US5976653A - Multilayer preform and container with polyethylene naphthalate (PEN), and method of forming same - Google Patents
Multilayer preform and container with polyethylene naphthalate (PEN), and method of forming same Download PDFInfo
- Publication number
- US5976653A US5976653A US08/835,444 US83544497A US5976653A US 5976653 A US5976653 A US 5976653A US 83544497 A US83544497 A US 83544497A US 5976653 A US5976653 A US 5976653A
- Authority
- US
- United States
- Prior art keywords
- pen
- pet
- container
- copolymer
- polymeric material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011112 polyethylene naphthalate Substances 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title abstract description 12
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims abstract description 87
- 239000010410 layer Substances 0.000 claims abstract description 77
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 70
- 229920001577 copolymer Polymers 0.000 claims abstract description 33
- 239000012792 core layer Substances 0.000 claims abstract description 27
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 229920001519 homopolymer Polymers 0.000 claims abstract description 12
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 38
- 238000002425 crystallisation Methods 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 8
- -1 polyethylene terephthalate Polymers 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 abstract description 20
- 230000004888 barrier function Effects 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 description 19
- 239000011162 core material Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 13
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 239000003518 caustics Substances 0.000 description 8
- 235000012174 carbonated soft drink Nutrition 0.000 description 7
- 239000000796 flavoring agent Substances 0.000 description 7
- 235000019634 flavors Nutrition 0.000 description 7
- 235000013361 beverage Nutrition 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 235000014171 carbonated beverage Nutrition 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- GYUVMLBYMPKZAZ-UHFFFAOYSA-N dimethyl naphthalene-2,6-dicarboxylate Chemical compound C1=C(C(=O)OC)C=CC2=CC(C(=O)OC)=CC=C21 GYUVMLBYMPKZAZ-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical group C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229920005605 branched copolymer Polymers 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 235000019993 champagne Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000021443 coca cola Nutrition 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010102 injection blow moulding Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 235000021572 root beer Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/22—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/0005—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
- B29C49/0006—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material for heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/64—Heating or cooling preforms, parisons or blown articles
- B29C49/6409—Thermal conditioning of preforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
- B65D1/0215—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/78—Measuring, controlling or regulating
- B29C2049/7879—Stretching, e.g. stretch rod
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0715—Preforms or parisons characterised by their configuration the preform having one end closed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/079—Auxiliary parts or inserts
- B29C2949/08—Preforms made of several individual parts, e.g. by welding or gluing parts together
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0811—Wall thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0811—Wall thickness
- B29C2949/0817—Wall thickness of the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/082—Diameter
- B29C2949/0826—Diameter of the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0829—Height, length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/0861—Other specified values, e.g. values or ranges
- B29C2949/0862—Crystallinity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3008—Preforms or parisons made of several components at neck portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3008—Preforms or parisons made of several components at neck portion
- B29C2949/3009—Preforms or parisons made of several components at neck portion partially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3012—Preforms or parisons made of several components at flange portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3016—Preforms or parisons made of several components at body portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/302—Preforms or parisons made of several components at bottom portion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3024—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
- B29C2949/3026—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
- B29C2949/3028—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3024—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
- B29C2949/3026—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
- B29C2949/3028—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
- B29C2949/303—Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3032—Preforms or parisons made of several components having components being injected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3032—Preforms or parisons made of several components having components being injected
- B29C2949/3034—Preforms or parisons made of several components having components being injected having two or more components being injected
- B29C2949/3036—Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/30—Preforms or parisons made of several components
- B29C2949/3032—Preforms or parisons made of several components having components being injected
- B29C2949/3034—Preforms or parisons made of several components having components being injected having two or more components being injected
- B29C2949/3036—Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
- B29C2949/3038—Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/02—Combined blow-moulding and manufacture of the preform or the parison
- B29C49/06—Injection blow-moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/08—Biaxial stretching during blow-moulding
- B29C49/087—Means for providing controlled or limited stretch ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/42394—Providing specific wall thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
- B29C49/42—Component parts, details or accessories; Auxiliary operations
- B29C49/64—Heating or cooling preforms, parisons or blown articles
- B29C49/6604—Thermal conditioning of the blown article
- B29C49/6605—Heating the article, e.g. for hot fill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/253—Preform
- B29K2105/258—Tubular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/26—Scrap or recycled material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0026—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/004—Semi-crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0041—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0041—Crystalline
- B29K2995/0043—Crystalline non-uniform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0065—Permeability to gases
- B29K2995/0067—Permeability to gases non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0068—Permeability to liquids; Adsorption
- B29K2995/0069—Permeability to liquids; Adsorption non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2009/00—Layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7158—Bottles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/244—All polymers belonging to those covered by group B32B27/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1379—Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1379—Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
- Y10T428/1383—Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- This invention relates to improvements in blow-molded plastic containers, and more particularly to preforms and containers having multilayer transparent sidewalls including a homopolymer blend or copolymer of polyethylene naphthalate (PEN) for enhanced thermal and barrier properties, and one or more additional layers able to withstand the high orientation temperature and planar stretch ratios of PEN while maintaining container transparency.
- PEN polyethylene naphthalate
- the container is particularly useful as a refillable and/or hot-fillable beverage container.
- PET polyethylene terephthalate
- CSS carbonated soft drink
- Refillable bottles reduce the existing landfill and recycle problems associated with disposable plastic beverage bottles.
- a refillable bottle provides a safer, lighter-weight plastic container in those markets, currently dominated by glass, where legislation prohibits use of non-returnable packages.
- the goal is to produce a refillable bottle having the necessary physical characteristics to withstand numerous refill cycles, while being economical to produce.
- a refillable plastic bottle must maintain its functional and aesthetic characteristics over a minimum of 10 and preferably 20 cycles or loops to be economically feasible.
- a cycle (illustrated in FIG. 3) is generally comprised of (1) an empty hot caustic wash, (2) contaminant inspection (before and/or after wash) and product filling/capping, (3) warehouse storage, (4) distribution to wholesale and retail locations and (5) purchase, use and empty storage by the consumer, followed by eventual return to the bottler.
- Refillable containers must fulfill several key performance criteria in order to achieve commercial viability, including:
- PET refillable CSD container A commercially successful PET refillable CSD container is presently being distributed by The Coca-Cola Company in Europe (hereinafter "the prior art CSD container”).
- This container is formed of a single layer of a polyethylene terephthalate (PET) copolymer, with 3-5% comonomer such as 1,4-cyclohexanedimethanol (CHDM) or isophthalic acid (IPA).
- PET polyethylene terephthalate
- CHDM 1,4-cyclohexanedimethanol
- IPA isophthalic acid
- the preform, from which this bottle is stretch blow molded has a sidewall thickness on the order of 5-7 mm, or about 2-2.5 times that of a preform for a disposable one-way bottle.
- This provides a greater average bottle sidewall thickness (i.e., 0.5-0.7 mm) required for abuse resistance and dimensional stability, based on a planar stretch ratio of about 10:1.
- the average crystallinity in the panel is about 15-20%.
- the high copolymer content prevents visual crystallization, i.e., haze, from forming in the preform during injection molding. Preform haze is undesirable because it produces bottle haze which hinders the visual on-line inspection required of commercial refill containers.
- Various aspects of this prior art container are described in Continental PET Technology's U.S. Pat. Nos. 4,725,464, 4,755,404, 5,066,528 and 5,198,248.
- the prior art CSD container has a demonstrated field viability in excess of 20 refill trips at caustic wash temperatures of up to 60° C.
- caustic wash temperatures of up to 60° C.
- an improved container that permits an increase in wash temperature of greater than 60° C., along with a reduction in product flavor carryover. The latter occurs when flavor ingredients from a first product (e.g., root beer) migrate into the bottle sidewall and subsequently permeate into a second product (e.g., club soda) on a later fill cycle, thus influencing the taste of the second product.
- An increase in wash temperature may also be desirable in order to increase the effectiveness and/or reduce the time of the caustic wash, and may be required with certain food products such as juice or milk.
- the above-identified "Related Applications,” namely U.S. Ser. Nos. 07/909,961 and 08/082,171, describe an improved refillable container having a higher caustic wash temperature (above 60° C.) and reduced product flavor carryover for a lifetime of 20 refill trips.
- the improved container is blow molded from a multilayer preform, having an interior layer of a first relatively high copolymer polyester and an exterior layer of a second polyester with relatively less copolymer and a crystallization rate at least 20% higher than the first polyester.
- the high copolymer prevents crystallization (haze) in the interior core layer during injection blow molding (which core layer cools more slowly), in order to preserve overall container clarity and flexibility.
- the exterior (inner and outer) layers are made from a homopolymer or low copolymer polyester which has a higher rate of strain-induced crystallization and thus provides enhanced resistance to caustic cracking and reduced flavor carryover at the surface of the blown container.
- the subject matter of these two applications is hereby incorporated by reference in their entirety.
- PEN Polyethylene naphthalate
- PET Polyethylene naphthalate
- PEN has a desirable oxygen barrier capability--about five times that of PET, and a higher heat stability temperature--about 250° F. (120° C.) compared to about 175° F. (80° C.) for PET. These properties would be useful in containers for oxygen-sensitive products (e.g., food or cosmetics) and/or containers subjected to high temperatures (e.g., refill or hot-fill containers).
- PEN is substantially more expensive than PET and has different processing requirements such that PEN has not been successfully used in a commercial blow-molded beverage container.
- a preform and container are provided, and methods of making the same, wherein the preform and container include at least one layer of a first polymer including polyethylene naphthalate (PEN) for enhanced barrier properties and/or thermal resistance.
- the first polymer is a homopolymer, copolymer, or blend of PEN.
