 (en) 2017-06-01 2020-03-17 Means Industries, Inc. Overrunning, non-friction, radial coupling and control assembly and switchable linear actuator device for use in the assembly
US10359085B2 (en) 2017-06-07 2019-07-23 Ford Global Technologies, Llc Pin-mounted rocker
US20190360537A1 (en) * 2018-05-22 2019-11-28 Schaeffler Technologies AG & Co. KG Split race for wedge clutch bearing assembly
US10794434B2 (en) * 2018-05-22 2020-10-06 Schaeffler Technologies AG & Co. KG Split race for wedge clutch bearing assembly
US11346404B2 (en) 2018-10-09 2022-05-31 Means Industries, Inc. Coupling and control assembly for use in a motor vehicle
DE112020000732T5 (en) 2019-02-08 2021-10-28 Means Industries, Inc. FRICTION-FREE CLUTCH AND CONTROL ARRANGEMENT, LOCKING CLUTCH ARRANGEMENT AND LOCKING PART FOR USE IN THE ARRANGEMENTS
US11215245B2 (en) 2019-12-03 2022-01-04 Means Industries, Inc. Coupling and control assembly including controllable coupling assembly having speed sensor and methods of controlling the controllable coupling assembly using information from the speed sensor for park/hill-hold operations
US11286996B2 (en) 2020-02-12 2022-03-29 Means Industries, Inc. Electro-dynamic coupling and control assembly and switchable linear actuator device for use therein
DE102021102824A1 (en) 2020-02-12 2021-08-12 Means Industries, Inc. ELECTRODYNAMIC CLUTCH AND CONTROL ASSEMBLY AND SWITCHABLE LINEAR ACTUATOR FOR USE IN THIS
US11953060B2 (en) 2020-02-12 2024-04-09 Means Industries, Inc. Coupling and control assembly
DE102021104228A1 (en) 2020-03-31 2021-09-30 Means Industries, Inc. Coupling and control arrangement with a non-contact, linear inductive position sensor
DE102021107969A1 (en) 2020-03-31 2021-09-30 Means Industries, Inc. COUPLING AND CONTROL UNIT WITH A CONTACTLESS, INDUCTIVE POSITION SENSOR
US11542992B2 (en) 2020-03-31 2023-01-03 Means Industries, Inc. Coupling and control assembly including a non-contact, linear inductive position sensor
US11874142B2 (en) 2020-03-31 2024-01-16 Means Industries, Inc. Coupling and control assembly including a position sensor
DE112021003092T5 (en) 2020-06-02 2023-04-06 Means Industries, Inc. COUPLING ASSEMBLY AND RATCHET LATCHING ELEMENT FOR USE THEREOF

Also Published As

Publication number Publication date
EP1064469A1 (en) 2001-01-03
DE69928380D1 (en) 2005-12-22
JP2002506958A (en) 2002-03-05
EP1064469B1 (en) 2005-11-16
ATE310182T1 (en) 2005-12-15
ES2252938T3 (en) 2006-05-16
EP1064469A4 (en) 2003-05-07
WO1999047828A1 (en) 1999-09-23
DE69928380T2 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US6065576A (en) Strut for planar one-way clutch
US5404642A (en) Method of assembling a bearing
US4635351A (en) Method and machine for providing alternator pole pieces
US5528706A (en) Cage for roller bearings
US7062852B2 (en) Rocker arm
US6039475A (en) Retainer for roller bearing and method for manufacturing the same
EP1086864A2 (en) Method for manufacturing a seat belt anchorage plate
KR100914902B1 (en) Method of producing one-way clutch
US6095938A (en) Plate base of guide for chain drive
JPS61239065A (en) Knitting plate needle and its production
US4360093A (en) One-way clutch
EP0608629B1 (en) Method of making ball bearing retainer or cage
US4071360A (en) Method of forming a friction disc member
DE102008030642A1 (en) Ball race, useful as mounting for IC engine valve springs, has ball bearings mounted in cage and locking sleeve which holds bearing rings in position and has radial flange whose diameter corresponds to that of row of bores in cage
WO2005113945A1 (en) Oil chamber sealing unit of a swing-wing adjuster of a camshaft pertaining to an internal combustion engine
MXPA00009073A (en) Strut for planar one-way clutch
US5152062A (en) Method of manufacturing ball bearing retainers
JP3138624B2 (en) Manufacturing method of belt connection metal fittings
JP2644456B2 (en) Belt connection bracket and method of manufacturing the same
JP4508751B2 (en) Thrust needle roller bearing
JP2001138862A (en) Metal fitting for belt connection
JPS63167178A (en) Piston ring and manufacture thereof
DE102021100658A1 (en) clutch system
JP2023510467A (en) Method for manufacturing transverse segments for pushbelts for continuously variable transmissions and transverse segments obtained by this method
DE102019220620A1 (en) Camshaft follower mechanism

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEANS INDUSTRIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAW, DAVID W.;SCOTT, GARY B.;REEL/FRAME:009285/0940

Effective date: 19980624

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CITICORP USA, INC., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:AMSTED INDUSTRIES INCORPORATED;BALTIMORE AIRCOIL COMPANY, INC.;VARLEN CORPORATION;AND OTHERS;REEL/FRAME:014580/0116

Effective date: 20030930

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CITIICORP NORTH AMERICA, INC., NEW YORK

Free format text: AMENDED AND RESTATED INTELLECTUAL PROPERTY SECURITY AGREEMENT DATED APRIL 6, 2006;ASSIGNORS:AMSTED INDUSTRIES INCORPORATED;AMCONSTRUCT CORPORATION;AMRAIL CORPORATION;AND OTHERS;REEL/FRAME:017448/0376

Effective date: 20060406

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS THE SUCCESSOR COLLATERAL

Free format text: INTELLECTUAL PROPERTY SECURITY INTEREST ASSIGNMENT AGREEMENT;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS THE RESIGNING COLLATERAL AGENT (AS SUCCESSOR IN INTEREST OF CITICORP USA, INC.);REEL/FRAME:023471/0036

Effective date: 20090930

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS SUCCESSOR AGENT, NORTH CAROLINA

Free format text: NOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST AT REEL/FRAME 023471/0036;ASSIGNOR:BANK OF AMERICA, N.A., AS THE RESIGNING AGENT;REEL/FRAME:070156/0759

Effective date: 20250206

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS SUCCESSOR AGENT, NORTH CAROLINA

Free format text: NOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST AT REEL/FRAME 027253/0488;ASSIGNOR:BANK OF AMERICA, N.A., AS THE RESIGNING AGENT;REEL/FRAME:070157/0268

Effective date: 20250206

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载