US3776667A - Ice cream pump - Google Patents
Ice cream pump Download PDFInfo
- Publication number
- US3776667A US3776667A US00248976A US3776667DA US3776667A US 3776667 A US3776667 A US 3776667A US 00248976 A US00248976 A US 00248976A US 3776667D A US3776667D A US 3776667DA US 3776667 A US3776667 A US 3776667A
- Authority
- US
- United States
- Prior art keywords
- cylinders
- pistons
- connecting member
- frame
- end portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000015243 ice cream Nutrition 0.000 title description 5
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 230000000452 restraining effect Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 19
- 238000004140 cleaning Methods 0.000 abstract description 7
- 238000005086 pumping Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 26
- 238000007789 sealing Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 10
- 210000005069 ears Anatomy 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 235000021185 dessert Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
- F04B53/102—Disc valves
- F04B53/1022—Disc valves having means for guiding the closure member axially
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G9/00—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
- A23G9/04—Production of frozen sweets, e.g. ice-cream
- A23G9/20—Production of frozen sweets, e.g. ice-cream the products being mixed with gas, e.g. soft-ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/02—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B13/00—Pumps specially modified to deliver fixed or variable measured quantities
- F04B13/02—Pumps specially modified to deliver fixed or variable measured quantities of two or more fluids at the same time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/14—Pistons, piston-rods or piston-rod connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
- F04B53/162—Adaptations of cylinders
Definitions
- a liquid mix is normally combined with a non-toxic gas such as air, nitrogen, nitrous oxide, or freon in order to produce a tasteful, palatableand profitable end product.
- the mixture is directed to a suitable freezer in which the mixture is frozen, and from which the frozen mixture may be dispensed.
- the liquid mix and air are supplied to the freezing chamber as the frozen product is dispensed, and the operation is normally automatically controlled.
- the product in the freezing chamber is maintained under pressure. As the frozen product is dispensed, the pressure drops and the pump mechanism is actuated to pump more of the mixture of liquid mix and air to the freezing compartment until the desired pressure is attained.
- An object of the present invention resides in the provision of a double acting pump including a pair of opposed cylinders, and a pair of pistons mounted at opposite ends of a piston bar reciprocated by an eccentric cam roller rotating about an axis of rotation.
- a double acting pump including a pair of opposed cylinders, and a pair of pistons mounted at opposite ends of a piston bar reciprocated by an eccentric cam roller rotating about an axis of rotation.
- Pistons are removably supported upon a piston rod or bar.
- This bar is shaped to provide a central vertical channel in which the eccentric bearing is engaged. Rotation of the motor accordingly reciprocates the pistons in the opposed cylinders.
- a feature of the present invention resides in the provision of cylinders combined with integrally connected valve housings.
- the valve housings are arranged on parallel vertical axes and are closed at their lower ends by inlet fittings.
- the valve chambers are provided with suitable outlet fittings at their upper ends.
- the side plates of the pump frame are provided with vertically spaced yokes between which the valve chambers with the inlet and outlet fittings telescoped therein are received. These yokes hold the valve chambers in vertical position, and hold the inlet and outlet fittings assembled to the valve chambers.
- the cylinders extend l through aligned apertures in the sides of the pump projecting outwardly from the sides of the pump frame the simplicity of construction.
- the device includes a y on opposite sides of the cylinder apertures. By removal of these knobs, the entire assembly may be removed and completely disassembled for cleaning.
- a further feature of the present invention resides in a provision of a simple check valve arrangement controlling the flow into and out of the valve chamber.
- Each check valve comprises a valve body vertically slidable in the valve chamber and having a tapered lower end which is circumferentially grooved to accommodate an o-ring. This sealing ring seats against either a portion of the valve chamber or the inlet fitting to form a seal.
- the valve bodies are preferably rectangular in section so that the liquid or air may flowfreely about the valve when it is open.
- the valve bodies are made of stainless steel or other relatively heavy material so as to seat by gravity, eliminating the necessity of springs.
- a further feature of the present invention resides in the provision of a pressure actuated control switch which is connected to the outlet fitting of a valve chamber connected to the air cylinder.
- the switch diaphram communicates only with the air and accordingly does not come into contact with the liquid mix, eliminating the necessity of cleaning the switch diaphram.
- a further feature resides in the provision of a means for readily detaching the encircling sealing ring from each piston.
- a finger notch is provided communicating with the peripheral groove to facilitate removal of the sealing ring.
- FIG. 1 is a side elevational view of the pump in readiness for operation.
- FIG. 2 is a top plan view of the assembled pump.
- FIG. 5 is a sectional view through one of the check valves, the position of the section being indicated by the line 5 5 of FIG. 4.
- FIG. 6 is a perspective view of one of the cylinder and valve chamber units.
- FIG. 7 is a sectional detail through the piston rod looking toward one of the pistons, the position of the section being indicated by the line 7-7 of FIG. 2.
- FIG. 8 is a perspective view of the piston rod.
- FIG. 9 is a perspective view of one side of of the pump frame.
- FIG. 10 is a perspective view of one of the check valves with the sealing ring removed.
- FIG. 11 is a perspective view of the end of one ofthe pistons, showing the notch employed to simplify the removal of the sealing ring from the piston.
- Thepump is indicated in general by the letter A.
- the pump includes a motor 10 which is mounted upon a supporting base 11.
- the motor 10 is provided with a flange to which is secured a mounting plate 13.
- a pump frame indicated in general by the numeral 14 is bolted or otherwise secured to the flange 12 and plate 13 by bolts 15.
- the pump frame 14 includes a base plate 16 which supports a pair of forwardly projecting parallel frame sides 17.
- a pair of generally triangular upper reinforcing ribs 19 and a similarly shaped lower pair of reinforcing ribs 20 are provided to strengthen the pump frame.
- a cylindrical crank 2l is mounted on the shaftA 22 of the motor 10 and supports an eccentric bearing 23.
- the eccentric bearing 23 is designed to reciprocate the piston rod 24 which will be later described in detail.
- each unit 25 includes a cylinder 26 having an open inner end and having a flange 27 at its opposite end. Spaced pairs of ears 29 extend outwardly from diametrically opposite sides of the flange 27, the ears 29 being spaced to pro vide grooves 30 therebetween designed to accommodate mounting studs on the sides 17 of the frame 14. Integral with the flange 27 is a valve housing member 31 including a relatively small diameter central portion 32, to which is connected an upper larger diameter portion 33 and a lower larger diameter portion 34.
- An upper cylindrical sleeve 35 forms an extension of the upper chamber portion 33, and a lower sleeve portion 36 forms a downward extension of the valve chamber portion 34.
- the entire unit 25 may be cast of plastic or other suitable material which can be readily cleaned and sterilized.
- FIG. 4 Similar elements on, the right side of FIG. 4 have similar identifying numbers to those onthe left side of this figure, but are followed by the letter A.
- an open ing 37 is provided between the small diameter center portion 32 of the valve chamber 31 and the interior of the cylinder 26.
- the frustoconical connecting portion 39 of the housing between the small diameter portion 32 and the upper larger diameter portion 33 forms a seat for a check valve 40.
- the frusto-conical portion 41 between the small diameter portion 32 and the larger diameter lower portion 34 of the valve chamber forms a stop to limit upward movement of an inlet check valve ⁇ 42.
- the frusto-conical connecting portion 41A acts to limit upward movement of the check valve 44.
- the air inlet fitting 45 and the mix inlet fitting 46 are of generally identical form and similar identifying numbers will be used.
- the fittings 45 and 46 include a cylindrical sleeve 47 which fits within the larger diameter housing portion 34A and 34 respectively, and a substantially frusto-conical connecting portion 49 connects the sleeve 47 with a smaller diameter sleeve 50.
- a sealing ring 51 encircles the base of the sleeve 47 and fits between the outer periphery of the frusto-conical portion 49 and the base of the housing sleeve 36.
- the check valve 44 is designed to seat against the frustoconical portion in closed position of this valve.
- the air inlet fitting additionally includes holes 48 in the wall hereof. The holes 48 prevent malfunction of the pump in the event the liquid mix supply hose is accidentally attached to the air inlet fitting by bleeding air into the fitting above the hose connection.
- the check valves 40, 42, 43, and 44 are all identical and are constructed as best illustrated in FIG. 10 of the drawings.
- the valve is provided with a generally rectangular body portion 52 having slightlyrounded corners as indicated at 53 which fit in the enclosing wall in the manner illustrated in FIG. 5 of the drawings.
- the rectangular body 52 is provided with a slightly tapering lower end 54 which terminates in a substantially cylindrical downward projection 55 having a peripheral groove 56 extending thereabout.
- the groove 56 is designed to accommodate a sealing ring 57 which may be .of substantially circular cross section, and which forms the actual seal.
- the valve bodies 53 are preferably made of stainless steel or other relatively heavy materi- 'als so that the valves may seat by gravity. The'flat sides of the body permit the flow of 'air or fluid about the valve body when the valve is in open position.
- An air outlet fitting 59 closes the top of the valve chamber 31A or valve chamber housing as indicated in FIG. 4.
- the upper fitting 59 includes a ring shaped closure member 60 having a depending peripheral skirt including a larger diameter portion 61 and a smaller diameter lower portion 62.
- the skirt portion 61, 62 is designed to telescope into the upper end of the sleeve 35A and into a groove 63 in the inner wall surface of the valve chamber slightly beneath the sleeve 35A.
- An integral tube 64 extends upwardly from the ring shaped plate 60 and is designed to accommodate the end of a hose 65 (see FIG. l).
- the upper fitting 59 is actually a T connector having a branch 66 adapted to accommodate the end of a second hose 67 leading to the pressure actuated switch.
- the outlet fitting 69 forming an extension of the upper end of the valve housing 31 on the left side of FIG. 4 includes a slightly tapered ring shaped upper closure70v designed to extend into the upwardly extending sleeve 35 on the valve housing, and a depending skirt portion 71 which fits into a cavity 72 inwardly of the sleeve 35, the fitting 69 and valve housing being sealed by a sealing ring 73.
- the fitting 69 is a T connector having an outlet sleeve 74 extending laterally and an air inlet sleeve 75 extending upwardly therefrom.
- the upper end of the air inlet sleeve 75 is a relatively small diameter while the lower portion thereof is of a larger diameter as indicated at 76. This provides a valve seat 77 between the portions different diameter.
- a check valve 79 which is preferably of generally square cross section includes an upwardly projecting grooved end 80 which accommodates a sealing ring 81 designed to form the seal between the valve 79 and the upper portion of the air intake sleeve 75.
- the valve 79 is urged upwardly by a spring 82 which may rest upon the upper surface of the check valve or may be otherwise supported within the outlet fitting.
- the valve 79 differs from the previously described check valves in that this valve may be made of plastic or other relatively light weight materials in view of the fact that it must be forced upwardly in closed position by the spring.
- the flexible tube shown in FIG. 1 is connected to the air inlet sleeve so that air forced from the right hand piston in FIG. 4 is directed to the top of the outlet fitting 69.
- each side 17 of the pump frame 14 is provided with a generally circular ring shaped area 85 encircling an aperture 86 of proper size to accommodate a cylinder such as 26 extending therethrough. Studs 87 are anchored in the side 17 on diametrically opposite sides of the aperture 86, and extend through the slots 30 between the laterally projecting ears 29 on the peripheral flange 27 encircling the cylinder. Threaded knobs 89 may be threaded onto the studs 87 to hold the cylinder and valve housing units in place.
- An upper bifurcated yoke 90 projects outwardly from the side 17 above the ring shaped faced areas 85, and a lower bifurcated yoke 91 projects outwardly from the frame side 17 beneath the ring shaped face area 85.
- the upper yoke 90 engages the upper surface of the air outlet fitting 59 or the upper surface 70 of the outlet fitting 69 while the yoke 91 engages the under surface of the ring shaped connecting portion 49 of the inlet fittings 45 or 46.
- the yokes 90 and 91 hold the inlet and outlet fittings sealed to the valve housing, and holds the valve housings in a vertical upright position.