- the PEN is provided in a multilayer structure in which the other polymer layer (or layers) can be processed, and specifically blow molded, at the temperatures and stretch ratios required for enhancing the physical properties of PEN by strain orientation and crystallization.
- the at least one layer of first polymer may be an exterior or an interior layer.
- Providing PEN at the exterior layer enhances thermal resistance and reduces flavor carryover.
- providing PEN at the interior layer also improves the thermal resistance and avoids contact of the product with PEN if such contact is to be avoided.
- the container sidewall includes inner and outer (exterior) layers of a strain-hardened high-PEN copolymer or blend, containing on the order of 80-100% PEN and 0-20% PET by total weight of the layer, and an interior core layer of a non-strain-hardenable polyester, such as PETG.
- PETG is a copolymer of polyethylene terephthalate (PET) with on the order 30% cyclohexane dimethanol (CHDM).
- the core layer may be a blend of PEN/PETG.
- PEN is provided at the surface (exterior layers) for enhanced performance, including increased resistance to oxygen penetration and good physical properties, i.e., high-impact strength, pressure resistance, stress crack resistance, low product flavor carryover and thermal stability.
- the PETG layer is substantially non-crystallizable and can be stretched at the orientation temperature and optimum area stretch ratios for the exterior high-PEN layers.
- PETG will adhere to the high-PEN layers and will not delaminate in the expanded container.
- the core PETG layer provides the necessary wall thickness for overall package stiffness and rigidity, at a reduced cost compared to PEN.
- a refillable carbonated beverage container may have a substantially transparent multilayer sidewall with inner and outer layers of on the order of 90% PEN/10% PET by total weight of the layer, and a core layer of PETG, and wherein the relative wall thicknesses of the inner:core:outer layers are on the order of 25:50:25.
- PET homopolymer could not be used as the core layer because its orientation temperature is much lower than PEN's orientation temperature--e.g., PEN has a minimum orientation temperature on the order of 260° F. (127° C.), based on a glass transition temperature on the order of 255° F. (123° C.). At these temperatures, PET homopolymer would begin to crystallize and no longer undergo strain hardening (orientation), and the resulting container would be opaque and have insufficient strength. In contrast, PETG is substantially non-crystallizable and can be stretched at the orientation temperature of PEN and at the optimum area stretch ratios for PEN, i.e., on the order of 15-20:1.
- the container sidewall includes inner and outer layers of strain-hardened low-PEN copolymer or blend including on the order of 1-20% PEN and 80-99% PET by total weight of the layer, and an interior core layer of strain-hardened polyester such as PET.
- an acceptable match of orientation temperature and stretch ratios can be achieved for the strain-hardened low-PEN inner and outer layers and the strain-hardened core PET layer.
- a hot-fill container having a transparent sidewall includes inner and outer layers of on the order of 10% PEN/90% PET, and a core layer of low copolymer PET, and wherein the thickness ratio for the inner:core:outer layers is on the order of 30:40:30.
- the low copolymer PET may have up to on the order of 10% copolymer by total weight of the copolymer, and more preferably on the order of 0-2%.
- This embodiment provides a good balance between the enhanced physical properties of PEN (at the surface) vs. the increased cost and processing requirements of PEN.
- the container sidewall includes inner and outer layers of substantially amorphous PEN copolymers or blends containing on the order of 20-80% PEN and 80-20% of another polyester such as PET, and a strain-hardened interior core layer of polyester such as PET.
- a refillable carbonated beverage container may have inner and outer layers of on the order of 50% PEN/50% PET by total weight of the layer, and a core layer of low copolymer PET, and wherein the thickness ratio of the inner:core:outer layers is on the order of 30:40:30.
- a hot-fill container sidewall of the same materials has a thickness ratio of inner:core:outer layers of on the order of 15:70:15.
- the PET core layer will strain-harden to control material distribution during blow molding.
- FIG. 1 is a schematic elevational and partially broken-away view of a refillable 1.5 liter carbonated beverage bottle according to one embodiment of this invention
- FIG. 2 is an enlarged fragmentary view taken along the section line 2--2 of FIG. 1, showing more specifically exterior (inner and outer) layers of PEN and an interior (core) layer of a second polymer;
- FIG. 3 is a schematic illustration showing a typical cycle or loop through which a refillable container must pass;
- FIG. 4 is a schematic sectional view taken through an injection mold cavity suitable for making a multilayer preform in accordance with this invention
- FIG. 5 is an enlarged fragmentary view of the bottom of the mold cavity of FIG. 4, showing a quantity of PEN being injected and the cooling upon contact with the mold wall surfaces to form the exterior (inner and outer) layers of the preform;
- FIG. 6 is an enlarged fragmentary view similar to FIG. 5, showing a quantity of second polymer being injected to form the interior (core) layer and the tunnel flow of both PEN and second polymer to form the multilayer preform;
- FIG. 7 is an enlarged sectional view of the resulting multilayer preform of this invention.
- FIG. 8 is an enlarged fragmentary view showing in cross section the base of a container made from the preform of FIG. 7;
- FIG. 9 is a fragmentary sectional view of an alternative preform embodiment, having a third injection of PEN which displaces the second polymer in a central portion of the base-forming section;
- FIG. 10 is an enlarged fragmentary view showing in cross section the base of a container made from the preform of FIG. 9.
- FIG. 1 shows a 1.5 liter refillable carbonated beverage bottle which comprises one embodiment of the present invention.
- the bottle 10 is a unitary expanded plastic preform container having a substantially transparent multilayer sidewall, and is made from the multilayer preform of FIG. 7.
- the container body has an open top end with a small-diameter neck finish 12 with external screw threads for receiving a screw-on cap (not shown), and a closed bottom end or base 18. Between the neck finish 12 and base 18 is a substantially vertically-disposed sidewall 15 (defined by vertical axis or centerline CL of the bottle), including an upper tapered shoulder portion 14 and a substantially cylindrical panel portion 16.
- the base 18 is a thickened champagne style base with a thickened central gate portion 20 and, moving radially outwardly toward the sidewall, an outwardly concave dome 22, an inwardly concave chime 24, and a radially increasing and arcuate outer base portion 26 for a smooth transition to the sidewall panel 16.
- the chime 24 is a substantially toroidal-shaped area around a standing ring on which the bottle rests; the chime is relatively thick to resist stress cracking.
- the dome and chime form a thickened base portion, which is about 3-4 ⁇ the thickness of the panel 16. Above the chime there is a thinner outer base portion 26 of about 50-70% the thickness of the thickened base portion, and increasing in orientation up to its junction with the sidewall.
- the thinner outer base portion 26 provides improved impact resistance.
- FIG. 2 shows in cross section the panel portion 16 having exterior (inner and outer) PEN layers 32 and 34, and an interior (core) layer 30 of a second polymer.
- the second polymer is a substantially noncrystallizable high copolymer PET, known as PETG, or a blend of PETG and PEN.
- the panel core layer 30 is about 0.0093 inches (0.24 mm) thick and the panel inner and outer layers 32 and 34 are each about 0.0047 inches (0.12 mm) thick.
- the shoulder 14 and base 18 are stretched less and therefore are thicker and less oriented than the panel 16.
- the container is about 13.2 inches (335 mm) in height and about 3.6 inches (92 mm) in (widest) diameter.
- FIG. 7 A preform for making the container of FIG. 1 is shown in FIG. 7.
- the preform 110 has a panel-forming section 116 with a wall thickness of about 0.280 inches (7 mm), including a preform core layer 130 about 0.140 inches (3.5 mm) thick, and inner and outer layers 132 and 134 each about 0.070 inches (1.8 mm) thick.
- the container panel 16 is stretched at an average planar stretch ratio of about 15:1.
- the planar stretch ratio is the ratio of the average thickness of the preform panel-forming portion 116 to the average thickness of the container panel 16, wherein the "average" is taken along the length of the respective preform or container portion.
- a preferred planar stretch ratio is about 12-20:1, and more preferably about 15-20:1.
- the hoop stretch is preferably about 6-7 ⁇ and the axial stretch about 3-4 ⁇ . This produces a container panel with the desired abuse resistance, and a preform sidewall with the desired visual transparency.
- the specific panel thickness and stretch ratio selected depend on the dimensions of the bottle, the internal pressure (e.g., 2 atm for beer, 4 atm for soft drinks), and the processing characteristics (as determined for example, by the intrinsic viscosity) of the particular materials employed.
- PEN Polyethylene naphthalate
- NDC dimethyl 2,6-naphthalene dicarboxylate
- the PEN polymer comprises repeating units of ethylene 2,6 naphthalate of the formula: ##STR1##
- PEN resin is available having an inherent viscosity of 0.67 dL/g and a molecular weight of about 20,000 from Amoco Chemical Company, Chicago, Ill.
- PEN has a glass transition temperature T g of about 123° C., and a melting temperature T m of about 267° C.
- PET Polythelene terephthalate
- the PET homopolymer comprises repeating units of ethylene terephthalate of the formula: ##STR2## PET homopolymer has a T g of about 73° C. and a T m of about 253° C.
- the comonomer is most effective if it forms part of the backbone, but it may also form a branched copolymer.
- Another suitable high copolymer PET includes a high level of isophthalic acid (IPA) to render the polymer substantially non-crystal lizable and amorphous.
- IPA isophthalic acid
- An alternative embodiment contemplates the use of a blend of PEN and PET.
- a blend of PEN/PETG in a weight ratio of 25:75 can be prepared by melt blending the two polymers.
- a core layer of PEN/PETG blend in the multilayer would be expected to provide even higher thermal and barrier properties and even greater layer compatibility, than a core of PETG.
- the similar chemical structure of (and or hydrogen bonding between) PEN, PET, and other polyesters provides the necessary melt compatibility and layer adhesion.
- the PEN can be blended or copolymerized with a homopolymer or low copolymer of PET.
- a low-level PEN copolymer or blend would have up to on the order of 10% by weight of PEN, and the remainder another polyester, such as PET homopolymer or copolymer.
- PET copolymers it is meant the commercially available bottle grade PET copolymers with up to on the order of 10% by weight, and typically up to on the order of 5%, of other monomers, i.e., isophthalic acid (IPA), cyclohexane dimethanol (CHDM), or diethylene glycol.
- IPA isophthalic acid
- CHDM cyclohexane dimethanol
- diethylene glycol diethylene glycol
- the intrinsic viscosity effects the processability of the polyester resins.
- Polyethylene terephthalate having an intrinsic viscosity of about 0.8 is widely used in the CSD industry. Resins for various applications may range from about 0.55 to about 1.04, and more particularly from about 0.65 to 0.85.
- Intrinsic viscosity measurements are made according to the procedure of ASTM D-2857, by employing 0.0050 ⁇ 0.0002 g/ml of the polymer in a solvent comprising o-chlorophenol (melting point 0° C.), respectively, at 30° C.
- Intrinsic viscosity (I.V.) is given by the following formula:
- V Sol . is the viscosity of the solvent in the same units.
- C is the concentration in grams of polymer per 100 mls of solution.
- the blown container should be substantially transparent.
- One measure of transparency is the percent haze for transmitted light through the wall (H T ) which is given by the following formula:
- Y d is the diffuse light transmitted by the specimen
- Y s is the specular light transmitted by the specimen.
- the diffuse and specular light transmission values are measured in accordance with ASTM Method D 1003, using any standard color difference meter such as model D25D3P manufactured by Hunterlab, Inc.
- the refill container of this invention should have a percent haze (through the panel wall) of less than about 10%, and more preferably less than about 5%.
- ds sample density in g/cm 3
- da density of an amorphous film of zero percent crystallinity
- dc density of the crystal calculated from unit cell parameters.
- the panel portion 16 of the container is stretched the greatest and preferably has an average percent crystallinity of at least about 15%, and more preferably at least about 20%. A 15-25% crystallinity range is useful in refill and hot-fill applications.
- Crystallinity can be achieved by heat setting to provide a combination of strain-induced and thermal-induced crystallization.
- Thermal-induced crystallinity is achieved at low temperatures to preserve transparency, e.g., holding the container in contact with the blow mold. In some applications, a high level of crystallinity at the surface of the sidewall alone is sufficient.
- Each container is subjected to a typical commercial caustic wash solution prepared with 3.5% sodium hydroxide by weight and tap water.
- the wash solution is maintained at a designated wash temperature, e.g., 60° C.
- the bottles are submerged uncapped in the wash for 15 minutes to simulate the time/temperature conditions of a commercial bottle wash system.
- the bottles are rinsed in tap water and then filled with a carbonated water solution at 4.0 ⁇ 0.2 atmospheres (to simulate the pressure in a carbonated soft drink container), capped and placed in a 38° C. convection oven at 50% relative humidity for 24 hours.
- This elevated oven temperature is selected to simulate longer commercial storage periods at lower ambient temperatures.
- the containers emptied and again subjected to the same refill cycle, until failure.
- a failure is defined as any crack propagating through the bottle wall which results in leakage and pressure loss.
- Volume change is determined by comparing the volume of liquid the container will hold at room temperature, both before and after each refill cycle.
- the refillable container 10 of this invention can preferably withstand at least 20 refill cycles at a wash temperature of 60° C. without failure, and with no more than about 1.5% volume change after 20 cycles.
- the container also preferably exhibits at least a 20% reduction in product flavor carryover (compared to the prior art CSD bottle) as determined by gas chromatography mass spectrometer measurements.
- valve block 54 There is also associated with the valve block 54 a second material dispenser 66 which includes a dispensing piston 68 and a flow passage 70 exiting therefrom toward the valve block 54.
- the valve block 54 has a radial passage 72 which is axially aligned with and in communication with the passage 70.
- the valve member 52 has a further passage 74 extending generally radially from the passage 62 and so circumferentially spaced from the passage 64 such that when the passage 64 is aligned with the passage 56, the passage 74 is spaced from the passage 72. By rotating the valve member 52, the passage 64 may be moved out of communication with the passage 56 and the passage 74 moved into communication with the passage 72.
- material may be selectively supplied from either the first supply device (injection head) 60 or from the second supply device 66.
- the first supply device 60 delivers PEN for the inner and outer layers.
- the second supply device 66 delivers PETG (or a PEN/PETG blend) for the core layer.
- a preform 110 made as previously described, which includes a PETG core layer 130 and PEN inner and outer layers 132, 134 which are continuous except for a portion of the core material 130 which extends through the outer layer 132 at the gate 120.
- the preform 110 includes an upper neck finish 112, a tapered shoulder-forming section 114 which increases in thickness from top to bottom, a panel-forming section 116 having a uniform wall thickness, and a base-forming section 118.
- Base section 118 includes an upper cylindrical thickened portion 121 of greater thickness than the panel section 116 and which forms a thickened chime in the container base, and a tapering lower portion 119 of reduced thickness for forming the recessed dome of the container.
- a preform having a preferred cross-section for refill applications is described in U.S. Pat. No. 5,066,528 granted Nov. 19, 1991 to Krishnakumar et al., which is hereby incorporated by reference in its entirety.
- the core layer 130 of the panel section 116 is roughly twice the thickness of each of the inner and outer layers 132 and 134, when forming the preferred 1.5 liter bottle previously described.
- FIG. 9 shows an alternative embodiment of preform base-forming section 218, wherein a third resin is injected into at least a central portion 236 of the base-forming section, and preferably into the reduced wall thickness lower base portion 219 which cools more rapidly and is not as susceptible to hazing.
- Portion 236 displaces the core material 230 and preferably is of the same material as the inner and outer layers 232, 234, so that in the coinjection process previously described the nozzle is cleared of the core resin before the next preform is started to avoid injecting any core resin in the inner and outer layers of the next preform.
- a champagne-type container base 250 blown from the preform of FIG. 9 includes a gate portion 252, dome 254, chime 256, and outer base 258.
- the base includes inner and outer layers 262 and 264, respectively, and core layer 260.
- the core layer 260 is displaced at least in part by section 266 across the gate and recess areas.
- the molecular orientation range is typically from about 20 to 65° F. (11 to 36° C.), and more preferably about 30 to 40° F. (17 to 22° C.), above the glass transition temperature.
- Typical amorphous PEN polymer which has a glass transition temperature of about 255° F. (123° C.), generally has a minimum orientation temperature of about 260° F. (127° C.), and a preferred orientation range of about 270-295° F. (132-146° C.).
- the hot injected preform is quenched to room temperature before use and then the preform is reheated to within the orientation temperature range before the expansion step.
- the reheated preform is positioned in a stretch blow assembly wherein a stretch rod is moved into the open end of the preform and extended to draw the preform end against a base of an internal cavity blow mold, thereby axially stretching the preform sidewall, and simultaneously or sequentially a blowing medium is admitted into the interior of the preform through openings in or around the rod to radially stretch the preform outwardly to conform to the inner surface of the mold.
- the extent of stretching can be varied depending on the desired shape and wall thickness of the blown container and is controlled by affixing the relative dimensions of the initial preform and the finished container.
- the hot injected preform is partially quenched and allowed to equilibriate within the orientation temperature range prior to expansion by a suitable blow or combined stretch/blow apparatus similar to that previously described.
- Additional layers or additives may be provided in the multilayer structure for various purposes, such as additional layers of barrier materials (e.g., for moisture, oxygen, carbon dioxide, or light), high thermal stability materials, recycle PET, post-consumer PET, etc. These additional layers may require the use of adhesives between the layers to prevent delamination.
- Recycled PET may be particularly useful as the core layer, where it is out of contact with the product.
- Different base structures may be used, such as a footed base having a substantially hemispherical bottom wall with a plurality of downwardly-extending legs terminating in lowermost supporting feet, and with radiating ribs (which are part of the bottom wall) between the legs.
- the materials, wall thicknesses, preform and bottle contours, and processing techniques may all be varied for a specific end product, while still incorporating the substance of this invention.
- the container may be for other pressurized or unpressurized beverages, such as beer, juice or milk, or for other non-beverage products.
