US3727060A - Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material - Google Patents
Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material Download PDFInfo
- Publication number
- US3727060A US3727060A US00063529A US3727060DA US3727060A US 3727060 A US3727060 A US 3727060A US 00063529 A US00063529 A US 00063529A US 3727060D A US3727060D A US 3727060DA US 3727060 A US3727060 A US 3727060A
- Authority
- US
- United States
- Prior art keywords
- package
- package according
- layer
- elements
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011358 absorbing material Substances 0.000 title claims abstract description 9
- 230000005855 radiation Effects 0.000 title abstract description 6
- 239000000941 radioactive substance Substances 0.000 title description 4
- 238000003860 storage Methods 0.000 title description 3
- 239000000463 material Substances 0.000 claims abstract description 40
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000004568 cement Substances 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 6
- 239000004570 mortar (masonry) Substances 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 4
- 238000011109 contamination Methods 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 47
- 239000000203 mixture Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910021540 colemanite Inorganic materials 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000012857 radioactive material Substances 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000011505 plaster Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 241000518994 Conta Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 238000003722 High energy mechanical milling Methods 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L3/00—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
- F16L3/08—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing
- F16L3/12—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing comprising a member substantially surrounding the pipe, cable or protective tubing
- F16L3/13—Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing comprising a member substantially surrounding the pipe, cable or protective tubing and engaging it by snap action
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/06—Details of, or accessories to, the containers
- G21F5/10—Heat-removal systems, e.g. using circulating fluid or cooling fins
Definitions
- the package has a composite wall comprising from mside to outside, a inner shell surrounding the useful
- Foreign Application Priority Data cavity a layer of dense material for protection against Aug. 13, 1969 France ..6927937 gal-mm radlanfms and i (.mter Shell A of neutron-absorbing material 18 arranged against the Jan. 14, 1970 France ..700l265 14 other surface of the outer shell, heat conducting ele- May 8,1970 France ..70l69 ments, such as fins or pins being fixed against the outer shell and projecting at the surface of the layer.
- US. Cl. .250/108 1R, 250/108 WS [51] lint. Cl ..G21f 1/02, G2lf 5/00 13 Claims, 11 Drawing Figures PATENTH] APR] 01975 SHEET 1 BF 6 PATENTEDAPR 1 mm 3.727. 060
- the invention relates to a package for the transportation and storage of radioactive materials of the type which includes a composite wall comprising an inner shell, a layer or core of dense material such as lead and an outer shell, the inner and outer shells being generally constructed of steel.
- the package according to the invention is characterised by the fact that it comprises a layer of neutron absorbent material in which are buried, at least partially, heat conducting elements.
- FIG. 1 shows in sectional perspective, a portion of one embodiment of the package according to the invention
- FIG. 2 is a plan view of a portion of the outer surface of the embodiment of FIG. 1;
- FIG. 3 is a cross-section of a second embodiment of a package according to the invention.
- FIGS. 4 and 5 show in perspective two variations of the above-mentioned first embodiment
- FIGS. 6 and 7 show on a larger'scale two embodiments of a portion of the package according to FIG. 3;
- FIG. 8 shows in cross-section a variation of the embodiment of FIG. 3
- FIG. 9 is a view in elevation with partial section of the embodiment of FIG. 3; and lastly FIGS. 10 and 11 show, in axial section, two other em-- bodiments of the package according to the invention.
- a package for radioactive materials and of which the wall comprises, from the cavity towards the outside, an inner shell 1, a layer 2 of dense material such as lead for the protection against the gamma radiations and an outer shell 3, the shells I and 3 being generally constructed of steel comprises a layer 4 of a neutraon abosrbing material in which are buried at least partially conducting elements.
- the layer 4 is arranged against the outer surface of the shell 3 and the heat conducting elements, of the type of fins or pins, are fixed against the outer surface of the shell 3.
- the heat conducting elements are obtained from metallic blades 6, fixed by welding at one of their edges on the shell e parallel to the axis of the package, that is to say along a generator X X
- the blades 6 include on their free edge a succession of fins 7 folded back through one of their sides to a blade support and having undergone, close to this side, a twisting such that their flat portions are situated in successive planes substantially parallel between themselves and perpendicular to the axis of the package, that is to say to X X
- the said blades are then welded on the package.
- each of the teeth undergo successively a twisting of around an axis perpendicular to the axis of the package to arrange that each of the said teeth has a flat portion substantially parallel to the flatportions of the neighbouring teeth and perpendicular to the axis of the package, thus forming the fins 7.
- the blades 6 on the package At the time of welding the blades 6 on the package, it is arranged for the incisions borne by a 'given blade not to be placed facing the incisions of the neighbouring baldes.
- constituent metal of the blades 6 it is selected advantageously in the group comprising steel, copper, aluminium and alloys based on these metals.
- the fins which have just been described combine the efficiency of known fins in the form of a crown surrounding the package and the facility of positioning of the fins also known constituted by single baldes, welded on the shell 3 parallel to the axis X Y, and whose efficiency of cooling leaves something to be desired.
- the layer 4 is arranged inside the shell 3 and the heat conducting elements, of which at least one end is free, are buried in the said layer 4.
- the heat conducting elements metallic as in the preceding embodiment (certain at least being preferably of steel and serving then as centering elements) have a section especially in a U" or in the I," said elements which have been denoted by 8, being arranged so that the horizontal bar of the U or the vertical limb of the I are oriented radially.
- the elements 8 can also be arranged in the form of a T or of an L, the vertical limb of the T or of the L being then fixed on the layer 2, the horzontal bar, parallel to the outer shell 3, thus increasing the heat exchange of the surface.
- the reverse atrangement is possible.
- the neutron absorbing material is a material rich in hydrogen and, possibly, in boron.
- colemanite E ZCaO, H O
- pandermite 6 B 0 5 CaO, 6H O
- boric acid H hd 3 B0
- frits of boron glass it is possible to use boron concretes, mixtures of plaster, polythene and boric acid, wood advantageously injected of boric acid or agglomerates of wood with or without boron.
- the material 4 comprises, as in the case of the embodiment of FIG. 8, a binding which is designated by 10 and in which are buried, on one hand, the cooling elements 8 and, on the other hand, particles 11 of a material rich in atoms of hydrogen, as well as, if necessary, atoms of boron.
- the constituent material of the plates 9 and/or particles 11 can be polyethylene or a wood based agglomerate composition.
- the binder is constituted by plaster or resins of the epoxy or polyester type.
- the package according to the invention comprises, as seen in FIG. 3 and FIG. 8, a plurality of cavities C each bounded by an inner shell 1 advantageously constructed of stainless steel, these cavities being distributed around the axis of the package designated by XY, and spaces comprised between the various inner shells 1 being at least partially filled by a metal lighter than lead and denoted by 12.
- the metal 12 which is constituted advantageously by aluminium, cast iron or steel, forms elements which are buried in the midst of the constituent material of the layer 2, as seen in FIG. 3.
- the outer contour of the layer 2 being capable of taking various shapes, for example as seen in FIG. 8, there can be conferred on the layer of material 4 a varying thickness in order that the outer shell can be of simple shape, for example that of a cylinder of revolution.
- recourse is had, as visible in FIG. 8, to elements 8 of variable sizes.
- the thickness of the layer of material 4 varies in the direction of the axis of the package.
- FIG. 9 represents a view in elevation of a package according to the invention including a tear away which shows the inside of the package.
- the thickness of the layer of material 4 which is least at mid-height of the package and greatest at the ends of the latter, varies in discontinuous manner whilst matching the outer contour of the layer 2.
- elements 8 of variable dimensions to correspond to the variable thicknesses of the layer of material 4 along the axis XY of the package.
- the advantage of having varying thickness in the direction of the axis of the package resides in the fact that it enagles a gain in weight.
- the layer of lead can be of less thickness, the thickness of the layer situtated between the lead and the outer shell being all the greater. Now, the density of this layer is distinctly less than that of lead.
- the package according to the invention compriseson the one hand a layer of material 4 arranged gainst the outer surface of the shell 3 and combined with conducting elements 14a of the pin type, fixed on the shell 3 and projecting at the surface of the layer 4 and, on the other hand, a layer 15 of type of mortar or cement with a hydraulic binder base, arranged between the shell 3 and the layer of dense material 2.
- a meter cube of mortar can be constituted as follows:
- composition for the layer of material 4 there is used as granulate, materials with a high content of hydrogen and/or boron, of the type of those indicated above, and minerals such as colemanite (35 0 ZCaO, 5H O), pandermite (68 0 SCaO, 9H O), or again boric acid (H B0).
- the zone l5a includes advantageously insulating fillers such as expanded clay, globular alumina, vermiculite, perlite and expanded slag, which enagels it to play the role of a damper in the case of violent shock or dropping of the package.
- advantageously insulating fillers such as expanded clay, globular alumina, vermiculite, perlite and expanded slag, which enagels it to play the role of a damper in the case of violent shock or dropping of the package.
- the zones 15a, 15b and are obtained, in practice, by casting successively and in suitable order the corresponding constituent materials between the layer 2 and the outer shell 3.
- the thickness of the layer of material 4 can reach 20 cm or more.
- the thermal conductivity of this layer being relatively little raised as a result of the presence of neutron absorbing fillers, the dissipation of heat coming from the material contained in the package is ensured by means of elements 14a.
- a coating of paint 18 covering both the layer 4 and the elements 14a and applied after evaporation of the major part of the free water from the mortar.
- the package according to the invention comprises, on both sides of the portion including the cooling element, that is to say at its two ends, a continuous rim 19 of which the surface is substantially at the same level as the ends of the said cooling elements.
- the cooling elements are less exposed to shock and it becomes possible to fix, by simple means such as straps 20, a removable jacket 21, metallic or of synthetic material possibly reinforced, covering portion which includes the cooling elements.
- This construction enables further reduction, at the time of operations of loading or unloading the package, of the risks of contamination of the portion including the cooling elements.
- a second flexible pipe 24 connected by a connector 25 to a pipe 26 passing through the continuous upper rim 19 andenabling the pressures to be balanced.
- the ends of the pipes 22 and 24 remain fixed during handling with respect to the plane of the water and are arranged for example in the manner indicated in FIG. 11.
- the cavity of the package is provided with a purging pipe 27 which opens at the level of zone 19.
- said layer of neutron-absorbing material is arranged against the outer surface of the outer shell, said heat-conducting elements being of the type of fins or pins, fixed against said outer shell, and projecting at the surface of said layer.
- the heatconducting elements are constituted by metallic blades fixed by welding on the outer shell of the package, parallel to the axis of the latter, said blades including on their free edge a succession of teeth folded by their sides at their blade support and having undergone twisting so that their flat portions are situated in successive planes substantially parallel between themselves and perpendicular to the axis of the package.
- heatconducting elements are metallic and have a section especially in a U or in an I, said elements being arranged so that the horizontal bar of the U or the vertical limb of the 1" are oriented radially.
- Package according to claim 1 comprising a plurality of said cavities bounded by inner shells and distributed around its axis, the spaces comprised between the various inner shells being at least partially filled by a metallighter than lead.
- Package according to claim 2 including a layer of material of the type of mortar or cement with a hydraulic binder base arranged between said outer shell and said layer of dense material.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Mechanical Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Particle Accelerators (AREA)
Abstract
The package has a composite wall comprising from inside to outside, a inner shell surrounding the useful cavity, a layer of dense material for protection against gamma radiations and an outer shell. A layer of neutron-absorbing material is arranged against the other surface of the outer shell, heat conducting elements, such as fins or pins, being fixed against the outer shell and projecting at the surface of the layer.
Description
QR 3727mm a HEMM [United @mt [11] 372mm Bllum [45] Apr. 10, 1973 PACKAGE FQR AND [58] Field of Search ..250/108 R, 108 WS TRANSPORTATKON 01F RADHOACTHVE SUBSTANCES coNTA NG now [561 References CM NEUTRON AND GAMMA RADIATION UNITED STATES PATENTS 1 #1 ENG MATERIAL 3,111,586 11/1963 Rogers ..250/108 R [75] Inventor: lPaul Blum, Saint-Nom-la-Breteche, 3,414,727 12/1968 Bonilla ..250/ 108 R France 3,005,105 10/1961 Lusk t ..250/l08 R 3,056,028 9/1962 Mattingly ..250/108 WS [73] Assrgnee: Transnucleaire, Suciete Pour les Transports de LHudustrie Nucleaire Primary Examiner-Archie R. Borchelt yams France Att0meyLarson, Taylor and Hinds [22] Filed: Aug. 13, 1970 [57] ABSTRACT [21] Appl. No.: 63,529
The package has a composite wall comprising from mside to outside, a inner shell surrounding the useful [30] Foreign Application Priority Data cavity, a layer of dense material for protection against Aug. 13, 1969 France ..6927937 gal-mm radlanfms and i (.mter Shell A of neutron-absorbing material 18 arranged against the Jan. 14, 1970 France ..700l265 14 other surface of the outer shell, heat conducting ele- May 8,1970 France ..70l69 ments, such as fins or pins being fixed against the outer shell and projecting at the surface of the layer. [52] US. Cl. .250/108 1R, 250/108 WS [51] lint. Cl ..G21f 1/02, G2lf 5/00 13 Claims, 11 Drawing Figures PATENTH] APR] 01975 SHEET 1 BF 6 PATENTEDAPR 1 mm 3.727. 060
SHEET 5 [1P6 PATENTEB 1 01815 3,727, 060
It is a particular object of'the invention to render such the abovesaid packages that they provide an efficient barrier to neutrons emitted by the radioactive materials whilst enabling the dissipation of the heat produced by the latter.
The package according to the invention is characterised by the fact that it comprises a layer of neutron absorbent material in which are buried, at least partially, heat conducting elements.
The invention will be better understood with the aid of the supplementary description which follows, as well as of the accompanying drawings, which description and drawings relate to several embodiments of packages according to the invenion, given purely by way of illustrative but non limiting example.
In the drawings,
FIG. 1 shows in sectional perspective, a portion of one embodiment of the package according to the invention;
FIG. 2 is a plan view of a portion of the outer surface of the embodiment of FIG. 1;
FIG. 3 is a cross-section of a second embodiment of a package according to the invention;
FIGS. 4 and 5 show in perspective two variations of the above-mentioned first embodiment;
FIGS. 6 and 7 show on a larger'scale two embodiments of a portion of the package according to FIG. 3;
FIG. 8 shows in cross-section a variation of the embodiment of FIG. 3;
FIG. 9 is a view in elevation with partial section of the embodiment of FIG. 3; and lastly FIGS. 10 and 11 show, in axial section, two other em-- bodiments of the package according to the invention.
According to the principal feature of the invention, a package for radioactive materials and of which the wall comprises, from the cavity towards the outside, an inner shell 1, a layer 2 of dense material such as lead for the protection against the gamma radiations and an outer shell 3, the shells I and 3 being generally constructed of steel comprises a layer 4 of a neutraon abosrbing material in which are buried at least partially conducting elements.
In a first preferred embodiment the layer 4 is arranged against the outer surface of the shell 3 and the heat conducting elements, of the type of fins or pins, are fixed against the outer surface of the shell 3.
More particularly in the embodiment of FIG. 1, the heat conducting elements are obtained from metallic blades 6, fixed by welding at one of their edges on the shell e parallel to the axis of the package, that is to say along a generator X X The blades 6 include on their free edge a succession of fins 7 folded back through one of their sides to a blade support and having undergone, close to this side, a twisting such that their flat portions are situated in successive planes substantially parallel between themselves and perpendicular to the axis of the package, that is to say to X X To construct the abovesaid fins 7, there are formed on one of the edges of the blades 6, before the fixing of the latter on the package, incisions perpendicular to the said edge and stopping at a short distance d from the other edge, which give successive teeth situated in extension of one another.
The said blades are then welded on the package.
In FIG. 1 there are shown in mixed lines several of the successive teeth concerned and at 7a the incisions separating them.
It suffices then to make each of the teeth undergo successively a twisting of around an axis perpendicular to the axis of the package to arrange that each of the said teeth has a flat portion substantially parallel to the flatportions of the neighbouring teeth and perpendicular to the axis of the package, thus forming the fins 7.
At the time of welding the blades 6 on the package, it is arranged for the incisions borne by a 'given blade not to be placed facing the incisions of the neighbouring baldes.
An advantageous arrangement is that which results from FIG. 2 and according to which the fins 7 are arranged in quincunx.
As regards the constituent metal of the blades 6, it is selected advantageously in the group comprising steel, copper, aluminium and alloys based on these metals.
There are cases where the package is transported in inclined manner. To have an optimum cooling effect, there is then conferred on the fins an inclination such, with respect to the axis of the package, that the flat portions of the said fins are situated in a vertical plane when the package is placed in the inclined position of transportation.
The fins which have just been described combine the efficiency of known fins in the form of a crown surrounding the package and the facility of positioning of the fins also known constituted by single baldes, welded on the shell 3 parallel to the axis X Y, and whose efficiency of cooling leaves something to be desired.
It is also possible, to constitute the heat conducting elements by welded pins, known in themselves.
In a second advantageous embodiment, the layer 4 is arranged inside the shell 3 and the heat conducting elements, of which at least one end is free, are buried in the said layer 4.
More particularly according to the embodiment of FIG. 3, the heat conducting elements, metallic as in the preceding embodiment (certain at least being preferably of steel and serving then as centering elements) have a section especially in a U" or in the I," said elements which have been denoted by 8, being arranged so that the horizontal bar of the U or the vertical limb of the I are oriented radially.
The elements 8 can also be arranged in the form of a T or of an L, the vertical limb of the T or of the L being then fixed on the layer 2, the horzontal bar, parallel to the outer shell 3, thus increasing the heat exchange of the surface. Of course, the reverse atrangement is possible.
It is also possible to give to the portion of the heat conducting element which is arranged across the layer 4 a direction inclined with respect to the radius.
In the one and the other preceding embodiments, the neutron absorbing material is a material rich in hydrogen and, possibly, in boron.
To form this material, recourse may be had to synthetic and/or mineral substances.
As regards the synthetic sbstances rich in hydrogen recourse may be had for example to polythene and similar substances.
As regards to the minerals rich in hydrogen and boron, there may be used for example colemanite (3 E ZCaO, H O), pandermite (6 B 0 5 CaO, 6H O) or again boric acid H hd 3 B0 There may also be used frits of boron glass. Similarly, it is possible to use boron concretes, mixtures of plaster, polythene and boric acid, wood advantageously injected of boric acid or agglomerates of wood with or without boron.
When the layer 4 is arranged between the outer surface of the shell 3, there is advantageously used a material capable of being cast to which there can be added a plasticiser such as bentonite to improve the smoothness and impermeability. It is however possible also to use hoops 4a of wood or similar hydrogenated material, advantageously injected by boron, as shown in FIG. 4 in which there is shown two hoops 4a assembled by suitable means such as bolts 4b and arranged between the annular fins 14. In another embodiment, shown in FIG. 5, there are provided blades 6 forming longitudinal fins between which are fixed wooden elements 4c or of other hydrogenated material, parallel to the axis X,Y
When the layer 4 is arranged against the inner surface of the shell 3, recourse may be had to plates formed of a material rich in hydrogen and/or boron, which plates are deonted by the reference 9 and which are housed, as seen in FIG. 6, in the space located between the branches of the U-form elements, the said plates as well as the elements 8 being then connected to one another as well as to the layer 2 and to the outer shell 3 by means of a binding. This binding can however be of the type which set by hydration and which can retain free water. In FIG. 6, this binding is denoted by 10.
It is also possible to have recourse, for constituting the binding, to plaster and to resins of the polyesther or epoxy type filled or not with boron based products.
In a variation illustrated in FIG. 7, the material 4 comprises, as in the case of the embodiment of FIG. 8, a binding which is designated by 10 and in which are buried, on one hand, the cooling elements 8 and, on the other hand, particles 11 of a material rich in atoms of hydrogen, as well as, if necessary, atoms of boron.
To establish ideas, it is indicated that the constituent material of the plates 9 and/or particles 11 can be polyethylene or a wood based agglomerate composition.
As regards the binding 10, recourse may be had to an aluminous cement comprising from 35 to 40 percent alumina, from 35 to 40% of CaO, from 10 to 15% of Fe O from 2 to 8% of FeO, from 2 to 7% of SiO from 0 to 3% of TiO and from 0 to 3 percent of various substances.
In other cases, the binder is constituted by plaster or resins of the epoxy or polyester type.
In certain cases, the package according to the invention comprises, as seen in FIG. 3 and FIG. 8, a plurality of cavities C each bounded by an inner shell 1 advantageously constructed of stainless steel, these cavities being distributed around the axis of the package designated by XY, and spaces comprised between the various inner shells 1 being at least partially filled by a metal lighter than lead and denoted by 12. For reasons of ease of manufacture, the metal 12, which is constituted advantageously by aluminium, cast iron or steel, forms elements which are buried in the midst of the constituent material of the layer 2, as seen in FIG. 3.
It is also possible, as seen in FIG. 8, to arrange that the spaces comprised between the various cavities are constituted by the constituent steel itself of the inner shell.
It is again possible, even in the case of a single cavity, to provide thickenings 13 of the inner shell on the flat portions of the latter, as seen in FIG. 8, which enables a gain in weight to be recorded following the elimination of the lead at the places concerned and to increas the heat capacity.
Due to the presence of the elements 12 constituted by the metal lighter than lead, there are improved, on the one hand, the possibilities of thermal exchanges and, on the other hand, the possibilities of neutron absorption, the metals concerned being from this point of view superior to lead.
Finally, the presence of elements of metal lighter than lead enables the improvement of the control of nuclear interaction between the fuel elements contained in the difierent cavities C.
The outer contour of the layer 2 being capable of taking various shapes, for example as seen in FIG. 8, there can be conferred on the layer of material 4 a varying thickness in order that the outer shell can be of simple shape, for example that of a cylinder of revolution. To do this, according to the invention, recourse is had, as visible in FIG. 8, to elements 8 of variable sizes.
Always according to the invention, the thickness of the layer of material 4 varies in the direction of the axis of the package.
This characteristic appears in FIG. 9, which represents a view in elevation of a package according to the invention including a tear away which shows the inside of the package.
As visible in this Figure, the thickness of the layer of material 4, which is least at mid-height of the package and greatest at the ends of the latter, varies in discontinuous manner whilst matching the outer contour of the layer 2. There again,recourse is bad to elements 8 of variable dimensions to correspond to the variable thicknesses of the layer of material 4 along the axis XY of the package. The advantage of having varying thickness in the direction of the axis of the package resides in the fact that it enagles a gain in weight.
In fact, the radioactivity being less at the ends of the package, the layer of lead can be of less thickness, the thickness of the layer situtated between the lead and the outer shell being all the greater. Now, the density of this layer is distinctly less than that of lead.
Due to the characteristics which have just been described, the package according to the invention enables:
the ensuring simultaneously of the removal of the calories emitted by the radioactive material and the absorption of the neutrons which the latter emits;
the enabling of a simple construction;
enabling gains in weight;
control of the nuclear interaction in the case of multiple cavities;
increase in the thermal capacity in the neighbourhood of the cavity and the making of the temperatures along this cavity uniform.
In the case of the packages of FIGS. 3, 8 and 9, there are provided cooling crowns 14 arranged on the outer surface of the shell 3, these crowns being of course replaceable by any other type of fins or of pins.
In the embodiment of FIG. 10 and 11, the package according to the invention compriseson the one hand a layer of material 4 arranged gainst the outer surface of the shell 3 and combined with conducting elements 14a of the pin type, fixed on the shell 3 and projecting at the surface of the layer 4 and, on the other hand, a layer 15 of type of mortar or cement with a hydraulic binder base, arranged between the shell 3 and the layer of dense material 2.
The hydraulic binder layer 15 and which can enter in the constitution of the layer of material 4 is preferably of the aluminous type (ciment fondu").
Its chemical composition is advantageously as follows:
Thus, a meter cube of mortar can be constituted as follows:
Aluminous cement 700 kg WATER 280 l Granulate(comprising various fillers) 1000 I As regards the abovesaid granulate, its composition is advantageously as follows:
Particles between 0.5 and 1 mm of diameter 20% Particles between 1 and 2 mm of diameter 30% Particles between 2 and 5 mm of diameter 50% Fillers intended to increase the heat conductivity, constituted generally by metallic particles of steel or aluminium, or other conductive materials such as graphite or aluminium, may be incorporated in the layer 15.
To constitute the layer of material 4, there is used as granulate, materials with a high content of hydrogen and/or boron, of the type of those indicated above, and minerals such as colemanite (35 0 ZCaO, 5H O), pandermite (68 0 SCaO, 9H O), or again boric acid (H B0 To establish ideas, there is given herebelow an example of composition for the layer of material 4:
Aluminous cement 600 kg Water 220 kg Polyethylene (granules of about 3-5 mm) 600 kg Colemanite sand (05 to 2 mm) kg In the abovesaid composition, the colemanite sant is advantageously replaced by the powder with a granulometry of 50 to 500 micrometers.
As regards more particularly the abovesaid protective layer 15, it can be constituted in such a manner that it comprises zones of conductivity and of reduced mechanical strength, denoted by 15a, and situated at the level of the ends of the package, on both sides of the portion including the elements 14a, the zone corresponding to the portion provided with the said elements 14a being denoted by 15b and showing the characteristics indicated abovesuited to improving the thermal conductivity. It is indicated that the thickness of the zone 15b is generally of the order of 5 to 25 mm. Moreover, it is then advantageous to provide at the inner surface of the package a zone 15c, offering both a good thermal insulation and a good resistance to crushmg.
The zone l5a, includes advantageously insulating fillers such as expanded clay, globular alumina, vermiculite, perlite and expanded slag, which enagels it to play the role of a damper in the case of violent shock or dropping of the package.
The zones 15a, 15b and are obtained, in practice, by casting successively and in suitable order the corresponding constituent materials between the layer 2 and the outer shell 3.
It is noted that it is convenient to remove from the constituent mortar or cement of the layer 15 excess gas or free water which it contains and which could cause an excessive overpressure inside the shell 3. To do this, after several days of hardening, the temperature of the layer 15 is raised gradually to the maximum temperature of use whilst enabling excess steam or gas to escape from the shell 3.
Moreover, to avoid in the case of tire the risks of bursting of the shell 3, there is provided in the latter safety devices 17, constituted for example by fuses of metal or of a synthetic material such as a polyamide.
The thickness of the layer of material 4 can reach 20 cm or more. The thermal conductivity of this layer being relatively little raised as a result of the presence of neutron absorbing fillers, the dissipation of heat coming from the material contained in the package is ensured by means of elements 14a.
It is advantageous to provide fillets for necks at the base of the pins 14a to improve the adherence of the layer of material 4.
To facilitate possible decontamination operations of the package, there is provided according to the invention a coating of paint 18 covering both the layer 4 and the elements 14a and applied after evaporation of the major part of the free water from the mortar.
According to the preferred embodiment illustrated in FIG. 11, the package according to the invention comprises, on both sides of the portion including the cooling element, that is to say at its two ends, a continuous rim 19 of which the surface is substantially at the same level as the ends of the said cooling elements.
By means of these continuous rims, the cooling elements are less exposed to shock and it becomes possible to fix, by simple means such as straps 20, a removable jacket 21, metallic or of synthetic material possibly reinforced, covering portion which includes the cooling elements.
This construction enables further reduction, at the time of operations of loading or unloading the package, of the risks of contamination of the portion including the cooling elements.
To avoid risks of tearing at the time of operations of immersion in the pool, clean water is introduced into the espace arranged between the jacket 21 and the wall of the package, by resorting to a system of communicating vessels. This system of communicating vessels comrpises:
on one hand, a flexible inlet pipe 22 which is connected by a connector 23 to a pipe 23a enabling the water arriving through the pipe 22 to enter the space comprised between the jacket 21 and the wall of the case on, as shown,
on the other hand, a second flexible pipe 24 connected by a connector 25 to a pipe 26 passing through the continuous upper rim 19 andenabling the pressures to be balanced.
The ends of the pipes 22 and 24 remain fixed during handling with respect to the plane of the water and are arranged for example in the manner indicated in FIG. 11.
Due to this method of proceeding, any penetration of contaminated water inside the space comprised between the jacket 21 and the wall of the package is avoided.
It thus becomes possible to use, for constituting cooling elements, a carbon steel of good thermal conductivity, stainless steel being reserved for the members and surfaces which are not protected by the removable jacket.
As seen in FIG. 11, the cavity of the package is provided with a purging pipe 27 which opens at the level of zone 19.
lclaim: 1. Package for the storage and transportation of radioactive substances, said package having a composite wall comprising from inside to outside, an inner shell surrounding a cavity for containing said radioactive substances, a surrounding layer of dense material for protection against gamma radiations and an outer shell, said composite wall including a surrounding layer of neutron absorbing hydrogeneous material which constitutes an efficient neutron barrier for neutrons of high energy and heat-conducting elements traversing at least partially said neutron barrier and at least partially buried in said material sufficiently to conduct to the outside the heat produced therein.
2. Package according to claim 1, wherein said layer of neutron-absorbing material is arranged against the outer surface of the outer shell, said heat-conducting elements being of the type of fins or pins, fixed against said outer shell, and projecting at the surface of said layer.
3. Package according to claim 1, wherein said layer of neutron absorbing material is situated inside the outer shell and said heat-conductive elements, of which at least one end is free, are buried therein.
4. Package according to claim 2, wherein the heatconducting elements have a general radial direction.
5. Package according to claim 2, wherein the heatconducting elements have a general direction inclined with respect to the radius.
'6. Package according to claim 2, wherein the heatconducting elements are constituted by metallic blades fixed by welding on the outer shell of the package, parallel to the axis of the latter, said blades including on their free edge a succession of teeth folded by their sides at their blade support and having undergone twisting so that their flat portions are situated in successive planes substantially parallel between themselves and perpendicular to the axis of the package.
7. Package according to claim 3, wherein the heatconducting elements are metallic and have a section especially in a U or in an I, said elements being arranged so that the horizontal bar of the U or the vertical limb of the 1" are oriented radially.
8. Package according to claim 3, wherein the heatconducting elements are fixed by their ends against the corresponding constituent element of the wall of the package, the other end being curved with respect to the general direction of the element so as to be substantially parallel to the corresponding constitutent element, of the wall of the package.
9. Package according to claim 1, wherein the neutron absorbing hydrogeneous material is rich in boron.
10. Package according to claim 1, comprising a plurality of said cavities bounded by inner shells and distributed around its axis, the spaces comprised between the various inner shells being at least partially filled by a metallighter than lead.
11. Package according to claim 2, including a layer of material of the type of mortar or cement with a hydraulic binder base arranged between said outer shell and said layer of dense material.
ments, can be avoided.
Claims (12)
- 2. Package according to claim 1, wherein said layer of neutron-absorbing material is arranged against the outer surface of the outer shell, said heat-conducting elements being of the type of fins or pins, fIxed against said outer shell, and projecting at the surface of said layer.
- 3. Package according to claim 1, wherein said layer of neutron absorbing material is situated inside the outer shell and said heat-conductive elements, of which at least one end is free, are buried therein.
- 4. Package according to claim 2, wherein the heat-conducting elements have a general radial direction.
- 5. Package according to claim 2, wherein the heat-conducting elements have a general direction inclined with respect to the radius.
- 6. Package according to claim 2, wherein the heat-conducting elements are constituted by metallic blades fixed by welding on the outer shell of the package, parallel to the axis of the latter, said blades including on their free edge a succession of teeth folded by their sides at their blade support and having undergone twisting so that their flat portions are situated in successive planes substantially parallel between themselves and perpendicular to the axis of the package.
- 7. Package according to claim 3, wherein the heat-conducting elements are metallic and have a section especially in a ''''U'''' or in an ''''I,'''' said elements being arranged so that the horizontal bar of the ''''U'''' or the vertical limb of the ''''I'''' are oriented radially.
- 8. Package according to claim 3, wherein the heat-conducting elements are fixed by their ends against the corresponding constituent element of the wall of the package, the other end being curved with respect to the general direction of the element so as to be substantially parallel to the corresponding constitutent element, of the wall of the package.
- 9. Package according to claim 1, wherein the neutron absorbing hydrogeneous material is rich in boron.
- 10. Package according to claim 1, comprising a plurality of said cavities bounded by inner shells and distributed around its axis, the spaces comprised between the various inner shells being at least partially filled by a metal lighter than lead.
- 11. Package according to claim 2, including a layer of material of the type of mortar or cement with a hydraulic binder base arranged between said outer shell and said layer of dense material.
- 12. Package according to claim 11, wherein the hydraulic binder is of the aluminous type.
- 13. Package according to claim 1, comprising a removable protective jacket, of which the two edges are fixed to continous rims which occur at the two ends of the package, the assembly being such that clean water can be circulated in the space arranged between said jacket and the wall of the package, whereby, on operations of immersion in a pool, contamination of the portion of the package comprising the cooling elements, can be avoided.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR6927937A FR2055982A5 (en) | 1969-08-13 | 1969-08-13 | Storage and transport container for a - radioactive materials |
FR7001265A FR2085189A1 (en) | 1970-01-14 | 1970-01-14 | Storage and transport container for a - radioactive materials |
FR7016914A FR2088028A1 (en) | 1970-05-08 | 1970-05-08 | Storage and transport container for a - radioactive materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US3727060A true US3727060A (en) | 1973-04-10 |
Family
ID=27249188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00063529A Expired - Lifetime US3727060A (en) | 1969-08-13 | 1970-08-13 | Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material |
Country Status (4)
Country | Link |
---|---|
US (1) | US3727060A (en) |
JP (2) | JPS5419560B1 (en) |
DE (1) | DE2040348B2 (en) |
SE (1) | SE376995B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3851179A (en) * | 1974-02-05 | 1974-11-26 | Atomic Energy Commission | Shipping cask neutron and heat shield |
US3902548A (en) * | 1972-12-28 | 1975-09-02 | Robatel Slpi | Containers for the transport of radioactive materials |
US3930166A (en) * | 1972-11-28 | 1975-12-30 | Robatel Slpi | Package for transporting or enclosing radioactive materials |
US3982134A (en) * | 1974-03-01 | 1976-09-21 | Housholder William R | Shipping container for nuclear fuels |
US4021676A (en) * | 1976-05-07 | 1977-05-03 | The United States Of America As Represented By The United States Energy Research And Development Administration | Waste canister for storage of nuclear wastes |
US4232730A (en) * | 1977-05-16 | 1980-11-11 | Reese Stanton L | Radioactive materials transporting container and vehicles |
USD263087S (en) | 1979-02-09 | 1982-02-16 | Nuclear Assurance Corp. | Basket for a spent nuclear fuel shipping cask |
DE3026248A1 (en) * | 1980-07-11 | 1982-02-18 | Transnuklear Gmbh, 6450 Hanau | TRANSPORT AND / OR STORAGE CONTAINERS FOR RADIOACTIVE SUBSTANCES |
US4326130A (en) * | 1978-10-17 | 1982-04-20 | Stefan Ahner | Shielding container with neutron shielding for the transportation and/or storage of spent fuel elements |
US4339411A (en) * | 1979-04-14 | 1982-07-13 | Degussa Transnuklear Gmbh | Shielding container for the transportation and/or for storage of spent fuel elements |
US4388268A (en) * | 1979-11-17 | 1983-06-14 | Transnuklear Gmbh | Transportation and/or storage containers for radioactive materials |
US4434373A (en) | 1979-11-17 | 1984-02-28 | Richard Christ | Neutron shielding |
EP0109135A1 (en) * | 1982-11-08 | 1984-05-23 | Chichibu Cement Co. Ltd. | A multiplex design container having a three-layered wall structure and a process for producing the same |
US4521691A (en) * | 1979-11-17 | 1985-06-04 | Transnuklear Gmbh | Shielding container having neutron shielding for the transportation and/or storage of radioactive material |
FR2556877A1 (en) * | 1983-12-19 | 1985-06-21 | Fonderie Alcoa Mg Sa | INSERT NEUTROPHAGE FOR CONTAINER FOR TRANSPORTING BARS OR RADIOACTIVE MATERIALS, AND CONTAINER COMPRISING SUCH INSERTS |
US4780269A (en) * | 1985-03-12 | 1988-10-25 | Nutech, Inc. | Horizontal modular dry irradiated fuel storage system |
US20050286674A1 (en) * | 2004-06-29 | 2005-12-29 | The Regents Of The University Of California | Composite-wall radiation-shielded cask and method of assembly |
US20100270001A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing grout heat conductibility and increasing caustic resistance |
US20110033019A1 (en) * | 2008-04-29 | 2011-02-10 | Evan Rosenbaum | Single-plate neutron absorbing apparatus and method of manufacturing the same |
CN102290109A (en) * | 2010-06-30 | 2011-12-21 | 中国核电工程有限公司 | Multifunctional heat-dissipating structure for radioactive substance transportation containers |
US20130206361A1 (en) * | 2010-06-02 | 2013-08-15 | Tn International | Packaging for transport and/or storage of radioactive materials, which include improved means of thermal conduction |
US11569001B2 (en) | 2008-04-29 | 2023-01-31 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7604220A (en) * | 1976-04-21 | 1977-10-25 | Leer Koninklijke Emballage | HOLDER WITH OUTFLOW DUCT AND ONE-TIME CLOSURE. |
FR2376392A2 (en) * | 1977-01-04 | 1978-07-28 | Lemer & Cie | Thick wall cooling system - comprises studs perpendicular to wall and with fins parallel to it |
DE2748019C2 (en) * | 1977-10-26 | 1987-02-12 | British Nuclear Fuels Ltd., Risley, Warrington, Cheshire | Inner container for use as an insert in a transport container for irradiated nuclear reactor fuel elements |
DE3012256A1 (en) * | 1980-03-29 | 1981-10-15 | Transnuklear Gmbh, 6450 Hanau | CONTAINER FOR TRANSPORT AND / OR STORAGE OF RADIOACTIVE SUBSTANCES |
DE3026249C2 (en) * | 1980-07-11 | 1984-05-30 | Transnuklear Gmbh, 6450 Hanau | Transport and / or storage containers for radioactive substances |
CH658333A5 (en) * | 1981-12-22 | 1986-10-31 | Wiederaufarbeitung Von Kernbre | CONTAINERS FOR LONG-TERM STORAGE OF RADIOACTIVE MATERIAL, IN PARTICULAR Spent NUCLEAR FUEL. |
JPH04128409U (en) * | 1991-05-08 | 1992-11-24 | 三洋電機株式会社 | recording level control device |
US9672948B2 (en) * | 2009-04-28 | 2017-06-06 | Holtec International, Inc. | Cask apparatus, system and method for transporting and/or storing high level waste |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3005105A (en) * | 1958-10-17 | 1961-10-17 | Edlow Lead Company | Shipping cask for radioactive materials |
US3056028A (en) * | 1960-05-03 | 1962-09-25 | James T Mattingly | Neutron shielding structure |
US3111586A (en) * | 1961-08-25 | 1963-11-19 | Baldwin Lima Hamilton Corp | Air-cooled shipping container for nuclear fuel elements |
US3414727A (en) * | 1965-04-26 | 1968-12-03 | Nat Lead Co | Shipping container for radioactive material including safety shield means |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113215A (en) | 1961-02-27 | 1963-12-03 | Stanray Corp | Cask construction for radioactive material |
GB1145983A (en) | 1965-05-07 | 1969-03-19 | Atomic Energy Authority Uk | Improvements in or relating to transport containers for radioactive materials |
-
1970
- 1970-08-13 DE DE19702040348 patent/DE2040348B2/en not_active Ceased
- 1970-08-13 SE SE7011061A patent/SE376995B/xx unknown
- 1970-08-13 JP JP7114070A patent/JPS5419560B1/ja active Pending
- 1970-08-13 US US00063529A patent/US3727060A/en not_active Expired - Lifetime
-
1982
- 1982-01-22 JP JP57008740A patent/JPS5756038B1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3005105A (en) * | 1958-10-17 | 1961-10-17 | Edlow Lead Company | Shipping cask for radioactive materials |
US3056028A (en) * | 1960-05-03 | 1962-09-25 | James T Mattingly | Neutron shielding structure |
US3111586A (en) * | 1961-08-25 | 1963-11-19 | Baldwin Lima Hamilton Corp | Air-cooled shipping container for nuclear fuel elements |
US3414727A (en) * | 1965-04-26 | 1968-12-03 | Nat Lead Co | Shipping container for radioactive material including safety shield means |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930166A (en) * | 1972-11-28 | 1975-12-30 | Robatel Slpi | Package for transporting or enclosing radioactive materials |
US3902548A (en) * | 1972-12-28 | 1975-09-02 | Robatel Slpi | Containers for the transport of radioactive materials |
US3851179A (en) * | 1974-02-05 | 1974-11-26 | Atomic Energy Commission | Shipping cask neutron and heat shield |
US3982134A (en) * | 1974-03-01 | 1976-09-21 | Housholder William R | Shipping container for nuclear fuels |
US4021676A (en) * | 1976-05-07 | 1977-05-03 | The United States Of America As Represented By The United States Energy Research And Development Administration | Waste canister for storage of nuclear wastes |
US4232730A (en) * | 1977-05-16 | 1980-11-11 | Reese Stanton L | Radioactive materials transporting container and vehicles |
US4326130A (en) * | 1978-10-17 | 1982-04-20 | Stefan Ahner | Shielding container with neutron shielding for the transportation and/or storage of spent fuel elements |
USD263087S (en) | 1979-02-09 | 1982-02-16 | Nuclear Assurance Corp. | Basket for a spent nuclear fuel shipping cask |
US4339411A (en) * | 1979-04-14 | 1982-07-13 | Degussa Transnuklear Gmbh | Shielding container for the transportation and/or for storage of spent fuel elements |
US4388268A (en) * | 1979-11-17 | 1983-06-14 | Transnuklear Gmbh | Transportation and/or storage containers for radioactive materials |
US4434373A (en) | 1979-11-17 | 1984-02-28 | Richard Christ | Neutron shielding |
US4521691A (en) * | 1979-11-17 | 1985-06-04 | Transnuklear Gmbh | Shielding container having neutron shielding for the transportation and/or storage of radioactive material |
DE3026248A1 (en) * | 1980-07-11 | 1982-02-18 | Transnuklear Gmbh, 6450 Hanau | TRANSPORT AND / OR STORAGE CONTAINERS FOR RADIOACTIVE SUBSTANCES |
EP0109135A1 (en) * | 1982-11-08 | 1984-05-23 | Chichibu Cement Co. Ltd. | A multiplex design container having a three-layered wall structure and a process for producing the same |
US4687614A (en) * | 1982-11-08 | 1987-08-18 | Chichibu Cement Co., Ltd. | Process for producing a high integrity container |
FR2556877A1 (en) * | 1983-12-19 | 1985-06-21 | Fonderie Alcoa Mg Sa | INSERT NEUTROPHAGE FOR CONTAINER FOR TRANSPORTING BARS OR RADIOACTIVE MATERIALS, AND CONTAINER COMPRISING SUCH INSERTS |
EP0146451A1 (en) * | 1983-12-19 | 1985-06-26 | Fonderie Alcoa-Mg S.A. | Neutron-absorting insert for a container for transporting radioactive rods or materials, and container comprising such an insert |
US4780269A (en) * | 1985-03-12 | 1988-10-25 | Nutech, Inc. | Horizontal modular dry irradiated fuel storage system |
US20050286674A1 (en) * | 2004-06-29 | 2005-12-29 | The Regents Of The University Of California | Composite-wall radiation-shielded cask and method of assembly |
US20110033019A1 (en) * | 2008-04-29 | 2011-02-10 | Evan Rosenbaum | Single-plate neutron absorbing apparatus and method of manufacturing the same |
US8681924B2 (en) * | 2008-04-29 | 2014-03-25 | Holtec International | Single-plate neutron absorbing apparatus and method of manufacturing the same |
US10991472B2 (en) | 2008-04-29 | 2021-04-27 | Holtec International | Single-plate neutron absorbing apparatus and method of manufacturing the same |
US11569001B2 (en) | 2008-04-29 | 2023-01-31 | Holtec International | Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials |
US12243662B2 (en) | 2008-04-29 | 2025-03-04 | Holtec International | Neutron absorbing apparatus |
US20100270001A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing grout heat conductibility and increasing caustic resistance |
US20130206361A1 (en) * | 2010-06-02 | 2013-08-15 | Tn International | Packaging for transport and/or storage of radioactive materials, which include improved means of thermal conduction |
CN102290109A (en) * | 2010-06-30 | 2011-12-21 | 中国核电工程有限公司 | Multifunctional heat-dissipating structure for radioactive substance transportation containers |
CN102290109B (en) * | 2010-06-30 | 2014-04-23 | 中国核电工程有限公司 | Multifunctional heat-dissipating structure for radioactive substance transportation containers |
Also Published As
Publication number | Publication date |
---|---|
DE2040348B2 (en) | 1976-10-21 |
DE2040348A1 (en) | 1971-03-18 |
JPS5419560B1 (en) | 1979-07-16 |
SE376995B (en) | 1975-06-16 |
JPS5756038B1 (en) | 1982-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3727060A (en) | Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material | |
US4292528A (en) | Cask for radioactive material and method for preventing release of neutrons from radioactive material | |
US3930166A (en) | Package for transporting or enclosing radioactive materials | |
CA1111577A (en) | Transport and storage vessel for radioactive materials | |
US4663533A (en) | Storage and shipping cask for spent nuclear fuel | |
EP0405050A2 (en) | Radiation shielding material with heat-transferring property | |
RU2084975C1 (en) | Container for spent fuel transporting and/or storage | |
US4868400A (en) | Ductile iron cask with encapsulated uranium, tungsten or other dense metal shielding | |
GB2048149A (en) | Shielding container for transporting and/or storing burnt-up fuel elements | |
US5909475A (en) | Spent nuclear fuel container | |
US4476394A (en) | Insertion canister for radioactive material transportation and/or storage containers | |
US4914306A (en) | Versatile composite radiation shield | |
EP3813079A1 (en) | Disposal container for spent nuclear fuel | |
US4388268A (en) | Transportation and/or storage containers for radioactive materials | |
RU1618179C (en) | Container for shipping and storage of spent nuclear fuel | |
US5949084A (en) | Radioactive material storage vessel | |
WO2020197430A1 (en) | Casing of container for transportation and storage of spent fuel assemblies | |
RU2510770C1 (en) | Container for spent nuclear fuel transportation and/or storage | |
EP0343410A2 (en) | Shipping cask for nuclear fuel | |
JPS63760B2 (en) | ||
JP2001318187A (en) | Cask | |
GB2165795A (en) | Spent fuel storage cask having improved fins | |
RU2459295C1 (en) | Outer container set for used nuclear reactor fuel rod arrays | |
RU2686476C1 (en) | Container cover for spent nuclear fuel transportation and storage | |
USH558H (en) | Radation shielding pellets |