US6065550A - Method and system for drilling and completing underbalanced multilateral wells utilizing a dual string technique in a live well - Google Patents
Method and system for drilling and completing underbalanced multilateral wells utilizing a dual string technique in a live well Download PDFInfo
- Publication number
- US6065550A US6065550A US09/026,270 US2627098A US6065550A US 6065550 A US6065550 A US 6065550A US 2627098 A US2627098 A US 2627098A US 6065550 A US6065550 A US 6065550A
- Authority
- US
- United States
- Prior art keywords
- string
- drilling
- wellbore
- well
- drill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims abstract description 93
- 230000009977 dual effect Effects 0.000 title claims description 12
- 239000012530 fluid Substances 0.000 claims abstract description 150
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 60
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 60
- 230000015572 biosynthetic process Effects 0.000 claims description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 20
- 238000000926 separation method Methods 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 241001331845 Equus asinus x caballus Species 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 230000002706 hydrostatic effect Effects 0.000 description 17
- 239000003570 air Substances 0.000 description 13
- 230000006378 damage Effects 0.000 description 11
- 238000009844 basic oxygen steelmaking Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 239000003129 oil well Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/063—Arrangements for treating drilling fluids outside the borehole by separating components
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/08—Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
- E21B21/085—Underbalanced techniques, i.e. where borehole fluid pressure is below formation pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/12—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using drilling pipes with plural fluid passages, e.g. closed circulation systems
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/14—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using liquids and gases, e.g. foams
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0035—Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/046—Directional drilling horizontal drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/061—Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
Definitions
- the system of the present invention relates to underbalanced multilateral drilling and completing of oil wells. More particularly, the present invention relates to a system for drilling and completing a series of multilateral wells off of a single wellbore in an underbalanced system, utilizing a two-string technique, without having to kill the principal wellbore so that all of the multilaterals are drilled or completed while the well is alive.
- a string of casing is lowered into the wellbore and utilizing a two string drilling technique, there is circulated a lighter fluid down the outer annulus, which lowers the hydrostatic pressure of the fluid inside the column, thus relieving the formation.
- This allows the fluid to be lighter than the formation pressure which, if it did't, would cause everything to flow into the wellbore which is detrimental.
- drillers are able to circulate a lighter fluid which can return up either inner or outer annulus, which enables them to circulate with a different fluid down the drill string. In doing so, basically air and nitrogen are being introduced down the system which allows them to circulate two different combination fluids with two different strings. This also allows for well control during tripping of drilling assembly.
- the well when not utilizing a two-string system, the well is being drilled as an underbalanced well. In order to do so, one must kill the well so that the drill string may be tripped out of the hole, until sufficient fluid in the bore to bring the flow to neutral so the wells aren't flowing. When this is done, the fluid which maintains the hydrostatic pressure on the well, may create formation damage because what is actually occurring is sufficient heavy fluid is in the well bore which forces the fluids into the formation thus the well is killed.
- micro-annulus drilling utilizing the two string technique, which would allow you to go into drilling multiple radial wells off of the single vertical or horizontal well, without having to kill the well when the radial wells are drilled during the process.
- the system and method of the present invention solves the problems in the art in a simple and straight forward manner.
- What is provided is a system for drilling or completing multilateral wells from a single principal vertical directional, or horizontal well, using an underbalanced technique, which provides a first outer casing lining the wellbore or open hole section of said wellbore, a second inner casing, called a carrier string, which may be casing or drill pipe, as a second inner string, and either coiled tubing or regular drill pipe as the inner drill string.
- a carrier string which may be casing or drill pipe, as a second inner string, and either coiled tubing or regular drill pipe as the inner drill string.
- an orientation system that attaches to the coiled tubing or jointed pipe so that the upstock or whipstock may be oriented in the proper orientation.
- An addtional means of orientation would be accomplished by self-orienting devices located in the primary string where the upstock would land in and be oriented by latch coupling device. Therefore, in either system, whipstock is properly oriented when the radials are drilled through the walls of the casing.
- a whipstock or upstock attached to the carrier string which is lowered into the cased or uncased wellbore. The carrier string is lowered into the outer casing, hung off in either the well head or rotary table.
- the inner drilling assembly is lowered into the carrier string and when the drill bit makes contact with the deflecting surface of the whipstock or upstock, there is a bore drilled through the wall of the casing or into the open hole through conventional means depending on the type of material which the casing is constructed of or the type of wellbore to be drilled.
- the inner drill string is either drill pipe or a continuous string of coiled tubing having a drill bit and a mud motor assembly at the end of the tubing for rotating the drill bit, or in the case of jointed pipe, a mud motor assembly or rotary articulated horizontal assembly such as the Amoco System, or in the completion of wells, the inner string may be coiled tubing to serve as the innermost annulus of the completion string.
- a first fluid is circulated down the annulus of the coiled tubing which fluid can be air or nitrogen or drilling fluid or a mixture thereof, which would drive the mud motor assembly and, in the case of drilling, rotate the drill bit.
- This would in the preferred embodiment be a non-damaging type fluid which would not cause damage to the surrounding formation.
- a second and possibly different fluid such as aerated nitrogen or nondamaging fluid in a combination so as not to cause damage to the formation.
- the two fluids would then be co-mingled at the point where the drill bit exits the upstock when a well is being drilled, and returned as a co-mingled fluid in the annular space between the carrier string and the casing of the borehole and returned to the separators via the surface control systems.
- the two co-mingled fluids may return to the surface control system and separators in an annular space between the carrier string and the inner string rather than the carrier string and the outer casing.
- a tripping fluid of proper weight would then be pumped down the annulus between the carrier string and the drill string, the trip fluid in a weight ratio to displace the pipe so that the hydrostatic pressure in the carrier string would not allow fluid to flow up the carrier string while the drill string is being retrieved through it so that the clear lighter fluid that was being circulated in combination is still making contact with the formation and the tripping fluid is circulated and keeps the wellbore pressure under control during tripping phases and thus does not damage the formation and the well is essentially being drilled as a live well within the main well bore.
- the carrier string with the upstock on its end would then be repositioned at a different point in the borehole, while the well is still alive, and the coiled tubing or drill pipe could be relowered into the borehole to drill the next multilateral.
- This drilling of additional multilaterals and various orientations could be accomplished while the well is maintained as a live well, so long as the fluid pressure is underbalanced within the well bore through a combination of fluids in the drill string and carrier string.
- FIG. 1 illustrates an overall view of the two string underbalanced drilling technique utilizing coiled tubing as the drill string in the drilling of multiple radials;
- FIGS. 2 and 2A illustrates partial cross-sectional views of the whipstock or upstock portion of the two string drilling technique and the fluids flowing therethrough during the underbalanced drilling process utilizing coiled tubing;
- FIGS. 3A-3C illustrate views of the underbalanced drilling technique utilizing the fluid for maintaining the underbalanced status of the well during a retrieval of the coiled tubing drill string;
- FIGS. 4A & 4B illustrate a flow diagram for underbalanced drilling utilizing a two-string drilling technique in an upstock assembly with the fluid being returned through the annulus between the carrier string and the outer string;
- FIG. 5 illustrates a partial view of the underbalanced drilling technique showing the drilling of multiple radial wells from a single vertical or horizontal well while the well is maintained in the live status within the bore hole;
- FIG. 6 illustrates an overall schematic view of an underbalanced drilling system utilized in the system of the method of the present invention
- FIG. 7A illustrates an overall schematic view of an underbalanced radial drilling (with surface schematic) while producing from a wellbore being drilled, and a wellbore that has been drilled and is currently producing, with FIG. 7B illustrating a partial view of the system;
- FIG. 8A illustrates an overall schematic view of underbalanced horizontal radial drilling (with surface schematic) while producing from a radial wellbore being drilled, and additional radial wellbores that have been drilled, with FIG. 8B illustrating a partial view of the system;
- FIG. 9 illustrates a flow diagram for a jointed pipe system utilizing a top drive or power swivel system, for underbalanced drilling using the two string drilling technique with the upstock assembly where there is a completed radial well that is producing and a radial well that is producing while drilling;
- FIG. 10 illustrates a flow diagram for underbalanced drilling or completing of multilateral wells from a principal wellbore using the two string technique, including an upstock assembly, where there is illustrated a completed multilateral well that is producing and a multilateral well that is producing while drilling with a drill bit operated by a mud motor or rotary horizontal system is ongoing;
- FIG. 10A illustrates an isolated view of the lower portion of the drilling/completion subsystem as fully illustrated in FIG. 10;
- FIG. 10B illustrates a cross-sectional view of the outer casing housing the carrier string, and the drill pipe within the carrier string in the dual string drilling system utilizing segmented drill pipe;
- FIG. 11 illustrates a flow diagram for underbalanced drilling or completing of multilateral wells off of a principal wellbore utilizing the two string technique where there is a completed multilateral well that is producing and a multilateral well that is producing while drilling is ongoing utilizing drill pipe and a snubbing unit as part of the system;
- FIG. 11A illustrates an isolated view of the lower portion of the drilling/completion subsystem as fully illustrated in FIG. 11.
- FIG. 11B illustrates the flow direction of drilling fluid and produced fluid for well control as it would be utilized with the snubbing unit during the tripping operation.
- FIG. 12 is a representational flow chart of the components of the various subsystems that comprise the overall underbalanced dual string system of the present invention.
- FIGS. 1-12 illustrate the preferred embodiments of the system and method of the present invention for drilling underbalanced radial wells utilizing a dual string technique in a live well.
- a drilling system 10 utilizing coil tubing as the drill string.
- the coil tubing 12 which is known in the art, and comprises a continuous length of tubing, which is lowered usually into a cased well having an outer casing 14 placed to a certain depth within the borehole 16. It should be kept in mind that during the course of this application, reference will be made to a cased borehole 16, although the system and method of the present invention may be utilized in a non-cased or "open" borehole, as the case may be.
- FIG. 1 illustrates the preferred embodiments of the system and method of the present invention for drilling underbalanced radial wells utilizing a dual string technique in a live well.
- the coil tubing 12 which is known in the art, and comprises a continuous length of tubing, which is lowered usually into a cased well having an outer casing
- the length of coil tubing 12 is inserted into the injector head 19 of the coil tubing assembly 20, with the coil tubing 12 being rolled off of a continuous reel mounted adjacent the rig floor 26.
- the coil tubing 12 is lowered through the stripper 22 and through the coil tubing blowout preventer stack 24 where it extends down through the rig floor 26 where a carrier string 30 is held in place by the slips 32.
- the system in which the coil tubing 12 is being utilized in this particular application is a system for drilling radial wells, on the lower end of the coil tubing 12, there are certain systems which enable it to be oriented in a certain direction downhole so that the proper radial bore may be drilled from the horizontal or vertical lined cased borehole 16.
- These systems may include a gyro, steering tool, electromagnetic MWD and fluid pulsed MWD, at the end of which includes a mud motor 44, which rotates the drill bit 46 for drilling the radial well.
- a gyro, steering tool, electromagnetic MWD and fluid pulsed MWD at the end of which includes a mud motor 44, which rotates the drill bit 46 for drilling the radial well.
- a deflector means which comprises an upstock 50, which is known in the art and includes an angulated ramp 52, and an opening 54 in the wall 56 of the upstock 50, so that as the drill bit 46 makes contact with the ramp 52, the drill bit 46 is deflected from the ramp 52 and drills through the wall 56 of the casing 14 for drilling the radial borehole 60 from the cased borehole 16.
- the underbalanced drilling technique is undertaken. This is to prevent any blowout or the like from moving up the borehole 16 onto the rig 26 which would damage the system on the rig or worse yet, injure or kill workers on the rig.
- the underbalanced technique is utilized so that the fluids that are normally pumped down the borehole 16, heavy fluids and muds which are normally dumped down the borehole 16, in order to maintain the necessary hydrostatic pressure, are not utilized.
- What is utilized in underbalanced drilling is a combination of fluids which are of sufficient weight to maintain a lower than formation hydrostatic pressure in the borehole yet not to move into the formation 70 which can cause damage.
- FIGS. 1 and 2 In order to carry out the method of the system, reference is made to FIGS. 1 and 2. Again, one should keep in mind that the outer casing 14 lines the formation 70, and within the outer casing 14 there is a smaller carrier string 30 casing, which may be a 5" casing, which is lowered into the outer casing 16 thus defining a first annulus 72, between the inner wall of the outer casing 16 and the outer wall of the carrier string 30.
- the carrier string 30 would extend upward above the rig floor 26 and would receive fluid from a first pump means 76 (see FIG. 7A), located on the rig floor 26 so that fluid is pumped within the second annulus 78.
- the coil tubing 12 Positioned within the carrier string 30 is the coil tubing 12, which is normally 2" in diameter, and fits easily within the interior annulus of the carrier string, since the drill bit 46 on the coil tubing 12 is only 43/4" in diameter.
- the coil tubing 12 has a continuous bore therethrough, so that fluid may be pumped via a second pump 79 (see FIG. 7A) through the coil tubing annulus 13 in order to drive the 33/8" mud motor and drive the 43/4" bit 46.
- nitrogen gas, air, and water may be the fluid pumped down the borehole 13 of the coil tubing 12, through a first pump 79, located on the rig floor 36. Again, this is the fluid which drives the motor 44 and the drill bit 46.
- a second fluid mixture of nitrogen gas, air and fluid is pumped down the second annulus 78 between the 2" coiled tubing string 12 and the carrier string 30. This fluid flows through second annulus 78 and again, the fluid mixture in annulus 78 in combination with the fluid mixture through the bore 13 of the coil tubing 12 comprise the principal fluids for maintaining the hydrostatic pressure in the underbalanced drilling technique.
- the fluid mixture through the bore 13 of the coil tubing 12 flows through the bore 13 and drives the mud motor 44 and flows through the drill bit 46. Simultaneously the fluid mix is flowing through the second annular space 78 between the carrier string 30 and the coil tubing 12, and likewise flows out of the upstock 50.
- the first annular space between the outer casing 14 and the carrier string 30, which is that space 72 which returns any fluid that is flowing downhole back up to the rig floor 26.
- arrows 81 represent the fluid flow down the bore 13 of the coil tubing 12
- arrows 83 represent the second fluid flowing through the second annular space 78 into the borehole
- arrow 82 represents the return of the fluid in the first annular space 72. Therefore, all of the fluid flowing into the drill bit 46 and into the bore 12 so as to maintain the hydrostatic pressure is immediately returned up through the outer annular space 72 to be returned to the separator 87 through pipe 85 as seen in FIGS. 1 & 6.
- FIG. 2A illustrates in cross sectional view the dual string system, wherein the coiled tubing 12 is positioned within the carrier string 30, and the carrier string is being housed within casing 16.
- this system there would be defined an inner bore 13 in coiled tubing 12, a second annulus 78 between the carrier string 30 and the coiled tubing 12, and a third annulus 72 between the casing 18 and the carrier string 30.
- the drilling or completion fluids are pumped down annuli 13 and 78, and the returns, which may be a mixture of hydrocarbons and drilling fluids are returned up through annulus 72.
- the coil tubing string 12 must be retrieved from the borehole 16 in order to make BHA changes or for completion.
- the well is killed in that sufficient weighted fluid is pumped into the wellbore to stop the formation from producing so that there can be no movement upward through the borehole by hydrocarbons under pressure while the drill string is being retrieved from the hole and subsequently completed.
- trip fluid 100 circulated into the second annular space 78 between the wall of the coil tubing 12 and the wall of the carrier string 30.
- This trip fluid 100 is a combination of fluids, which are sufficient to maintain any hydrocarbons from flowing through the carrier string 30 upward, yet do not go into the formation. Rather, if there are hydrocarbons which flow upward they encounter the trip fluid 100 and flow in the direction of arrows 73 through the first annular space 72 between the carrier string 30 and the outer casing 14, and flow upward to the rig floor 26 and into the separators 87 as was discussed earlier.
- the carrier string 30 is always “alive” as the coil tubing 12 with the drill bit 46 is retrieved upward.
- the trip fluid 100 is circulated within the carrier string 30, so that as the drill bit 46 is retrieved from the bore of the carrier string 30, the trip fluid 100 maintains a certain equilibrium within the system, and the well is maintained alive and under control.
- FIG. 5 illustrates the utilization of the technique as seen in FIGS. 3A-3C, in drilling multiple radials off of the vertical or horizontal well.
- a first radial would be drilled at point A along the bore hole 16, utilizing the carrier string 30 as a downhole kill string 100 as described in FIG. C.
- a second radial well is drilled utilizing the same technique as described in FIG. 3, until the radial well is drilled and the circulation maintains underbalanced state and well control.
- 4A & 4B illustrate the flow diagram in isolation for underbalanced drilling utilizing the two-string drilling technique in an upstock assembly with the fluid flowing down the annulus 78 between the drill pipe 12 and the carrier string 30, and being returned through the annulus 72 between the carrier string 30 and the outer casing 16.
- FIG. 6 is simply an illustration in schematic form of the various nitrogen units 93, 95, and rig pumps 76, 79 including the air compressor 97 which are utilized in order to pump the combination of air, nitrogen and drilling fluid down the hole during the underbalanced technique and to likewise receive the return flow of air, nitrogen, water and oil into the separator 57 where it is separated into oil 99 and water 101 and any hydrocarbon gases are then burned off at flare stack 89.
- this invention by utilizing the underbalanced technique, numerous radial wells 60 can be drilled off of a borehole 16, while the well is still alive, and yet none of the fluid which is utilized in the underbalanced technique for maintaining the proper equilibrium within the borehole 16, moves into the formation and causes any damage to the formation in the process.
- FIGS. 7A and 7B illustrate in overall and isolated views respectively, the well producing from a first radial borehole 60 while the radial borehole is being drilled, and is likewise simultaneously producing from a second radial borehole 60 after the radial borehole has been completed.
- first radial borehole 60 being drilled the coil tubing string 12 is currently in the borehole 60, and is drilling via drill bit 46.
- the hydrocarbons which are obtained during drilling return through the radial borehole via annulus 72 between the wall of the borehole, and the wall of the coiled tubing 12.
- the second radial borehole 60 which is a fully producing borehole, in this borehole, the coil tubing 12 has been withdrawn from the radial borehole 60, and hydrocarbons are flowing through the inner bore of radial borehole 60 which would then join with the hydrocarbon stream moving up the borehole via first radial well 60, the two streams then combining to flow up the outer annulus 72 within the borehole to be collected in the separator.
- the return of the hydrocarbons up annulus 72 would include the air/nitrogen gas mixture, together with the drilling fluids, all of which were used downhole during the underbalanced drilling process discussed earlier. These fluids, which are comingled with the hydrocarbons flowing to the surface, would be separated out later in separator 87.
- FIGS. 8A and 8B illustrate the underbalanced horizontal radial drilling technique wherein a series of radial boreholes 60 have been drilled from a horizontal borehole 16.
- the furthest most borehole 60 is illustrated as being producing while being drilled with the coil tubing 12 and the drill bit 46.
- the remaining two radial boreholes 60 are completed boreholes, and are simply receiving hydrocarbons from the surrounding formation 70 into the inner bore of the radial boreholes 60.
- FIGS. 8A and 8B illustrate the underbalanced horizontal radial drilling technique wherein a series of radial boreholes 60 have been drilled from a horizontal borehole 16.
- the furthest most borehole 60 is illustrated as being producing while being drilled with the coil tubing 12 and the drill bit 46.
- the remaining two radial boreholes 60 are completed boreholes, and are simply receiving hydrocarbons from the surrounding formation 70 into the inner bore of the radial boreholes 60.
- the hydrocarbons produced from the two completed boreholes 60 and the borehole 60 which was currently being drilled would be retrieved into the annular space 72 between the wall of the borehole and the carrier string 30 within the borehole and would likewise be retrieved upward to be separated at the surface via separator 87.
- the hydrocarbons moving up annulus 72 would include the air/nitrogen gas mixture and the drilling fluid which would be utilized during the drilling of radial well 60 via coil tubing 12, and again would be co-mingled with the hydrocarbons to be separated at the surface at separator 87.
- all other components of the system would be present as was discussed in relation to FIG. 6 earlier.
- FIG. 9 the system illustrated in FIG. 9 again is quite similar to the systems illustrated in FIGS. 7A, 7B and 8A, 8B and again illustrate a radial borehole 60 which is producing while being drilled with drill pipe 45 and drill bit 46, driven by power swivel 145.
- the second radial well 60 is likewise producing.
- this well has been completed and the hydrocarbons are moving to the surface via the inner bore within the radial bore 60 to be joined with the hydrocarbons from the first radial well 60.
- FIG. 9 would illustrate that the hydrocarbons would be collected through the annular space 78 which is that space between the wall of the drill pipe 45 and the wall of the carrier string 30.
- the hydrocarbons mixed with the air/nitrogen gas and the drilling fluids would be collected in the annular space 78, which is interior to the outermost annular space 72 but would likewise flow and be collected in the separator for separation.
- FIGS. 10 through 12 illustrate additional embodiments of the system of the present invention which is utilized for drilling or completing multilateral wells off of a principal wellbore.
- radial wells and multilateral wells have been utilized in describing the system of the present invention. By definition, these terms are interchangeable in that they both in the context of this invention, constitute multiple wells being drilled off of a single principal wellbore, and therefore may be termed radial wells or multilateral wells.
- the definition would encompass more than one well extending out from a principal wellbore, whether the principal wellbore were vertically inclined, horizontally inclined, or at an angle, and whether the principal wellbore was a cased well or an uncased well. That is, in any of the circumstances, the system of the present invention could be utilized to drill or complete multilateral or radial wells off of a principal wellbore using the underbalanced technique, so that at least the principal wellbore could be maintained live while one or more of the radial or multilateral wells were being drilled or completed so as to maintain the well live and yet protect the surrounding formation because the system is an underbalanced system and therefore the hydrostatic pressure remains in balance.
- FIG. 10 is a modification of FIG. 9, as was described earlier.
- the overall underbalanced system 100 would include first the drilling system which would in effect be a first multilateral borehole 102 which is illustrated as producing through its annulus up to surface via annulus 1 12, while a second borehole 108 is being drilled with a jointed pipe 45 powered by a top drive or power swivel 145, having a drill bit 106 at its end.
- the drill bit 106 may be driven by the top drive 145, or a mud motor 147 adjacent the bit 106, or both the top drive 145 and the mud motor 147.
- Fluid is being pumped down annulus 111 and hydrocarbon returns through the annulus between the drill string and the wall of the formation in the directional well.
- the returns travel up annulus 112, comingling with the producing well 102.
- fluids will be pumped down annulus 116, and this fluid joins the hydrocarbons up annulus 112.
- FIGS. 10 and 10A illustrate that the hydrocarbons would be collected through the annular space 112 which would be defined by that space between the wall of the drill pipe 45 and the wall of the carrier string 114, which extends at least to the wellhead. Rather than the hydrocarbons moving up the outermost annular space 116 which would be that space between the outer casing 118 and the carrier string 114, in this embodiment, the hydrocarbons mix with the air nitrogen mix or with the other types of fluids would be collected in the annular space 112 which is interior to the most outer space 116 and would likewise flow and be collected in the separation system.
- FIG. 10B illustrates in cross sectional view the dual string system utilizing segmented drill pipe 45 rather than coiled tubing.
- the drill pipe 45 is positioned within the carrier string 114, and the carrier string 114 is being housed within casing 118.
- the drilling or completion fluids are pumped down annuli 111 and 116, and the returns, which may be a mixture of hydrocarbons and drilling fluids are returned up through annulus 112, which is modified from the use of coiled tubing as discussed previously in FIG. 2A.
- the overall system as seen in FIG. 10 would include the separation system which would include a collection pipe 120 which would direct the hydrocarbons into a separator 122 where the hydrocarbons would be separated into oil 124 and the water or drilling fluid 126. Any off gases would be burned in flare stack 128 as illustrated previously. Furthermore, the fluids that have been co-mingled with the hydrocarbons would be routed through line 120 where they would be routed through choke manifolds 121, and then to the separators 122.
- This particular embodiment as illustrated in FIG. 10 also includes the containment system which is utilized in underbalanced drilling which includes the BOP stacks 140 and the hydril 142 and a rotating BOP 141 which would help to contain the system.
- This rotating BOP 141 allows one to operate with pressure by creating a closed system.
- the rotating BOP 141 and BOP stack controls the annulus between the carrier string and the outer casing, while in a rotary mode using drill pipe, when the carrier string is placed into the wellhead, there is seal between the carrier string and the outer casing, the rotating BOP 141 and the stack control the annulus between the drill pipe and the carrier string.
- Rotating BOPs are known in the art and have been described in articles, one of which entitled “Rotating Control Head Applications Increasing", which is being submitted herewith in the prior art statement.
- FIG. 11 again as with FIG. 10, there is illustrated the components of the system with the exception that in this particular configuration, the multilateral bore holes 102 and 108 with multilateral 102 producing hydrocarbons 103 as a completed well, and multilateral 108 producing hydrocarbons 103 while the drilling process is continuing.
- the hydrocarbons 103 are being comingled with the downhole fluids and returned up the carrier annulus 112 which is that space between the wall of the jointed drill pipe 45 and the wall of the carrier string 114.
- the overall system comprises the sub systems of the containment system, the drilling system and the components utilized in that system, and the separation system which is utilized in the overall system.
- FIGS. 11 and 11A where there appears the use of a snubbing unit 144 which is being used for well control during trips out of the hole and to keep the well under control during the process.
- the snubbing unit 144 With the snubbing unit 144 added, the well is maintained alive, and during the tripping out of the hole, one is able to circulate through the carrier string which keeps the well under control.
- the snubbing unit 144 is secured to a riser 132 which has been nippled up to the rotating head at a point above the blow out assemblies 134. This is considered part of the well control system, or containment system, utilized during rotary drilling and completion operations.
- the snubbing unit is a key component for being able to safely trip in and out of the wellbore during rotary drilling operations.
- the snubbing unit 144 allows annular control in order to be able to do so since once it is opened, in order to retrieve the drill bit out of the hole, the well is alive. Therefore, the snubbing unit 144 allows one to retrieve the drill bit out of the hole and yet maintain the pressure of the underbalanced well to keep the well as a live well. It should be kept in mind that a snubbing unit is used only when the drilling or completion assembly is being tripped in and out of the hole.
- FIG. 11B there is illustrated the principal borehole 110, having the carrier string 114 placed within the borehole 110, with the drill string 45 being tripped out of the hole, i.e. the bore of the carrier string.
- the fluids indicated by arrows 119 are being pumped down the annular space 72 between the wall of the borehole 110 and the wall of the carrier string 114 and is being returned up the annulus 78 within the carrier string.
- the pumping of this trip fluid, i.e. fluid 119 down the annulus 72 of the borehole will enable the borehole to be maintained live, while tripping out of the hole with the drill string 45.
- FIG. 12 illustrates a rough representation of the various components that may be included in the subsystems which comprise the overall, underbalanced dual string system 100.
- a first drilling/completion subsystem 150 which includes a list of components which may or may not be included in that subsystem, depending on the type of drilling or completion that is being undertaken.
- a second subsystem 160 which is entitled the containment subsystem, which is a subsystem which comprises the various components for maintaining the well as a live well in the underbalanced the equilibrium that must be maintained if it is to be a successful system.
- subsystem 170 which comprises various components to undertake the critical steps of removing the hydrocarbons that have been collected from downhole from the various fluids that may have been pumped downhole in order to collect the hydrocarbons out of the formation. It is critical that all of the subsystems be part of the overall dual string system so that the method and system of the present invention is carried out in its proper manner.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Abstract
Description
Claims (19)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/026,270 US6065550A (en) | 1996-02-01 | 1998-02-19 | Method and system for drilling and completing underbalanced multilateral wells utilizing a dual string technique in a live well |
CA002320998A CA2320998C (en) | 1998-02-19 | 1999-02-19 | Method and system for drilling and completing underbalanced multilateral wells |
PCT/US1999/003671 WO1999042696A1 (en) | 1998-02-19 | 1999-02-19 | Method and system for drilling and completing underbalanced multilateral wells |
AU27755/99A AU2775599A (en) | 1998-02-19 | 1999-02-19 | Method and system for drilling and completing underbalanced multilateral wells |
US09/771,746 US6457540B2 (en) | 1996-02-01 | 2001-01-29 | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US10/262,557 US6745855B2 (en) | 1996-02-01 | 2002-09-30 | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US10/754,022 US7185718B2 (en) | 1996-02-01 | 2004-01-08 | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/595,594 US5720356A (en) | 1996-02-01 | 1996-02-01 | Method and system for drilling underbalanced radial wells utilizing a dual string technique in a live well |
US09/026,270 US6065550A (en) | 1996-02-01 | 1998-02-19 | Method and system for drilling and completing underbalanced multilateral wells utilizing a dual string technique in a live well |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/595,594 Continuation-In-Part US5720356A (en) | 1996-02-01 | 1996-02-01 | Method and system for drilling underbalanced radial wells utilizing a dual string technique in a live well |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US57587400A Continuation-In-Part | 1996-02-01 | 2000-05-22 | |
US57587400A Continuation | 1996-02-01 | 2000-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US6065550A true US6065550A (en) | 2000-05-23 |
Family
ID=21830837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/026,270 Expired - Fee Related US6065550A (en) | 1996-02-01 | 1998-02-19 | Method and system for drilling and completing underbalanced multilateral wells utilizing a dual string technique in a live well |
Country Status (4)
Country | Link |
---|---|
US (1) | US6065550A (en) |
AU (1) | AU2775599A (en) |
CA (1) | CA2320998C (en) |
WO (1) | WO1999042696A1 (en) |
Cited By (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6425448B1 (en) | 2001-01-30 | 2002-07-30 | Cdx Gas, L.L.P. | Method and system for accessing subterranean zones from a limited surface area |
US6439320B2 (en) | 1998-11-20 | 2002-08-27 | Cdx Gas, Llc | Wellbore pattern for uniform access to subterranean deposits |
US6457540B2 (en) | 1996-02-01 | 2002-10-01 | Robert Gardes | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
WO2003029603A1 (en) * | 2001-09-24 | 2003-04-10 | Shell Internationale Research Maatschappij B.V. | Wellbore system for simultaneous drilling and production |
US6571873B2 (en) | 2001-02-23 | 2003-06-03 | Exxonmobil Upstream Research Company | Method for controlling bottom-hole pressure during dual-gradient drilling |
US6598686B1 (en) | 1998-11-20 | 2003-07-29 | Cdx Gas, Llc | Method and system for enhanced access to a subterranean zone |
US6607042B2 (en) | 2001-04-18 | 2003-08-19 | Precision Drilling Technology Services Group Inc. | Method of dynamically controlling bottom hole circulation pressure in a wellbore |
US20030155156A1 (en) * | 2002-01-22 | 2003-08-21 | Livingstone James I. | Two string drilling system using coil tubing |
WO2003089756A1 (en) * | 2002-04-22 | 2003-10-30 | Weatherford/Lamb, Inc. | Methods for increasing production from a wellbore |
WO2003100208A1 (en) | 2002-05-28 | 2003-12-04 | Weatherford/Lamb, Inc. | Apparatus and method to reduce fluid pressure in a wellbore |
US20030221836A1 (en) * | 2001-01-29 | 2003-12-04 | Robert Gardes | Multi seam coal bed/methane dewatering and depressurizing production system |
US6662870B1 (en) | 2001-01-30 | 2003-12-16 | Cdx Gas, L.L.C. | Method and system for accessing subterranean deposits from a limited surface area |
US6679322B1 (en) | 1998-11-20 | 2004-01-20 | Cdx Gas, Llc | Method and system for accessing subterranean deposits from the surface |
US6681855B2 (en) | 2001-10-19 | 2004-01-27 | Cdx Gas, L.L.C. | Method and system for management of by-products from subterranean zones |
US6708764B2 (en) | 2002-07-12 | 2004-03-23 | Cdx Gas, L.L.C. | Undulating well bore |
US20040073369A1 (en) * | 2002-10-09 | 2004-04-15 | Pathfinder Energy Services, Inc . | Supplemental referencing techniques in borehole surveying |
US20040069501A1 (en) * | 2002-10-11 | 2004-04-15 | Haugen David M. | Apparatus and methods for drilling with casing |
US6725922B2 (en) | 2002-07-12 | 2004-04-27 | Cdx Gas, Llc | Ramping well bores |
US20040079553A1 (en) * | 2002-08-21 | 2004-04-29 | Livingstone James I. | Reverse circulation directional and horizontal drilling using concentric drill string |
US20040084214A1 (en) * | 2001-02-15 | 2004-05-06 | Deboer Luc | System for drilling oil and gas wells using a concentric drill string to deliver a dual density mud |
US20040140129A1 (en) * | 1996-02-01 | 2004-07-22 | Robert Gardes | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US20040154802A1 (en) * | 2001-10-30 | 2004-08-12 | Cdx Gas. Llc, A Texas Limited Liability Company | Slant entry well system and method |
US20040160223A1 (en) * | 2003-02-18 | 2004-08-19 | Pathfinder Energy Services, Inc. | Passive ranging techniques in borehole surveying |
US20040163443A1 (en) * | 2003-02-18 | 2004-08-26 | Pathfinder Energy Services, Inc. | Downhole referencing techniques in borehole surveying |
US6802379B2 (en) | 2001-02-23 | 2004-10-12 | Exxonmobil Upstream Research Company | Liquid lift method for drilling risers |
US20040249573A1 (en) * | 2003-06-09 | 2004-12-09 | Pathfinder Energy Services, Inc. | Well twinning techniques in borehole surveying |
US20050023038A1 (en) * | 2003-08-01 | 2005-02-03 | Seyffert Kenneth W. | Drilling systems |
US6854533B2 (en) | 2002-12-20 | 2005-02-15 | Weatherford/Lamb, Inc. | Apparatus and method for drilling with casing |
US6857487B2 (en) | 2002-12-30 | 2005-02-22 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
US20050045337A1 (en) * | 2002-01-08 | 2005-03-03 | Weatherford/Lamb, Inc. | Method for completing a well using increased fluid temperature |
US20050051326A1 (en) * | 2004-09-29 | 2005-03-10 | Toothman Richard L. | Method for making wells for removing fluid from a desired subterranean |
US6868906B1 (en) | 1994-10-14 | 2005-03-22 | Weatherford/Lamb, Inc. | Closed-loop conveyance systems for well servicing |
US20050092522A1 (en) * | 2003-10-30 | 2005-05-05 | Gavin Humphreys | Underbalanced well drilling and production |
US6892829B2 (en) | 2002-01-17 | 2005-05-17 | Presssol Ltd. | Two string drilling system |
US6899186B2 (en) | 2002-12-13 | 2005-05-31 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US20050150659A1 (en) * | 2004-01-13 | 2005-07-14 | Schlumberger Technology Corporation | Running a Completion Assembly Without Killing a Well |
US20050178586A1 (en) * | 2004-02-12 | 2005-08-18 | Presssol Ltd. | Downhole blowout preventor |
US6942030B2 (en) | 2002-09-12 | 2005-09-13 | Cdx Gas, Llc | Three-dimensional well system for accessing subterranean zones |
US6953096B2 (en) | 2002-12-31 | 2005-10-11 | Weatherford/Lamb, Inc. | Expandable bit with secondary release device |
US20050224228A1 (en) * | 2004-02-11 | 2005-10-13 | Presssol Ltd. | Method and apparatus for isolating and testing zones during reverse circulation drilling |
US6964308B1 (en) | 2002-10-08 | 2005-11-15 | Cdx Gas, Llc | Method of drilling lateral wellbores from a slant well without utilizing a whipstock |
US20050252661A1 (en) * | 2004-05-13 | 2005-11-17 | Presssol Ltd. | Casing degasser tool |
US20050252689A1 (en) * | 2001-01-29 | 2005-11-17 | Robert Gardes | Multi seam coal bed/methane dewatering and depressurizing production system |
US6968911B2 (en) | 1999-02-25 | 2005-11-29 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling |
US6973979B2 (en) | 2003-04-15 | 2005-12-13 | Savanna Energy Services Corp. | Drilling rig apparatus and downhole tool assembly system and method |
US6988548B2 (en) | 2002-10-03 | 2006-01-24 | Cdx Gas, Llc | Method and system for removing fluid from a subterranean zone using an enlarged cavity |
US6991048B2 (en) | 2002-07-12 | 2006-01-31 | Cdx Gas, Llc | Wellbore plug system and method |
US6991047B2 (en) | 2002-07-12 | 2006-01-31 | Cdx Gas, Llc | Wellbore sealing system and method |
US6994176B2 (en) | 2002-07-29 | 2006-02-07 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
US7004264B2 (en) | 2002-03-16 | 2006-02-28 | Weatherford/Lamb, Inc. | Bore lining and drilling |
US7013997B2 (en) | 1994-10-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7025154B2 (en) | 1998-11-20 | 2006-04-11 | Cdx Gas, Llc | Method and system for circulating fluid in a well system |
US7036610B1 (en) | 1994-10-14 | 2006-05-02 | Weatherford / Lamb, Inc. | Apparatus and method for completing oil and gas wells |
US7040420B2 (en) | 1994-10-14 | 2006-05-09 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20060131029A1 (en) * | 2004-12-21 | 2006-06-22 | Zupanick Joseph A | Method and system for cleaning a well bore |
US7073598B2 (en) | 2001-05-17 | 2006-07-11 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US7073595B2 (en) | 2002-09-12 | 2006-07-11 | Cdx Gas, Llc | Method and system for controlling pressure in a dual well system |
US7090021B2 (en) | 1998-08-24 | 2006-08-15 | Bernd-Georg Pietras | Apparatus for connecting tublars using a top drive |
US7090018B2 (en) | 2002-07-19 | 2006-08-15 | Presgsol Ltd. | Reverse circulation clean out system for low pressure gas wells |
US7093675B2 (en) | 2000-08-01 | 2006-08-22 | Weatherford/Lamb, Inc. | Drilling method |
US7096982B2 (en) | 2003-02-27 | 2006-08-29 | Weatherford/Lamb, Inc. | Drill shoe |
US7100710B2 (en) | 1994-10-14 | 2006-09-05 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7100713B2 (en) | 2000-04-28 | 2006-09-05 | Weatherford/Lamb, Inc. | Expandable apparatus for drift and reaming borehole |
US7100687B2 (en) | 2003-11-17 | 2006-09-05 | Cdx Gas, Llc | Multi-purpose well bores and method for accessing a subterranean zone from the surface |
US7108084B2 (en) | 1994-10-14 | 2006-09-19 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20060207795A1 (en) * | 2005-03-16 | 2006-09-21 | Joe Kinder | Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control |
US7117957B2 (en) | 1998-12-22 | 2006-10-10 | Weatherford/Lamb, Inc. | Methods for drilling and lining a wellbore |
US7128161B2 (en) | 1998-12-24 | 2006-10-31 | Weatherford/Lamb, Inc. | Apparatus and methods for facilitating the connection of tubulars using a top drive |
US7128154B2 (en) | 2003-01-30 | 2006-10-31 | Weatherford/Lamb, Inc. | Single-direction cementing plug |
US7134494B2 (en) | 2003-06-05 | 2006-11-14 | Cdx Gas, Llc | Method and system for recirculating fluid in a well system |
US7137454B2 (en) | 1998-07-22 | 2006-11-21 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7140445B2 (en) | 1997-09-02 | 2006-11-28 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
US7147068B2 (en) | 1994-10-14 | 2006-12-12 | Weatherford / Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7163063B2 (en) | 2003-11-26 | 2007-01-16 | Cdx Gas, Llc | Method and system for extraction of resources from a subterranean well bore |
US7188687B2 (en) | 1998-12-22 | 2007-03-13 | Weatherford/Lamb, Inc. | Downhole filter |
US7191840B2 (en) | 2003-03-05 | 2007-03-20 | Weatherford/Lamb, Inc. | Casing running and drilling system |
US7207390B1 (en) | 2004-02-05 | 2007-04-24 | Cdx Gas, Llc | Method and system for lining multilateral wells |
US7207395B2 (en) | 2004-01-30 | 2007-04-24 | Cdx Gas, Llc | Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement |
US7213656B2 (en) | 1998-12-24 | 2007-05-08 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US7216727B2 (en) | 1999-12-22 | 2007-05-15 | Weatherford/Lamb, Inc. | Drilling bit for drilling while running casing |
US7219744B2 (en) | 1998-08-24 | 2007-05-22 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US7222670B2 (en) | 2004-02-27 | 2007-05-29 | Cdx Gas, Llc | System and method for multiple wells from a common surface location |
US7228901B2 (en) | 1994-10-14 | 2007-06-12 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20070131416A1 (en) * | 2003-03-05 | 2007-06-14 | Odell Albert C Ii | Apparatus for gripping a tubular on a drilling rig |
US20070193778A1 (en) * | 2006-02-21 | 2007-08-23 | Blade Energy Partners | Methods and apparatus for drilling open hole |
US7264067B2 (en) | 2003-10-03 | 2007-09-04 | Weatherford/Lamb, Inc. | Method of drilling and completing multiple wellbores inside a single caisson |
US7264048B2 (en) | 2003-04-21 | 2007-09-04 | Cdx Gas, Llc | Slot cavity |
US7278497B2 (en) | 2004-07-09 | 2007-10-09 | Weatherford/Lamb | Method for extracting coal bed methane with source fluid injection |
US7284617B2 (en) | 2004-05-20 | 2007-10-23 | Weatherford/Lamb, Inc. | Casing running head |
US7299864B2 (en) | 2004-12-22 | 2007-11-27 | Cdx Gas, Llc | Adjustable window liner |
US7303022B2 (en) | 2002-10-11 | 2007-12-04 | Weatherford/Lamb, Inc. | Wired casing |
US7311148B2 (en) | 1999-02-25 | 2007-12-25 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US7325610B2 (en) | 2000-04-17 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
US7334650B2 (en) | 2000-04-13 | 2008-02-26 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US7353877B2 (en) | 2004-12-21 | 2008-04-08 | Cdx Gas, Llc | Accessing subterranean resources by formation collapse |
US7360594B2 (en) | 2003-03-05 | 2008-04-22 | Weatherford/Lamb, Inc. | Drilling with casing latch |
US7360595B2 (en) | 2002-05-08 | 2008-04-22 | Cdx Gas, Llc | Method and system for underground treatment of materials |
US20080105434A1 (en) * | 2006-11-07 | 2008-05-08 | Halliburton Energy Services, Inc. | Offshore Universal Riser System |
US7370707B2 (en) | 2003-04-04 | 2008-05-13 | Weatherford/Lamb, Inc. | Method and apparatus for handling wellbore tubulars |
US7373984B2 (en) | 2004-12-22 | 2008-05-20 | Cdx Gas, Llc | Lining well bore junctions |
US7413020B2 (en) | 2003-03-05 | 2008-08-19 | Weatherford/Lamb, Inc. | Full bore lined wellbores |
US7419223B2 (en) | 2003-11-26 | 2008-09-02 | Cdx Gas, Llc | System and method for enhancing permeability of a subterranean zone at a horizontal well bore |
US7503397B2 (en) | 2004-07-30 | 2009-03-17 | Weatherford/Lamb, Inc. | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
US7509722B2 (en) | 1997-09-02 | 2009-03-31 | Weatherford/Lamb, Inc. | Positioning and spinning device |
US20090084604A1 (en) * | 2004-06-17 | 2009-04-02 | Polizzotti Richard S | Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud |
US20090091053A1 (en) * | 2004-06-17 | 2009-04-09 | Polizzotti Richard S | Method for fabricating compressible objects for a variable density drilling mud |
US20090090559A1 (en) * | 2004-06-17 | 2009-04-09 | Polizzotti Richard S | Compressible objects combined with a drilling fluid to form a variable density drilling mud |
US20090090558A1 (en) * | 2004-06-17 | 2009-04-09 | Polizzotti Richard S | Compressible Objects Having A Predetermined Internal Pressure Combined With A Drilling Fluid To Form A Variable Density Drilling Mud |
AU2008201481B2 (en) * | 2003-10-30 | 2009-04-23 | Stena Drilling Ltd. | Underbalanced well drilling and production |
US20090173543A1 (en) * | 2008-01-02 | 2009-07-09 | Zupanick Joseph A | Slim-hole parasite string |
US7571771B2 (en) | 2005-05-31 | 2009-08-11 | Cdx Gas, Llc | Cavity well system |
US20090200085A1 (en) * | 2008-02-11 | 2009-08-13 | Williams Danny T | System for drilling under-balanced wells |
US20090223719A1 (en) * | 2008-03-06 | 2009-09-10 | Able Robert E | Dual string orbital drilling system |
US7617866B2 (en) | 1998-08-24 | 2009-11-17 | Weatherford/Lamb, Inc. | Methods and apparatus for connecting tubulars using a top drive |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US7669662B2 (en) | 1998-08-24 | 2010-03-02 | Weatherford/Lamb, Inc. | Casing feeder |
US7694744B2 (en) | 2005-01-12 | 2010-04-13 | Weatherford/Lamb, Inc. | One-position fill-up and circulating tool and method |
US20100108392A1 (en) * | 2008-10-22 | 2010-05-06 | Ressi Di Cervia Arturo L | Method and apparatus for constructing deep vertical boreholes and underground cut-off walls |
US7712523B2 (en) | 2000-04-17 | 2010-05-11 | Weatherford/Lamb, Inc. | Top drive casing system |
US7757759B2 (en) | 2006-04-27 | 2010-07-20 | Weatherford/Lamb, Inc. | Torque sub for use with top drive |
US7813935B2 (en) | 2004-01-13 | 2010-10-12 | Weatherford/Lamb, Inc. | System for evaluating over and underbalanced drilling operations |
US7845418B2 (en) | 2005-01-18 | 2010-12-07 | Weatherford/Lamb, Inc. | Top drive torque booster |
US20110024189A1 (en) * | 2009-07-30 | 2011-02-03 | Halliburton Energy Services, Inc. | Well drilling methods with event detection |
US7882902B2 (en) | 2006-11-17 | 2011-02-08 | Weatherford/Lamb, Inc. | Top drive interlock |
US20110139509A1 (en) * | 2009-12-15 | 2011-06-16 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US20110203802A1 (en) * | 2010-02-25 | 2011-08-25 | Halliburton Energy Services, Inc. | Pressure control device with remote orientation relative to a rig |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US8201628B2 (en) | 2010-04-27 | 2012-06-19 | Halliburton Energy Services, Inc. | Wellbore pressure control with segregated fluid columns |
US8291974B2 (en) | 1998-11-20 | 2012-10-23 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US8333245B2 (en) | 2002-09-17 | 2012-12-18 | Vitruvian Exploration, Llc | Accelerated production of gas from a subterranean zone |
US8376052B2 (en) | 1998-11-20 | 2013-02-19 | Vitruvian Exploration, Llc | Method and system for surface production of gas from a subterranean zone |
WO2013052093A1 (en) * | 2011-10-03 | 2013-04-11 | David Randolph Smith | Method and apparatus to increase recovery of hydrocarbons |
US8739902B2 (en) | 2012-08-07 | 2014-06-03 | Dura Drilling, Inc. | High-speed triple string drilling system |
US8739863B2 (en) | 2010-11-20 | 2014-06-03 | Halliburton Energy Services, Inc. | Remote operation of a rotating control device bearing clamp |
US8820405B2 (en) | 2010-04-27 | 2014-09-02 | Halliburton Energy Services, Inc. | Segregating flowable materials in a well |
US8833488B2 (en) | 2011-04-08 | 2014-09-16 | Halliburton Energy Services, Inc. | Automatic standpipe pressure control in drilling |
US9080407B2 (en) | 2011-05-09 | 2015-07-14 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US9163473B2 (en) | 2010-11-20 | 2015-10-20 | Halliburton Energy Services, Inc. | Remote operation of a rotating control device bearing clamp and safety latch |
US9249638B2 (en) | 2011-04-08 | 2016-02-02 | Halliburton Energy Services, Inc. | Wellbore pressure control with optimized pressure drilling |
US9447647B2 (en) | 2011-11-08 | 2016-09-20 | Halliburton Energy Services, Inc. | Preemptive setpoint pressure offset for flow diversion in drilling operations |
US9605507B2 (en) | 2011-09-08 | 2017-03-28 | Halliburton Energy Services, Inc. | High temperature drilling with lower temperature rated tools |
US10370943B2 (en) | 2016-10-06 | 2019-08-06 | Saudi Arabian Oil Company | Well control using a modified liner tie-back |
US11773677B2 (en) | 2021-12-06 | 2023-10-03 | Saudi Arabian Oil Company | Acid-integrated drill pipe bars to release stuck pipe |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9923200D0 (en) * | 1999-10-01 | 1999-12-01 | Andertech Limited | Fluid extraction |
US6732798B2 (en) | 2000-03-02 | 2004-05-11 | Schlumberger Technology Corporation | Controlling transient underbalance in a wellbore |
US7284612B2 (en) | 2000-03-02 | 2007-10-23 | Schlumberger Technology Corporation | Controlling transient pressure conditions in a wellbore |
US7036594B2 (en) | 2000-03-02 | 2006-05-02 | Schlumberger Technology Corporation | Controlling a pressure transient in a well |
US6598682B2 (en) | 2000-03-02 | 2003-07-29 | Schlumberger Technology Corp. | Reservoir communication with a wellbore |
US7243725B2 (en) | 2004-05-08 | 2007-07-17 | Halliburton Energy Services, Inc. | Surge chamber assembly and method for perforating in dynamic underbalanced conditions |
RU2295024C1 (en) * | 2006-03-20 | 2007-03-10 | Федеральное агентство по образованию Российский Государственный Университет нефти и газа им. И.М. Губкина | Method for building wells with remote face |
US9823373B2 (en) | 2012-11-08 | 2017-11-21 | Halliburton Energy Services, Inc. | Acoustic telemetry with distributed acoustic sensing system |
RU2541979C1 (en) * | 2014-05-21 | 2015-02-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Completion method of horizontal well |
CN103993827B (en) * | 2014-06-12 | 2016-07-06 | 北京奥瑞安能源技术开发有限公司 | Under balance pressure drilling method and system for coal bed gas |
US9759048B2 (en) | 2015-06-29 | 2017-09-12 | Owen Oil Tools Lp | Perforating gun for underbalanced perforating |
RU2640844C1 (en) * | 2017-03-23 | 2018-01-12 | Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук | Method for running casing string in horizontal long-distance wellbore |
US11346184B2 (en) | 2018-07-31 | 2022-05-31 | Schlumberger Technology Corporation | Delayed drop assembly |
CN111434884B (en) * | 2019-01-14 | 2022-05-10 | 中国石油天然气股份有限公司 | Method and device for acquiring working parameters of double-pipe gas control and liquid recovery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5411105A (en) * | 1994-06-14 | 1995-05-02 | Kidco Resources Ltd. | Drilling a well gas supply in the drilling liquid |
US5720356A (en) * | 1996-02-01 | 1998-02-24 | Gardes; Robert | Method and system for drilling underbalanced radial wells utilizing a dual string technique in a live well |
-
1998
- 1998-02-19 US US09/026,270 patent/US6065550A/en not_active Expired - Fee Related
-
1999
- 1999-02-19 WO PCT/US1999/003671 patent/WO1999042696A1/en active Application Filing
- 1999-02-19 CA CA002320998A patent/CA2320998C/en not_active Expired - Lifetime
- 1999-02-19 AU AU27755/99A patent/AU2775599A/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5411105A (en) * | 1994-06-14 | 1995-05-02 | Kidco Resources Ltd. | Drilling a well gas supply in the drilling liquid |
US5720356A (en) * | 1996-02-01 | 1998-02-24 | Gardes; Robert | Method and system for drilling underbalanced radial wells utilizing a dual string technique in a live well |
Non-Patent Citations (1)
Title |
---|
Rotating control head applications increasing, Adam T. Bourgoyne, Jr., Oil & Gas Journal, Oct. 9, 1995. * |
Cited By (258)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7165634B2 (en) | 1994-10-14 | 2007-01-23 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7040420B2 (en) | 1994-10-14 | 2006-05-09 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7100710B2 (en) | 1994-10-14 | 2006-09-05 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7108084B2 (en) | 1994-10-14 | 2006-09-19 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7147068B2 (en) | 1994-10-14 | 2006-12-12 | Weatherford / Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US6868906B1 (en) | 1994-10-14 | 2005-03-22 | Weatherford/Lamb, Inc. | Closed-loop conveyance systems for well servicing |
US7048050B2 (en) | 1994-10-14 | 2006-05-23 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7013997B2 (en) | 1994-10-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7036610B1 (en) | 1994-10-14 | 2006-05-02 | Weatherford / Lamb, Inc. | Apparatus and method for completing oil and gas wells |
US7228901B2 (en) | 1994-10-14 | 2007-06-12 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040140129A1 (en) * | 1996-02-01 | 2004-07-22 | Robert Gardes | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US7185718B2 (en) * | 1996-02-01 | 2007-03-06 | Robert Gardes | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US6745855B2 (en) | 1996-02-01 | 2004-06-08 | Innovative Drilling Technologies, Llc | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US6457540B2 (en) | 1996-02-01 | 2002-10-01 | Robert Gardes | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings |
US7140445B2 (en) | 1997-09-02 | 2006-11-28 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
US7509722B2 (en) | 1997-09-02 | 2009-03-31 | Weatherford/Lamb, Inc. | Positioning and spinning device |
US7665531B2 (en) | 1998-07-22 | 2010-02-23 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7137454B2 (en) | 1998-07-22 | 2006-11-21 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7451826B2 (en) | 1998-08-24 | 2008-11-18 | Weatherford/Lamb, Inc. | Apparatus for connecting tubulars using a top drive |
US7090021B2 (en) | 1998-08-24 | 2006-08-15 | Bernd-Georg Pietras | Apparatus for connecting tublars using a top drive |
US7219744B2 (en) | 1998-08-24 | 2007-05-22 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US7617866B2 (en) | 1998-08-24 | 2009-11-17 | Weatherford/Lamb, Inc. | Methods and apparatus for connecting tubulars using a top drive |
US7353880B2 (en) | 1998-08-24 | 2008-04-08 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US7669662B2 (en) | 1998-08-24 | 2010-03-02 | Weatherford/Lamb, Inc. | Casing feeder |
US7513300B2 (en) | 1998-08-24 | 2009-04-07 | Weatherford/Lamb, Inc. | Casing running and drilling system |
US8376052B2 (en) | 1998-11-20 | 2013-02-19 | Vitruvian Exploration, Llc | Method and system for surface production of gas from a subterranean zone |
US6598686B1 (en) | 1998-11-20 | 2003-07-29 | Cdx Gas, Llc | Method and system for enhanced access to a subterranean zone |
US6439320B2 (en) | 1998-11-20 | 2002-08-27 | Cdx Gas, Llc | Wellbore pattern for uniform access to subterranean deposits |
US8511372B2 (en) | 1998-11-20 | 2013-08-20 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface |
US6688388B2 (en) | 1998-11-20 | 2004-02-10 | Cdx Gas, Llc | Method for accessing subterranean deposits from the surface |
US6478085B2 (en) | 1998-11-20 | 2002-11-12 | Cdx Gas, Llp | System for accessing subterranean deposits from the surface |
US6561288B2 (en) | 1998-11-20 | 2003-05-13 | Cdx Gas, Llc | Method and system for accessing subterranean deposits from the surface |
US6679322B1 (en) | 1998-11-20 | 2004-01-20 | Cdx Gas, Llc | Method and system for accessing subterranean deposits from the surface |
US8505620B2 (en) | 1998-11-20 | 2013-08-13 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US7025154B2 (en) | 1998-11-20 | 2006-04-11 | Cdx Gas, Llc | Method and system for circulating fluid in a well system |
US6668918B2 (en) | 1998-11-20 | 2003-12-30 | Cdx Gas, L.L.C. | Method and system for accessing subterranean deposit from the surface |
US8479812B2 (en) | 1998-11-20 | 2013-07-09 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US8469119B2 (en) | 1998-11-20 | 2013-06-25 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US6575235B2 (en) | 1998-11-20 | 2003-06-10 | Cdx Gas, Llc | Subterranean drainage pattern |
US8291974B2 (en) | 1998-11-20 | 2012-10-23 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US6976533B2 (en) | 1998-11-20 | 2005-12-20 | Cdx Gas, Llc | Method and system for accessing subterranean deposits from the surface |
US8464784B2 (en) | 1998-11-20 | 2013-06-18 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US8297377B2 (en) | 1998-11-20 | 2012-10-30 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US8434568B2 (en) | 1998-11-20 | 2013-05-07 | Vitruvian Exploration, Llc | Method and system for circulating fluid in a well system |
US6964298B2 (en) | 1998-11-20 | 2005-11-15 | Cdx Gas, Llc | Method and system for accessing subterranean deposits from the surface |
US8297350B2 (en) | 1998-11-20 | 2012-10-30 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface |
US8316966B2 (en) | 1998-11-20 | 2012-11-27 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US6732792B2 (en) | 1998-11-20 | 2004-05-11 | Cdx Gas, Llc | Multi-well structure for accessing subterranean deposits |
US9551209B2 (en) | 1998-11-20 | 2017-01-24 | Effective Exploration, LLC | System and method for accessing subterranean deposits |
US8371399B2 (en) | 1998-11-20 | 2013-02-12 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US8813840B2 (en) | 1998-11-20 | 2014-08-26 | Efective Exploration, LLC | Method and system for accessing subterranean deposits from the surface and tools therefor |
US8376039B2 (en) | 1998-11-20 | 2013-02-19 | Vitruvian Exploration, Llc | Method and system for accessing subterranean deposits from the surface and tools therefor |
US6604580B2 (en) | 1998-11-20 | 2003-08-12 | Cdx Gas, Llc | Method and system for accessing subterranean zones from a limited surface area |
US7188687B2 (en) | 1998-12-22 | 2007-03-13 | Weatherford/Lamb, Inc. | Downhole filter |
US7117957B2 (en) | 1998-12-22 | 2006-10-10 | Weatherford/Lamb, Inc. | Methods for drilling and lining a wellbore |
US7213656B2 (en) | 1998-12-24 | 2007-05-08 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US7128161B2 (en) | 1998-12-24 | 2006-10-31 | Weatherford/Lamb, Inc. | Apparatus and methods for facilitating the connection of tubulars using a top drive |
US7395877B2 (en) | 1999-02-25 | 2008-07-08 | Weatherford/Lamb, Inc. | Apparatus and method to reduce fluid pressure in a wellbore |
US20070068705A1 (en) * | 1999-02-25 | 2007-03-29 | David Hosie | Apparatus and method to reduce fluid pressure in a wellbore |
US7311148B2 (en) | 1999-02-25 | 2007-12-25 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US20050045382A1 (en) * | 1999-02-25 | 2005-03-03 | Weatherford/Lamb, Inc. | Apparatus and method to reduce fluid pressure in a wellbore |
US7111692B2 (en) | 1999-02-25 | 2006-09-26 | Weatherford/Lamb, Inc | Apparatus and method to reduce fluid pressure in a wellbore |
US6968911B2 (en) | 1999-02-25 | 2005-11-29 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling |
US7216727B2 (en) | 1999-12-22 | 2007-05-15 | Weatherford/Lamb, Inc. | Drilling bit for drilling while running casing |
US7334650B2 (en) | 2000-04-13 | 2008-02-26 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US7793719B2 (en) | 2000-04-17 | 2010-09-14 | Weatherford/Lamb, Inc. | Top drive casing system |
US7325610B2 (en) | 2000-04-17 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
US7654325B2 (en) | 2000-04-17 | 2010-02-02 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
US7918273B2 (en) | 2000-04-17 | 2011-04-05 | Weatherford/Lamb, Inc. | Top drive casing system |
US7712523B2 (en) | 2000-04-17 | 2010-05-11 | Weatherford/Lamb, Inc. | Top drive casing system |
US7100713B2 (en) | 2000-04-28 | 2006-09-05 | Weatherford/Lamb, Inc. | Expandable apparatus for drift and reaming borehole |
US7093675B2 (en) | 2000-08-01 | 2006-08-22 | Weatherford/Lamb, Inc. | Drilling method |
US20030221836A1 (en) * | 2001-01-29 | 2003-12-04 | Robert Gardes | Multi seam coal bed/methane dewatering and depressurizing production system |
US7243738B2 (en) | 2001-01-29 | 2007-07-17 | Robert Gardes | Multi seam coal bed/methane dewatering and depressurizing production system |
US6923275B2 (en) | 2001-01-29 | 2005-08-02 | Robert Gardes | Multi seam coal bed/methane dewatering and depressurizing production system |
US20050252689A1 (en) * | 2001-01-29 | 2005-11-17 | Robert Gardes | Multi seam coal bed/methane dewatering and depressurizing production system |
US6425448B1 (en) | 2001-01-30 | 2002-07-30 | Cdx Gas, L.L.P. | Method and system for accessing subterranean zones from a limited surface area |
US6662870B1 (en) | 2001-01-30 | 2003-12-16 | Cdx Gas, L.L.C. | Method and system for accessing subterranean deposits from a limited surface area |
US7036584B2 (en) | 2001-01-30 | 2006-05-02 | Cdx Gas, L.L.C. | Method and system for accessing a subterranean zone from a limited surface area |
US6986388B2 (en) | 2001-01-30 | 2006-01-17 | Cdx Gas, Llc | Method and system for accessing a subterranean zone from a limited surface area |
US7093662B2 (en) * | 2001-02-15 | 2006-08-22 | Deboer Luc | System for drilling oil and gas wells using a concentric drill string to deliver a dual density mud |
US20040084214A1 (en) * | 2001-02-15 | 2004-05-06 | Deboer Luc | System for drilling oil and gas wells using a concentric drill string to deliver a dual density mud |
US6802379B2 (en) | 2001-02-23 | 2004-10-12 | Exxonmobil Upstream Research Company | Liquid lift method for drilling risers |
US6571873B2 (en) | 2001-02-23 | 2003-06-03 | Exxonmobil Upstream Research Company | Method for controlling bottom-hole pressure during dual-gradient drilling |
US6607042B2 (en) | 2001-04-18 | 2003-08-19 | Precision Drilling Technology Services Group Inc. | Method of dynamically controlling bottom hole circulation pressure in a wellbore |
US7281587B2 (en) | 2001-05-17 | 2007-10-16 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US7073598B2 (en) | 2001-05-17 | 2006-07-11 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US8517090B2 (en) | 2001-05-17 | 2013-08-27 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US7896084B2 (en) | 2001-05-17 | 2011-03-01 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
WO2003029603A1 (en) * | 2001-09-24 | 2003-04-10 | Shell Internationale Research Maatschappij B.V. | Wellbore system for simultaneous drilling and production |
US7284614B2 (en) | 2001-09-24 | 2007-10-23 | Shell Oil Company | Wellbore system for simultaneous drilling and production |
US20070114037A1 (en) * | 2001-09-24 | 2007-05-24 | Van Helvoirt Laurens C | Wellbore system for simultaneous drilling and production |
US6681855B2 (en) | 2001-10-19 | 2004-01-27 | Cdx Gas, L.L.C. | Method and system for management of by-products from subterranean zones |
US20040154802A1 (en) * | 2001-10-30 | 2004-08-12 | Cdx Gas. Llc, A Texas Limited Liability Company | Slant entry well system and method |
US7048049B2 (en) | 2001-10-30 | 2006-05-23 | Cdx Gas, Llc | Slant entry well system and method |
US6848508B2 (en) | 2001-10-30 | 2005-02-01 | Cdx Gas, Llc | Slant entry well system and method |
US20050045337A1 (en) * | 2002-01-08 | 2005-03-03 | Weatherford/Lamb, Inc. | Method for completing a well using increased fluid temperature |
US6837313B2 (en) | 2002-01-08 | 2005-01-04 | Weatherford/Lamb, Inc. | Apparatus and method to reduce fluid pressure in a wellbore |
US7306042B2 (en) | 2002-01-08 | 2007-12-11 | Weatherford/Lamb, Inc. | Method for completing a well using increased fluid temperature |
US6892829B2 (en) | 2002-01-17 | 2005-05-17 | Presssol Ltd. | Two string drilling system |
US6854534B2 (en) | 2002-01-22 | 2005-02-15 | James I. Livingstone | Two string drilling system using coil tubing |
US20030155156A1 (en) * | 2002-01-22 | 2003-08-21 | Livingstone James I. | Two string drilling system using coil tubing |
US7004264B2 (en) | 2002-03-16 | 2006-02-28 | Weatherford/Lamb, Inc. | Bore lining and drilling |
US20050092498A1 (en) * | 2002-04-22 | 2005-05-05 | Weatherford/Lamb, Inc. | Methods for increasing production from a wellbore |
WO2003089756A1 (en) * | 2002-04-22 | 2003-10-30 | Weatherford/Lamb, Inc. | Methods for increasing production from a wellbore |
US6810960B2 (en) | 2002-04-22 | 2004-11-02 | Weatherford/Lamb, Inc. | Methods for increasing production from a wellbore |
EP2101035A3 (en) * | 2002-04-22 | 2016-03-09 | Weatherford Technology Holdings, LLC | Method for increasing production from a wellbore |
NO335591B1 (en) * | 2002-04-22 | 2015-01-05 | Weatherford Lamb | Procedure for increasing the productivity of a well |
US7320365B2 (en) | 2002-04-22 | 2008-01-22 | Weatherford/Lamb, Inc. | Methods for increasing production from a wellbore |
US7360595B2 (en) | 2002-05-08 | 2008-04-22 | Cdx Gas, Llc | Method and system for underground treatment of materials |
WO2003100208A1 (en) | 2002-05-28 | 2003-12-04 | Weatherford/Lamb, Inc. | Apparatus and method to reduce fluid pressure in a wellbore |
US6708764B2 (en) | 2002-07-12 | 2004-03-23 | Cdx Gas, L.L.C. | Undulating well bore |
US6725922B2 (en) | 2002-07-12 | 2004-04-27 | Cdx Gas, Llc | Ramping well bores |
US6991048B2 (en) | 2002-07-12 | 2006-01-31 | Cdx Gas, Llc | Wellbore plug system and method |
US6991047B2 (en) | 2002-07-12 | 2006-01-31 | Cdx Gas, Llc | Wellbore sealing system and method |
US7090018B2 (en) | 2002-07-19 | 2006-08-15 | Presgsol Ltd. | Reverse circulation clean out system for low pressure gas wells |
US6994176B2 (en) | 2002-07-29 | 2006-02-07 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
US7448456B2 (en) | 2002-07-29 | 2008-11-11 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
US7204327B2 (en) | 2002-08-21 | 2007-04-17 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric drill string |
US20040104052A1 (en) * | 2002-08-21 | 2004-06-03 | Livingstone James I. | Reverse circulation directional and horizontal drilling using concentric coil tubing |
US7066283B2 (en) | 2002-08-21 | 2006-06-27 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric coil tubing |
US20040079553A1 (en) * | 2002-08-21 | 2004-04-29 | Livingstone James I. | Reverse circulation directional and horizontal drilling using concentric drill string |
US7073595B2 (en) | 2002-09-12 | 2006-07-11 | Cdx Gas, Llc | Method and system for controlling pressure in a dual well system |
US6942030B2 (en) | 2002-09-12 | 2005-09-13 | Cdx Gas, Llc | Three-dimensional well system for accessing subterranean zones |
US7090009B2 (en) | 2002-09-12 | 2006-08-15 | Cdx Gas, Llc | Three-dimensional well system for accessing subterranean zones |
US7025137B2 (en) | 2002-09-12 | 2006-04-11 | Cdx Gas, Llc | Three-dimensional well system for accessing subterranean zones |
US8333245B2 (en) | 2002-09-17 | 2012-12-18 | Vitruvian Exploration, Llc | Accelerated production of gas from a subterranean zone |
US6988548B2 (en) | 2002-10-03 | 2006-01-24 | Cdx Gas, Llc | Method and system for removing fluid from a subterranean zone using an enlarged cavity |
US6964308B1 (en) | 2002-10-08 | 2005-11-15 | Cdx Gas, Llc | Method of drilling lateral wellbores from a slant well without utilizing a whipstock |
US7002484B2 (en) | 2002-10-09 | 2006-02-21 | Pathfinder Energy Services, Inc. | Supplemental referencing techniques in borehole surveying |
US20040073369A1 (en) * | 2002-10-09 | 2004-04-15 | Pathfinder Energy Services, Inc . | Supplemental referencing techniques in borehole surveying |
US20040069501A1 (en) * | 2002-10-11 | 2004-04-15 | Haugen David M. | Apparatus and methods for drilling with casing |
US7303022B2 (en) | 2002-10-11 | 2007-12-04 | Weatherford/Lamb, Inc. | Wired casing |
US6896075B2 (en) | 2002-10-11 | 2005-05-24 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US7090023B2 (en) | 2002-10-11 | 2006-08-15 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US6899186B2 (en) | 2002-12-13 | 2005-05-31 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US7083005B2 (en) | 2002-12-13 | 2006-08-01 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US6854533B2 (en) | 2002-12-20 | 2005-02-15 | Weatherford/Lamb, Inc. | Apparatus and method for drilling with casing |
US7131505B2 (en) | 2002-12-30 | 2006-11-07 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
US6857487B2 (en) | 2002-12-30 | 2005-02-22 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
US6953096B2 (en) | 2002-12-31 | 2005-10-11 | Weatherford/Lamb, Inc. | Expandable bit with secondary release device |
US7128154B2 (en) | 2003-01-30 | 2006-10-31 | Weatherford/Lamb, Inc. | Single-direction cementing plug |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US20040160223A1 (en) * | 2003-02-18 | 2004-08-19 | Pathfinder Energy Services, Inc. | Passive ranging techniques in borehole surveying |
US6937023B2 (en) | 2003-02-18 | 2005-08-30 | Pathfinder Energy Services, Inc. | Passive ranging techniques in borehole surveying |
US6882937B2 (en) | 2003-02-18 | 2005-04-19 | Pathfinder Energy Services, Inc. | Downhole referencing techniques in borehole surveying |
US20040163443A1 (en) * | 2003-02-18 | 2004-08-26 | Pathfinder Energy Services, Inc. | Downhole referencing techniques in borehole surveying |
US7096982B2 (en) | 2003-02-27 | 2006-08-29 | Weatherford/Lamb, Inc. | Drill shoe |
US20070131416A1 (en) * | 2003-03-05 | 2007-06-14 | Odell Albert C Ii | Apparatus for gripping a tubular on a drilling rig |
US7191840B2 (en) | 2003-03-05 | 2007-03-20 | Weatherford/Lamb, Inc. | Casing running and drilling system |
US7360594B2 (en) | 2003-03-05 | 2008-04-22 | Weatherford/Lamb, Inc. | Drilling with casing latch |
US8567512B2 (en) | 2003-03-05 | 2013-10-29 | Weatherford/Lamb, Inc. | Apparatus for gripping a tubular on a drilling rig |
US7874352B2 (en) | 2003-03-05 | 2011-01-25 | Weatherford/Lamb, Inc. | Apparatus for gripping a tubular on a drilling rig |
US10138690B2 (en) | 2003-03-05 | 2018-11-27 | Weatherford Technology Holdings, Llc | Apparatus for gripping a tubular on a drilling rig |
US7413020B2 (en) | 2003-03-05 | 2008-08-19 | Weatherford/Lamb, Inc. | Full bore lined wellbores |
US7370707B2 (en) | 2003-04-04 | 2008-05-13 | Weatherford/Lamb, Inc. | Method and apparatus for handling wellbore tubulars |
US20070144745A1 (en) * | 2003-04-15 | 2007-06-28 | Gene Carriere | Drilling rig apparatus and downhole tool assembly system and method |
US6973979B2 (en) | 2003-04-15 | 2005-12-13 | Savanna Energy Services Corp. | Drilling rig apparatus and downhole tool assembly system and method |
US7513312B2 (en) | 2003-04-15 | 2009-04-07 | Savanna Energy Services Corp. | Drilling rig apparatus and downhole tool assembly system and method |
US7264048B2 (en) | 2003-04-21 | 2007-09-04 | Cdx Gas, Llc | Slot cavity |
US7134494B2 (en) | 2003-06-05 | 2006-11-14 | Cdx Gas, Llc | Method and system for recirculating fluid in a well system |
US20040249573A1 (en) * | 2003-06-09 | 2004-12-09 | Pathfinder Energy Services, Inc. | Well twinning techniques in borehole surveying |
US6985814B2 (en) | 2003-06-09 | 2006-01-10 | Pathfinder Energy Services, Inc. | Well twinning techniques in borehole surveying |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US6953097B2 (en) | 2003-08-01 | 2005-10-11 | Varco I/P, Inc. | Drilling systems |
US20050023038A1 (en) * | 2003-08-01 | 2005-02-03 | Seyffert Kenneth W. | Drilling systems |
US7264067B2 (en) | 2003-10-03 | 2007-09-04 | Weatherford/Lamb, Inc. | Method of drilling and completing multiple wellbores inside a single caisson |
AU2008201481B2 (en) * | 2003-10-30 | 2009-04-23 | Stena Drilling Ltd. | Underbalanced well drilling and production |
US7032691B2 (en) * | 2003-10-30 | 2006-04-25 | Stena Drilling Ltd. | Underbalanced well drilling and production |
US20050092522A1 (en) * | 2003-10-30 | 2005-05-05 | Gavin Humphreys | Underbalanced well drilling and production |
US7100687B2 (en) | 2003-11-17 | 2006-09-05 | Cdx Gas, Llc | Multi-purpose well bores and method for accessing a subterranean zone from the surface |
US7419223B2 (en) | 2003-11-26 | 2008-09-02 | Cdx Gas, Llc | System and method for enhancing permeability of a subterranean zone at a horizontal well bore |
US7163063B2 (en) | 2003-11-26 | 2007-01-16 | Cdx Gas, Llc | Method and system for extraction of resources from a subterranean well bore |
US20050150659A1 (en) * | 2004-01-13 | 2005-07-14 | Schlumberger Technology Corporation | Running a Completion Assembly Without Killing a Well |
US7290617B2 (en) * | 2004-01-13 | 2007-11-06 | Schlumberger Technology Corporation | Running a completion assembly without killing a well |
US7813935B2 (en) | 2004-01-13 | 2010-10-12 | Weatherford/Lamb, Inc. | System for evaluating over and underbalanced drilling operations |
US7207395B2 (en) | 2004-01-30 | 2007-04-24 | Cdx Gas, Llc | Method and system for testing a partially formed hydrocarbon well for evaluation and well planning refinement |
US7207390B1 (en) | 2004-02-05 | 2007-04-24 | Cdx Gas, Llc | Method and system for lining multilateral wells |
US20050224228A1 (en) * | 2004-02-11 | 2005-10-13 | Presssol Ltd. | Method and apparatus for isolating and testing zones during reverse circulation drilling |
US20080099195A1 (en) * | 2004-02-11 | 2008-05-01 | Presssol Ltd. | Method and apparatus for isolating and testing zones during reverse circulation drilling |
US7343983B2 (en) | 2004-02-11 | 2008-03-18 | Presssol Ltd. | Method and apparatus for isolating and testing zones during reverse circulation drilling |
US20080289878A1 (en) * | 2004-02-12 | 2008-11-27 | Presssol Ltd. | Downhole blowout preventor |
US8408337B2 (en) | 2004-02-12 | 2013-04-02 | Presssol Ltd. | Downhole blowout preventor |
US20050178586A1 (en) * | 2004-02-12 | 2005-08-18 | Presssol Ltd. | Downhole blowout preventor |
US7222670B2 (en) | 2004-02-27 | 2007-05-29 | Cdx Gas, Llc | System and method for multiple wells from a common surface location |
US20050252661A1 (en) * | 2004-05-13 | 2005-11-17 | Presssol Ltd. | Casing degasser tool |
US7284617B2 (en) | 2004-05-20 | 2007-10-23 | Weatherford/Lamb, Inc. | Casing running head |
US20090090558A1 (en) * | 2004-06-17 | 2009-04-09 | Polizzotti Richard S | Compressible Objects Having A Predetermined Internal Pressure Combined With A Drilling Fluid To Form A Variable Density Drilling Mud |
US20090091053A1 (en) * | 2004-06-17 | 2009-04-09 | Polizzotti Richard S | Method for fabricating compressible objects for a variable density drilling mud |
US20090090559A1 (en) * | 2004-06-17 | 2009-04-09 | Polizzotti Richard S | Compressible objects combined with a drilling fluid to form a variable density drilling mud |
US8088716B2 (en) | 2004-06-17 | 2012-01-03 | Exxonmobil Upstream Research Company | Compressible objects having a predetermined internal pressure combined with a drilling fluid to form a variable density drilling mud |
US8088717B2 (en) | 2004-06-17 | 2012-01-03 | Exxonmobil Upstream Research Company | Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud |
US8076269B2 (en) | 2004-06-17 | 2011-12-13 | Exxonmobil Upstream Research Company | Compressible objects combined with a drilling fluid to form a variable density drilling mud |
US20090084604A1 (en) * | 2004-06-17 | 2009-04-02 | Polizzotti Richard S | Compressible objects having partial foam interiors combined with a drilling fluid to form a variable density drilling mud |
US7972555B2 (en) | 2004-06-17 | 2011-07-05 | Exxonmobil Upstream Research Company | Method for fabricating compressible objects for a variable density drilling mud |
US7278497B2 (en) | 2004-07-09 | 2007-10-09 | Weatherford/Lamb | Method for extracting coal bed methane with source fluid injection |
US7503397B2 (en) | 2004-07-30 | 2009-03-17 | Weatherford/Lamb, Inc. | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
US20050051326A1 (en) * | 2004-09-29 | 2005-03-10 | Toothman Richard L. | Method for making wells for removing fluid from a desired subterranean |
US7353877B2 (en) | 2004-12-21 | 2008-04-08 | Cdx Gas, Llc | Accessing subterranean resources by formation collapse |
US20060131029A1 (en) * | 2004-12-21 | 2006-06-22 | Zupanick Joseph A | Method and system for cleaning a well bore |
US7311150B2 (en) | 2004-12-21 | 2007-12-25 | Cdx Gas, Llc | Method and system for cleaning a well bore |
US7299864B2 (en) | 2004-12-22 | 2007-11-27 | Cdx Gas, Llc | Adjustable window liner |
US7373984B2 (en) | 2004-12-22 | 2008-05-20 | Cdx Gas, Llc | Lining well bore junctions |
US7694744B2 (en) | 2005-01-12 | 2010-04-13 | Weatherford/Lamb, Inc. | One-position fill-up and circulating tool and method |
US7845418B2 (en) | 2005-01-18 | 2010-12-07 | Weatherford/Lamb, Inc. | Top drive torque booster |
US20060207795A1 (en) * | 2005-03-16 | 2006-09-21 | Joe Kinder | Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control |
US7407019B2 (en) | 2005-03-16 | 2008-08-05 | Weatherford Canada Partnership | Method of dynamically controlling open hole pressure in a wellbore using wellhead pressure control |
US7571771B2 (en) | 2005-05-31 | 2009-08-11 | Cdx Gas, Llc | Cavity well system |
US20070193778A1 (en) * | 2006-02-21 | 2007-08-23 | Blade Energy Partners | Methods and apparatus for drilling open hole |
US7757759B2 (en) | 2006-04-27 | 2010-07-20 | Weatherford/Lamb, Inc. | Torque sub for use with top drive |
US8776894B2 (en) | 2006-11-07 | 2014-07-15 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US9127511B2 (en) | 2006-11-07 | 2015-09-08 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US20080105434A1 (en) * | 2006-11-07 | 2008-05-08 | Halliburton Energy Services, Inc. | Offshore Universal Riser System |
US8887814B2 (en) | 2006-11-07 | 2014-11-18 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US20100018715A1 (en) * | 2006-11-07 | 2010-01-28 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US9376870B2 (en) | 2006-11-07 | 2016-06-28 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US8881831B2 (en) | 2006-11-07 | 2014-11-11 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US9157285B2 (en) | 2006-11-07 | 2015-10-13 | Halliburton Energy Services, Inc. | Offshore drilling method |
US8033335B2 (en) | 2006-11-07 | 2011-10-11 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US9051790B2 (en) | 2006-11-07 | 2015-06-09 | Halliburton Energy Services, Inc. | Offshore drilling method |
US9127512B2 (en) | 2006-11-07 | 2015-09-08 | Halliburton Energy Services, Inc. | Offshore drilling method |
US9085940B2 (en) | 2006-11-07 | 2015-07-21 | Halliburton Energy Services, Inc. | Offshore universal riser system |
US7882902B2 (en) | 2006-11-17 | 2011-02-08 | Weatherford/Lamb, Inc. | Top drive interlock |
US8272456B2 (en) | 2008-01-02 | 2012-09-25 | Pine Trees Gas, LLC | Slim-hole parasite string |
US20090173543A1 (en) * | 2008-01-02 | 2009-07-09 | Zupanick Joseph A | Slim-hole parasite string |
US8459376B2 (en) | 2008-02-11 | 2013-06-11 | Danny T. Williams | System for drilling under balanced wells |
US20110100635A1 (en) * | 2008-02-11 | 2011-05-05 | Williams Danny T | System for drilling under balanced wells |
US20090200085A1 (en) * | 2008-02-11 | 2009-08-13 | Williams Danny T | System for drilling under-balanced wells |
US7886849B2 (en) | 2008-02-11 | 2011-02-15 | Williams Danny T | System for drilling under-balanced wells |
US20090223719A1 (en) * | 2008-03-06 | 2009-09-10 | Able Robert E | Dual string orbital drilling system |
US7896108B2 (en) | 2008-03-06 | 2011-03-01 | Able Robert E | Dual string orbital drilling system |
US20100108392A1 (en) * | 2008-10-22 | 2010-05-06 | Ressi Di Cervia Arturo L | Method and apparatus for constructing deep vertical boreholes and underground cut-off walls |
US8286731B2 (en) | 2008-10-22 | 2012-10-16 | Ressi Di Cervia Arturo L | Method and apparatus for constructing deep vertical boreholes and underground cut-off walls |
US20110139506A1 (en) * | 2008-12-19 | 2011-06-16 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US8281875B2 (en) | 2008-12-19 | 2012-10-09 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US20110024189A1 (en) * | 2009-07-30 | 2011-02-03 | Halliburton Energy Services, Inc. | Well drilling methods with event detection |
US8397836B2 (en) | 2009-12-15 | 2013-03-19 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US20110139509A1 (en) * | 2009-12-15 | 2011-06-16 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US8286730B2 (en) | 2009-12-15 | 2012-10-16 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US20110203802A1 (en) * | 2010-02-25 | 2011-08-25 | Halliburton Energy Services, Inc. | Pressure control device with remote orientation relative to a rig |
US9169700B2 (en) | 2010-02-25 | 2015-10-27 | Halliburton Energy Services, Inc. | Pressure control device with remote orientation relative to a rig |
US8201628B2 (en) | 2010-04-27 | 2012-06-19 | Halliburton Energy Services, Inc. | Wellbore pressure control with segregated fluid columns |
US8820405B2 (en) | 2010-04-27 | 2014-09-02 | Halliburton Energy Services, Inc. | Segregating flowable materials in a well |
US8261826B2 (en) | 2010-04-27 | 2012-09-11 | Halliburton Energy Services, Inc. | Wellbore pressure control with segregated fluid columns |
US8739863B2 (en) | 2010-11-20 | 2014-06-03 | Halliburton Energy Services, Inc. | Remote operation of a rotating control device bearing clamp |
US10145199B2 (en) | 2010-11-20 | 2018-12-04 | Halliburton Energy Services, Inc. | Remote operation of a rotating control device bearing clamp and safety latch |
US9163473B2 (en) | 2010-11-20 | 2015-10-20 | Halliburton Energy Services, Inc. | Remote operation of a rotating control device bearing clamp and safety latch |
US9249638B2 (en) | 2011-04-08 | 2016-02-02 | Halliburton Energy Services, Inc. | Wellbore pressure control with optimized pressure drilling |
US8833488B2 (en) | 2011-04-08 | 2014-09-16 | Halliburton Energy Services, Inc. | Automatic standpipe pressure control in drilling |
US9080407B2 (en) | 2011-05-09 | 2015-07-14 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US9605507B2 (en) | 2011-09-08 | 2017-03-28 | Halliburton Energy Services, Inc. | High temperature drilling with lower temperature rated tools |
WO2013052093A1 (en) * | 2011-10-03 | 2013-04-11 | David Randolph Smith | Method and apparatus to increase recovery of hydrocarbons |
US20130146288A1 (en) * | 2011-10-03 | 2013-06-13 | David Randolph Smith | Method and apparatus to increase recovery of hydrocarbons |
US9447647B2 (en) | 2011-11-08 | 2016-09-20 | Halliburton Energy Services, Inc. | Preemptive setpoint pressure offset for flow diversion in drilling operations |
US10233708B2 (en) | 2012-04-10 | 2019-03-19 | Halliburton Energy Services, Inc. | Pressure and flow control in drilling operations |
US8739902B2 (en) | 2012-08-07 | 2014-06-03 | Dura Drilling, Inc. | High-speed triple string drilling system |
US10370943B2 (en) | 2016-10-06 | 2019-08-06 | Saudi Arabian Oil Company | Well control using a modified liner tie-back |
US11773677B2 (en) | 2021-12-06 | 2023-10-03 | Saudi Arabian Oil Company | Acid-integrated drill pipe bars to release stuck pipe |
Also Published As
Publication number | Publication date |
---|---|
CA2320998C (en) | 2008-01-29 |
WO1999042696A1 (en) | 1999-08-26 |
CA2320998A1 (en) | 1999-08-26 |
AU2775599A (en) | 1999-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6065550A (en) | Method and system for drilling and completing underbalanced multilateral wells utilizing a dual string technique in a live well | |
US5720356A (en) | Method and system for drilling underbalanced radial wells utilizing a dual string technique in a live well | |
US6745855B2 (en) | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings | |
US7185718B2 (en) | Method and system for hydraulic friction controlled drilling and completing geopressured wells utilizing concentric drill strings | |
US6923275B2 (en) | Multi seam coal bed/methane dewatering and depressurizing production system | |
US5680901A (en) | Radial tie back assembly for directional drilling | |
US7243738B2 (en) | Multi seam coal bed/methane dewatering and depressurizing production system | |
CA2499759C (en) | Reverse circulation directional and horizontal drilling using concentric drill string | |
US7487846B2 (en) | Electrically operated drilling method | |
AU2003249021B2 (en) | Wellbore plug system and method | |
US6896075B2 (en) | Apparatus and methods for drilling with casing | |
US7992654B2 (en) | Dual gradient drilling method and apparatus with an adjustable centrifuge | |
US7278497B2 (en) | Method for extracting coal bed methane with source fluid injection | |
WO2001090528A1 (en) | Method for controlled drilling and completing of wells | |
CA2305253C (en) | Method and system for drilling underbalanced radial wells utilizing a dual string technique in a live well | |
US20200232289A1 (en) | System and methodology utilizing conductor sharing offset shoe | |
US20240352828A1 (en) | Downhole debris removal apparatus | |
RU2776020C1 (en) | Deflector assembly with a window for a multilateral borehole, multilateral borehole system and method for forming a multilateral borehole system | |
Wodka et al. | Underbalanced coiled tubing drilled horizontal well in the North Sea | |
WO2007050530A1 (en) | Fracking multiple casing exit laterals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INNOVATIVE DRILLING TECHNOLOGIES, L.L.C., LOUISIAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GARDES, ROBERT A.;REEL/FRAME:012698/0701 Effective date: 20010908 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20120523 |