- the use of low-level PEN copolymers or blends in the exterior layers may provide a 5° C. increase in use temperature (i.e., increase in caustic wash temperature from 60° to 65° C., or increase in hot fill temperature from 83° to 88° C.), while providing a "high value" in terms of increased performance vs. cost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Laminated Bodies (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
I.V.=(ln(V.sub.Soln. /V.sub.Sol.))/C
H.sub.T =[Y.sub.d ÷(Y.sub.d +Y.sub.s)]×100
% crystallinity=[(ds-da)/(dc-da)]×100
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/835,444 US5976653A (en) | 1992-07-07 | 1997-04-08 | Multilayer preform and container with polyethylene naphthalate (PEN), and method of forming same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90996192A | 1992-07-07 | 1992-07-07 | |
US8217193A | 1993-06-30 | 1993-06-30 | |
US16557193A | 1993-12-15 | 1993-12-15 | |
US08/349,173 US5628957A (en) | 1992-07-07 | 1994-12-05 | Method of forming multilayer container with polyethylene naphthalalte (pen) |
US08/835,444 US5976653A (en) | 1992-07-07 | 1997-04-08 | Multilayer preform and container with polyethylene naphthalate (PEN), and method of forming same |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16557193A Continuation | 1992-07-07 | 1993-12-15 | |
US08/349,173 Continuation US5628957A (en) | 1992-07-07 | 1994-12-05 | Method of forming multilayer container with polyethylene naphthalalte (pen) |
Publications (1)
Publication Number | Publication Date |
---|---|
US5976653A true US5976653A (en) | 1999-11-02 |
Family
ID=26861501
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/349,173 Expired - Fee Related US5628957A (en) | 1992-07-07 | 1994-12-05 | Method of forming multilayer container with polyethylene naphthalalte (pen) |
US08/835,444 Expired - Fee Related US5976653A (en) | 1992-07-07 | 1997-04-08 | Multilayer preform and container with polyethylene naphthalate (PEN), and method of forming same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/349,173 Expired - Fee Related US5628957A (en) | 1992-07-07 | 1994-12-05 | Method of forming multilayer container with polyethylene naphthalalte (pen) |
Country Status (11)
Country | Link |
---|---|
US (2) | US5628957A (en) |
EP (1) | EP0734316B2 (en) |
CN (1) | CN1064585C (en) |
AT (1) | ATE184834T1 (en) |
AU (1) | AU690193B2 (en) |
CA (1) | CA2179174C (en) |
DE (1) | DE69420861T3 (en) |
MY (1) | MY114376A (en) |
NZ (1) | NZ278214A (en) |
SG (1) | SG47925A1 (en) |
WO (1) | WO1995016554A1 (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1190950A1 (en) * | 2000-09-25 | 2002-03-27 | L'oreal | Package having improved axial stiffness and break resistance |
FR2814435A1 (en) * | 2000-09-25 | 2002-03-29 | Oreal | IMPROVED AXIAL RIGIDITY AND CASE-RESISTANCE PACKAGING ARTICLE |
US6383585B2 (en) * | 1998-03-25 | 2002-05-07 | Mitsubishi Polyester Film Gmbh | Sealable polyester film with high oxygen barrier, its use and process for its production |
US6428882B1 (en) * | 1997-05-14 | 2002-08-06 | Mitsubishi Polyester Film Gmbh | Biaxially oriented polyester film with high oxygen barrier, its use, and process for its production |
US6543208B1 (en) * | 1999-09-10 | 2003-04-08 | Ishida Co., Ltd. | Food-packaging bag, method of food packaging, and use of laminated film as food-packaging bag |
US6551675B2 (en) | 2001-05-14 | 2003-04-22 | Nan Ya Plastics Corporation | Manufacturing method of a copolyester containing ethylene naphthalate unit (EN) and its application |
US6589619B1 (en) * | 1994-08-11 | 2003-07-08 | Kirin Beer Kabushiki Kaisha | Recycling method |
EP1132308A3 (en) * | 2000-02-24 | 2003-12-03 | Rexam Aktiebolag | Plastic container having improved haze resistance and a method of reducing haze in plastic containers |
US6663929B1 (en) * | 1997-12-19 | 2003-12-16 | Toyo Boseki Kabushiki Kaisha | Labels and bottles fitted with them |
US20040091651A1 (en) * | 2002-11-01 | 2004-05-13 | Mark Rule | Pet copolymer composition with enhanced mechanical properties and stretch ratio, articles made therewith, and methods |
US20040211746A1 (en) * | 2001-04-19 | 2004-10-28 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US20050100696A1 (en) * | 2003-06-18 | 2005-05-12 | Yu Shi | Polyester composition for hot fill applications, containers made therewith, and methods |
US20050221036A1 (en) * | 2004-04-01 | 2005-10-06 | The Coca-Cola Company | Polyester composition with enhanced gas barrier, articles made therewith, and methods |
US20050260371A1 (en) * | 2002-11-01 | 2005-11-24 | Yu Shi | Preform for low natural stretch ratio polymer, container made therewith and methods |
US20060257602A1 (en) * | 2005-05-11 | 2006-11-16 | Yu Shi | Low IV pet based copolymer preform with enhanced mechanical properties and cycle time, container made therewith and methods |
US20060257603A1 (en) * | 2005-05-11 | 2006-11-16 | Yu Shi | Preforms for preparing lightweight stretch blow molded pet copolymer containers and methods for making and using same |
US20070084821A1 (en) * | 2005-10-14 | 2007-04-19 | Graham Packaging Company, L.P. | Repositionable base structure for a container |
US20080190924A1 (en) * | 2007-02-13 | 2008-08-14 | Sherwood Services, Ag | Medical sharps container |
US7574846B2 (en) | 2004-03-11 | 2009-08-18 | Graham Packaging Company, L.P. | Process and device for conveying odd-shaped containers |
US7726106B2 (en) | 2003-07-30 | 2010-06-01 | Graham Packaging Co | Container handling system |
US7799264B2 (en) | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US7926243B2 (en) | 2009-01-06 | 2011-04-19 | Graham Packaging Company, L.P. | Method and system for handling containers |
US8017065B2 (en) | 2006-04-07 | 2011-09-13 | Graham Packaging Company L.P. | System and method for forming a container having a grip region |
US8075833B2 (en) | 2005-04-15 | 2011-12-13 | Graham Packaging Company L.P. | Method and apparatus for manufacturing blow molded containers |
US8127955B2 (en) | 2000-08-31 | 2012-03-06 | John Denner | Container structure for removal of vacuum pressure |
US8152010B2 (en) | 2002-09-30 | 2012-04-10 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US8381940B2 (en) | 2002-09-30 | 2013-02-26 | Co2 Pac Limited | Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container |
US8584879B2 (en) | 2000-08-31 | 2013-11-19 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US8627944B2 (en) | 2008-07-23 | 2014-01-14 | Graham Packaging Company L.P. | System, apparatus, and method for conveying a plurality of containers |
US8636944B2 (en) | 2008-12-08 | 2014-01-28 | Graham Packaging Company L.P. | Method of making plastic container having a deep-inset base |
US8747727B2 (en) | 2006-04-07 | 2014-06-10 | Graham Packaging Company L.P. | Method of forming container |
US8772419B2 (en) | 2011-12-13 | 2014-07-08 | Industrial Technology Research Institute | Polyester films with low thermal expansion and methods for manufacturing the same |
US8919587B2 (en) | 2011-10-03 | 2014-12-30 | Graham Packaging Company, L.P. | Plastic container with angular vacuum panel and method of same |
US8962114B2 (en) | 2010-10-30 | 2015-02-24 | Graham Packaging Company, L.P. | Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof |
US9022776B2 (en) | 2013-03-15 | 2015-05-05 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
US9074092B2 (en) | 2010-12-20 | 2015-07-07 | Eastman Chemical Company | Miscible polyester blends utilizing recycled polyesters |
US9133006B2 (en) | 2010-10-31 | 2015-09-15 | Graham Packaging Company, L.P. | Systems, methods, and apparatuses for cooling hot-filled containers |
US9150320B2 (en) | 2011-08-15 | 2015-10-06 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
US9211993B2 (en) | 2011-03-01 | 2015-12-15 | Advanced Technology Materials, Inc. | Nested blow molded liner and overpack and methods of making same |
US20160121478A1 (en) * | 2014-11-03 | 2016-05-05 | All About Packaging Inc. | Magnet sandwiching storage tray |
US9387971B2 (en) | 2000-08-31 | 2016-07-12 | C02Pac Limited | Plastic container having a deep-set invertible base and related methods |
US9522773B2 (en) | 2009-07-09 | 2016-12-20 | Entegris, Inc. | Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners |
US9637300B2 (en) | 2010-11-23 | 2017-05-02 | Entegris, Inc. | Liner-based dispenser |
US9707711B2 (en) | 2006-04-07 | 2017-07-18 | Graham Packaging Company, L.P. | Container having outwardly blown, invertible deep-set grips |
US9969517B2 (en) | 2002-09-30 | 2018-05-15 | Co2Pac Limited | Systems and methods for handling plastic containers having a deep-set invertible base |
US9993959B2 (en) | 2013-03-15 | 2018-06-12 | Graham Packaging Company, L.P. | Deep grip mechanism for blow mold and related methods and bottles |
US9994378B2 (en) | 2011-08-15 | 2018-06-12 | Graham Packaging Company, L.P. | Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof |
US10246238B2 (en) | 2000-08-31 | 2019-04-02 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US20200171727A1 (en) * | 2017-06-23 | 2020-06-04 | Husky Injection Molding Systems Ltd. | Molded article with selectively varied core layer geometry and hot runner nozzles for producing same |
US10836552B2 (en) | 2007-02-09 | 2020-11-17 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11261292B2 (en) | 2018-09-06 | 2022-03-01 | Alpek Polyester, S.A. De C.V. | Pet composition, pet preform, refillable pet bottle and methods for making the same |
US20220204230A1 (en) * | 2020-04-22 | 2022-06-30 | Sidel Participations | Preform and container with variable transmittances |
US11565867B2 (en) | 2000-08-31 | 2023-01-31 | C02Pac Limited | Method of handling a plastic container having a moveable base |
US11607833B2 (en) | 2019-11-04 | 2023-03-21 | Ring Container Technologies, Llc | Container and method of manufacture |
US11731823B2 (en) | 2007-02-09 | 2023-08-22 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11897656B2 (en) | 2007-02-09 | 2024-02-13 | Co2Pac Limited | Plastic container having a movable base |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR002773A1 (en) | 1995-07-07 | 1998-04-29 | Continental Pet Technologies | METHOD FOR INJECTION MOLDING OF A PLASTIC ARTICLE AND APPARATUS TO CARRY IT OUT. |
US6217818B1 (en) * | 1995-07-07 | 2001-04-17 | Continental Pet Technologies, Inc. | Method of making preform and container with crystallized neck finish |
US5972445A (en) * | 1996-01-17 | 1999-10-26 | Mitsubishi Chemical Corporation | Multilayer polyester sheet |
US6485804B1 (en) | 1996-02-21 | 2002-11-26 | Mitsui Petrochemical Industries, Ltd. | Polyester compositions and laminates and processes for producing biaxially stretched polyester bottles |
US5804016A (en) * | 1996-03-07 | 1998-09-08 | Continental Pet Technologies, Inc. | Multilayer container resistant to elevated temperatures and pressures, and method of making the same |
US6068900A (en) * | 1996-07-05 | 2000-05-30 | Wella Ag | Plastic container having a high resistance to chemical attack and method of making same |
US6395865B2 (en) | 1997-12-05 | 2002-05-28 | Continental Pet Technologies Inc | Process for making pen/pet blends and transparent articles therefrom |
US5902539A (en) * | 1996-12-06 | 1999-05-11 | Continental Pet Technologies, Inc. | Process for making PEN/PET blends and transparent articles therefrom |
DE19720506A1 (en) * | 1997-05-15 | 1998-11-19 | Hoechst Diafoil Gmbh | Transparent polyester film with high oxygen barrier, process for its production and its use |
US6312641B1 (en) | 1997-10-17 | 2001-11-06 | Plastic Fabrication Technologies Llc | Method of making containers and preforms incorporating barrier materials |
TWI250934B (en) * | 1997-10-17 | 2006-03-11 | Advancsd Plastics Technologies | Barrier-coated polyester articles and the fabrication method thereof |
US6352426B1 (en) | 1998-03-19 | 2002-03-05 | Advanced Plastics Technologies, Ltd. | Mold for injection molding multilayer preforms |
US6268026B1 (en) | 1997-10-20 | 2001-07-31 | Hoechst Celanese Corporation | Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-liquid crystalline polyester and method for forming same |
US6312772B1 (en) | 1997-10-20 | 2001-11-06 | Hoechst Celanese Corporation | Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-polyester thermoplastic polymer |
US6426128B1 (en) | 1998-01-06 | 2002-07-30 | Hna Holdings, Inc. | Co-processable multi-layer laminates for forming high strength, haze-free, transparent articles and methods of producing same |
DE19813265A1 (en) * | 1998-03-25 | 1999-09-30 | Hoechst Diafoil Gmbh | At least three-layer polyester film with a PEN-containing cover layer, process for its production and its use as APS film (Advanced Photo System) |
GB9811175D0 (en) * | 1998-05-22 | 1998-07-22 | Okhai A A | Barrier coatings and methods for manufacturing the same |
US6109006A (en) * | 1998-07-14 | 2000-08-29 | Advanced Plastics Technologies, Ltd. | Process for making extruded pet containers |
US6749785B2 (en) | 1998-09-01 | 2004-06-15 | E. I. Du Pont De Nemours And Company | Multilayer structures of poly(1,3-propylene 2,6 napthalate) and poly (ethylene terephthalate) |
US6655945B1 (en) | 1999-03-18 | 2003-12-02 | Mold Masters Limited | Apparatus and method for multi-layer injection molding |
US6440350B1 (en) | 1999-03-18 | 2002-08-27 | Mold-Masters Limited | Apparatus and method for multi-layer injection molding |
US6398537B2 (en) | 1999-04-02 | 2002-06-04 | Mold-Masters Limited | Shuttle system for an apparatus for injection molding |
US6196826B1 (en) | 1999-05-28 | 2001-03-06 | Mold-Masters Limited | Seepage system for an injection molding apparatus |
US7083644B1 (en) | 2000-05-24 | 2006-08-01 | Scimed Life Systems, Inc. | Implantable prostheses with improved mechanical and chemical properties |
MXPA03001867A (en) * | 2000-09-05 | 2003-06-24 | Advanced Plastics Technologies | CONTAINERS AND PREFORMS OF MULTIPLE LAYERS THAT HAVE BARRIER PROPERTIES USING RECYCLED MATERIAL. |
DE10144892B4 (en) | 2001-09-12 | 2005-09-08 | Disetronic Licensing Ag | Multilayer plastic body |
MXPA05004888A (en) * | 2002-11-08 | 2005-08-18 | Advanced Plastics Technologies | Injection mold having a wear resistant portion and a high heat transfer portion and a method for forming a preform. |
EP1504999A1 (en) * | 2003-08-05 | 2005-02-09 | Amcor Limited | Rigid plastic container having gas-barrier properties and high transparency |
DE10349753A1 (en) * | 2003-10-24 | 2005-06-02 | Sig Technology Ltd. | Small blow molded thermoplastic container for fluids has specified wall thickness and axial and radial stretch ratios |
US20050136201A1 (en) * | 2003-12-22 | 2005-06-23 | Pepsico, Inc. | Method of improving the environmental stretch crack resistance of RPET without solid stating |
US20050198930A1 (en) * | 2004-03-10 | 2005-09-15 | Mitsuo Higuchi | Distribution system of pet bottle for drinking water and beverage |
CA2562073C (en) | 2004-04-16 | 2014-07-08 | Advanced Plastics Technologies Luxembourg S.A. | Mono and multi-layer articles and infection molding methods of making the same |
US7157139B2 (en) * | 2004-04-19 | 2007-01-02 | Grant W. Doney | Polymer manufacturing process |
CA2569639A1 (en) * | 2004-06-10 | 2005-12-29 | Advanced Plastics Technologies Luxembourg S.A. | Methods and systems for cooling molds |
US20060032568A1 (en) * | 2004-08-11 | 2006-02-16 | Annette Lechtenboehmer | Tire with oxygen scavenging barrier |
US7462684B2 (en) | 2005-03-02 | 2008-12-09 | Eastman Chemical Company | Preparation of transparent, multilayered articles containing polyesters comprising a cyclobutanediol and homogeneous polyamide blends |
US7786252B2 (en) | 2005-03-02 | 2010-08-31 | Eastman Chemical Company | Preparation of transparent multilayered articles |
US7955533B2 (en) | 2005-03-02 | 2011-06-07 | Eastman Chemical Company | Process for the preparation of transparent shaped articles |
CN100585510C (en) * | 2005-08-02 | 2010-01-27 | 株式会社普利司通 | Conductive endless belt and image forming apparatus making use of the same |
CA2617591C (en) | 2005-08-30 | 2013-10-22 | Advanced Plastics Technologies Luxembourg S.A. | Methods and systems for controlling mold temperatures |
US20070232763A1 (en) * | 2006-01-30 | 2007-10-04 | Futura Polyesters Limited | Naphthalate based polyester resin compositions |
CN101172525B (en) * | 2006-11-01 | 2011-05-04 | 徐跃 | High-performance double-layer polyester bottle |
US8476364B2 (en) * | 2007-03-29 | 2013-07-02 | Beaulieu Group, Llc | Polymer manufacturing process |
US20090035502A1 (en) | 2007-07-31 | 2009-02-05 | Kulkarni Sanjay Tammaji | Polymeric composition suitable for manufacturing pasteurizable containers |
WO2009079724A2 (en) | 2007-11-09 | 2009-07-02 | Resilux | Preform and container for contaminable products and method for the manufacturing thereof |
EP2065184B1 (en) * | 2007-11-27 | 2015-08-26 | La Seda De Barcelona S.A. | Transparent multilayer injection-moulded container having a fluoropolymer barrier layer |
JP4691205B1 (en) | 2010-09-03 | 2011-06-01 | 日東電工株式会社 | Method for producing optical film laminate including thin high-performance polarizing film |
EP2711152B1 (en) * | 2013-02-06 | 2015-05-13 | Sidel Participations | Method for blow molding a hot-fill container with increased stretch ratios |
KR20160024840A (en) * | 2013-06-28 | 2016-03-07 | 다이니폰 인사츠 가부시키가이샤 | Blow molding method, composite preform, composite container, inside label member, and plastic-made member |
CN103407257B (en) * | 2013-08-16 | 2016-08-10 | 汕头可逸塑胶有限公司 | High barrier BOPET packing film and production method thereof |
US9821505B2 (en) | 2015-02-27 | 2017-11-21 | Dr Pepper/Seven Up, Inc. | High stretch ratio preforms and related containers and methods |
EP3439842B1 (en) * | 2016-04-06 | 2021-03-24 | Amcor Rigid Plastics USA, LLC | Multi-layer preform and container |
