US5115194A - Hall effect position sensor with flux limiter and magnetic dispersion means - Google Patents
Hall effect position sensor with flux limiter and magnetic dispersion means Download PDFInfo
- Publication number
- US5115194A US5115194A US07/589,454 US58945490A US5115194A US 5115194 A US5115194 A US 5115194A US 58945490 A US58945490 A US 58945490A US 5115194 A US5115194 A US 5115194A
- Authority
- US
- United States
- Prior art keywords
- pole piece
- magnet
- flux
- hall effect
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/9505—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/023—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/145—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/9517—Proximity switches using a magnetic detector using galvanomagnetic devices
Definitions
- This invention pertains to active position sensors such as motion, edge, frequency and speed sensors or counting devices.
- it relates to gear tooth sensors incorporating a Hall effect device and which sense the presence or absence of gear teeth or voids in a metallic member as the teeth or voids pass near a sensor device.
- Prior art approaches to gear tooth sensors include magneto-resistive devices, proximity switches, and other similar devices. More recently, position sensors incorporating Hall effect devices have been developed which provide a convenient logic signal output when sensing metallic gear teeth or voids. Essentially, when a Hall effect device is placed in a magnetic field and oriented transversely to a current flowing through the device, a voltage output in direct proportion to the strength of the magnetic flux component at right angles to the Hall device is produced. Typically, the Hall device signal is supplied to a transistor and the voltage from the Hall device is used to switch the transistor on and off and produce a logic signal.
- Bodziak discloses a Hall effect sensor disposed on the north pole surface of a cubic magnet.
- the Bodziak magnet/Hall effect sensor assembly is disposed below the rail of a railroad track to sense the metallic wheels of railroad cars as they pass over or near the device.
- the Bodziak device produces a square wave output or pulse signal in response to detection of a railroad wheel.
- the Boyer device operates in substantially a similar manner as the Bodziak device. Neither Bodziak nor Boyer disclose a pole piece disposed between the magnet and the Hall effect device of the sensor assembly.
- the circuit in Boyer is directed towards providing a self-adjusting threshold voltage for use with a Hall effect sensor.
- the output of the circuit shown in Boyer provides a square wave signal indicative of the position of a tone wheel with respect to the Hall effect device.
- U.S. Pat. No. 4,518,918 to Avery discloses a dual Hall effect sensor wherein two Hall effect devices are mounted on a pole of a magnet and positioned so that one Hall device detects a valley or notch in the gear when simultaneously the other Hall device is detecting the protrusion or tooth of the gear or tone wheel.
- the outputs of the sensors are fed into a differential amplifier circuit in order to produce a pulse train signal which corresponds to the speed of rotation of the tone wheel.
- Consistency of operation as well as ease of manufacture are primary objectives in the design of a position sensor.
- Various Hall effect devices packaged in plastic-encapsulated three terminal packages are available on the open market. These off-the-shelf devices typically have wide variances in operational characteristic with respect to temperature.
- the magnetic flux switch points of the Hall effect device are not always suitable for use in position sensor applications since magnets of corresponding magnetic strength do not provide sufficient flux deviations to operate the Hall devices appropriately over a broad range of conditions such as variable tooth width, height, and wide variances in the air gap requirements.
- a new position sensor design which includes a structure to limit and control magnetic flux impinging upon the Hall effect device and includes flux dispersion means for dispersing the magnetic flux so as to produce the widest flux differential in response to the passing of a tooth of a tone wheel and thereby increase sensitivity of the sensor is desired.
- a position sensor comprises a Hall effect IC, a temperature stable magnet, a pole piece having first and second opposing ends and also having a central cross-sectional area which is smaller area in a central region of the pole piece as compared with the cross-sectional area of the pole piece at the ends of the pole piece, and wherein the Hall effect IC is attached to the first end of the pole piece and the magnet is attached to the second end of the pole piece.
- a position sensor comprises a Hall effect IC, a magnetizable metal pole piece having means for limiting flux passing through the pole piece, a magnet coupling member and means for dispersing flux, wherein the Hall effect IC is attached to the means for dispersing, and a permanent magnet attached to the magnet coupling member of the pole piece so that one pole of the magnet is attached to the pole piece.
- a position sensor comprises a Hall effect device, a hollow cylindrical magnet, a hollow cylindrical non-magnetizable core having an axial length greater than the magnet, the core positioned within and attached to the magnet, an annular ring-shaped pole piece attached to the core and the magnet, a cylindrical pole piece having a first countersunk hole for receiving the core, the countersunk hole extending into a first axial end of the pole piece, the cylindrical pole piece also having a second axial hole extending into a second axial end of the pole piece and communicating with the countersunk hole, the pole piece positioned over the core and abutting the magnet, flux return means for magnetically shunting a portion of the flux from the ring-shaped pole piece to the cylindrical pole piece, the flux return means located and attached within the hollow portion of the core, and wherein the Hall effect IC is attached to the cylindrical pole piece over the second hole.
- a Hall effect position sensor comprises a Hall effect device, a disk-shaped pole piece having a flux return means protruding from the central portion of the first pole piece, a ring-shaped pole piece having a hole centrally located therein, first and second magnets of equal length and attached between the disk-shaped pole piece and the ring-shaped pole piece so that the flux return means is positioned substantially between the magnets, and wherein the Hall effect device is attached to the ring-shaped pole piece and located adjacent the hole.