- the connecting rod or bar 24 acts to connect a pair of similar disc-like pistons 94 and 94A which are reciprocable in the cylinders 26 and 26A.
- the connecting rod 24 is shaped as is best indicated in FIG. 8 of the drawings.
- the connecting rod includes a center portion 95 which is connected along opposite edges to parallel right angularly extending panels 96 which define a channel of rectangular section designed to accommodate the eccentric bearing 23.
- the edges of the panels 96 opposite those connected to the center panel 95 are connected to panel portions 97 which are on a common plane.
- the connecting rod is held from substantial movement toward said pump frame base plate 16 by said bearing 23 (seeY FIG. 2).
- the panels 97 terminate in pairs of vertically spaced right angularly extending fingers 99 which are designed for connection with the pistons.
- each piston such as 94 is provided with a boss 100 projecting in an.
- the boss 100 is provided with grooves 101 in the upper and lower surfaces' thereof adjoining the piston surface, the bases of the grooves 101 being parallel and being spaced to accommodate the fingers 99.
- Each boss 100 is provided with a fiat side 102 which bears against a panel portion 97 of the connecting rod 24.
- the pistons such as 94 are readily removable from the connecting rod 24 and may be removed and cleaned whenever desired.
- the pistons 94 and 94A are provided with a peripheral groove 104 to accommodate a sealing ring 108 or 108A, respectively, as indicated in FIG. 4 of the drawings.
- a notch 105 see FIG. 11,) is provided communicating with the groove 104 and being of a depth at least equal to the depth of the groove 104.
- This notch 105 provides a means of access to the sealing ring 108A or 108 so that a portion of the sealing ring may be grasped and stretched outwardly to remove the ring from the groove. This notch 105 thus simplifies the task of removing the sealing rings from the piston grooves104 and encourages the machine operator to fully dissemble the pistons for cleaning purposes.
- the hose 67 is connected to a T connector 106 having a pressure gauge 107 extending into one branch of the cross member of the T so that the existing air pressure may be readily noted.
- One branch of the T is connected to stem 109 of the pressure control switch 110 controlling the current to the motor 10.
- the control switch may be of the type known as type H5 knob and dial adjustment general purpose pressure vacuum control produced by the United Electric Controls Company of Watertown, Mass. The control merely functions to turn on the motor 10 when the air pressure falls below a predetermined minimum, and to turn off the motor when the air pressure reaches a predetermined maximum.
- the operating mechanism is normally concealed and protected by a cover 112 which is bent to fit the shape of the ends 17 of the pump frame.
- the present apparatus includes a novel feature of overrun variation accomplished by use of the readily accessible control knob on the pressure control switch 110.
- a further innovation within this capability is that the cylinder/piston design permits a built-in compression ratio/operating pressure characteristic covering a very broad range of resulting overrun percentages, but still allowing a choice of narrow operating ranges within each of which a manual range adjustment is possible.
- XY percent of overrun (XY) (100)/Y
- X is the-weight of a unit (for example l pint) of liquid mix
- Y is the weight of l pint of the frozen mix.
- the formula will be (18.4 9.2) ( ⁇ l0O)/9.2 9.2 (lOO)/9.2 lOO percent overrun.
- the present device is unique in that the percent of overrun may be regulated by varying the maximum air pressure. As the pressure is lowered the percentage of overrun increases. Thus, while the volume displaced by the piston during each stroke'may remain constant, a broad range of overrun variation is obtainable, because the weight of air delivered is affected by the discharge pressure as well as by the' clearance volume of the cylinder and passages to and from the valves.
- check valves 40, 42, 43 and 44 are all guided by portions which are integral with the valve seats, so that correct alignment of the valves and their seats is assured.
- the upper valves 4 0 and 43 are slidable within the enlarged diameter portions 33 and 33A of the valve housings 25 and A, and the valves seats are formed by the integral connecting portions 39 and 39A.
- the lower check valves 42 and 44 are slidable in the cylindrical sleeves 47 of the fittings 45 and 46, and the valve seats are formed by the integral frusto-conical portions 49.l
- the check valves all slide in cylindrical portions which are integral with the valve seats.
- a pump including:
- valve housings integral with and communicating with the interior of the other ends of said cylinders and including inlet and outlet valves.
- a connecting member having parallel end portions extending in generally right angular relation to the cylinder axes and detachably connected to said attaching means by lateral relative movement therebetween,
- said connecting member having a cam engaging groove extending transversely thereof
- a pump including:
- detachable securing means securing said cylinders to said supporting frame
- said securing means when detached, permitting axial movement of said cylinders in a direction away from one another, i
- said roller restraining said connecting member from disengagement from said pistons when said pistons are within said cylinders, whereupon disengagement of said cylinders from said said frame permits disengagement of said pistons, connecting member and eccentric roller.
- said securing means includes studs extending outwardly from opposite sides of said frame parallel to the cylinder axes, and threaded knobs on said studs engageable with said cylinders.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Reciprocating Pumps (AREA)
- Details Of Reciprocating Pumps (AREA)
Abstract
A double acting pump is provided for pumping air in one cylinder and liquid mix into another. The cylinders and valve housings, together with the inlet and outlet fittings, are readily separable for cleaning. The entire pump unit may be disassembled for cleaning by the removal of four knobs or nuts.
Description
United States Patent Berglund et al.
PTENTED UEE 41975 SHEET 2 UF 3 W @sk WW m uw wm.
m mm Ew EN Nw MIN" www www sw wm mw ww m NN @QN uw mm WQ wNQ QQ N @JN NN mm NN su wm Q O PAENTED DEC 4973 ICE CREAM PUMPv The present application is a division of our previously filed application Ser. No. 61,658, now U.S. Pat. No. 3,697,197, filed Aug. 6, 1970 and entitled ICE CREAM PUMP. This invention relates to an improvement in the lCE CREAM PUMP and deals particularly with a pump capable of pumping air and a liquid mix, and combining the air with the mix in a desired ratio.
BACKGROUND OF THE INVENTION In the mechanical production of ice cream, sherbert, ice milk, frozen dessert products, a liquid mix is normally combined with a non-toxic gas such as air, nitrogen, nitrous oxide, or freon in order to produce a tasteful, palatableand profitable end product. The mixture is directed to a suitable freezer in which the mixture is frozen, and from which the frozen mixture may be dispensed. The liquid mix and air are supplied to the freezing chamber as the frozen product is dispensed, and the operation is normally automatically controlled. The product in the freezing chamber is maintained under pressure. As the frozen product is dispensed, the pressure drops and the pump mechanism is actuated to pump more of the mixture of liquid mix and air to the freezing compartment until the desired pressure is attained. l
One of the difficulties experienced with previous pumping equipment lies in the fact that it is difficult to maintain the apparatus in a clean and sanitary condition. The equipment must be thoroughly cleaned from time to time to prevent the growth of bacteria. If the pump mechanism is difficult to disassemble and clean, there is a tendency for the operator to delay the cleaning operation and to clean the apparatus at less frequent intervals. One of the areas most difficult to clean often comprises the pressure control valve, the diaphragm of which is usually contacted by the mixture of air and liquid mix. This area is usually difficult and time consuming to clean, it is, therefore, of utmost importance that the apparatus be easy to take apart and put together so thatit may be cleaned at proper intervals by relatively unskilled personnel.
SUMMARY OF THE INVENTION An object of the present invention resides in the provision of a double acting pump including a pair of opposed cylinders, and a pair of pistons mounted at opposite ends of a piston bar reciprocated by an eccentric cam roller rotating about an axis of rotation. As the piston reciprocates in one direction, liquid mix is forced from one cylinder to a mixing chamber where it is combined with air. Simultaneously, air is drawn -into the opposite cylinder. As the piston rod is reciprocated in the opposite direction, air is forced under pressure from the opposite cylinder, and liquid mix is drawn into the first cylinder. The air under pressure from the opposite cylinder is mixed with the liquid mix in the mixing chamber and forced into the freezer unit.
An important feature of the present invention lies in opposed ends of the cylinders are open. Pistons are removably supported upon a piston rod or bar. This bar is shaped to provide a central vertical channel in which the eccentric bearing is engaged. Rotation of the motor accordingly reciprocates the pistons in the opposed cylinders.
A feature of the present invention resides in the provision of cylinders combined with integrally connected valve housings. The valve housings are arranged on parallel vertical axes and are closed at their lower ends by inlet fittings. The valve chambers are provided with suitable outlet fittings at their upper ends. The side plates of the pump frame are provided with vertically spaced yokes between which the valve chambers with the inlet and outlet fittings telescoped therein are received. These yokes hold the valve chambers in vertical position, and hold the inlet and outlet fittings assembled to the valve chambers. The cylinders extend l through aligned apertures in the sides of the pump projecting outwardly from the sides of the pump frame the simplicity of construction. The device includes a y on opposite sides of the cylinder apertures. By removal of these knobs, the entire assembly may be removed and completely disassembled for cleaning.
A further feature of the present invention resides in a provision of a simple check valve arrangement controlling the flow into and out of the valve chamber. Each check valve comprises a valve body vertically slidable in the valve chamber and having a tapered lower end which is circumferentially grooved to accommodate an o-ring. This sealing ring seats against either a portion of the valve chamber or the inlet fitting to form a seal. The valve bodies are preferably rectangular in section so that the liquid or air may flowfreely about the valve when it is open. The valve bodies are made of stainless steel or other relatively heavy material so as to seat by gravity, eliminating the necessity of springs.
A further feature of the present invention resides in the provision of a pressure actuated control switch which is connected to the outlet fitting of a valve chamber connected to the air cylinder. As a result, the switch diaphram communicates only with the air and accordingly does not come into contact with the liquid mix, eliminating the necessity of cleaning the switch diaphram.
A further feature resides in the provision of a means for readily detaching the encircling sealing ring from each piston. A finger notch is provided communicating with the peripheral groove to facilitate removal of the sealing ring.
These and other objects and novel features of the present invention will be lmore clearly and fully set forth in the following specification and claims.
BRIEF 4DESCRIPT ION OF THE DRAWINGS FIG. 1 is a side elevational view of the pump in readiness for operation.
FIG. 2 is a top plan view of the assembled pump.
.F IG. 3 is a horizontal sectional view through the motor axis showing the portions ofthe piston bar or rod FIG. 5 is a sectional view through one of the check valves, the position of the section being indicated by the line 5 5 of FIG. 4.
FIG. 6 is a perspective view of one of the cylinder and valve chamber units.
FIG. 7 is a sectional detail through the piston rod looking toward one of the pistons, the position of the section being indicated by the line 7-7 of FIG. 2.
FIG. 8 is a perspective view of the piston rod.
FIG. 9 is a perspective view of one side of of the pump frame.
FIG. 10 is a perspective view of one of the check valves with the sealing ring removed.
FIG. 11 is a perspective view of the end of one ofthe pistons, showing the notch employed to simplify the removal of the sealing ring from the piston.
DESCRIPTION OF THE PREFERRED EMBODIMENT Thepump is indicated in general by the letter A. The pump includes a motor 10 which is mounted upon a supporting base 11. The motor 10 is provided with a flange to which is secured a mounting plate 13. A pump frame indicated in general by the numeral 14 is bolted or otherwise secured to the flange 12 and plate 13 by bolts 15. The pump frame 14 includes a base plate 16 which supports a pair of forwardly projecting parallel frame sides 17. A pair of generally triangular upper reinforcing ribs 19 and a similarly shaped lower pair of reinforcing ribs 20 are provided to strengthen the pump frame. A cylindrical crank 2l is mounted on the shaftA 22 of the motor 10 and supports an eccentric bearing 23. The eccentric bearing 23 is designed to reciprocate the piston rod 24 which will be later described in detail.
A cylinder and a valve housing unit indicated by the numeral 25 is supported upon each pump frame side 17. As indicated in FIG. 6 of the drawings, each unit 25 includes a cylinder 26 having an open inner end and having a flange 27 at its opposite end. Spaced pairs of ears 29 extend outwardly from diametrically opposite sides of the flange 27, the ears 29 being spaced to pro vide grooves 30 therebetween designed to accommodate mounting studs on the sides 17 of the frame 14. Integral with the flange 27 is a valve housing member 31 including a relatively small diameter central portion 32, to which is connected an upper larger diameter portion 33 and a lower larger diameter portion 34. An upper cylindrical sleeve 35 forms an extension of the upper chamber portion 33, and a lower sleeve portion 36 forms a downward extension of the valve chamber portion 34. The entire unit 25 may be cast of plastic or other suitable material which can be readily cleaned and sterilized.
Similar elements on, the right side of FIG. 4 have similar identifying numbers to those onthe left side of this figure, but are followed by the letter A. With reference to FIG. 4 of the drawings, it will be noted that an open ing 37 is provided between the small diameter center portion 32 of the valve chamber 31 and the interior of the cylinder 26. As shown in this figure, the frustoconical connecting portion 39 of the housing between the small diameter portion 32 and the upper larger diameter portion 33 forms a seat for a check valve 40. The frusto-conical portion 41 between the small diameter portion 32 and the larger diameter lower portion 34 of the valve chamber forms a stop to limit upward movement of an inlet check valve^42. In the same manner, the smaller diameter portion 32A of the valve housing at the right of FIG. 4 is provided with an opening 37A communicating with the interior of the cylinder 26A, and the frusto-conical portion 39A connecting the small diameter portion 32A with the larger diameter upper portion 33A forms a seat for a check valve 43. The frusto-conical connecting portion 41A acts to limit upward movement of the check valve 44.
The air inlet fitting 45 and the mix inlet fitting 46 are of generally identical form and similar identifying numbers will be used. The fittings 45 and 46 include a cylindrical sleeve 47 which fits within the larger diameter housing portion 34A and 34 respectively, and a substantially frusto-conical connecting portion 49 connects the sleeve 47 with a smaller diameter sleeve 50. A sealing ring 51 encircles the base of the sleeve 47 and fits between the outer periphery of the frusto-conical portion 49 and the base of the housing sleeve 36. The check valve 44 is designed to seat against the frustoconical portion in closed position of this valve. The air inlet fitting additionally includes holes 48 in the wall hereof. The holes 48 prevent malfunction of the pump in the event the liquid mix supply hose is accidentally attached to the air inlet fitting by bleeding air into the fitting above the hose connection.
The check valves 40, 42, 43, and 44 are all identical and are constructed as best illustrated in FIG. 10 of the drawings. The valve is provided with a generally rectangular body portion 52 having slightlyrounded corners as indicated at 53 which fit in the enclosing wall in the manner illustrated in FIG. 5 of the drawings. The rectangular body 52 is provided with a slightly tapering lower end 54 which terminates in a substantially cylindrical downward projection 55 having a peripheral groove 56 extending thereabout. The groove 56 is designed to accommodate a sealing ring 57 which may be .of substantially circular cross section, and which forms the actual seal. The valve bodies 53 are preferably made of stainless steel or other relatively heavy materi- 'als so that the valves may seat by gravity. The'flat sides of the body permit the flow of 'air or fluid about the valve body when the valve is in open position. A
An air outlet fitting 59 closes the top of the valve chamber 31A or valve chamber housing as indicated in FIG. 4. The upper fitting 59includes a ring shaped closure member 60 having a depending peripheral skirt including a larger diameter portion 61 and a smaller diameter lower portion 62. The skirt portion 61, 62 is designed to telescope into the upper end of the sleeve 35A and into a groove 63 in the inner wall surface of the valve chamber slightly beneath the sleeve 35A. An integral tube 64 extends upwardly from the ring shaped plate 60 and is designed to accommodate the end of a hose 65 (see FIG. l). The upper fitting 59 is actually a T connector having a branch 66 adapted to accommodate the end of a second hose 67 leading to the pressure actuated switch. Y
The outlet fitting 69 forming an extension of the upper end of the valve housing 31 on the left side of FIG. 4 includes a slightly tapered ring shaped upper closure70v designed to extend into the upwardly extending sleeve 35 on the valve housing, and a depending skirt portion 71 which fits into a cavity 72 inwardly of the sleeve 35, the fitting 69 and valve housing being sealed by a sealing ring 73. The fitting 69 is a T connector having an outlet sleeve 74 extending laterally and an air inlet sleeve 75 extending upwardly therefrom.
The upper end of the air inlet sleeve 75 is a relatively small diameter while the lower portion thereof is of a larger diameter as indicated at 76. This provides a valve seat 77 between the portions different diameter. A check valve 79 which is preferably of generally square cross section includes an upwardly projecting grooved end 80 which accommodates a sealing ring 81 designed to form the seal between the valve 79 and the upper portion of the air intake sleeve 75. The valve 79 is urged upwardly by a spring 82 which may rest upon the upper surface of the check valve or may be otherwise supported within the outlet fitting. The valve 79 differs from the previously described check valves in that this valve may be made of plastic or other relatively light weight materials in view of the fact that it must be forced upwardly in closed position by the spring. The flexible tube shown in FIG. 1 is connected to the air inlet sleeve so that air forced from the right hand piston in FIG. 4 is directed to the top of the outlet fitting 69.
With reference now to FIGS. 6 and 9 of the drawings, the manner of securing the pistons, valve housing, and inlet and outlet fittings in place is indicated. The outer surface of each side 17 of the pump frame 14 is provided with a generally circular ring shaped area 85 encircling an aperture 86 of proper size to accommodate a cylinder such as 26 extending therethrough. Studs 87 are anchored in the side 17 on diametrically opposite sides of the aperture 86, and extend through the slots 30 between the laterally projecting ears 29 on the peripheral flange 27 encircling the cylinder. Threaded knobs 89 may be threaded onto the studs 87 to hold the cylinder and valve housing units in place. An upper bifurcated yoke 90 projects outwardly from the side 17 above the ring shaped faced areas 85, and a lower bifurcated yoke 91 projects outwardly from the frame side 17 beneath the ring shaped face area 85. It will be noted that the under surface of the upper yoke 90 and the upper surface of the lower yoke 91 are slightly concave to fit the contour of the inlet and outlet fittings. The upper yoke 90 engages the upper surface of the air outlet fitting 59 or the upper surface 70 of the outlet fitting 69 while the yoke 91 engages the under surface of the ring shaped connecting portion 49 of the inlet fittings 45 or 46. The yokes 90 and 91 hold the inlet and outlet fittings sealed to the valve housing, and holds the valve housings in a vertical upright position.
The connecting rod or bar 24 acts to connect a pair of similar disc- like pistons 94 and 94A which are reciprocable in the cylinders 26 and 26A. The connecting rod 24 is shaped as is best indicated in FIG. 8 of the drawings. The connecting rod includes a center portion 95 which is connected along opposite edges to parallel right angularly extending panels 96 which define a channel of rectangular section designed to accommodate the eccentric bearing 23. The edges of the panels 96 opposite those connected to the center panel 95 are connected to panel portions 97 which are on a common plane. The connecting rod is held from substantial movement toward said pump frame base plate 16 by said bearing 23 (seeY FIG. 2). The panels 97 terminate in pairs of vertically spaced right angularly extending fingers 99 which are designed for connection with the pistons.
As indicated in FIG. 7 as well as FIG. 4, each piston such as 94 is provided with a boss 100 projecting in an.
axial direction from a surface thereof. The boss 100 is provided with grooves 101 in the upper and lower surfaces' thereof adjoining the piston surface, the bases of the grooves 101 being parallel and being spaced to accommodate the fingers 99. Each boss 100 is provided with a fiat side 102 which bears against a panel portion 97 of the connecting rod 24. As will be noted, the pistons such as 94 are readily removable from the connecting rod 24 and may be removed and cleaned whenever desired. The pistons 94 and 94A are provided with a peripheral groove 104 to accommodate a sealing ring 108 or 108A, respectively, as indicated in FIG. 4 of the drawings. A notch 105 see FIG. 11,) is provided communicating with the groove 104 and being of a depth at least equal to the depth of the groove 104. This notch 105 provides a means of access to the sealing ring 108A or 108 so that a portion of the sealing ring may be grasped and stretched outwardly to remove the ring from the groove. This notch 105 thus simplifies the task of removing the sealing rings from the piston grooves104 and encourages the machine operator to fully dissemble the pistons for cleaning purposes.
The hose 67 is connected to a T connector 106 having a pressure gauge 107 extending into one branch of the cross member of the T so that the existing air pressure may be readily noted. One branch of the T is connected to stem 109 of the pressure control switch 110 controlling the current to the motor 10. The control switch may be of the type known as type H5 knob and dial adjustment general purpose pressure vacuum control produced by the United Electric Controls Company of Watertown, Mass. The control merely functions to turn on the motor 10 when the air pressure falls below a predetermined minimum, and to turn off the motor when the air pressure reaches a predetermined maximum.
The operation of the pump is believed obvious from the foregoing description. During each cycle of operation, air is drawn into the air cylinder by movement of the piston in one direction, and forced from the air cylinder through the discharge fitting 59 during the compression stroke of the piston 49A. During each cycle of operation, liquid mix is drawn into the cylinder 26 by movement of the piston 94, and then is forced upwardly past the check valve 40 as the piston 94 moves in the opposite direction. Air and liquid are mixed and discharged through the connection 74 and through suitable conduits to the freezer.
By removing the knobs 89' at one end of the unit, the
` be pulled out of the valve housing, and the check valves are free to drop out of place, and completely disengaging the unit. All the parts are accordingly immediately available for cleaning. The pistons may be disengaged from the piston rods 24, and the sealing rings 105 may be easily removed from the pistons 94 to completely disassemble the unit. Obviously, the sealing rings on the check valves may also be readily removed, cleaned and replaced.
The operating mechanism is normally concealed and protected by a cover 112 which is bent to fit the shape of the ends 17 of the pump frame.
The present apparatus includes a novel feature of overrun variation accomplished by use of the readily accessible control knob on the pressure control switch 110. A further innovation within this capability is that the cylinder/piston design permits a built-in compression ratio/operating pressure characteristic covering a very broad range of resulting overrun percentages, but still allowing a choice of narrow operating ranges within each of which a manual range adjustment is possible.
To understand the meaning of overrun," we start with a pint of liquid mix, the net weight of which may weigh for example, 18.4 ounces. Air is injected into the mix, and it is frozen. lf the frozen mixture is replaced in the one pint container, there will be product left over. With the air added, the volume will increase and the weight per pint will decrease. The amount of product left over when the pint container is filled comprises the overrun This can be accurately determined by weighing the pint of frozen product and comparing this weight to the weight of the liquid mix. The formula for determining the percentage of overrun is as follows:
percent of overrun (XY) (100)/Y Where X is the-weight of a unit (for example l pint) of liquid mix, and Y is the weight of l pint of the frozen mix. As a specific example, if the weight of l pint of liquid mix is 18.4 ounces, and the weight of l pint of frozen product is 9.2 ounces, the formula will be (18.4 9.2) (`l0O)/9.2 9.2 (lOO)/9.2 lOO percent overrun.
The following table indicates various percentages of overrun of the frozen product where the net weight of the liquid mix is 18.4 ounces.
Net weight of Frozen Product of overrun 18.40 ounces 16.73 ounces l0 15.33 ounces 14.15 ounces 30 13.14 ounces 40 12.27 ounces 50 11.50 ounces 60 10.82 ounces 70 10.22 ounces 80 9.68 ounces 90 9.20 ounces 100 The present device is unique in that the percent of overrun may be regulated by varying the maximum air pressure. As the pressure is lowered the percentage of overrun increases. Thus, while the volume displaced by the piston during each stroke'may remain constant, a broad range of overrun variation is obtainable, because the weight of air delivered is affected by the discharge pressure as well as by the' clearance volume of the cylinder and passages to and from the valves.
It is important to note that the various check valves 40, 42, 43 and 44 are all guided by portions which are integral with the valve seats, so that correct alignment of the valves and their seats is assured. The upper valves 4 0 and 43 are slidable within the enlarged diameter portions 33 and 33A of the valve housings 25 and A, and the valves seats are formed by the integral connecting portions 39 and 39A. The lower check valves 42 and 44 are slidable in the cylindrical sleeves 47 of the fittings 45 and 46, and the valve seats are formed by the integral frusto-conical portions 49.l Thus, the check valves all slide in cylindrical portions which are integral with the valve seats.
ln accordance with the Patent Office Statutes, l have described the principles of construction and operation of my ICE CREAM PUMP, and while l have endeavored to set forth the best embodiment thereof, l desire to have it understood that obvious means may be made within the scope of the following claims without departing from the spirit of my invention.
I claim: f
1. A pump including:
a supporting frame,
a pair of cylinders detachably supported in axial alignment by said frame, said cylinders having open inner opposed ends;
valve housings integral with and communicating with the interior of the other ends of said cylinders and including inlet and outlet valves.
pistons slideably supported in said cylinders and having integral attaching means on the inner opposed sides thereof,
a connecting member having parallel end portions extending in generally right angular relation to the cylinder axes and detachably connected to said attaching means by lateral relative movement therebetween,
said connecting member having a cam engaging groove extending transversely thereof,
an eccentric roller engaged in said groove and held in said cam engaging groove by engagement of said pistons in said cylinders.
2. The structure of claim and including means detachably supporting said cylinders for axial movement from said frame in a direction outwardly from said connecting member, whereby upon disengagement of said cylinders from said supporting frames said pistons, connecting member and eccentric roller may be disengaged one from another.
3. The structure of claim 1 and in which said parallel end portions of said connecting member comprise fmgers engageable with said attaching means on said pistons.
4. The structure of claim 1 and in which the engagement of said eccentric roller in said cam engaging groove prevents movement of said connecting member in a lateral direction, holding said parallel end portions from disengagement from said attaching means.
5. The structure of claim 1 and in which said attaching means on said pistons comprise axiallyextending bosses.
6. The structure of claim 5 and in which said parallel end portions of said connecting member include a pair of spaced members between which said bosses are engaged.
' 7. The structure of claim 5 and in which said bosses include opposed peripheral grooves, and said end portions of said connecting member comprise spaced fmgers engageable in said grooves.
8. The structure of claim 5 and including flat sides on said bosses engageable with said connecting member adjoining said parallel end members to prevent rotation of said pistons about their axes.
9. A pump including:
a supporting frame,
a pair of cylinders having open inner opposed ends supported in axial alignment by said supporting frame,
detachable securing means securing said cylinders to said supporting frame,
said securing means, when detached, permitting axial movement of said cylinders in a direction away from one another, i
cylinders, said roller restraining said connecting member from disengagement from said pistons when said pistons are within said cylinders, whereupon disengagement of said cylinders from said said frame permits disengagement of said pistons, connecting member and eccentric roller. l0. The structure of claim 17 and in which said securing means includes studs extending outwardly from opposite sides of said frame parallel to the cylinder axes, and threaded knobs on said studs engageable with said cylinders.
* vr :i: :k
Claims (10)
1. A pump including: a supporting frame, a pair of cylinders detachably supported in axial alignment by said frame, said cylinders having open inner opposed ends; valve housings integral with and communicating with the interior of the other ends of said cylinders and including inlet and outlet valves, pistons slideably supported in said cylinders and having integral attaching means on the inner opposed sides thereof, a connecting member having parallel end portions extending in generally right angular relation to the cylinder axes and detachably connected to said attaching means by lateral relative movement therebetween, said connecting member having a cam engaging groove extending transversely thereof, an eccentric roller engaged in said groove and held in said cam engaging groove by engagement of said pistons in said cylinders.
2. The structure of claim 1 and including means detachably supporting said cylinders for axial movement from said frame in a direction outwardly from said connecting member, whereby upon disengagement of said cylinders from said supporting frames said pistons, connecting member and eccentric roller may be disengaged one from another.
3. The structure of claim 1 and in which said parallel end portions of said connecting member comprise fingers engageable with said attaching means on said pistons.
4. The structure of claim 1 and in which the engagement of said eccentric roller in said cam engaging groove prevents movement of said connecting member in a lateral direction, holding said parallel end portions from disengagement from said attaching means.
5. The structure of claim 1 and in which said attaching means on said pistons comprise axially extending bosses.
6. The structure of claim 5 and in which said parallel end portions of said connecting member include a pair of spaced members between which said bosses are engaged.
7. The structure of claim 5 and in which said bosses include opposed peripheral grooves, and said end portions of said connecting member comprise spaced fingers engageable in said grooves.
8. The structure of claim 5 and including flat sides on said bosses engageable with said connecting member adjoining said parallel end members to prevent rotation of said pistons about their axes.
9. A pump including: a supporting frame, a pair of cylinders having open inner opposed ends supported in axial alignment by said supporting frame, detachable securing means securing said cylinders to said supporting frame, said securing means, when detached, permitting axial movement of sAid cylinders in a direction away from one another, valve housings integral with and communicating with the otuer ends of said cylinders including inlet and outlet valves, pistons slideably supported in said cylinders and having integral attaching means on the inner sides thereof, a connecting member having parallel end portions thereon substantially normal to the axes of said cylinders, said connecting member having a cam engaging groove extending transversely thereof, an eccentric roller engaged in said groove and held in said groove by engagement of said pistons in said cylinders, said roller restraining said connecting member from disengagement from said pistons when said pistons are within said cylinders, whereupon disengagement of said cylinders from said said frame permits disengagement of said pistons, connecting member and eccentric roller.
10. The structure of claim 17 and in which said securing means includes studs extending outwardly from opposite sides of said frame parallel to the cylinder axes, and threaded knobs on said studs engageable with said cylinders.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6165870A | 1970-08-06 | 1970-08-06 | |
US24897672A | 1972-05-01 | 1972-05-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3776667A true US3776667A (en) | 1973-12-04 |
Family
ID=26741339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00248976A Expired - Lifetime US3776667A (en) | 1970-08-06 | 1972-05-01 | Ice cream pump |
Country Status (1)
Country | Link |
---|---|
US (1) | US3776667A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4247264A (en) * | 1979-04-13 | 1981-01-27 | Wilden Pump & Engineering Co. | Air driven diaphragm pump |
US4264283A (en) * | 1978-02-17 | 1981-04-28 | Lucas Industries Limited | Pump for liquids |
US4397616A (en) * | 1979-07-14 | 1983-08-09 | Matsushita Electric Works, Ltd. | Pump driving mechanism |
US4431384A (en) * | 1982-06-01 | 1984-02-14 | Automated Food Systems, Inc. | Food pump |
EP0448906A3 (en) * | 1990-03-14 | 1992-01-15 | Possis Corp | Intensifier |
USD352041S (en) | 1993-02-05 | 1994-11-01 | Hansen Engine Corporation | Air compressor |
US5556267A (en) * | 1993-02-05 | 1996-09-17 | Hansen Engine Corporation | Double acting pump |
EP0870924A3 (en) * | 1997-04-07 | 1999-12-08 | WIWA WILHELM WAGNER GMBH & CO. KG | Feeding device with dosing pumps |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6761A (en) * | 1849-10-02 | Foot-valve of steam-engines | ||
US2957420A (en) * | 1955-11-25 | 1960-10-25 | Automatic Canteen Co | Metering pump |
US3186343A (en) * | 1963-03-25 | 1965-06-01 | Charles R Schneider | Pumps and compressors |
US3216355A (en) * | 1963-02-25 | 1965-11-09 | Seeger Wanner Corp | Two-cylinder pump |
US3238890A (en) * | 1960-05-19 | 1966-03-08 | Hypro Inc | Piston type pump |
US3391612A (en) * | 1965-06-05 | 1968-07-09 | Sneen Franz | Piston sealing elements in hydraulic motors |
US3446154A (en) * | 1967-05-15 | 1969-05-27 | Ambac Ind | Hand primer |
US3447479A (en) * | 1967-06-02 | 1969-06-03 | Pall Corp | Syringe pump |
US3514224A (en) * | 1967-06-24 | 1970-05-26 | Teves Gmbh Alfred | Radial piston pump with piston-coupling means |
-
1972
- 1972-05-01 US US00248976A patent/US3776667A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6761A (en) * | 1849-10-02 | Foot-valve of steam-engines | ||
US2957420A (en) * | 1955-11-25 | 1960-10-25 | Automatic Canteen Co | Metering pump |
US3238890A (en) * | 1960-05-19 | 1966-03-08 | Hypro Inc | Piston type pump |
US3216355A (en) * | 1963-02-25 | 1965-11-09 | Seeger Wanner Corp | Two-cylinder pump |
US3186343A (en) * | 1963-03-25 | 1965-06-01 | Charles R Schneider | Pumps and compressors |
US3391612A (en) * | 1965-06-05 | 1968-07-09 | Sneen Franz | Piston sealing elements in hydraulic motors |
US3446154A (en) * | 1967-05-15 | 1969-05-27 | Ambac Ind | Hand primer |
US3447479A (en) * | 1967-06-02 | 1969-06-03 | Pall Corp | Syringe pump |
US3514224A (en) * | 1967-06-24 | 1970-05-26 | Teves Gmbh Alfred | Radial piston pump with piston-coupling means |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4264283A (en) * | 1978-02-17 | 1981-04-28 | Lucas Industries Limited | Pump for liquids |
US4247264A (en) * | 1979-04-13 | 1981-01-27 | Wilden Pump & Engineering Co. | Air driven diaphragm pump |
US4397616A (en) * | 1979-07-14 | 1983-08-09 | Matsushita Electric Works, Ltd. | Pump driving mechanism |
US4431384A (en) * | 1982-06-01 | 1984-02-14 | Automated Food Systems, Inc. | Food pump |
EP0448906A3 (en) * | 1990-03-14 | 1992-01-15 | Possis Corp | Intensifier |
USD352041S (en) | 1993-02-05 | 1994-11-01 | Hansen Engine Corporation | Air compressor |
US5556267A (en) * | 1993-02-05 | 1996-09-17 | Hansen Engine Corporation | Double acting pump |
EP0870924A3 (en) * | 1997-04-07 | 1999-12-08 | WIWA WILHELM WAGNER GMBH & CO. KG | Feeding device with dosing pumps |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7416096B2 (en) | Apparatus for supplying liquid color | |
US3829242A (en) | Piston pump for soft serve machine | |
US7108024B2 (en) | Apparatus for the simultaneous filling of precise amounts of viscous liquid material in a sanitary environment | |
US3776667A (en) | Ice cream pump | |
US5553756A (en) | Dispenser with pressure operated, spring biased, reciprocating piston valve | |
US3697197A (en) | Ice cream pump | |
US4545507A (en) | Metering pump | |
US3112844A (en) | Measuring and dispensing apparatus | |
US4771726A (en) | Apparatus for dispensing flowable materials | |
US3822964A (en) | Ice cream pump | |
US3853245A (en) | Beverage dispenser | |
US2709538A (en) | Filling machine | |
US2081650A (en) | Sanitary liquid dispenser | |
US3199531A (en) | Apparatus for metering and mixing flowable ingredients to continuously supply a predetermined mixture | |
US2456958A (en) | Liquid dispenser | |
US4077750A (en) | Adjustable liquid dispensing pump | |
US2869467A (en) | Liquid proportioning pump | |
US3715061A (en) | Dispensing pump assembly for bakery materials | |
CA2244019C (en) | Viscous material dispenser and method for dispensing | |
US2576947A (en) | Cream whipper | |
US2202073A (en) | Liquid measuring and dispensing device | |
US3985269A (en) | Automatic liquid dispensing apparatus | |
US2811284A (en) | Dispenser for liquids | |
US2064402A (en) | Emulsification of butter and milk for the production of artificial cream | |
US3637116A (en) | Fluid-operated piston for metering gravity fed material |