ITUA20163502A1 (en) * | 2016-05-17 | 2017-11-17 | P E T Eng S R L | PROCEDURE FOR THE CONSTRUCTION OF A BOTTLE IN POLYMERIC MATERIAL |
EP3470195A1 (en) | 2017-10-12 | 2019-04-17 | The Procter & Gamble Company | Blow molded article with visual effects |
WO2019117895A1 (en) | 2017-12-13 | 2019-06-20 | Amcor Rigid Plastics Usa, Llc | Passive barrier layer placement within carbonated beverage container wall to improve shelf-life |
US11046473B2 (en) | 2018-07-17 | 2021-06-29 | The Procter And Gamble Company | Blow molded article with visual effects |
WO2020081114A1 (en) * | 2018-10-19 | 2020-04-23 | The Procter & Gamble Company | Blow molded article with debossing |
CH715582A1 (en) * | 2018-11-22 | 2020-05-29 | Alpla Werke Alwin Lehner Gmbh & Co Kg | Plastic container with at least partially sharp-edged container geometry and method for producing the plastic container. |
WO2020210589A1 (en) | 2019-04-11 | 2020-10-15 | The Procter & Gamble Company | Blow molded article with visual effects |
EP3722219B1 (en) | 2019-04-12 | 2024-11-27 | Société Anonyme des Eaux Minérales d'Evian et en Abrégé "S.A.E.M.E" | Thin wall container made with a recycled material |
US11975522B2 (en) | 2020-01-08 | 2024-05-07 | The Procter & Gamble Company | Blow molded multilayer article with color gradient |
JP7562963B2 (en) * | 2020-03-10 | 2024-10-08 | 東洋製罐グループホールディングス株式会社 | Multi-layer container |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279553A (en) * | 1985-06-05 | 1986-12-10 | 帝人株式会社 | Polyester multilayer hollow molded shape and manufacture thereof |
JPS6485732A (en) * | 1987-09-28 | 1989-03-30 | Unitika Ltd | Polyethylen naphthalate-based copolymer heat resistant bottle |
EP0368278A2 (en) * | 1988-11-08 | 1990-05-16 | Mitsui Petrochemical Industries, Ltd. | Copolyester, polyester composition containing the copolyester, and polyester laminated structure having layer composed of the copolyester or the polyester composition |
EP0394751A2 (en) * | 1989-04-10 | 1990-10-31 | Mitsui Petrochemical Industries, Ltd. | Cocondensation polyester, process for manufacturing same and uses thereof |
JPH0339250A (en) * | 1989-07-06 | 1991-02-20 | Mitsui Petrochem Ind Ltd | Multilayer bottle, multilayer preform and manufacturing method thereof |
JPH03133640A (en) * | 1989-10-19 | 1991-06-06 | Toyobo Co Ltd | Polyester multi-layer molded form |
US5066613A (en) * | 1989-07-13 | 1991-11-19 | The United States Of America As Represented By The Secretary Of The Navy | Process for making semiconductor-on-insulator device interconnects |
JPH0439024A (en) * | 1990-06-04 | 1992-02-10 | Mitsui Petrochem Ind Ltd | How to make multilayer bottles |
JPH0439025A (en) * | 1990-06-04 | 1992-02-10 | Mitsui Petrochem Ind Ltd | Manufacture of multilayer bottle |
JPH0464440A (en) * | 1990-07-03 | 1992-02-28 | Kao Corp | Multilayer plastic vessel and its manufacture |
JPH04148929A (en) * | 1990-10-12 | 1992-05-21 | Kao Corp | Multilayer plastic container and manufacture thereof |
JPH04197634A (en) * | 1990-11-28 | 1992-07-17 | Kao Corp | Multi-layer plastic vessel and its manufacture |
JPH04239640A (en) * | 1991-01-23 | 1992-08-27 | Teijin Ltd | Food packing container excellent in ultraviolet screening properties |
JPH05116207A (en) * | 1991-03-22 | 1993-05-14 | Mitsui Petrochem Ind Ltd | Refillable bottles and their use |
JPH05212834A (en) * | 1992-02-06 | 1993-08-24 | Toppan Printing Co Ltd | Multilayered plastic structure |
JPH05330535A (en) * | 1992-05-27 | 1993-12-14 | Nissei Asb Mach Co Ltd | Refillable container made of synthetic resin and molding method thereof |
US5804305A (en) * | 1993-09-10 | 1998-09-08 | Plastipak Packaging, Inc. | Multi-layer preform used for plastic blow molding |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989149A (en) * | 1982-11-15 | 1984-05-23 | 三井化学株式会社 | Multilayer vessel |
US5035931A (en) * | 1988-09-12 | 1991-07-30 | Dai Nippon Insatsu K.K. | Multi-layer parison, multi-layer bottle and apparatus for and method of manufacturing parison and bottle |
US5221507A (en) * | 1990-04-24 | 1993-06-22 | Devtech Labs, Inc. | Process for coinjection molding of preforms for multi-layer containers |
US5006613A (en) * | 1990-07-30 | 1991-04-09 | Eastman Kodak Company | Tricomponent polymer blends of poly(ethylene tereptholate), poly(ethylene naphthalate) and a copolyester |
IT1252605B (en) * | 1990-12-24 | 1995-06-19 | Donegani Guido Ist | COPOLIESTERI HAVING AN IMPROVED PROPERTY COMBINATION. |
US5344912A (en) * | 1992-02-03 | 1994-09-06 | Therma-Plate Corporation | Elevated temperature dimensionally stable polyester with low gas permeability |
JP4039024B2 (en) * | 2001-10-09 | 2008-01-30 | ダイキン工業株式会社 | Refrigeration equipment |
JP4039025B2 (en) * | 2001-10-10 | 2008-01-30 | 富士ゼロックス株式会社 | Intermediate transfer device |
-
1994
- 1994-12-05 US US08/349,173 patent/US5628957A/en not_active Expired - Fee Related
- 1994-12-13 CA CA 2179174 patent/CA2179174C/en not_active Expired - Fee Related
- 1994-12-13 AT AT95905924T patent/ATE184834T1/en not_active IP Right Cessation
- 1994-12-13 EP EP19950905924 patent/EP0734316B2/en not_active Expired - Lifetime
- 1994-12-13 DE DE1994620861 patent/DE69420861T3/en not_active Expired - Fee Related
- 1994-12-13 WO PCT/US1994/014350 patent/WO1995016554A1/en active IP Right Grant
- 1994-12-13 AU AU14353/95A patent/AU690193B2/en not_active Ceased
- 1994-12-13 CN CN94194528A patent/CN1064585C/en not_active Expired - Fee Related
- 1994-12-13 NZ NZ278214A patent/NZ278214A/en unknown
- 1994-12-13 SG SG1996005408A patent/SG47925A1/en unknown
- 1994-12-14 MY MYPI94003351A patent/MY114376A/en unknown
-
1997
- 1997-04-08 US US08/835,444 patent/US5976653A/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279553A (en) * | 1985-06-05 | 1986-12-10 | 帝人株式会社 | Polyester multilayer hollow molded shape and manufacture thereof |
JPS6485732A (en) * | 1987-09-28 | 1989-03-30 | Unitika Ltd | Polyethylen naphthalate-based copolymer heat resistant bottle |
EP0368278A2 (en) * | 1988-11-08 | 1990-05-16 | Mitsui Petrochemical Industries, Ltd. | Copolyester, polyester composition containing the copolyester, and polyester laminated structure having layer composed of the copolyester or the polyester composition |
EP0394751A2 (en) * | 1989-04-10 | 1990-10-31 | Mitsui Petrochemical Industries, Ltd. | Cocondensation polyester, process for manufacturing same and uses thereof |
JPH0339250A (en) * | 1989-07-06 | 1991-02-20 | Mitsui Petrochem Ind Ltd | Multilayer bottle, multilayer preform and manufacturing method thereof |
US5066613A (en) * | 1989-07-13 | 1991-11-19 | The United States Of America As Represented By The Secretary Of The Navy | Process for making semiconductor-on-insulator device interconnects |
JPH03133640A (en) * | 1989-10-19 | 1991-06-06 | Toyobo Co Ltd | Polyester multi-layer molded form |
JPH0439025A (en) * | 1990-06-04 | 1992-02-10 | Mitsui Petrochem Ind Ltd | Manufacture of multilayer bottle |
JPH0439024A (en) * | 1990-06-04 | 1992-02-10 | Mitsui Petrochem Ind Ltd | How to make multilayer bottles |
JPH0464440A (en) * | 1990-07-03 | 1992-02-28 | Kao Corp | Multilayer plastic vessel and its manufacture |
JPH04148929A (en) * | 1990-10-12 | 1992-05-21 | Kao Corp | Multilayer plastic container and manufacture thereof |
JPH04197634A (en) * | 1990-11-28 | 1992-07-17 | Kao Corp | Multi-layer plastic vessel and its manufacture |
JPH04239640A (en) * | 1991-01-23 | 1992-08-27 | Teijin Ltd | Food packing container excellent in ultraviolet screening properties |
JPH05116207A (en) * | 1991-03-22 | 1993-05-14 | Mitsui Petrochem Ind Ltd | Refillable bottles and their use |
JPH05212834A (en) * | 1992-02-06 | 1993-08-24 | Toppan Printing Co Ltd | Multilayered plastic structure |
JPH05330535A (en) * | 1992-05-27 | 1993-12-14 | Nissei Asb Mach Co Ltd | Refillable container made of synthetic resin and molding method thereof |
US5804305A (en) * | 1993-09-10 | 1998-09-08 | Plastipak Packaging, Inc. | Multi-layer preform used for plastic blow molding |
Non-Patent Citations (2)
Title |
---|
Research Disclosure, vol. 294, No. 29410, Oct. 1988, New York, NY, USA, pp. 714 719, XP 000068665, Disclosed Anonymously, Poly(Ethylene Naphtalenedicarboxylate)/Poly(Ethylene Terephtalate)Blends . * |
Research Disclosure, vol. 294, No. 29410, Oct. 1988, New York, NY, USA, pp. 714-719, XP 000068665, Disclosed Anonymously, "Poly(Ethylene Naphtalenedicarboxylate)/Poly(Ethylene Terephtalate)Blends". |
Cited By (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6805931B2 (en) | 1994-08-11 | 2004-10-19 | Kirin Beer Kabushiki Kaisha | Plastic container coated with carbon film |
US6589619B1 (en) * | 1994-08-11 | 2003-07-08 | Kirin Beer Kabushiki Kaisha | Recycling method |
US20030207115A1 (en) * | 1994-08-11 | 2003-11-06 | Kirin Beer Kabushiki Kaisha | Plastic container coated with carbon film |
US6428882B1 (en) * | 1997-05-14 | 2002-08-06 | Mitsubishi Polyester Film Gmbh | Biaxially oriented polyester film with high oxygen barrier, its use, and process for its production |
US6663929B1 (en) * | 1997-12-19 | 2003-12-16 | Toyo Boseki Kabushiki Kaisha | Labels and bottles fitted with them |
US6383585B2 (en) * | 1998-03-25 | 2002-05-07 | Mitsubishi Polyester Film Gmbh | Sealable polyester film with high oxygen barrier, its use and process for its production |
US6543208B1 (en) * | 1999-09-10 | 2003-04-08 | Ishida Co., Ltd. | Food-packaging bag, method of food packaging, and use of laminated film as food-packaging bag |
EP1132308A3 (en) * | 2000-02-24 | 2003-12-03 | Rexam Aktiebolag | Plastic container having improved haze resistance and a method of reducing haze in plastic containers |
US9145223B2 (en) | 2000-08-31 | 2015-09-29 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US9387971B2 (en) | 2000-08-31 | 2016-07-12 | C02Pac Limited | Plastic container having a deep-set invertible base and related methods |
US11565867B2 (en) | 2000-08-31 | 2023-01-31 | C02Pac Limited | Method of handling a plastic container having a moveable base |
US10246238B2 (en) | 2000-08-31 | 2019-04-02 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US8584879B2 (en) | 2000-08-31 | 2013-11-19 | Co2Pac Limited | Plastic container having a deep-set invertible base and related methods |
US8127955B2 (en) | 2000-08-31 | 2012-03-06 | John Denner | Container structure for removal of vacuum pressure |
US11565866B2 (en) | 2000-08-31 | 2023-01-31 | C02Pac Limited | Plastic container having a deep-set invertible base and related methods |
FR2814436A1 (en) * | 2000-09-25 | 2002-03-29 | Oreal | IMPROVED AXIAL RIGIDITY AND BOX RESISTANCE PACKAGING ARTICLE |
FR2814435A1 (en) * | 2000-09-25 | 2002-03-29 | Oreal | IMPROVED AXIAL RIGIDITY AND CASE-RESISTANCE PACKAGING ARTICLE |
EP1190950A1 (en) * | 2000-09-25 | 2002-03-27 | L'oreal | Package having improved axial stiffness and break resistance |
US8529975B2 (en) | 2001-04-19 | 2013-09-10 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US8839972B2 (en) | 2001-04-19 | 2014-09-23 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US8381496B2 (en) | 2001-04-19 | 2013-02-26 | Graham Packaging Company Lp | Method of hot-filling a plastic, wide-mouth, blow-molded container having a multi-functional base |
US7543713B2 (en) * | 2001-04-19 | 2009-06-09 | Graham Packaging Company L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US7980404B2 (en) | 2001-04-19 | 2011-07-19 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US9522749B2 (en) | 2001-04-19 | 2016-12-20 | Graham Packaging Company, L.P. | Method of processing a plastic container including a multi-functional base |
US20040211746A1 (en) * | 2001-04-19 | 2004-10-28 | Graham Packaging Company, L.P. | Multi-functional base for a plastic, wide-mouth, blow-molded container |
US6551675B2 (en) | 2001-05-14 | 2003-04-22 | Nan Ya Plastics Corporation | Manufacturing method of a copolyester containing ethylene naphthalate unit (EN) and its application |
US9969517B2 (en) | 2002-09-30 | 2018-05-15 | Co2Pac Limited | Systems and methods for handling plastic containers having a deep-set invertible base |
US11377286B2 (en) | 2002-09-30 | 2022-07-05 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US9878816B2 (en) | 2002-09-30 | 2018-01-30 | Co2 Pac Ltd | Systems for compensating for vacuum pressure changes within a plastic container |
US9624018B2 (en) | 2002-09-30 | 2017-04-18 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US8720163B2 (en) | 2002-09-30 | 2014-05-13 | Co2 Pac Limited | System for processing a pressure reinforced plastic container |
US10315796B2 (en) | 2002-09-30 | 2019-06-11 | Co2 Pac Limited | Pressure reinforced deformable plastic container with hoop rings |
US8381940B2 (en) | 2002-09-30 | 2013-02-26 | Co2 Pac Limited | Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container |
US10351325B2 (en) | 2002-09-30 | 2019-07-16 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US8152010B2 (en) | 2002-09-30 | 2012-04-10 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US9802730B2 (en) | 2002-09-30 | 2017-10-31 | Co2 Pac Limited | Methods of compensating for vacuum pressure changes within a plastic container |
US10273072B2 (en) | 2002-09-30 | 2019-04-30 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US9211968B2 (en) | 2002-09-30 | 2015-12-15 | Co2 Pac Limited | Container structure for removal of vacuum pressure |
US20050118371A1 (en) * | 2002-11-01 | 2005-06-02 | The Coca-Cola Company | PET copolymer composition with enhanced mechanical properties and stretch ratio, articles made therewith, and methods |
US20040091651A1 (en) * | 2002-11-01 | 2004-05-13 | Mark Rule | Pet copolymer composition with enhanced mechanical properties and stretch ratio, articles made therewith, and methods |
US20050260371A1 (en) * | 2002-11-01 | 2005-11-24 | Yu Shi | Preform for low natural stretch ratio polymer, container made therewith and methods |
US20050100696A1 (en) * | 2003-06-18 | 2005-05-12 | Yu Shi | Polyester composition for hot fill applications, containers made therewith, and methods |
US7553441B2 (en) | 2003-06-18 | 2009-06-30 | The Coca-Cola Company | Polyester composition for hot fill applications, containers made therewith, and methods |
US8671653B2 (en) | 2003-07-30 | 2014-03-18 | Graham Packaging Company, L.P. | Container handling system |
US7735304B2 (en) | 2003-07-30 | 2010-06-15 | Graham Packaging Co | Container handling system |
US10501225B2 (en) | 2003-07-30 | 2019-12-10 | Graham Packaging Company, L.P. | Container handling system |
US10661939B2 (en) | 2003-07-30 | 2020-05-26 | Co2Pac Limited | Pressure reinforced plastic container and related method of processing a plastic container |
US9090363B2 (en) | 2003-07-30 | 2015-07-28 | Graham Packaging Company, L.P. | Container handling system |
US7726106B2 (en) | 2003-07-30 | 2010-06-01 | Graham Packaging Co | Container handling system |
US8011166B2 (en) | 2004-03-11 | 2011-09-06 | Graham Packaging Company L.P. | System for conveying odd-shaped containers |
US7574846B2 (en) | 2004-03-11 | 2009-08-18 | Graham Packaging Company, L.P. | Process and device for conveying odd-shaped containers |
US20050221036A1 (en) * | 2004-04-01 | 2005-10-06 | The Coca-Cola Company | Polyester composition with enhanced gas barrier, articles made therewith, and methods |
US8235704B2 (en) | 2005-04-15 | 2012-08-07 | Graham Packaging Company, L.P. | Method and apparatus for manufacturing blow molded containers |
US8075833B2 (en) | 2005-04-15 | 2011-12-13 | Graham Packaging Company L.P. | Method and apparatus for manufacturing blow molded containers |
US20100098894A1 (en) * | 2005-05-11 | 2010-04-22 | The Coca-Cola Company | Preforms for preparing lightweight stretch blow molded pet copolymer containers and methods for making and using same |
US7820257B2 (en) | 2005-05-11 | 2010-10-26 | The Coca-Cola Company | Preforms for preparing lightweight stretch blow molded PET copolymer containers and methods for making and using same |
US8247049B2 (en) | 2005-05-11 | 2012-08-21 | The Coca-Cola Company | Preforms for preparing lightweight stretch blow molded pet copolymer containers and methods for making and using same |
US20060257603A1 (en) * | 2005-05-11 | 2006-11-16 | Yu Shi | Preforms for preparing lightweight stretch blow molded pet copolymer containers and methods for making and using same |
US7572493B2 (en) | 2005-05-11 | 2009-08-11 | The Coca-Cola Company | Low IV pet based copolymer preform with enhanced mechanical properties and cycle time, container made therewith and methods |
US20060257602A1 (en) * | 2005-05-11 | 2006-11-16 | Yu Shi | Low IV pet based copolymer preform with enhanced mechanical properties and cycle time, container made therewith and methods |
US8726616B2 (en) | 2005-10-14 | 2014-05-20 | Graham Packaging Company, L.P. | System and method for handling a container with a vacuum panel in the container body |
US9764873B2 (en) | 2005-10-14 | 2017-09-19 | Graham Packaging Company, L.P. | Repositionable base structure for a container |
US7900425B2 (en) | 2005-10-14 | 2011-03-08 | Graham Packaging Company, L.P. | Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein |
US20070084821A1 (en) * | 2005-10-14 | 2007-04-19 | Graham Packaging Company, L.P. | Repositionable base structure for a container |
US7799264B2 (en) | 2006-03-15 | 2010-09-21 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US8794462B2 (en) | 2006-03-15 | 2014-08-05 | Graham Packaging Company, L.P. | Container and method for blowmolding a base in a partial vacuum pressure reduction setup |
US8747727B2 (en) | 2006-04-07 | 2014-06-10 | Graham Packaging Company L.P. | Method of forming container |
US10118331B2 (en) | 2006-04-07 | 2018-11-06 | Graham Packaging Company, L.P. | System and method for forming a container having a grip region |
US8017065B2 (en) | 2006-04-07 | 2011-09-13 | Graham Packaging Company L.P. | System and method for forming a container having a grip region |
US8162655B2 (en) | 2006-04-07 | 2012-04-24 | Graham Packaging Company, L.P. | System and method for forming a container having a grip region |
US9707711B2 (en) | 2006-04-07 | 2017-07-18 | Graham Packaging Company, L.P. | Container having outwardly blown, invertible deep-set grips |
US8323555B2 (en) | 2006-04-07 | 2012-12-04 | Graham Packaging Company L.P. | System and method for forming a container having a grip region |
US12179986B2 (en) | 2007-02-09 | 2024-12-31 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11993443B2 (en) | 2007-02-09 | 2024-05-28 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11897656B2 (en) | 2007-02-09 | 2024-02-13 | Co2Pac Limited | Plastic container having a movable base |
US11731823B2 (en) | 2007-02-09 | 2023-08-22 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US11377287B2 (en) | 2007-02-09 | 2022-07-05 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US10836552B2 (en) | 2007-02-09 | 2020-11-17 | Co2Pac Limited | Method of handling a plastic container having a moveable base |
US20080190924A1 (en) * | 2007-02-13 | 2008-08-14 | Sherwood Services, Ag | Medical sharps container |
US8627944B2 (en) | 2008-07-23 | 2014-01-14 | Graham Packaging Company L.P. | System, apparatus, and method for conveying a plurality of containers |
US8636944B2 (en) | 2008-12-08 | 2014-01-28 | Graham Packaging Company L.P. | Method of making plastic container having a deep-inset base |
US8429880B2 (en) | 2009-01-06 | 2013-04-30 | Graham Packaging Company L.P. | System for filling, capping, cooling and handling containers |
US7926243B2 (en) | 2009-01-06 | 2011-04-19 | Graham Packaging Company, L.P. | Method and system for handling containers |
US10035690B2 (en) | 2009-01-06 | 2018-07-31 | Graham Packaging Company, L.P. | Deformable container with hoop rings |
US8096098B2 (en) | 2009-01-06 | 2012-01-17 | Graham Packaging Company, L.P. | Method and system for handling containers |
US8171701B2 (en) | 2009-01-06 | 2012-05-08 | Graham Packaging Company, L.P. | Method and system for handling containers |
US9522773B2 (en) | 2009-07-09 | 2016-12-20 | Entegris, Inc. | Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners |
US8962114B2 (en) | 2010-10-30 | 2015-02-24 | Graham Packaging Company, L.P. | Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof |
US9133006B2 (en) | 2010-10-31 | 2015-09-15 | Graham Packaging Company, L.P. | Systems, methods, and apparatuses for cooling hot-filled containers |
US10214407B2 (en) | 2010-10-31 | 2019-02-26 | Graham Packaging Company, L.P. | Systems for cooling hot-filled containers |
US9637300B2 (en) | 2010-11-23 | 2017-05-02 | Entegris, Inc. | Liner-based dispenser |
US9074092B2 (en) | 2010-12-20 | 2015-07-07 | Eastman Chemical Company | Miscible polyester blends utilizing recycled polyesters |
US9650169B2 (en) | 2011-03-01 | 2017-05-16 | Entegris, Inc. | Nested blow molded liner and overpack and methods of making same |
US9211993B2 (en) | 2011-03-01 | 2015-12-15 | Advanced Technology Materials, Inc. | Nested blow molded liner and overpack and methods of making same |
US10189596B2 (en) | 2011-08-15 | 2019-01-29 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
US9150320B2 (en) | 2011-08-15 | 2015-10-06 | Graham Packaging Company, L.P. | Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof |
US9994378B2 (en) | 2011-08-15 | 2018-06-12 | Graham Packaging Company, L.P. | Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof |
US8919587B2 (en) | 2011-10-03 | 2014-12-30 | Graham Packaging Company, L.P. | Plastic container with angular vacuum panel and method of same |
US8772419B2 (en) | 2011-12-13 | 2014-07-08 | Industrial Technology Research Institute | Polyester films with low thermal expansion and methods for manufacturing the same |
US9022776B2 (en) | 2013-03-15 | 2015-05-05 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
US9346212B2 (en) | 2013-03-15 | 2016-05-24 | Graham Packaging Company, L.P. | Deep grip mechanism within blow mold hanger and related methods and bottles |
US9993959B2 (en) | 2013-03-15 | 2018-06-12 | Graham Packaging Company, L.P. | Deep grip mechanism for blow mold and related methods and bottles |
US9925658B2 (en) * | 2014-11-03 | 2018-03-27 | All About Packaging, Inc. | Magnet sandwiching storage tray |
US20160121478A1 (en) * | 2014-11-03 | 2016-05-05 | All About Packaging Inc. | Magnet sandwiching storage tray |
CN113524495B (en) * | 2017-06-23 | 2023-04-21 | 赫斯基注塑系统有限公司 | Molded articles suitable for subsequent blow molding into final shaped containers |
US11850779B2 (en) * | 2017-06-23 | 2023-12-26 | Husky Injection Molding Systems Ltd. | Molded article with selectively varied core layer geometry and hot runner nozzles for producing same |
CN113524495A (en) * | 2017-06-23 | 2021-10-22 | 赫斯基注塑系统有限公司 | Molded article suitable for subsequent blow molding into a final shaped container |
US20200171727A1 (en) * | 2017-06-23 | 2020-06-04 | Husky Injection Molding Systems Ltd. | Molded article with selectively varied core layer geometry and hot runner nozzles for producing same |
US12257750B2 (en) | 2017-06-23 | 2025-03-25 | Husky Injection Molding Systems Ltd. | Molded article with selectively varied core layer geometry and hot runner nozzles for producing same |
US11746185B2 (en) | 2018-09-06 | 2023-09-05 | Alpek Polyester, S.A. De C.V. | Pet composition, pet preform, refillable pet bottle and methods for making the same |
US11261292B2 (en) | 2018-09-06 | 2022-03-01 | Alpek Polyester, S.A. De C.V. | Pet composition, pet preform, refillable pet bottle and methods for making the same |
US11607833B2 (en) | 2019-11-04 | 2023-03-21 | Ring Container Technologies, Llc | Container and method of manufacture |
US12162203B2 (en) | 2019-11-04 | 2024-12-10 | Ring Container Technologies, Llc | Container and method of manufacture |
US20220204230A1 (en) * | 2020-04-22 | 2022-06-30 | Sidel Participations | Preform and container with variable transmittances |
Also Published As
Publication number | Publication date |
---|---|
EP0734316B2 (en) | 2006-09-27 |
AU690193B2 (en) | 1998-04-23 |
WO1995016554A1 (en) | 1995-06-22 |
DE69420861T3 (en) | 2007-03-01 |
NZ278214A (en) | 1998-01-26 |
DE69420861D1 (en) | 1999-10-28 |
DE69420861T2 (en) | 2000-02-10 |
SG47925A1 (en) | 1998-04-17 |
EP0734316B1 (en) | 1999-09-22 |
US5628957A (en) | 1997-05-13 |
AU1435395A (en) | 1995-07-03 |
ATE184834T1 (en) | 1999-10-15 |
MY114376A (en) | 2002-10-31 |
CN1064585C (en) | 2001-04-18 |
CN1167461A (en) | 1997-12-10 |
EP0734316A1 (en) | 1996-10-02 |
CA2179174C (en) | 2000-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5976653A (en) | Multilayer preform and container with polyethylene naphthalate (PEN), and method of forming same | |
US6090460A (en) | Method of forming multi-layer preform and container with low crystallizing interior layer | |
US5829614A (en) | Method of forming container with high-crystallinity sidewall and low-crystallinity base | |
US5520877A (en) | Method of forming container with high-crystallinity sidewall and low-crystallinity base | |
US6787094B2 (en) | Sleeve molding | |
EP1147872B1 (en) | Method for molding multi-layer plastic articles | |
US5989661A (en) | Pressurized refill container resistant to sprue cracking | |
US5902539A (en) | Process for making PEN/PET blends and transparent articles therefrom | |
US6586558B2 (en) | Process for making PEN/PET blends and transparent articles therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: DEUTSCHE BANK AG CAYMAN ISLANDS BRANCH AS SECOND-L Free format text: GRANT OF SECURITY INTEREST;ASSIGNOR:GRAHAM PACKAGING COMPANY, L.P.;REEL/FRAME:015552/0299 Effective date: 20041007 Owner name: DEUTSCHE BANK AG CAYMAN ISLANDS BRANCH, NEW JERSEY Free format text: GRANT OF SECURITY INTEREST;ASSIGNOR:GRAHAM PACKAGING COMPANY, L.P.;REEL/FRAME:015980/0213 Effective date: 20041007 |
|
AS | Assignment |
Owner name: GRAHAM PACKAGING PET TECHNOLOGIES INC., PENNSYLVAN Free format text: CHANGE OF NAME;ASSIGNOR:CONTINENTAL PET TECHNOLOGIES, INC.;REEL/FRAME:018047/0970 Effective date: 20041012 |
|
AS | Assignment |
Owner name: GRAHAM PACKAGING COMPANY, L.P., PENNSYLVANIA Free format text: PATENT RELEASE;ASSIGNOR:DEUTSCHE BANK AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:019140/0509 Effective date: 20070330 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: GRAHAM PACKAGING COMPANY, L.P., PENNSYLVANIA Free format text: RELEASE OF SECURITY INTERESTS;ASSIGNOR:DEUTSCHE BANK AG, GAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:027011/0572 Effective date: 20110908 |
|
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20111102 |
|
AS | Assignment |
Owner name: GRAHAM PACKAGING COMPANY, L.P., PENNSYLVANIA Free format text: RELEASE OF SECURITY INTEREST IN CERTAIN PATENT COLLATERAL;ASSIGNOR:DEUTSCHE BANK AG CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT AND GRANTEE;REEL/FRAME:053414/0001 Effective date: 20200805 |