- a position sensor comprises a Hall effect device, a pole piece having a narrower central cross section and first and second ends with cross sectional areas greater in size than the central cross section, the hall effect device attached to the first end, means for compensating temperature changes attached to the second end of the pole piece, a magnet surrounding the means for compensating temperature changes, and wherein the means for compensating and the magnet are coaxial.
- a position sensor comprises a Hall effect device, a hollow cylindrical magnet having a first base and a second base, a hollow cylindrical non-magnetizable core having an axial length substantially equal to the axial length of the magnet, the core being coaxially positioned within the magnet, a first annular ring-shaped pole piece attached to the first base, a second annular ring-shaped pole piece attached to the second base, flux return means for magnetically shunting a portion of the flux from the first ring-shaped pole piece to the second ring-shaped pole piece, the flux return means inserted through the first pole piece and attached within the hollow portion of the core, and wherein the Hall effect device is attached to the center of the second pole piece.
- One object of the present invention is to provide an improved Hall effect position sensor.
- Another objective of the present invention is to provide a Hall effect position sensor having a flux limiter limiting means and a magnetic dispersion means so that off-the-shelf Hall effect devices may be implemented in a position sensor design.
- Another objective of the present invention is to provide a Hall effect position sensor which has a higher sensitivity to tone wheel position and allows for more variation in operating characteristics such as temperature, air gap, tooth height, void height, and tooth or void width.
- FIG. 1 is a side elevation view of one embodiment of the Hall effect position sensor according to the present invention shown disposed in close proximity to a tone wheel.
- FIG. 2 is a plan view of the circuit board 18 of FIG. 1.
- FIG. 3 is an end view of the pole piece flange 12b of pole piece 12 shown in FIG. 1.
- FIG. 4 is a perspective view of the pole piece 12 of FIG. 1.
- FIG. 5 is an exploded perspective view of a second embodiment of the Hall effect position sensor according to the present invention.
- FIG. 5A is a cross-sectional view of the position sensor of FIG. 5 looking in the direction of arrows 5A.
- FIG. 6 is a side elevation view of a third embodiment of the Hall effect position sensor according to the present invention.
- FIG. 7 is a perspective view of a fourth embodiment of the Hall effect position sensor according to the present invention.
- FIG. 7A is a cross-sectional view looking in the direction of the arrows labeled 7A of the position sensor shown in FIG. 7.
- FIG. 8 is a flux density map of flux density versus air gap for cold rolled steel and low carbon steel pole pieces.
- FIG. 9 is a graph illustrating the flux differential between the loaded and unloaded operating states of the position sensor shown in FIG. 1.
- FIG. 10 is a side elevation view of a fifth embodiment of the Hall effect position sensor according to the present invention.
- FIG. 11 is an exploded perspective view of a sixth embodiment of the Hall effect position sensor according to the present invention.
- FIG. 1 a side elevational view of the Hall effect position sensor 10 according to the present invention is shown.
- the sensor 10 includes pole piece 12, magnet 14, Hall effect device 16 and circuit board 18.
- the enlarged coupling end 12c of pole piece 12 is intended to insure maximum flux linkage between the pole piece 12 and magnet 14.
- the magnetic flux from magnet 14 passes through the tapered portion 12d and the neck 12a of the pole piece 12 to the dispersion flange plate 12b at the opposite end of the pole piece.
- Wires 22 are connected to the leads 17 of Hall device 16 via solder terminal locations 19a and circuit board runners 19.
- the wires 22 typically carry three signals: power, ground and an output signal (typically a logic zero or logic one) produced by the Hall device 16.
- Suitable Hall effect devices are available from Sprague Inc. for use as Hall device 16.
- the magnet 14 is an Alnico magnet or a rare earth magnet made of sumariam cobalt or other similar rare earth materials.
- the pole piece 12 is made of cold rolled steel or other magnetizable metal and may also be made using powdered metal technology.
- the circuit board 18 is a fiberglass material and includes copper runners 19 as shown in FIG. 2. The copper runners 19 enable convenient connection between the leads of Hall device 16 and wires 22. Notches 20, shown in FIG. 2, provide a convenient dressing location for wires 22. Similarly, notches 12e in flange plate 12b, as shown in FIGS. 3 and 4, also enable convenient locating of wires 22.
- the design of the sensor 10 centers around a flanged magnetic flux diffusing pole piece 12 which enables use of a low cost Hall effect integrated circuit device or IC with operating or switch points in the area of 150 to 375 gauss and hysteresis of less than 90 gauss to be interface with a temperature stable high flux density magnet.
- the flux density of the magnet 14 can be as high as 3,000 gauss or higher when using a properly designed flux dispersion pole piece 12.
- the pole piece 12 permits the use of temperature stable rare earth and Alnico 8 magnets with low cost mass produced Hall effect ICs designed for low flux density operation.
- the pole piece neck 12a or flux limiting means may be sized to produce any desired flux intensity below that produced by the magnet at the external surfaces or across the face of flange plate 12b. As is well known in the art, once the flux present in a particular cross section of magnetic material reaches a saturation point, the magnetic material cannot transmit or conduct any additional magnetic flux. Thus, the neck 12a acts as a flux limiting means to limit the amount of flux supplied to the flange plate 12b.
- the cross-sectional area of plate portion 12b is approximately 4.5 times the area of the cross-section at neck 12a.
- a 4.5 area ratio is recommended as a minimum area ratio to achieve a suitable performance of the sensor 10.
- Typical dimensions for the sensor 10 are: magnet diameter of 0.375 inch; pole piece neck (12a) diameter of 0.10 inch; pole piece diameter at 12b of 0.550 inch; pole piece diameter at 12c of 0.375 inch; and neck (12a) length of 0.45 inch.
- the sensor 30 includes Hall device 16, cylinder and flanged pole piece 32, cylindrical rare earth or Alnico 8 magnet 34, cylindrical threaded aluminum insert 36, disk pole piece 38, and screw 40.
- the pole piece 32, pole piece 38, and screw 40 are all made of magnetizable materials such as cold rolled steel.
- the Hall effect device 16 is mounted on the semi-closed end 32a of the flanged cylinder pole piece 32 and centered over the hole 32b.
- the flanged cylinder pole piece 32 is magnetically coupled with and abuts cylindrical magnet 34.
- the spool-shaped pole piece 32 and magnet 34 are attached by way of adhesive or other suitable connecting means.
- the diamagnetic aluminum insert or core 36 with internal threads at 36a is inserted into the cylindrical hole formed by both the pole piece 32 and the magnet 34.
- a steel washer pole piece 38 is attached on the back end of the sensor 30.
- the steel machine screw 40 is adjusted into threaded aluminum insert 36.
- Screw 40 functions as an adjustable magnetic flux return guide to control or limit the magnetic efficiency of the sensor 30 and the magnetic circuit formed by the pole pieces 32 and 38, the screw 40 and magnet 34.
- the air gap between the Hall effect device 16 and the flux return guide 40 is adjusted for proper sensor operation with a target device or tone wheel selected for a particular application.
- the screw 40 acts as a flux limiting means.
- Gear or tone wheel 42 includes a notch or void 43, wherein the dimension A must be greater than 0.20 inches, the dimension B must be greater than 0.150 inches, and the air gap C is between 0.001 and 0.060 inches.
- the cross-sectional area at magnet coupling member 32d is larger than the cross-sectional area at flux limiting member 32c of pole piece 32.
- the face area 32a of pole piece 32 is optimally at least 4.5 times larger than the cross-sectional area of pole piece 32 at 32c.
- the permeability of air makes for an ideal flux limiter in the functional operation of sensor 30, thus the user may "dial in” the desired gaussian field intensity appearing at the face 32a of pole piece 32 by adjusting screw 40. Once screw 40 is adjusted appropriately the Hall device 16 is exposed to a broader range of gaussian flux than is otherwise achievable with magnet/pole piece combinations of the prior art thereby improving sensitivity and widening the usable air gap parameter of the sensor 30.
- Aluminum insert 36 keeps magnetic fringing to a minimum and serves to center the flux return guide 40 within magnet 34.
- wires or other electrical connecting means are attached to the leads of device 16 in order to connect the signal produced by Hall device 16 to a circuit capable of monitoring the output signal of the Hall device.
- the sensor 30 as shown includes an adjustable flux return guide 40, the guide 40 may also be a non-threaded steel insert press fitted into the inner passage 36a of aluminum insert 36.
- Position sensor 50 includes essentially the same components of the position sensor 10 of FIG. 1 with the exception of magnet 52 mounted and oriented in a different manner with respect to pole piece 54 for space saving purposes.
- the component parts of the position sensor 50 are a Hall device 16, flange plate 54B and neck piece 54A comprising the pole piece 54 and magnet 52.
- Wires 22 are interconnected to the leads of Hall device 16 to enable connection of the Hall device to the appropriate power, ground and signal monitoring terminals of a signal monitoring circuit.
- FIGS. 7 and 7A another embodiment of the position sensor 60 according to the present invention is shown.
- the magnetic field from rectangularly shaped magnets 64 is dispersed over the face area of the steel flange plate 66.
- a cylindrical magnet (similar to magnet 34 of FIG. 5) may serve as a suitable substitute for magnets 64 of sensor 60.
- the magnetic circuit is completed using steel bottom flange plate 62 and steel machine screw 68.
- the measured magnetic field intensity change in the area of the Hall device 16 is controlled by the area of the face of the flange plate 66 and the distance E between the flange plate 66 and the rear flange plate 62.
- the rare earth magnets 64 can be either round, square, or rectangular in cross section with a length or height corresponding to dimension E.
- the cross sectional area of the magnets should be kept as small as possible.
- a correctly designed flange plate-magnet-hole combination wherein hole 66a is appropriately sized, will generate a field intensity flux change of better than 5 to 1 between unloaded and loaded circuit conditions. Loaded conditions are those wherein a metallic portion of the tone wheel is disposed adjacent the Hall device 16, and open or unloaded circuit conditions are those wherein no tone wheel is located near Hall device 16.
- curves A and B show the measured flux density at the center of the loaded flange pole piece 12 of FIG. 1 as the air gap is increased from 0.001 inches to 0.140 inches between the Hall device 16 and the target 24.
- Curve A is the measured response for a low carbon steel pole piece
- curve B is the measured response for a cold rolled steel pole piece.
- the loaded and unloaded flux intensity of the sensor is designed to occur above and below the operation and release points of the Hall device used for the sensor assembly 10.
- the operating points for the Hall device are 350 gauss and 250 gauss (for latch and release respectively) then an operating air gap of between 0.001 and approximately 0.105 inches would be appropriate according to the curves of FIG. 8. Similar results are obtained with sensors 30, 50, and 60.
- Curve A corresponds to the loaded condition wherein a target material of magnetizable metal such as steel is located in close proximity to the Hall device 16.
- the unloaded curve B represents the flux distribution across the face of flange plate 12b when no target device is near.
- Similar loaded and unloaded flux deviations are achieved with sensors 30, 50, and 60.
- FIG. 5 and FIG. 7 include adjustable flux return means
- such flux return means may be adjusted in a test stand or test apparatus and then the flux return means can be locked, glued or welded in position to provide the appropriate operating characteristics for the sensors 30 and 60 according to the present invention.
- a fixed nonadjustable flux return guide can be designed to replace the adjustable screw method disclosed when the adjustment characteristics of the magnetic circuit are known and predictable.
- Other variations in the sensors as shown may be made in accordance with device size proportioning and magnetic flux capability of the magnets and the permeability of the magnetic circuit components as well as the operational switch points of the Hall device.
- Sensor 70 includes Hall effect device 76 identical to Hall device 16, pole piece 72 identical to pole piece 12 of FIG. 1, hollow cylindrical magnet 74 attached to ferrite rod or core 78 at a distance G from the magnetic coupling member 72c of pole piece 72.
- Distance G may be as small as 0.0 inches if desired, or increased accordingly to limit magnetic coupling between the magnet and the pole piece.
- the soft ferrite core material comprising core 78 has a permeability that changes with temperature. As temperature increases, the permeability or ⁇ , of the core 78 decreases.
- the change in permeability of the soft ferrite core material serves to compensate for the loss in sensitivity of the Hall device, thereby providing more consistent operating characteristics for the sensor 70 over a broader range of temperatures.
- the sensors 10, 30, 50, 60, and 70 may be encapsulated or potted.
- Certain gear tooth sensor installations require a sensor which screws into a threaded hole, thus packaging the sensors so that the Hall device is centered on the corresponding pole piece assures accurate positioning of the Hall device with respect to the gear or tone wheel when the sensor is packaged in a screw-in housing (not shown) and must be positioned by screwing the housing in and out of a mounting location.
- the sensor 90 includes Hall effect device 16, magnet 92, internally threaded aluminum insert 94, steel washers or pole pieces 96 and 98, and steel machine screw 100. Functionally speaking, the sensor 90 is an alternate version of the sensor 30 of FIG. 5. Specifically, the sensor 90 includes an aluminum insert 94 to reduce or limit magnet fringing from sensor 30 of FIG. 5, an adjustable flux return means or flux return guide 100, and a pole piece having flux dispersion characteristics similar to pole piece 32 of FIG. 5 when attached to magnet 92.
- An air gap is established by the position of the flux return guide 100 within insert 94 relative to the pole piece 98 thereby providing a flux limiting means for controlling flux levels transmitted to and appearing across the face of pole piece 98.
- Hole 94b is tapped to produce threads for receiving the threads of screw 100.
- Hall effect device 16 is attached to pole piece 98 over hole 98b.
- Pole piece 98 abuts surface 92a and 94a in sensor 90.
- the magnet 92 and insert 94 are equal in axial height, thus pole piece 96 also abuts both magnet 92 and insert 94 of the sensor 90.
- the pole piece surface 98a is significantly larger than the radial cross-section of magnet 92 which corresponds with the area of surface 92a of magnet 92, thus resulting in dispersion of the flux from magnet 92 evenly across the pole piece surface 98a.
- a fixed position flux return guide may substitute for the screw 100 once the magnetic characteristics of the sensor 90 are well known from testing of dimensionally stable sensor components.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/589,454 US5115194A (en) | 1990-09-27 | 1990-09-27 | Hall effect position sensor with flux limiter and magnetic dispersion means |
US07/849,883 US5264792A (en) | 1990-09-27 | 1992-03-12 | Hall effect position sensor with flux limiter and magnetic dispersion pole piece |
US07/961,087 US5321355A (en) | 1990-09-27 | 1992-10-14 | Hall Effect position sensor with flux limiter and magnetic dispersion means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/589,454 US5115194A (en) | 1990-09-27 | 1990-09-27 | Hall effect position sensor with flux limiter and magnetic dispersion means |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/849,883 Division US5264792A (en) | 1990-09-27 | 1992-03-12 | Hall effect position sensor with flux limiter and magnetic dispersion pole piece |
Publications (1)
Publication Number | Publication Date |
---|---|
US5115194A true US5115194A (en) | 1992-05-19 |
Family
ID=24358091
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/589,454 Expired - Fee Related US5115194A (en) | 1990-09-27 | 1990-09-27 | Hall effect position sensor with flux limiter and magnetic dispersion means |
US07/849,883 Expired - Fee Related US5264792A (en) | 1990-09-27 | 1992-03-12 | Hall effect position sensor with flux limiter and magnetic dispersion pole piece |
US07/961,087 Expired - Fee Related US5321355A (en) | 1990-09-27 | 1992-10-14 | Hall Effect position sensor with flux limiter and magnetic dispersion means |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/849,883 Expired - Fee Related US5264792A (en) | 1990-09-27 | 1992-03-12 | Hall effect position sensor with flux limiter and magnetic dispersion pole piece |
US07/961,087 Expired - Fee Related US5321355A (en) | 1990-09-27 | 1992-10-14 | Hall Effect position sensor with flux limiter and magnetic dispersion means |
Country Status (1)
Country | Link |
---|---|
US (3) | US5115194A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5264792A (en) * | 1990-09-27 | 1993-11-23 | Kearney-National, Inc. | Hall effect position sensor with flux limiter and magnetic dispersion pole piece |
WO1994005965A1 (en) * | 1992-09-03 | 1994-03-17 | Microtronic A/S | A microelectronic position sensor |
US5416410A (en) * | 1991-12-07 | 1995-05-16 | Sms Schloemann-Siemag Ag | Sensor head for a magnetic flux transmitter including a sleeve-shaped permanent magnet and a hall generator having a common axis |
US5637995A (en) * | 1992-12-09 | 1997-06-10 | Nippondenso Co., Ltd. | Magnetic detection device having a magnet including a stepped portion for eliminating turbulence at the MR sensor |
US6014023A (en) * | 1997-02-26 | 2000-01-11 | Mitsubishi Denki Kabushiki Kaisha | High resolution magnetoresistance sensing device with accurate placement of inducing and detecting elements |
US6067824A (en) * | 1998-10-29 | 2000-05-30 | Optek Technology, Inc. | Automobile ignition security system using a differential magnetic comparator |
US20030112158A1 (en) * | 2001-11-05 | 2003-06-19 | Babin Brian George | Miniature magnetic device package |
US6703830B2 (en) | 2002-02-18 | 2004-03-09 | Phoenix America, Inc. | Tunable magnetic device for use in a proximity sensor |
US20040169507A1 (en) * | 2001-08-08 | 2004-09-02 | Nicolas Martin | Detection device |
US20050247350A1 (en) * | 2004-05-04 | 2005-11-10 | Kim Coakley | Direct drive servovalve device with redundant position sensing and methods for making the same |
US20050258786A1 (en) * | 2004-05-19 | 2005-11-24 | Kellogg Michael I | Brushless DC motors with remote Hall sensing and methods of making the same |
CN102788997A (en) * | 2011-05-17 | 2012-11-21 | 森萨塔科技公司 | Magnetic proximity sensor |
EP2767796A1 (en) * | 2013-01-28 | 2014-08-20 | Spinde Spólka z Ograniczona Odpowiedzialnóscia | Magnetic device to measure distance from ferromagnetic substrate |
WO2016008481A1 (en) * | 2014-07-16 | 2016-01-21 | Schaeffler Technologies AG & Co. KG | Sensor system and piston-cylinder assembly |
CN106643851A (en) * | 2016-12-29 | 2017-05-10 | 江苏双牛高科新能源有限公司 | Hall sensor positioning device and Hall sensor assembly |
US10941762B2 (en) | 2015-01-30 | 2021-03-09 | Wagner Spray Tech Corporation | Piston limit sensing and software control for fluid application |
CN112888951A (en) * | 2018-09-19 | 2021-06-01 | 哈姆林电子(苏州)有限公司 | Speed sensor assembly |
US20230100898A1 (en) * | 2021-09-30 | 2023-03-30 | Melexis Technologies Sa | Magnetic position sensor system |
US12135048B2 (en) * | 2017-09-07 | 2024-11-05 | Wagner Spray Tech Corporation | Piston limit sensing for fluid application |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4334811A1 (en) * | 1993-10-13 | 1995-04-20 | Festo Kg | Position detection device on a linear drive |
US5589664A (en) * | 1993-09-21 | 1996-12-31 | Temper Corporation | Apparatus for containing electrical components for sensing or measuring magnetic fields |
US5581179A (en) * | 1995-05-31 | 1996-12-03 | Allegro Microsystems, Inc. | Hall-effect ferrous-article-proximity sensor assembly |
US6091238A (en) * | 1995-06-22 | 2000-07-18 | Kevin McDermott | Variable output electrical device |
AU6522896A (en) * | 1995-08-02 | 1997-03-05 | Durakool Incorporated | Gear tooth sensor with improved resolution and stability |
US5670876A (en) * | 1995-11-14 | 1997-09-23 | Fisher Controls International, Inc. | Magnetic displacement sensor including first and second flux paths wherein the first path has a fixed reluctance and a sensor disposed therein |
US6433536B1 (en) * | 1998-12-31 | 2002-08-13 | Pacsci Motion Control, Inc. | Apparatus for measuring the position of a movable member |
DE10009173A1 (en) * | 2000-02-26 | 2001-09-06 | Bosch Gmbh Robert | Measuring device for the contactless detection of a ferromagnetic object |
US6442011B1 (en) * | 2000-05-08 | 2002-08-27 | General Electric Company | Flux concentration adjustment mechanism and method for hall effect sensors and circuit breaker using same |
US6448763B1 (en) * | 2001-01-10 | 2002-09-10 | Siemens Corporation | System for magnetization to produce linear change in field angle |
FR2831667B1 (en) * | 2001-10-29 | 2004-04-23 | Cegelec | SENSOR FOR DETECTING FAULTS IN A WORKPIECE |
US6909281B2 (en) | 2002-07-03 | 2005-06-21 | Fisher Controls International Llc | Position sensor using a compound magnetic flux source |
US7317313B2 (en) * | 2002-11-14 | 2008-01-08 | Measurement Specialties, Inc. | Magnetic encoder apparatus |
US6838871B2 (en) * | 2002-12-23 | 2005-01-04 | Bendix Commercial Vehicle Systems, Llc | High temperature wheel speed sensor package to envelope sensor IC |
US20040130314A1 (en) * | 2003-01-08 | 2004-07-08 | Siemens Vdo Automotive Corporation | Sensor adjusting magnetic field |
US6894485B2 (en) * | 2003-02-10 | 2005-05-17 | Delphi Technologies, Inc. | Position sensing by measuring intensity of magnetic flux passing through an aperture in a movable element |
JP4653069B2 (en) * | 2003-02-21 | 2011-03-16 | フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー | Magnetic position sensor with integrated Hall effect switch |
US7164357B2 (en) * | 2004-07-23 | 2007-01-16 | Shih-Ming Hwang | Magnet seat in a warning system to enhance magnetic field |
US7808892B1 (en) * | 2006-11-21 | 2010-10-05 | Meteorcomm, Llc | Redundant data distribution systems and methods |
DE102006061976B4 (en) * | 2006-12-21 | 2010-09-16 | Zf Friedrichshafen Ag | Suspension for a vehicle |
US7710110B2 (en) * | 2007-07-07 | 2010-05-04 | Honeywell International Inc. | Rotary sensor with rotary sensing element and rotatable hollow magnet |
FR2936307B1 (en) † | 2008-09-24 | 2010-09-17 | Moving Magnet Tech Mmt | LINEAR OR PERMANENT MAGNET ROTATING POSITION SENSOR FOR DETECTION OF A FERROMAGNETIC TARGET |
FR2937126B1 (en) * | 2008-10-10 | 2010-12-31 | Continental Automotive France | HALL EFFECT MEASURING DEVICE |
FR2987115B1 (en) * | 2012-02-16 | 2014-03-07 | Sc2N Sa | SENSOR COMPRISING A MAGNET AND A HALL EFFECT PROBE |
CN104749390B (en) * | 2013-12-31 | 2020-07-03 | 森萨塔科技(常州)有限公司 | Positioning frame structure |
US10312907B2 (en) * | 2015-06-08 | 2019-06-04 | Gary W. Wineland | Sensing device with magnet for extended sensing distance |
JP6541507B2 (en) * | 2015-08-21 | 2019-07-10 | キヤノン株式会社 | Imaging device |
US10829201B2 (en) | 2019-03-20 | 2020-11-10 | Pratt & Whitney Canada Corp. | Blade angle position feedback system with extended markers |
CN113464276B (en) * | 2020-03-31 | 2024-05-24 | Tvs电机股份有限公司 | Rotating component assembly |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3195043A (en) * | 1961-05-19 | 1965-07-13 | Westinghouse Electric Corp | Hall effect proximity transducer |
US3359492A (en) * | 1964-03-20 | 1967-12-19 | Siemens Ag | Hall device for measuring angular sepped and angular distance moved of a rotating body |
US4165726A (en) * | 1977-10-05 | 1979-08-28 | Chrysler Corporation | Low mass breakerless ignition distributor |
US4235213A (en) * | 1978-09-14 | 1980-11-25 | Motorola, Inc. | Hall effect ignition system housing |
US4293814A (en) * | 1979-08-08 | 1981-10-06 | Ford Motor Company | Crankshaft position sensor circuitry for providing stable cyclical output signals without regard to peak to peak variations in sensor signals |
US4406272A (en) * | 1979-12-20 | 1983-09-27 | Magnavox Government And Industrial Electronics Company | Magnetic sensor for distributorless ignition system and position sensing |
US4481469A (en) * | 1981-06-05 | 1984-11-06 | Robert Bosch Gmbh | Rotary speed sensor with Hall generator responding to tangential component of magnetic field |
US4518918A (en) * | 1982-09-28 | 1985-05-21 | Sprague Electric Company | Ferromagnetic article detector with dual Hall-sensors |
US4524932A (en) * | 1982-12-30 | 1985-06-25 | American Standard Inc. | Railroad car wheel detector using hall effect element |
US4725776A (en) * | 1984-01-25 | 1988-02-16 | Matsushita Electric Industry Co., Ltd. | Magnetic position detector using a thin film magnetoresistor element inclined relative to a moving object |
US4745363A (en) * | 1986-07-16 | 1988-05-17 | North American Philips Corporation | Non-oriented direct coupled gear tooth sensor using a Hall cell |
US4853629A (en) * | 1988-05-02 | 1989-08-01 | Eaton Corporation | Hall-Effect position sensing system and device |
US4859941A (en) * | 1987-03-18 | 1989-08-22 | Sprague Electric Company | Proximity selectro with integral magnet, pole-piece plate and pair of magnetic transducers |
US4935698A (en) * | 1989-03-03 | 1990-06-19 | Sprague Electric Company | Sensor having dual Hall IC, pole piece and magnet |
US4992733A (en) * | 1989-11-17 | 1991-02-12 | Visi-Trak Corporation | Position sensing transducer having a circular magnet with an integral flux distorting member and two magnetic field sensors |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3060370A (en) * | 1960-02-23 | 1962-10-23 | Gen Motors Corp | Displacement transducer |
JPS4854957A (en) * | 1971-11-08 | 1973-08-02 | ||
US3900814A (en) * | 1973-05-31 | 1975-08-19 | Denki Onkyo Company Ltd | Revolution sensing apparatus |
US3942045A (en) * | 1974-06-05 | 1976-03-02 | Fiat Societa Per Azioni | Speed or angular position electromagnetic transducer |
US4922197A (en) * | 1988-08-01 | 1990-05-01 | Eaton Corporation | High resolution proximity detector employing magnetoresistive sensor disposed within a pressure resistant enclosure |
US5115194A (en) * | 1990-09-27 | 1992-05-19 | Kearney-National Inc. | Hall effect position sensor with flux limiter and magnetic dispersion means |
-
1990
- 1990-09-27 US US07/589,454 patent/US5115194A/en not_active Expired - Fee Related
-
1992
- 1992-03-12 US US07/849,883 patent/US5264792A/en not_active Expired - Fee Related
- 1992-10-14 US US07/961,087 patent/US5321355A/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3195043A (en) * | 1961-05-19 | 1965-07-13 | Westinghouse Electric Corp | Hall effect proximity transducer |
US3359492A (en) * | 1964-03-20 | 1967-12-19 | Siemens Ag | Hall device for measuring angular sepped and angular distance moved of a rotating body |
US4165726A (en) * | 1977-10-05 | 1979-08-28 | Chrysler Corporation | Low mass breakerless ignition distributor |
US4235213A (en) * | 1978-09-14 | 1980-11-25 | Motorola, Inc. | Hall effect ignition system housing |
US4293814A (en) * | 1979-08-08 | 1981-10-06 | Ford Motor Company | Crankshaft position sensor circuitry for providing stable cyclical output signals without regard to peak to peak variations in sensor signals |
US4406272A (en) * | 1979-12-20 | 1983-09-27 | Magnavox Government And Industrial Electronics Company | Magnetic sensor for distributorless ignition system and position sensing |
US4481469A (en) * | 1981-06-05 | 1984-11-06 | Robert Bosch Gmbh | Rotary speed sensor with Hall generator responding to tangential component of magnetic field |
US4518918A (en) * | 1982-09-28 | 1985-05-21 | Sprague Electric Company | Ferromagnetic article detector with dual Hall-sensors |
US4524932A (en) * | 1982-12-30 | 1985-06-25 | American Standard Inc. | Railroad car wheel detector using hall effect element |
US4725776A (en) * | 1984-01-25 | 1988-02-16 | Matsushita Electric Industry Co., Ltd. | Magnetic position detector using a thin film magnetoresistor element inclined relative to a moving object |
US4745363A (en) * | 1986-07-16 | 1988-05-17 | North American Philips Corporation | Non-oriented direct coupled gear tooth sensor using a Hall cell |
US4859941A (en) * | 1987-03-18 | 1989-08-22 | Sprague Electric Company | Proximity selectro with integral magnet, pole-piece plate and pair of magnetic transducers |
US4853629A (en) * | 1988-05-02 | 1989-08-01 | Eaton Corporation | Hall-Effect position sensing system and device |
US4935698A (en) * | 1989-03-03 | 1990-06-19 | Sprague Electric Company | Sensor having dual Hall IC, pole piece and magnet |
US4992733A (en) * | 1989-11-17 | 1991-02-12 | Visi-Trak Corporation | Position sensing transducer having a circular magnet with an integral flux distorting member and two magnetic field sensors |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321355A (en) * | 1990-09-27 | 1994-06-14 | Kearney National Inc. | Hall Effect position sensor with flux limiter and magnetic dispersion means |
US5264792A (en) * | 1990-09-27 | 1993-11-23 | Kearney-National, Inc. | Hall effect position sensor with flux limiter and magnetic dispersion pole piece |
US5416410A (en) * | 1991-12-07 | 1995-05-16 | Sms Schloemann-Siemag Ag | Sensor head for a magnetic flux transmitter including a sleeve-shaped permanent magnet and a hall generator having a common axis |
WO1994005965A1 (en) * | 1992-09-03 | 1994-03-17 | Microtronic A/S | A microelectronic position sensor |
US5592079A (en) * | 1992-09-03 | 1997-01-07 | Microtonic A/S | Microelectronic position sensor for volume control |
US5637995A (en) * | 1992-12-09 | 1997-06-10 | Nippondenso Co., Ltd. | Magnetic detection device having a magnet including a stepped portion for eliminating turbulence at the MR sensor |
US6014023A (en) * | 1997-02-26 | 2000-01-11 | Mitsubishi Denki Kabushiki Kaisha | High resolution magnetoresistance sensing device with accurate placement of inducing and detecting elements |
US6067824A (en) * | 1998-10-29 | 2000-05-30 | Optek Technology, Inc. | Automobile ignition security system using a differential magnetic comparator |
US20040169507A1 (en) * | 2001-08-08 | 2004-09-02 | Nicolas Martin | Detection device |
US7132825B2 (en) * | 2001-08-08 | 2006-11-07 | Universite De Liege | Detection device |
US20030112158A1 (en) * | 2001-11-05 | 2003-06-19 | Babin Brian George | Miniature magnetic device package |
US6703830B2 (en) | 2002-02-18 | 2004-03-09 | Phoenix America, Inc. | Tunable magnetic device for use in a proximity sensor |
US20050247350A1 (en) * | 2004-05-04 | 2005-11-10 | Kim Coakley | Direct drive servovalve device with redundant position sensing and methods for making the same |
US7882852B2 (en) | 2004-05-04 | 2011-02-08 | Woodward Hrt, Inc. | Direct drive servovalve device with redundant position sensing and methods for making the same |
US20050258786A1 (en) * | 2004-05-19 | 2005-11-24 | Kellogg Michael I | Brushless DC motors with remote Hall sensing and methods of making the same |
US7095193B2 (en) | 2004-05-19 | 2006-08-22 | Hr Textron, Inc. | Brushless DC motors with remote Hall sensing and methods of making the same |
CN102788997A (en) * | 2011-05-17 | 2012-11-21 | 森萨塔科技公司 | Magnetic proximity sensor |
CN102788997B (en) * | 2011-05-17 | 2017-10-03 | 森萨塔科技公司 | Magnetic proximity transducer |
US20120293165A1 (en) * | 2011-05-17 | 2012-11-22 | Sensata Technologies, Inc. | Magnetic proximity sensor |
US9239248B2 (en) * | 2011-05-17 | 2016-01-19 | Sensata Technologies, Inc. | Magnetic proximity sensor having improved capabilities and efficiency |
EP2525193A1 (en) * | 2011-05-17 | 2012-11-21 | Sensata Technologies, Inc. | Magnetic proximity sensor |
EP2767796A1 (en) * | 2013-01-28 | 2014-08-20 | Spinde Spólka z Ograniczona Odpowiedzialnóscia | Magnetic device to measure distance from ferromagnetic substrate |
CN106662466B (en) * | 2014-07-16 | 2020-06-12 | 舍弗勒技术股份两合公司 | Sensor system and piston cylinder arrangement |
CN106662466A (en) * | 2014-07-16 | 2017-05-10 | 舍弗勒技术股份两合公司 | Sensor system and piston cylinder arrangement |
WO2016008481A1 (en) * | 2014-07-16 | 2016-01-21 | Schaeffler Technologies AG & Co. KG | Sensor system and piston-cylinder assembly |
US10941762B2 (en) | 2015-01-30 | 2021-03-09 | Wagner Spray Tech Corporation | Piston limit sensing and software control for fluid application |
CN106643851A (en) * | 2016-12-29 | 2017-05-10 | 江苏双牛高科新能源有限公司 | Hall sensor positioning device and Hall sensor assembly |
CN106643851B (en) * | 2016-12-29 | 2023-11-17 | 江苏双牛高科新能源有限公司 | Hall sensor positioning device and Hall sensor assembly |
US12135048B2 (en) * | 2017-09-07 | 2024-11-05 | Wagner Spray Tech Corporation | Piston limit sensing for fluid application |
CN112888951A (en) * | 2018-09-19 | 2021-06-01 | 哈姆林电子(苏州)有限公司 | Speed sensor assembly |
US20230100898A1 (en) * | 2021-09-30 | 2023-03-30 | Melexis Technologies Sa | Magnetic position sensor system |
CN115900773A (en) * | 2021-09-30 | 2023-04-04 | 迈来芯电子科技有限公司 | Magnetic position sensor system |
US12117315B2 (en) * | 2021-09-30 | 2024-10-15 | Melexis Technologies Sa | Magnetic position sensor system |
Also Published As
Publication number | Publication date |
---|---|
US5264792A (en) | 1993-11-23 |
US5321355A (en) | 1994-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5115194A (en) | Hall effect position sensor with flux limiter and magnetic dispersion means | |
US4066962A (en) | Metal detecting device with magnetically influenced Hall effect sensor | |
US4970463A (en) | Temperature stable proximity sensor with sensing of flux emanating from the lateral surface of a magnet | |
US5814985A (en) | Incremental sensor of speed and/or position for detecting low and null speeds | |
US4626781A (en) | Device for detecting the speed of rotation and/or an angle of rotation of a shaft | |
US4443716A (en) | Symmetrical-hysteresis Hall switch | |
US6922052B2 (en) | Measuring device for contactless detecting a ferromagnetic object | |
KR101926383B1 (en) | Methods and apparatus for magnetic sensor producing a changing magnetic field | |
US4851775A (en) | Digital compass and magnetometer having a sensor coil wound on a high permeability isotropic core | |
DE69841360D1 (en) | Cylindrical torque sensor with circular magnetization with two-stage shaft and associated measurement and manufacturing processes | |
US5041761A (en) | Magnetic automotive lamp current sensor | |
JPS63135816A (en) | Magnetic field transmitter with permanent magnet and hall generator | |
US6703830B2 (en) | Tunable magnetic device for use in a proximity sensor | |
US11802886B2 (en) | Zero-gauss-magnet for differential, twist-insensitive magnetic speed sensors | |
US6140727A (en) | Pulse signal generator | |
US6104592A (en) | Electromechanical switching device | |
JPH06137802A (en) | Hall-effect position sensor with magnetic flux limiter and magnetic dispersion means | |
JPH0131591B2 (en) | ||
US4538082A (en) | High-output magnetic field transducer | |
JPH043265Y2 (en) | ||
Gilbert et al. | Linear hall-effect sensor ics | |
GB2126347A (en) | Inductive proximity sensors | |
RU2115932C1 (en) | Wheel speed checking device | |
KR960706064A (en) | MAGNETIC SIGNAL DETECTION APPARATUS | |
US3688290A (en) | Telemetering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KEARNEY-NATIONAL, INC., FIVE CORPORATION PARK DR., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LUETZOW, EDWIN J.;REEL/FRAME:005491/0849 Effective date: 19900926 Owner name: KEARNEY-NATIONAL, INC., FIVE CORPORATION PARK DR., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LUETZOW, ROBERT H.;REEL/FRAME:005491/0847 Effective date: 19900927 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: WABASH TECHNOLOGIES, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEARNEY-NATIONAL, INC.;REEL/FRAME:012463/0032 Effective date: 20011018 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS SENIOR CREDITOR AGENT, N Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNOR:WABASH TECHNOLOGIES, INC.;REEL/FRAME:013101/0955 Effective date: 20020529 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A. AS SENIOR CREDITOR AGENT, NO Free format text: SECURITY INTEREST;ASSIGNOR:WABASH MAGNETICS, LLC;REEL/FRAME:014210/0955 Effective date: 20020529 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20040519 |
|
AS | Assignment |
Owner name: WABASH TECHNOLOGIES, INC., INDIANA Free format text: TERMINATION OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A. AS SENIOR CREDITOR AGENT;REEL/FRAME:020186/0093 Effective date: 20071128 Owner name: WABASH MAGNETICS, LLC, INDIANA Free format text: TERMINATION OF SECURITY INTERESTS IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A. AS SENIOR CREDITOR AGENT;REEL/FRAME:020186/0142 Effective date: 20071128 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |