US4709253A - Surface mountable diode - Google Patents
Surface mountable diode Download PDFInfo
- Publication number
- US4709253A US4709253A US06/859,126 US85912686A US4709253A US 4709253 A US4709253 A US 4709253A US 85912686 A US85912686 A US 85912686A US 4709253 A US4709253 A US 4709253A
- Authority
- US
- United States
- Prior art keywords
- conductive
- exposed
- junction
- faces
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 59
- 229910000679 solder Inorganic materials 0.000 claims abstract description 27
- 239000012530 fluid Substances 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 abstract description 20
- 238000001465 metallisation Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001629 suppression Effects 0.000 description 6
- 230000001052 transient effect Effects 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000001972 Gardenia jasminoides Species 0.000 description 1
- 244000069218 Heracleum sphondylium ssp montanum Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
- H01L25/074—Stacked arrangements of non-apertured devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3442—Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01027—Cobalt [Co]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/0665—Epoxy resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/07802—Adhesive characteristics other than chemical not being an ohmic electrical conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12035—Zener diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12036—PN diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/1579—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30105—Capacitance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10174—Diode
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10636—Leadless chip, e.g. chip capacitor or resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/303—Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
- H05K3/305—Affixing by adhesive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This invention relates to surface mountable diodes which can readily be surface mounted in a minimum of space and with a minimum of complexity.
- Diodes are in widespread use as transient suppression devices, rectifiers, light sources, light detectors, and voltage references. In many applications it is important to be able to surface mount a diode directly to a surface such as a circuit board without wire leads or the like. In particular, when bipolar or unipolar zener diodes are used as transient suppression devices, high mounting density is often of key importance.
- the present invention is directed to improved diodes which do not require wire leads and which can readily be made in extremely small sizes to minimize mounting space requirements.
- a surface mounted diode comprises a semiconductor element which defines a base and first and second opposed faces extending away from the base.
- This semiconductor element comprises a p-n junction electrically interconnected between the opposed faces and spaced from the base.
- a first conductive layer is secured to the first opposed face, and means are provided for electrically interconnecting the second opposed face with a second conductive layer arranged generally parallel to the first conductive layer such that the p-n junction is interposed between the two conductive layers.
- Each of the conductive layers defines a respective exposed surface and the base is oriented parallel to a mounting plane defined by a mounting surface such that each of the exposed surfaces of the conductive layers is in contact with a respective spaced contact of the mounting surface, and the exposed surfaces of the conductive layers extend away from the mounting plane.
- Two masses of a conductive securing agent such as a suitable solder or conductive epoxy, are each secured both to a respective one of the contacts and the exposed surface of the associated conductive layers to form fillets.
- the securing agent is selected to move onto the exposed surfaces by capillary action when in a fluid state.
- the exposed surfaces of the conductive layers extend transverse both to the base of the semiconductive element and to the contacts of the mounting surface.
- the diode can, for example, be either a unipolar or a bipolar zener diode for use as a transient suppression device.
- the semiconductor element defines three or more bases which are symmetrically situated around the perimeter of the semiconductor element such that any one of a number of orientations of the diode can be used without interfering with the function of the diode. This simplifies mounting operations considerably and reduces manufacturing problems related to misoriented diodes.
- a surface mountable bipolar diode which comprises a first semiconductor element which defines a first outer face, a first inner face, and means for forming a first p-n junction therebetween.
- a second semiconductor element is provided which defines a second outer face, a second inner face, and means for forming a second p-n junction therebetween.
- First means electrically interconnect and mechanically secure the first and second faces together between the outer faces in order to form an integrated unit which defines a base extending between the outer faces, wherein the first and second p-n junctions are oriented with reverse polarity.
- First and second conductive surfaces are mounted on the first and second outer faces such that the first and second p-n junctions are positioned between the first and second conductive surfaces and the conductive surfaces extend away from the base.
- the conductive surfaces are positioned for surface mounting to respective mounting urfaces extending alongside the base.
- the conductive surfaces are oriented parallel to each other and substantially transverse to the base.
- the conductive surfaces comprise respective metallized layers.
- the bipolar diode of this invention can, for example, be formed as a bipolar zener diode for use as a transient suppression device.
- the bipolar diode of this invention provides important advantages in that both p-n junctions are located near the center of the device, and are therefore well protected.
- the p-n junctions are centered on the respective inner faces and the entire bipolar diode is symmetrical such that it can be flipped end-for-end and rotated about an axis extending between the conductive surfaces without altering the electrical function of the diode.
- FIG. 1 is a perspective view of a bipolar diode which incorporates a first presently preferred embodiment of this invention, mounted to a circuit board.
- FIG. 2 is a longitudinal section taken along the centerline of the diode of FIG. 1.
- FIG. 3 is a perspective view of a wafer showing components of the diode of FIG. 1 in an intermediate stage of manufacture.
- FIG. 4 is a plan view of the circuit board of FIG. 1 prior to mounting the diode.
- FIG. 5 is a section of a unipolar diode which incorporates a second preferred embodiment of this invention.
- FIGS. 1 and 2 show two views of a bipolar zener diode which incorporates a first presently preferred embodiment of this invention.
- This diode includes first and second semiconductor elements or dies 1,2, each of which defines a respective p-n junction as described in greater detail below.
- the two semiconductor elements 1,2 are bonded together in a bonding region 3 adjacent to the p-n junctions.
- Each of the semiconductor elements 1,2 defines a respective outer face 4,5 and at least one respective base 31,32. As shown in the drawings, the outer faces 4,5 are preferably oriented parallel to one another and transverse to the bases 31,32.
- each of the outer faces 4,5 defines a respective metallized layer, and these metallized layers are positioned to contact and extend transversely away from respective printed circuit contacts 8,9.
- Bonding joints 6,7 formed of a material, such as an appropriate solder or conductive epoxy, electrically and mechanically interconnect the outer faces 4,5 with the respective printed circuit board contacts 8,9.
- the diode of FIGS. 1 and 2 is electrically interconnected to the printed circuit board contacts in an economical manner without the use of wire bonds, clips, or other conventional lead attachments. Furthermore, unnecessary packaging elements have been eliminated, and it is the passivated semiconductor elements themselves which are used to connect the diode with the printed circuit board contacts, 8,9.
- FIG. 2 is a cross-section illustrating in detail the various component elements of the bipolar zener diode of FIG. 1.
- This diode operates bidirectionally to conduct signals above a predetermined voltage threshold in either direction. If one of the printed circuit board contacts 8 is connected to a signal source such as a pin of a connector, and the other contact 8,9 is connected to ground, the bidirectional zener diode of FIGS. 1 and 2 is well suited for use as a transient suppression device which can be made extremely compact in size. As pointed out below, this invention is not limited to use with bipolar devices, but can readily be adapted to unipolar diodes.
- the illustrated diode is formed of two semiconductor elements 1,2.
- Each of the semiconductor elements 1,2 is formed of a semiconductor material such as silicon, and each defines a respective p-n junction 10,11 oriented generally parallel to the outer face 4,5 of the semiconductor element 1,2.
- These p-n junctions are passivated with thermal oxide SiO 2 in regions 12,13, and the passivated regions are covered with a fritted borosilicate glass in regions 14,15 to assure adequate protection to the p-n junction 10,11 in the environment in which the diode will be used.
- the semiconductor elements 1,2 are identical and they can be fabricated in a conventional planar wafer manufacturing process. This process starts with a wafer which will be processed to form a large number of the semiconductor elements 1,2. After the various process steps have been completed, the wafer is cut or diced into the separate semiconductor elements 1,2. Because the diode is mounted on its side in final assembly to the printed circuit board, it is advantageous to use a relatively thick wafer in the fabrication process, which wafer is preferably formed of a low resistivity semiconductor substrate. In FIG. 2, this substrate is identified by the reference numerals 16 and 17 as an n+ region, which in this embodiment preferably has a resistivity of about 0.01 ohm-cm.
- diodes in accordance with this invention can also be formed with the reverse dopant species from those shown in FIG. 2, i.e., p+ substrates can be used in conjunction with n type diffused n-p junctions.
- the first step in the fabrication of the semiconductor element 1,2 is to form an epitaxial deposition layer 18,19 of a resistivity value which will help control the desired zener or avalanche voltage value desired.
- the epitaxial layer 18,19 preferably has a resistivity of approximately 0.03 ohm-cm, and is approximately 24 microns in thickness.
- the wafer is then thermally oxidized to form a layer of SiO 2 which in this embodiment has a thickness of about 1 micron.
- a first photolithography step is then performed to etch open a diffusion window.
- a suitable dopant such as boron in this example
- a diffusion drive-in step is then performed to drive the p-n junction to a depth of approximately 8 microns in this embodiment.
- a p-n junction has been found suitable for a 20 volt avalanche breakdown diode.
- the p layer formed in the drive-in step preferably has a sheet resistance of about 22 ohms per square.
- the next step in the fabrication process is to backgrind the wafer to obtain the desired final thickness for the semiconductor elements 1,2. Then a surface enhancement diffusion or phosphorus getter operation is performed to form a very highly doped region n++ 20,21 having a sheet resistance of about 2 ohms per square. This very highly doped region 20,21 provides a good ohmic backside contact as explained below.
- Such an enhancement operation can also be provided by other low temperature doping techniques with selected doped metallizations as part of the backside metallization operation near the end of the overall wafer process.
- the wafer is again selectively etched via a photolithography step to provide an ohmic contact window through the thermal oxide which was grown during the diffusion step.
- the wafer may then be further passivated with an additional layer of borosilicate glass as shown in regions 14 and 15 in FIG. 2. If such a glass layer is deposited, then a third selective etch operation is required to provide the final ohmic contact window opening.
- a layer of palladium is deposited via thin film evaporation techniques in this ohmic contact window opening, in the region 22,23. This thin film of palladium is then sintered to the exposed silicon in the regions 22,23. Excess palladium is removed from the glass 14,15 by chemical etching. Thereafter, a relatively thick silver bump contact 24,25 is galvanically deposited over the palladium. Typically, each bump contact 24,25, is approximately 0.001 inch in thickness.
- a backside metallization layer 26,27 is deposited over the enhanced layer 20,21.
- This metallization layer 26,27 is selected to provide for suitable solder flow or other conductive bonding material flow to these surfaces to ensure the formation of adequate fillets 28,29 extending between the printed circuit board contacts 8,9 and the metallization layers 26,27.
- the metallization layers 26,27 can be formed of electroless nickel and gold depositions, or by evaporated layers of chrome followed by silver followed by gold. In addition, other metallization layers including solder coatings can be used. It is often important that the relative metal thickness of the layer 26,27 be selected to promote solder wetting without total dissolution of available metals or eventual dewetting of the metallization layer 26,27.
- One presently preferred embodiment for the metallization layers 26,27 includes the following layers, starting adjacent to the n++ layer 20,21:
- FIG. 3 shows a portion of the wafer 35 at the completion of the wafer fabrication process.
- the wafer is then sawed or otherwise cut into individual dies or semiconductor elements 1,2.
- These individual semiconductor elements may be shaped as desired, and configuration such as squares, rectangles, triangles, pentagons, and hexagons, are all suitable. Regardless of the configuration chosen, each semiconductor element 1,2 should define at least one base 31,32 which is reasonably planar to allow the finally assembled diode to rest on the base 31,32.
- the bipolar diode is assembled by soldering or affixing with conductive epoxy two of the semiconductor elements 1,2 together with a central bond 30.
- the central bond 30 is a solder of 95% lead and 5% tin which has a melting point of about 315° C.
- a disc of the solder is clamped in place between the contacts 24,25, and the assembly is heated to create the desired bond.
- the solder should be chosen to have a higher melting point than any solder used to mount the diode in place.
- the two semiconductor elements 1,2 are rotationally aligned one with the other with the planar p-n junctions 10,11 facing one another.
- the metallization layers 26,27 are oriented parallel to one another and to the p-n junctions 10,11 and perpendicular to the base 31,32.
- the bipolar diode can be mounted with the bases 31,32 resting on the respective printed circuit board contacts 8,9 and the sensitive p-n junctions 10,11 situated approximately midway between the printed circuit board contacts 8,9. In this way, the p-n junctions 10,11 are isolated and protected.
- the diode of FIGS. 1 and 2 can be formed in a wide range of sizes and with a wide range of electrical characteristics.
- the following information is provided merely to define one preferred embodiment in greater detail and is of course not intended to be in any way limiting:
- the bipolar zener diode of FIGS. 1 and 2 is mounted to a printed circuit board with fillets 28,29 of a material such as solder or epoxy which electrically interconnects the metallization layers 26,27 with respective contacts 8,9 of the printed circuit board.
- a material such as solder or epoxy which electrically interconnects the metallization layers 26,27 with respective contacts 8,9 of the printed circuit board.
- a printed circuit board 34 is cleaned and dried in an oven for about 1 hour at 100 deg. C., and a suitable epoxy 33 is then applied to the printed circuit board between the contacts 8,9.
- This epoxy 33 is of the type which provides a high electrical resistance after curing.
- the material marketed by Ablestick Co. of Gardenia, Calif. as Ablebond 77-2LTC has been found suitable for use as the epoxy 33.
- the assembled diode is then placed on the printed circuit board as shown in FIG. 2 such that the central solder bond 30 is centered over the insulating epoxy 33 and each of the metallization layers 26,27 is in electrical contact with a respective one of the contacts 8,9.
- the printed circuit board with the mounted diode is then placed in an oven to cure the insulating epoxy 33.
- solder paste is applied to each of the metallization layers 26,27.
- Solder of the type marketed as Alpha brand 60/40 solder with Alpha brand 611 flux (RMA) has been found suitable.
- the solder paste is then cured at a temperature of 80 deg. C. for 15 minutes in a suitable oven and then a reflow operation is performed in an infrared oven or a vapor phase soldering machine to form the fillets 28,29 interconnecting the metallization layers 26,27 with the respective contacts 8,9.
- the solder reflow operation should not subject the central solder bond 30 to elevated temperatures which might weaken the bond.
- the printed circuit board is cleaned and tested and a sealing epoxy may optionally be applied to the top of the diode to flow around the central solder bond 30.
- This sealing epoxy is cured at 150 deg. C. for 1 hour and the printed circuit board is again electrically tested.
- the nonconductive epoxy described above may be used as the sealing epoxy.
- a conductive epoxy for the 60/40 solder paste described above. In this event, the solder reflow operation described above is eliminated and replaced with an oven curing operation suitable for the conductive epoxy used.
- a suitable conductive epoxy is marketed by Ablestick Co. as Ablebond 84-1LMIT.
- the bipolar zener diode can be mounted with any of the sides which extend between the metallization layers 26,27 serving as the base 31,32. Thus, careful rotational positioning of the diode is not required. Furthermore, the diode can be turned end-for-end without adversely affecting its electrical performance. In all of these positions, the bonding region 3 is disposed above and away from the printed circuit board contacts 8,9, thereby reducing the possibility of undesired contact between the solder or conductive epoxy of the fillets 28,29 and the p-n junctions 10,11.
- bipolar zener diode described above.
- metal pads of desired thickness may be placed on the metallization layers 26,27 to provide heat sinks and increased bonding surface area to the printed circuit board contacts 8,9.
- a protective coating in the bonding region 3 can be provided.
- Such a protective coating may be desirable in specific mounting environments and can be provided, for example, by use of a semiconductor grade varnish, epoxy or polyimide material which can be flowed into the bonding region 3 between the semiconductor elements 1,2 and then dried at elevated temperatures.
- the dopant species may be reversed by starting with a p+ substrate and then doping with a suitable n dopant to form a p-n junction.
- this invention can be used to form unipolar diodes. As shown in FIG. 5, this can be done simply by eliminating the p-n junction from the semiconductor element 2 to form a simplified semiconductor element 2'.
- This simplified semiconductor element 2' is quite similar to the semiconductor element 2 except that an n++ enhanced surface is provided in the region 23, and the epitaxial region 19 is not required.
- This simplified semiconductor element 2' simply provides a short circuit path from the p-n junction of the semiconductor element 1 to the printed circuit board contact 9. In this way, a unipolar or single p-n junction path between the two circuit board contacts 8,9 is provided.
- this unipolar diode can also be fabricated with dopant species which are the reverse of those described above, as can the simplified semiconductor element 2'.
- the simplified semiconductor element 2' may be replaced with a block metal conductor having a similarly shaped geometry. If the solder bonding and the conductivity properties of this metal block are chosen properly, the same mounting techniques as those described above can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Rectifiers (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
Abstract
Description
______________________________________ A. Dimensions ofouter face 4,5: 0.0360 inch by 0.0360 inch; B. Distance betweenouter faces 4,5: 0.045 inch; C. Distance betweenregions 22,23: 0.003 inch; D. Breakdown Voltage: 20 V; E. Test Current: 1 mA; F. Working Peak Voltage: 15 V; G. Leakage Current at Working 10 μ A; Peak Voltage: H. Maximum Peak Surge Voltage: 40 V; I. Maximum Peak Surge Current: 20 A; J. Maximum Capacitance: 300 pf; K. Peak Surge Energy Dissipation: 0.005 Joules (10 μ sec), 0.05 Joules (1 m sec). ______________________________________
Claims (26)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/859,126 US4709253A (en) | 1986-05-02 | 1986-05-02 | Surface mountable diode |
JP62503012A JPH0666409B2 (en) | 1986-05-02 | 1987-04-22 | Surface mountable diode |
KR1019870701268A KR960003856B1 (en) | 1986-05-02 | 1987-04-22 | Surface mountable diode |
DE8787903501T DE3780564T2 (en) | 1986-05-02 | 1987-04-22 | SURFACE MOUNTING DIODE. |
EP87903501A EP0266412B1 (en) | 1986-05-02 | 1987-04-22 | Surface mountable diode |
PCT/US1987/000894 WO1987006767A1 (en) | 1986-05-02 | 1987-04-22 | Surface mountable diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/859,126 US4709253A (en) | 1986-05-02 | 1986-05-02 | Surface mountable diode |
Publications (1)
Publication Number | Publication Date |
---|---|
US4709253A true US4709253A (en) | 1987-11-24 |
Family
ID=25330112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/859,126 Expired - Fee Related US4709253A (en) | 1986-05-02 | 1986-05-02 | Surface mountable diode |
Country Status (6)
Country | Link |
---|---|
US (1) | US4709253A (en) |
EP (1) | EP0266412B1 (en) |
JP (1) | JPH0666409B2 (en) |
KR (1) | KR960003856B1 (en) |
DE (1) | DE3780564T2 (en) |
WO (1) | WO1987006767A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5012313A (en) * | 1987-12-28 | 1991-04-30 | Fuji Electric Co., Ltd. | Insulated gate semiconductor device |
US5018989A (en) * | 1990-09-21 | 1991-05-28 | Amp Incorporated | Electrical connector containing components and method of making same |
US5094629A (en) * | 1990-09-21 | 1992-03-10 | Amp Incorporated | Electrical connector containing components and method of making same |
US5147223A (en) * | 1990-09-21 | 1992-09-15 | Amp Incorporated | Electrical connector containing components and method of making same |
US5219296A (en) * | 1992-01-08 | 1993-06-15 | Amp Incorporated | Modular connector assembly and method of assembling same |
US5319525A (en) * | 1991-05-10 | 1994-06-07 | Nokia Mobile Phones (U.K.) Ltd. | Circuit assembly |
US5414587A (en) * | 1991-04-29 | 1995-05-09 | Trw Inc. | Surge suppression device |
US5428288A (en) * | 1991-04-29 | 1995-06-27 | Trw Inc. | Microelectric monitoring device |
US5455734A (en) * | 1991-04-29 | 1995-10-03 | Trw Inc. | Insert device for electrical relays, solenoids, motors, controllers, and the like |
US5590058A (en) * | 1991-04-29 | 1996-12-31 | Trw Inc. | Battery monitor for unobstrusive installation with a battery connector |
US5692917A (en) * | 1991-04-29 | 1997-12-02 | Trw Inc. | Computer hardware insert device for software authorization |
US6018167A (en) * | 1996-12-27 | 2000-01-25 | Sharp Kabushiki Kaisha | Light-emitting device |
US6635968B2 (en) * | 2000-02-04 | 2003-10-21 | Hitachi, Ltd. | Semiconductor device having improved alignment of an electrode terminal on a semiconductor chip and a conductor coupled to the electrode terminal |
CN100452452C (en) * | 2005-05-17 | 2009-01-14 | 财团法人工业技术研究院 | Light emitting device with inverted side-mounted structure of light emitting diode |
US20160013246A1 (en) * | 2013-03-15 | 2016-01-14 | Institute Of Microelectonics, Chinese Academy Of Sciences | Gating device cell for cross array of bipolar resistive memory cells |
US10879211B2 (en) | 2016-06-30 | 2020-12-29 | R.S.M. Electron Power, Inc. | Method of joining a surface-mount component to a substrate with solder that has been temporarily secured |
WO2024165420A1 (en) * | 2023-02-07 | 2024-08-15 | Ams-Osram International Gmbh | Method for producing an optoelectronic component with dual chip, and optoelectronic component with dual chip |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5019535A (en) * | 1989-03-28 | 1991-05-28 | General Electric Company | Die attachment method using nonconductive adhesive for use in high density interconnected assemblies |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3300710A (en) * | 1963-01-23 | 1967-01-24 | Dalton L Knauss | Voltage reference circuit with low incremental impedance and low temperature coefficient |
CH466427A (en) * | 1967-12-04 | 1968-12-15 | Bbc Brown Boveri & Cie | Fuses with fusible links for electrical devices, in particular semiconductor elements |
US3736475A (en) * | 1969-10-02 | 1973-05-29 | Gen Electric | Substrate supported semiconductive stack |
US3886581A (en) * | 1972-12-28 | 1975-05-27 | Tokyo Shibaura Electric Co | Display device using light-emitting semiconductor elements |
US4075649A (en) * | 1975-11-25 | 1978-02-21 | Siemens Corporation | Single chip temperature compensated reference diode and method for making same |
US4136349A (en) * | 1977-05-27 | 1979-01-23 | Analog Devices, Inc. | Ic chip with buried zener diode |
US4136351A (en) * | 1976-05-12 | 1979-01-23 | Hitachi, Ltd. | Photo-coupled semiconductor device |
US4213806A (en) * | 1978-10-05 | 1980-07-22 | Analog Devices, Incorporated | Forming an IC chip with buried zener diode |
US4319257A (en) * | 1980-01-16 | 1982-03-09 | Harris Corporation | Low thermal coefficient semiconductor device |
US4339785A (en) * | 1979-04-26 | 1982-07-13 | Sony Corporation | Electronic circuit arrangement mounted on printed circuit board |
US4349394A (en) * | 1979-12-06 | 1982-09-14 | Siemens Corporation | Method of making a zener diode utilizing gas-phase epitaxial deposition |
US4412376A (en) * | 1979-03-30 | 1983-11-01 | Ibm Corporation | Fabrication method for vertical PNP structure with Schottky barrier diode emitter utilizing ion implantation |
US4450021A (en) * | 1982-02-22 | 1984-05-22 | American Microsystems, Incorporated | Mask diffusion process for forming Zener diode or complementary field effect transistors |
US4473941A (en) * | 1982-12-22 | 1984-10-02 | Ncr Corporation | Method of fabricating zener diodes |
US4516223A (en) * | 1981-08-03 | 1985-05-07 | Texas Instruments Incorporated | High density bipolar ROM having a lateral PN diode as a matrix element and method of fabrication |
US4525922A (en) * | 1982-10-22 | 1985-07-02 | Fujitsu Limited | Method of producing a semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5644591A (en) * | 1979-09-20 | 1981-04-23 | Shinobu Akima | Pipe body for heat exchanger |
JPS572560A (en) * | 1980-06-06 | 1982-01-07 | Hitachi Ltd | High voltage semiconductor device |
-
1986
- 1986-05-02 US US06/859,126 patent/US4709253A/en not_active Expired - Fee Related
-
1987
- 1987-04-22 DE DE8787903501T patent/DE3780564T2/en not_active Expired - Fee Related
- 1987-04-22 JP JP62503012A patent/JPH0666409B2/en not_active Expired - Lifetime
- 1987-04-22 WO PCT/US1987/000894 patent/WO1987006767A1/en active IP Right Grant
- 1987-04-22 KR KR1019870701268A patent/KR960003856B1/en not_active IP Right Cessation
- 1987-04-22 EP EP87903501A patent/EP0266412B1/en not_active Expired - Lifetime
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3300710A (en) * | 1963-01-23 | 1967-01-24 | Dalton L Knauss | Voltage reference circuit with low incremental impedance and low temperature coefficient |
CH466427A (en) * | 1967-12-04 | 1968-12-15 | Bbc Brown Boveri & Cie | Fuses with fusible links for electrical devices, in particular semiconductor elements |
US3736475A (en) * | 1969-10-02 | 1973-05-29 | Gen Electric | Substrate supported semiconductive stack |
US3886581A (en) * | 1972-12-28 | 1975-05-27 | Tokyo Shibaura Electric Co | Display device using light-emitting semiconductor elements |
US4075649A (en) * | 1975-11-25 | 1978-02-21 | Siemens Corporation | Single chip temperature compensated reference diode and method for making same |
US4126496A (en) * | 1975-11-25 | 1978-11-21 | Siemens Corporation | Method of making a single chip temperature compensated reference diode |
US4136351A (en) * | 1976-05-12 | 1979-01-23 | Hitachi, Ltd. | Photo-coupled semiconductor device |
US4136349A (en) * | 1977-05-27 | 1979-01-23 | Analog Devices, Inc. | Ic chip with buried zener diode |
US4213806A (en) * | 1978-10-05 | 1980-07-22 | Analog Devices, Incorporated | Forming an IC chip with buried zener diode |
US4412376A (en) * | 1979-03-30 | 1983-11-01 | Ibm Corporation | Fabrication method for vertical PNP structure with Schottky barrier diode emitter utilizing ion implantation |
US4339785A (en) * | 1979-04-26 | 1982-07-13 | Sony Corporation | Electronic circuit arrangement mounted on printed circuit board |
US4349394A (en) * | 1979-12-06 | 1982-09-14 | Siemens Corporation | Method of making a zener diode utilizing gas-phase epitaxial deposition |
US4319257A (en) * | 1980-01-16 | 1982-03-09 | Harris Corporation | Low thermal coefficient semiconductor device |
US4516223A (en) * | 1981-08-03 | 1985-05-07 | Texas Instruments Incorporated | High density bipolar ROM having a lateral PN diode as a matrix element and method of fabrication |
US4450021A (en) * | 1982-02-22 | 1984-05-22 | American Microsystems, Incorporated | Mask diffusion process for forming Zener diode or complementary field effect transistors |
US4525922A (en) * | 1982-10-22 | 1985-07-02 | Fujitsu Limited | Method of producing a semiconductor device |
US4473941A (en) * | 1982-12-22 | 1984-10-02 | Ncr Corporation | Method of fabricating zener diodes |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5012313A (en) * | 1987-12-28 | 1991-04-30 | Fuji Electric Co., Ltd. | Insulated gate semiconductor device |
US5018989A (en) * | 1990-09-21 | 1991-05-28 | Amp Incorporated | Electrical connector containing components and method of making same |
US5094629A (en) * | 1990-09-21 | 1992-03-10 | Amp Incorporated | Electrical connector containing components and method of making same |
US5147223A (en) * | 1990-09-21 | 1992-09-15 | Amp Incorporated | Electrical connector containing components and method of making same |
US5590058A (en) * | 1991-04-29 | 1996-12-31 | Trw Inc. | Battery monitor for unobstrusive installation with a battery connector |
US5692917A (en) * | 1991-04-29 | 1997-12-02 | Trw Inc. | Computer hardware insert device for software authorization |
US5414587A (en) * | 1991-04-29 | 1995-05-09 | Trw Inc. | Surge suppression device |
US5428288A (en) * | 1991-04-29 | 1995-06-27 | Trw Inc. | Microelectric monitoring device |
US5455734A (en) * | 1991-04-29 | 1995-10-03 | Trw Inc. | Insert device for electrical relays, solenoids, motors, controllers, and the like |
US5568348A (en) * | 1991-04-29 | 1996-10-22 | Trw Inc. | Insert device for electrical relays, solenoids, motors, controllers, and the like |
US5319525A (en) * | 1991-05-10 | 1994-06-07 | Nokia Mobile Phones (U.K.) Ltd. | Circuit assembly |
US5219296A (en) * | 1992-01-08 | 1993-06-15 | Amp Incorporated | Modular connector assembly and method of assembling same |
US6018167A (en) * | 1996-12-27 | 2000-01-25 | Sharp Kabushiki Kaisha | Light-emitting device |
US6635968B2 (en) * | 2000-02-04 | 2003-10-21 | Hitachi, Ltd. | Semiconductor device having improved alignment of an electrode terminal on a semiconductor chip and a conductor coupled to the electrode terminal |
US20030201522A1 (en) * | 2000-02-04 | 2003-10-30 | Mitsuo Usami | Semiconductor device having improved alignment of an electrode terminal on a semiconductor chip and a conductor coupled to the electrode terminal |
US6867478B2 (en) | 2000-02-04 | 2005-03-15 | Hitachi, Ltd. | Semiconductor device having improved alignment of an electrode terminal on a semiconductor chip and a conductor coupled to the electrode terminal |
CN100452452C (en) * | 2005-05-17 | 2009-01-14 | 财团法人工业技术研究院 | Light emitting device with inverted side-mounted structure of light emitting diode |
US20160013246A1 (en) * | 2013-03-15 | 2016-01-14 | Institute Of Microelectonics, Chinese Academy Of Sciences | Gating device cell for cross array of bipolar resistive memory cells |
US9508776B2 (en) * | 2013-03-15 | 2016-11-29 | Insitute of Microelectronics, Chinese Academy of Sciences | Gating device cell for cross array of bipolar resistive memory cells |
US10879211B2 (en) | 2016-06-30 | 2020-12-29 | R.S.M. Electron Power, Inc. | Method of joining a surface-mount component to a substrate with solder that has been temporarily secured |
WO2024165420A1 (en) * | 2023-02-07 | 2024-08-15 | Ams-Osram International Gmbh | Method for producing an optoelectronic component with dual chip, and optoelectronic component with dual chip |
Also Published As
Publication number | Publication date |
---|---|
EP0266412B1 (en) | 1992-07-22 |
WO1987006767A1 (en) | 1987-11-05 |
EP0266412A1 (en) | 1988-05-11 |
JPH01500154A (en) | 1989-01-19 |
KR880701464A (en) | 1988-07-27 |
KR960003856B1 (en) | 1996-03-23 |
JPH0666409B2 (en) | 1994-08-24 |
DE3780564D1 (en) | 1992-08-27 |
DE3780564T2 (en) | 1993-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4709253A (en) | Surface mountable diode | |
US3461357A (en) | Multilevel terminal metallurgy for semiconductor devices | |
US3903590A (en) | Multiple chip integrated circuits and method of manufacturing the same | |
US5061985A (en) | Semiconductor integrated circuit device and process for producing the same | |
US6297562B1 (en) | Semiconductive chip having a bond pad located on an active device | |
US6303979B1 (en) | Face-down bonding pin diode | |
JPH10326806A (en) | Semiconductor device and its manufacture | |
US3235945A (en) | Connection of semiconductor elements to thin film circuits using foil ribbon | |
JPH10242383A (en) | Semiconductor device | |
JP2956786B2 (en) | Synthetic hybrid semiconductor structure | |
US3371148A (en) | Semiconductor device package and method of assembly therefor | |
US5866951A (en) | Hybrid circuit with an electrically conductive adhesive | |
US5877516A (en) | Bonding of silicon carbide directly to a semiconductor substrate by using silicon to silicon bonding | |
US3721868A (en) | Semiconductor device with novel lead attachments | |
US3581166A (en) | Gold-aluminum leadout structure of a semiconductor device | |
US3636619A (en) | Flip chip integrated circuit and method therefor | |
JP3043484B2 (en) | Semiconductor device | |
US8013452B2 (en) | Wire-bonded semiconductor component with reinforced inner connection metallization | |
JP3238825B2 (en) | Surface mount type semiconductor device | |
US3375416A (en) | Semiconductor tunnel diode device | |
JPS58210643A (en) | semiconductor equipment | |
US4987476A (en) | Brazed glass pre-passivated chip rectifier | |
US3678346A (en) | Semiconductor device and method of making the same | |
JPS63240054A (en) | Semiconductor device | |
JPH10242085A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMP INCORPORATED, P.O. BOX 3608, HARRISBURG, PA. 1 Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MICROSEMI CORP.;REEL/FRAME:004622/0924 Effective date: 19861021 Owner name: MICROSEMI CORP., 2830 SO. FAIRVIEW, SANTA ANA, CA. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WALTERS, CECIL K.;REEL/FRAME:004622/0922 Effective date: 19861021 |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19991124 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |