US3776660A - Pump for molten salts and metals - Google Patents
Pump for molten salts and metals Download PDFInfo
- Publication number
- US3776660A US3776660A US00227767A US3776660DA US3776660A US 3776660 A US3776660 A US 3776660A US 00227767 A US00227767 A US 00227767A US 3776660D A US3776660D A US 3776660DA US 3776660 A US3776660 A US 3776660A
- Authority
- US
- United States
- Prior art keywords
- housing
- refractory
- impeller
- oblate
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 20
- 239000002184 metal Substances 0.000 title claims abstract description 20
- 150000003839 salts Chemical class 0.000 title claims description 13
- 150000002739 metals Chemical class 0.000 title claims description 10
- 230000008602 contraction Effects 0.000 claims abstract description 5
- 230000006835 compression Effects 0.000 claims description 13
- 238000007906 compression Methods 0.000 claims description 13
- 239000011819 refractory material Substances 0.000 claims description 12
- 238000005086 pumping Methods 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 230000007797 corrosion Effects 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910002065 alloy metal Inorganic materials 0.000 claims description 3
- 239000011152 fibreglass Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000002585 base Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D7/00—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04D7/02—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
- F04D7/06—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D7/00—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04D7/02—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
- F04D7/06—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
- F04D7/065—Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals for liquid metal
Definitions
- a pump comprising a refractory body portion of oblate spheroidal configuration having apertures in the top and bottom thereof is provided with refractory covers for said apertures which covers are held securely in said apertures by upper and lower metal plates, respectively, the upper plate forming the base of a vertical housing for the pump impeller shaft and the lower plate being resiliently mounted for vertical movement relative to said upper plate to compensate for thermo-expansion and contraction of the pump elements.
- the pump is particularly adapted for the pumping in molten state of such corrosive media as the alkali and alkaline earth metals and salts thereof as well as aluminum and its salts, and of course is also applicable to the pumping in molten state of such less corrosive metals as lead, zinc and the like and salts thereof.
- the present invention provides a pump adapted for such applications which is capable of rapidly pumping such molten media, at high discharge heads and over extended time intervals without deterioration or breakdown, and which we have found from extensive investigations is unique in these respects.
- the pump of the invention is of simplified construction and assembly, constructed in part of metal alloys and in part of refractory materials of high room and elevated temperature corrosion resistance, the components of which are so assembled as to compensate for differences in thermal coefficients of expansion and contraction of the various components in heating and cooling, and such as resiliently to buttress, the refractressing of refractory components against tensile fracture has been ignored or inadequately disposed of.
- the pump of the invention consists in its essentials of the following.
- a spirally vaned impeller is rotatively mounted within a housing, both of which are made of a refractory material which is highly resistant to corrosion and scoring by molten media of the character tory material components against rupture tending to be produced by fluid and other pressures exerted thereon in operation, and also in heating up the apparatus f0 use and subsequent cooling down.
- pumps Although numerous types of pumps have heretofore been devised for the pumping of molten metals and the like, all of those we have investigated, have proved deficient in one or more respects above noted, for the pumping of such corrosive media as above referred to.
- Some such previously known pumps are constructed almost entirely of refractory materials, but such materials are brittle and of low tensile strength, and components thereof difficult to assemble by dowels and the like forming relatively weak joints, such as to produce rupture and rapid breakdown in use, and to necessitate relatively low pumping pressures and pressure heads due to tensile stresses induced therein.
- the main body of the housing is of roughly oblate spheroidal configuration, integral with a volute discharge outlet.
- the housing is axially apertured thru oppositely disposed oblate surface portions, respectively, for reception of a drive shaft secured to the impeller and to provide an inlet port for the molten material.
- a feature of the invention resides in mounting the housing under resilient compression between a pair of top and bottom metal retainer plates.
- the purposes of this construction are to maintain the housing under resilient compression with respect to fluid pressures exerted against the housing interior by the pumping action of the impeller, and also to compensate for differences in amounts of thermal expansion or contraction of the refractory housing versus the remaining metal component assembly of the pump both of which tend otherwise to place the housing under tension preductive of rupture.
- refractory materials while weak in tensions are strong in compression. Hence by maintaining the housing at all times under resilient compression tensile stresses tending to produce rupture therein are eliminated.
- the shaft housing mounts on its upper end a coupling and drive assembly for the impeller shaft.
- a metal discharge conduit is connected to the volute discharge outlet of the impeller housing.
- FIG. 1 is a view in side elevation and partly in section of the pump assembly of the invention.
- FIGS. 2 and 3 are sectional views of FIG. 1 as taken at 2-2 and 3-3 thereof.
- FIG. 4 is a plan view of the pump impeller, showing the impeller blades.
- FIG. 5 is a perspective view of the impeller housing and appurtent components.
- FIG. 6 is an exploded, perspective view of the essential components of the pump.
- the pump of the invention comprises an impeller 10 rotatively mounted within a housing generally designated by the numeral 11, and comprising components 13-16 inc.
- the main body of the housing 11, comprising an inner, refractory member 13, encased within an outer refractory casing 14 for purposes explained below, is of substantially oblate configuration, integral with a volute discharge outlet 17 for the molten media. It is axially apertured thru its upper and lower oblate portions, as at 18, 19, for reception, respectively, of a top cover 15 and an annular base member 16, which provides a suction inlet 17 for said molten media.
- impeller 10 is rotatably mounted on a shaft adapter 21, and secured thereto by a hub cap 22, having a tapered shank of elliptical or octagonal cross section, as at 23, terminating in a threaded stud 24.
- the shank fits into a slot of corresponding taper and cross section of the impeller hub 25, and the stud is threaded into the lower end 27 of the shaft adapter for securing the same to the impeller.
- the shaft adapter'21 is in turn secured to the lower end of a shaft 28, rotatable within a tubular shaft housing or support column 29, the lower end of which is welded to a centrally apertured plate 30, bolted as at 31, to lugs as at 32, welded onto a top cover retainer plate 33, of the impeller housing.
- the support column 29 has welded to its upper end, a flanged member 34, on which is mounted a supporting structure 35, for a bearing 36 through which shaft 28 is journaled.
- Rotatably mounted atop structure 34 is a belt driven pulley 37, which is keyed to a shaft 38 journaled thru a bearing 39, and coupled, as at 40, to the impeller shaft 28.
- an upper support plate 41 which is drilled as at 42, 43, for slidable reception of a series of tension bars, as at 44, 45, the upper ends of which are resiliently supported on plate 41, by helical compression springs encircling the rods as at 46, 47, and interposed between the plate 41, and terminal lock nuts threaded onto the rods, as at 48, 49.
- the rods extend down thru holes in a bottom retainer plate 50, for the impeller housing 11, and terminate in lock nuts threaded thereon as at 51, 52.
- the rods are thus tensioned by the compression springs 46, 47 acting between their upper lock nuts and the upper plate 41, thereby to place the impeller housing under resilient compression between its upper and lower retainer plates 33 and 50, for purposes above explained and more in detail below.
- the compression springs By the action of the compression springs, a downward force is applied to plate 41 and transmitted thence via column 29 to the top housing retainer plate 33, while concurrently the tension rods apply an upward force to the bottom housing retainer plate 50.
- the discharge outlet 17 for housing 11 is connected as shown in FIG. 1, to the lower end of an elbow pipe section 55, the upper end of which is connected through an expansion joint, as at 56, to a vertically disposed discharge pipe 57, which extends through an aperture in the upper support plate 41, and is vertically supported against lateral displacement by a collar 58, assembled on upstanding bolts, as at 59, threaded into the support plate 41.
- the impeller 10 is a onepiece structure comprising a disc shaped backing portion 60, having a series of circumferentially spaced impeller blades projecting therefrom, as at 61, 62, which extend radially outward from the hub 26, in curved configuration.
- the impeller 20 and the impeller housing components 13, and 16 are made of a refractory material, resistant to scoring and corrosion by molten metals or salts of the character above discussed.
- the preferred refractory is silicon carbide bonded with silicon about 1 percent manganese, up to about 2 percent silicon, about 1.75-4.15 percent columbium or columbium and tantalum, and up to about 0.2 percent carbon.
- Preferred alloys are those designated by the trade names lnconel 600, 611 and 625 of the following compositions:
- the preferred alloy for purposes of this invention is Inconel 611.
- the pump components made of these high nickel alloys comprise the top and bottom retainer plates 33 and 50, the impeller hub 22, the impeller shaft adapter and shaft 21, 28, the shaft housing 29, flange 30 and appurtent components, the tension bars 44, 45, the elbow discharge coupling 55, the expansion joint coupling 56 and discharge pipe 57.
- the outer casing 14 for the housing member 13 consists of a laminated build-up of about 3/4-1 inch thick composed of layers of fiber glass cloth embedded in and bonded by a high aluminum cement.
- the casing 14 as thus constructed serves as a heat sink to minimize thermal shock of the inner refractory casing member 13.
- a centrifugal pump adapted for pumping molten salts and metals comprising:'a spirally vaned impellerrotatively mounted within a substantially oblate housing having a volute outlet connected to a conduit for discharge of said molten media, said housing being axially apertured on its opposite oblate surfaces for reception of a drive shaft keyed to said impeller and to provide an entry port for said molten media, respectively, said impeller and housing being composed of a refractory material highly resistant to corrosion and scoring by said molten media, said housing being mounted between a rigid structure engaging one oblate surface thereof and a supporting structure engaging the opposite oblate surface thereof, said rigid structure comprising a tubular member housing said shaft and having one flanged end bearing against one oblate surface of said housing and an opposite flanged end mounting coupling means and a drive member for said shaft,'and also mounting a plate extending radially from said shaft beyond the confines of said housing, said plate being apertured for reception
- a pump according to claim 1 wherein said rigid and supporting structures, said rods and said conduit are composed of nickel base alloy metal.
- silicon oxide silicon-oxy-nitride, tri-silicon nitride, silicon carbide and bonded combinations thereof.
- a pump according to claim 1 wherein said refractory oblate housing includes in combination therewith, a refractory cover plate fitted into one axial aperture thereof, said cover plate forming the bearing for said one flanged end of said tubular member and being apertured for reception of said drive shaft, and the oppomaintain said housing under compression.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22776772A | 1972-02-22 | 1972-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3776660A true US3776660A (en) | 1973-12-04 |
Family
ID=22854377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00227767A Expired - Lifetime US3776660A (en) | 1972-02-22 | 1972-02-22 | Pump for molten salts and metals |
Country Status (1)
Country | Link |
---|---|
US (1) | US3776660A (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938908A (en) * | 1972-03-16 | 1976-02-17 | N.V. Industrieele Handelscombinatie Holland | Pump |
US4461614A (en) * | 1982-04-15 | 1984-07-24 | Niedermeyer Karl O | Through flow sump pump |
US4586872A (en) * | 1982-12-24 | 1986-05-06 | Klockner-Humboldt-Deutz Ag | Centrifugal pump |
FR2615252A1 (en) * | 1987-05-12 | 1988-11-18 | Comadur Sa | MAGNETIC DRIVE PUMP |
US5088893A (en) * | 1989-02-24 | 1992-02-18 | The Carborundum Company | Molten metal pump |
US5181828A (en) * | 1991-11-22 | 1993-01-26 | The Carborundum Company | Molten metal pump |
EP0586800A1 (en) * | 1992-06-12 | 1994-03-16 | Metaullics Systems Co., L.P. | Molten metal pump with vaned impeller |
US5344286A (en) * | 1988-02-27 | 1994-09-06 | Ksb Aktiengesellschaft | Centrifugal pump housing |
AT399205B (en) * | 1993-01-26 | 1995-04-25 | Rauch Fertigungstech Gmbh | SCREW PUMP FOR CONVEYING METAL MELT |
US5509791A (en) * | 1994-05-27 | 1996-04-23 | Turner; Ogden L. | Variable delivery pump for molten metal |
US5597289A (en) * | 1995-03-07 | 1997-01-28 | Thut; Bruno H. | Dynamically balanced pump impeller |
US5634770A (en) * | 1992-06-12 | 1997-06-03 | Metaullics Systems Co., L.P. | Molten metal pump with vaned impeller |
US5685701A (en) * | 1995-06-01 | 1997-11-11 | Metaullics Systems Co., L.P. | Bearing arrangement for molten aluminum pumps |
US6019576A (en) * | 1997-09-22 | 2000-02-01 | Thut; Bruno H. | Pumps for pumping molten metal with a stirring action |
US6082965A (en) * | 1998-08-07 | 2000-07-04 | Alphatech, Inc. | Advanced motor driven impeller pump for moving metal in a bath of molten metal |
US6106226A (en) * | 1998-08-07 | 2000-08-22 | Alphatech, Inc. | High velocity prestressed shaft for degasser or pumping application in molten metal |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6345964B1 (en) * | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
US6386123B1 (en) * | 2000-08-30 | 2002-05-14 | Jakel Incorporated | Blower housing with maximized interior spacing |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US6451247B1 (en) | 1998-11-09 | 2002-09-17 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal apparatus |
US6457940B1 (en) | 1999-07-23 | 2002-10-01 | Dale T. Lehman | Molten metal pump |
US20030075844A1 (en) * | 1998-11-09 | 2003-04-24 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal apparatus |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US20040081555A1 (en) * | 2002-10-29 | 2004-04-29 | Ronald Gilbert | Molten metal pump system |
US20050191192A1 (en) * | 2004-02-13 | 2005-09-01 | Ksb Aktiengesselschaft | Vertical centrifugal pump assembly |
US20080006973A1 (en) * | 2003-11-26 | 2008-01-10 | Vild Chris T | Metal Scrap Submergence Apparatus |
US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
US20080304977A1 (en) * | 2005-03-31 | 2008-12-11 | Emmanuel Gaubert | Use of Fluidic Pumps |
US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
US20090266277A1 (en) * | 2006-10-18 | 2009-10-29 | Boildec Oy | Method and device for emptying the floor of a soda recovery boiler |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US7896617B1 (en) * | 2008-09-26 | 2011-03-01 | Morando Jorge A | High flow/high efficiency centrifugal pump having a turbine impeller for liquid applications including molten metal |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US20110189036A1 (en) * | 2010-01-29 | 2011-08-04 | O'Drill/MCM Inc. | Modular Vertical Pump Assembly |
US20110232688A1 (en) * | 2008-12-05 | 2011-09-29 | Boildec Oy | method and device for emptying the floor of a black liquor recovery boiler |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
EP2811166A1 (en) * | 2013-06-07 | 2014-12-10 | Pyrotek, Inc. | Molten metal pump and emergency pump-out of molten metal |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1727703A (en) * | 1928-05-28 | 1929-09-10 | New Jersey Sand And Gravel Com | Centrifugal pump |
US2347386A (en) * | 1939-05-25 | 1944-04-25 | Nash Engineering Co | Pump |
US2528210A (en) * | 1946-12-06 | 1950-10-31 | Walter M Weil | Pump |
FR1270174A (en) * | 1960-10-08 | 1961-08-25 | Q V F Ltd | Centrifugal pump |
CA672003A (en) * | 1963-10-08 | A. R. Wilfley And Sons | Corrosion resistant centrifugal pumps | |
US3255702A (en) * | 1964-02-27 | 1966-06-14 | Molten Metal Systems Inc | Hot liquid metal pumps |
US3459133A (en) * | 1967-01-23 | 1969-08-05 | Westinghouse Electric Corp | Controllable flow pump |
US3532445A (en) * | 1968-09-20 | 1970-10-06 | Westinghouse Electric Corp | Multirange pump |
US3612715A (en) * | 1969-11-19 | 1971-10-12 | Worthington Corp | Pump for molten metal and other high-temperature corrosive liquids |
-
1972
- 1972-02-22 US US00227767A patent/US3776660A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA672003A (en) * | 1963-10-08 | A. R. Wilfley And Sons | Corrosion resistant centrifugal pumps | |
US1727703A (en) * | 1928-05-28 | 1929-09-10 | New Jersey Sand And Gravel Com | Centrifugal pump |
US2347386A (en) * | 1939-05-25 | 1944-04-25 | Nash Engineering Co | Pump |
US2528210A (en) * | 1946-12-06 | 1950-10-31 | Walter M Weil | Pump |
FR1270174A (en) * | 1960-10-08 | 1961-08-25 | Q V F Ltd | Centrifugal pump |
US3255702A (en) * | 1964-02-27 | 1966-06-14 | Molten Metal Systems Inc | Hot liquid metal pumps |
US3459133A (en) * | 1967-01-23 | 1969-08-05 | Westinghouse Electric Corp | Controllable flow pump |
US3532445A (en) * | 1968-09-20 | 1970-10-06 | Westinghouse Electric Corp | Multirange pump |
US3612715A (en) * | 1969-11-19 | 1971-10-12 | Worthington Corp | Pump for molten metal and other high-temperature corrosive liquids |
Cited By (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938908A (en) * | 1972-03-16 | 1976-02-17 | N.V. Industrieele Handelscombinatie Holland | Pump |
US4461614A (en) * | 1982-04-15 | 1984-07-24 | Niedermeyer Karl O | Through flow sump pump |
US4586872A (en) * | 1982-12-24 | 1986-05-06 | Klockner-Humboldt-Deutz Ag | Centrifugal pump |
FR2615252A1 (en) * | 1987-05-12 | 1988-11-18 | Comadur Sa | MAGNETIC DRIVE PUMP |
EP0291780A1 (en) * | 1987-05-12 | 1988-11-23 | Comadur SA | Pump with a magnetic drive |
US5344286A (en) * | 1988-02-27 | 1994-09-06 | Ksb Aktiengesellschaft | Centrifugal pump housing |
US5088893A (en) * | 1989-02-24 | 1992-02-18 | The Carborundum Company | Molten metal pump |
US5181828A (en) * | 1991-11-22 | 1993-01-26 | The Carborundum Company | Molten metal pump |
EP0586800A1 (en) * | 1992-06-12 | 1994-03-16 | Metaullics Systems Co., L.P. | Molten metal pump with vaned impeller |
US5470201A (en) * | 1992-06-12 | 1995-11-28 | Metaullics Systems Co., L.P. | Molten metal pump with vaned impeller |
US5586863A (en) * | 1992-06-12 | 1996-12-24 | Metaullics Systems Co., L.P. | Molten metal pump with vaned impeller |
JP3494452B2 (en) | 1992-06-12 | 2004-02-09 | メトリックス システムズ カンパニー リミテッド パートナーシップ | Pump for molten metal with impeller with wings |
US5634770A (en) * | 1992-06-12 | 1997-06-03 | Metaullics Systems Co., L.P. | Molten metal pump with vaned impeller |
AT399205B (en) * | 1993-01-26 | 1995-04-25 | Rauch Fertigungstech Gmbh | SCREW PUMP FOR CONVEYING METAL MELT |
US5441390A (en) * | 1993-01-26 | 1995-08-15 | Ing. Rauch Fertigungstechnik Gesellschaft M.B.H. | Worm pump for delivering a metal melt |
US5509791A (en) * | 1994-05-27 | 1996-04-23 | Turner; Ogden L. | Variable delivery pump for molten metal |
US5597289A (en) * | 1995-03-07 | 1997-01-28 | Thut; Bruno H. | Dynamically balanced pump impeller |
US5685701A (en) * | 1995-06-01 | 1997-11-11 | Metaullics Systems Co., L.P. | Bearing arrangement for molten aluminum pumps |
US6345964B1 (en) * | 1996-12-03 | 2002-02-12 | Paul V. Cooper | Molten metal pump with metal-transfer conduit molten metal pump |
US6019576A (en) * | 1997-09-22 | 2000-02-01 | Thut; Bruno H. | Pumps for pumping molten metal with a stirring action |
US6082965A (en) * | 1998-08-07 | 2000-07-04 | Alphatech, Inc. | Advanced motor driven impeller pump for moving metal in a bath of molten metal |
US6106226A (en) * | 1998-08-07 | 2000-08-22 | Alphatech, Inc. | High velocity prestressed shaft for degasser or pumping application in molten metal |
US6398525B1 (en) | 1998-08-11 | 2002-06-04 | Paul V. Cooper | Monolithic rotor and rigid coupling |
US20030075844A1 (en) * | 1998-11-09 | 2003-04-24 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal apparatus |
US6451247B1 (en) | 1998-11-09 | 2002-09-17 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal apparatus |
US7273582B2 (en) | 1998-11-09 | 2007-09-25 | Pyrotex, Inc. | Shaft and post assemblies for molten metal apparatus |
US6887425B2 (en) | 1998-11-09 | 2005-05-03 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal apparatus |
US20050189684A1 (en) * | 1998-11-09 | 2005-09-01 | Mordue George S. | Shaft and post assemblies for molten metal apparatus |
US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
US6457940B1 (en) | 1999-07-23 | 2002-10-01 | Dale T. Lehman | Molten metal pump |
US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
US6553923B2 (en) | 2000-08-30 | 2003-04-29 | William Stuart Gatley, Jr. | Blower housing with maximized interior spacing |
US6386123B1 (en) * | 2000-08-30 | 2002-05-14 | Jakel Incorporated | Blower housing with maximized interior spacing |
USRE40818E1 (en) | 2000-08-30 | 2009-07-07 | Gatley Jr William Stuart | Blower housing with maximized interior spacing |
US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
US8361379B2 (en) | 2002-07-12 | 2013-01-29 | Cooper Paul V | Gas transfer foot |
US8409495B2 (en) | 2002-07-12 | 2013-04-02 | Paul V. Cooper | Rotor with inlet perimeters |
US8529828B2 (en) | 2002-07-12 | 2013-09-10 | Paul V. Cooper | Molten metal pump components |
US9034244B2 (en) | 2002-07-12 | 2015-05-19 | Paul V. Cooper | Gas-transfer foot |
US9435343B2 (en) | 2002-07-12 | 2016-09-06 | Molten Meal Equipment Innovations, LLC | Gas-transfer foot |
US8178037B2 (en) | 2002-07-12 | 2012-05-15 | Cooper Paul V | System for releasing gas into molten metal |
US8110141B2 (en) | 2002-07-12 | 2012-02-07 | Cooper Paul V | Pump with rotating inlet |
US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
US8440135B2 (en) | 2002-07-12 | 2013-05-14 | Paul V. Cooper | System for releasing gas into molten metal |
WO2004040142A3 (en) * | 2002-10-29 | 2005-03-24 | Pyrotec Inc | Molten metal pump system |
WO2004040142A2 (en) * | 2002-10-29 | 2004-05-13 | Pyrotec, Inc. | Molten metal pump system |
US6869271B2 (en) * | 2002-10-29 | 2005-03-22 | Pyrotek, Inc. | Molten metal pump system |
US20040081555A1 (en) * | 2002-10-29 | 2004-04-29 | Ronald Gilbert | Molten metal pump system |
US8501084B2 (en) | 2003-07-14 | 2013-08-06 | Paul V. Cooper | Support posts for molten metal pumps |
US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
US8475708B2 (en) | 2003-07-14 | 2013-07-02 | Paul V. Cooper | Support post clamps for molten metal pumps |
US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
US8075837B2 (en) | 2003-07-14 | 2011-12-13 | Cooper Paul V | Pump with rotating inlet |
US20080006973A1 (en) * | 2003-11-26 | 2008-01-10 | Vild Chris T | Metal Scrap Submergence Apparatus |
US7662335B2 (en) * | 2003-11-26 | 2010-02-16 | Pyrotek, Inc. | Metal scrap submergence apparatus |
US7828531B2 (en) * | 2004-02-13 | 2010-11-09 | Ksb Aktiengesellschaft | Vertical centrifugal pump assembly |
US20050191192A1 (en) * | 2004-02-13 | 2005-09-01 | Ksb Aktiengesselschaft | Vertical centrifugal pump assembly |
US20080304977A1 (en) * | 2005-03-31 | 2008-12-11 | Emmanuel Gaubert | Use of Fluidic Pumps |
US8152965B2 (en) | 2006-10-18 | 2012-04-10 | Boildec Oy | Method and device for emptying the floor of a soda recovery boiler |
US20090266277A1 (en) * | 2006-10-18 | 2009-10-29 | Boildec Oy | Method and device for emptying the floor of a soda recovery boiler |
US9017597B2 (en) | 2007-06-21 | 2015-04-28 | Paul V. Cooper | Transferring molten metal using non-gravity assist launder |
US11130173B2 (en) | 2007-06-21 | 2021-09-28 | Molten Metal Equipment Innovations, LLC. | Transfer vessel with dividing wall |
US11759854B2 (en) | 2007-06-21 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer structure and method |
US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
US8337746B2 (en) | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
US11185916B2 (en) | 2007-06-21 | 2021-11-30 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel with pump |
US11167345B2 (en) | 2007-06-21 | 2021-11-09 | Molten Metal Equipment Innovations, Llc | Transfer system with dual-flow rotor |
US11103920B2 (en) | 2007-06-21 | 2021-08-31 | Molten Metal Equipment Innovations, Llc | Transfer structure with molten metal pump support |
US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
US11020798B2 (en) | 2007-06-21 | 2021-06-01 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal |
US8753563B2 (en) | 2007-06-21 | 2014-06-17 | Paul V. Cooper | System and method for degassing molten metal |
US10562097B2 (en) | 2007-06-21 | 2020-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US10458708B2 (en) | 2007-06-21 | 2019-10-29 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US10352620B2 (en) | 2007-06-21 | 2019-07-16 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US10345045B2 (en) | 2007-06-21 | 2019-07-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US10274256B2 (en) | 2007-06-21 | 2019-04-30 | Molten Metal Equipment Innovations, Llc | Vessel transfer systems and devices |
US10195664B2 (en) | 2007-06-21 | 2019-02-05 | Molten Metal Equipment Innovations, Llc | Multi-stage impeller for molten metal |
US10072891B2 (en) | 2007-06-21 | 2018-09-11 | Molten Metal Equipment Innovations, Llc | Transferring molten metal using non-gravity assist launder |
US9982945B2 (en) | 2007-06-21 | 2018-05-29 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
US9925587B2 (en) | 2007-06-21 | 2018-03-27 | Molten Metal Equipment Innovations, Llc | Method of transferring molten metal from a vessel |
US9909808B2 (en) | 2007-06-21 | 2018-03-06 | Molten Metal Equipment Innovations, Llc | System and method for degassing molten metal |
US9383140B2 (en) | 2007-06-21 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Transferring molten metal from one structure to another |
US9862026B2 (en) | 2007-06-21 | 2018-01-09 | Molten Metal Equipment Innovations, Llc | Method of forming transfer well |
US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
US9855600B2 (en) | 2007-06-21 | 2018-01-02 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
US9581388B2 (en) | 2007-06-21 | 2017-02-28 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9566645B2 (en) | 2007-06-21 | 2017-02-14 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
US7896617B1 (en) * | 2008-09-26 | 2011-03-01 | Morando Jorge A | High flow/high efficiency centrifugal pump having a turbine impeller for liquid applications including molten metal |
US8033792B1 (en) | 2008-09-26 | 2011-10-11 | Morando Jorge A | High flow/high efficiency centrifugal pump having a turbine impeller for liquid applications including molten metal |
US20110232688A1 (en) * | 2008-12-05 | 2011-09-29 | Boildec Oy | method and device for emptying the floor of a black liquor recovery boiler |
US8808461B2 (en) | 2008-12-05 | 2014-08-19 | Boildec Oy | Method and device for emptying the floor of a black liquor recovery boiler |
US9657578B2 (en) | 2009-08-07 | 2017-05-23 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
US9422942B2 (en) | 2009-08-07 | 2016-08-23 | Molten Metal Equipment Innovations, Llc | Tension device with internal passage |
US9464636B2 (en) | 2009-08-07 | 2016-10-11 | Molten Metal Equipment Innovations, Llc | Tension device graphite component used in molten metal |
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US9382599B2 (en) | 2009-08-07 | 2016-07-05 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US10570745B2 (en) | 2009-08-07 | 2020-02-25 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US9377028B2 (en) | 2009-08-07 | 2016-06-28 | Molten Metal Equipment Innovations, Llc | Tensioning device extending beyond component |
US9328615B2 (en) | 2009-08-07 | 2016-05-03 | Molten Metal Equipment Innovations, Llc | Rotary degassers and components therefor |
US12163536B2 (en) | 2009-08-07 | 2024-12-10 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
US9080577B2 (en) | 2009-08-07 | 2015-07-14 | Paul V. Cooper | Shaft and post tensioning device |
US9470239B2 (en) | 2009-08-07 | 2016-10-18 | Molten Metal Equipment Innovations, Llc | Threaded tensioning device |
US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
US9506129B2 (en) | 2009-08-07 | 2016-11-29 | Molten Metal Equipment Innovations, Llc | Rotary degasser and rotor therefor |
US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
US10309725B2 (en) | 2009-09-09 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Immersion heater for molten metal |
US20110189036A1 (en) * | 2010-01-29 | 2011-08-04 | O'Drill/MCM Inc. | Modular Vertical Pump Assembly |
US9482469B2 (en) | 2010-05-12 | 2016-11-01 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
US11391293B2 (en) | 2013-03-13 | 2022-07-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10641279B2 (en) | 2013-03-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened tip |
US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
US10126059B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Controlled molten metal flow from transfer vessel |
US9587883B2 (en) | 2013-03-14 | 2017-03-07 | Molten Metal Equipment Innovations, Llc | Ladle with transfer conduit |
US10126058B2 (en) | 2013-03-14 | 2018-11-13 | Molten Metal Equipment Innovations, Llc | Molten metal transferring vessel |
US10302361B2 (en) | 2013-03-14 | 2019-05-28 | Molten Metal Equipment Innovations, Llc | Transfer vessel for molten metal pumping device |
US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
US10322451B2 (en) | 2013-03-15 | 2019-06-18 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US10307821B2 (en) | 2013-03-15 | 2019-06-04 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
US20140363309A1 (en) * | 2013-06-07 | 2014-12-11 | Pyrotek, Inc, | Emergency molten metal pump out |
EP2811166A1 (en) * | 2013-06-07 | 2014-12-10 | Pyrotek, Inc. | Molten metal pump and emergency pump-out of molten metal |
US11939994B2 (en) | 2014-07-02 | 2024-03-26 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US10465688B2 (en) | 2014-07-02 | 2019-11-05 | Molten Metal Equipment Innovations, Llc | Coupling and rotor shaft for molten metal devices |
US11286939B2 (en) | 2014-07-02 | 2022-03-29 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
US11933324B2 (en) | 2015-02-02 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
US11519414B2 (en) | 2016-01-13 | 2022-12-06 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US10641270B2 (en) | 2016-01-13 | 2020-05-05 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098719B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
US11098720B2 (en) | 2016-01-13 | 2021-08-24 | Molten Metal Equipment Innovations, Llc | Tensioned rotor shaft for molten metal |
US11976672B2 (en) | 2017-11-17 | 2024-05-07 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US12031550B2 (en) | 2017-11-17 | 2024-07-09 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
US11759853B2 (en) | 2019-05-17 | 2023-09-19 | Molten Metal Equipment Innovations, Llc | Melting metal on a raised surface |
US11858036B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | System and method to feed mold with molten metal |
US11358217B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | Method for melting solid metal |
US11931803B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and method |
US11931802B2 (en) | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11858037B2 (en) | 2019-05-17 | 2024-01-02 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11850657B2 (en) | 2019-05-17 | 2023-12-26 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
US11471938B2 (en) | 2019-05-17 | 2022-10-18 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US12263522B2 (en) | 2019-05-17 | 2025-04-01 | Molten Metal Equipment Innovations, Llc | Smart molten metal pump |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12228150B2 (en) | 2021-05-28 | 2025-02-18 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3776660A (en) | Pump for molten salts and metals | |
US4428717A (en) | Composite centrifugal impeller for slurry pumps | |
US3551067A (en) | Lined corrosion resistant pump | |
RU2524593C2 (en) | Rotor bearing group | |
US5088893A (en) | Molten metal pump | |
US5713730A (en) | Ceramic pivot bearing arrangement for a sealless blood pump | |
US3953150A (en) | Impeller apparatus | |
US5330328A (en) | Submersible molten metal pump | |
US3817653A (en) | Centrifugal pump apparatus | |
US3836280A (en) | Molten metal pumps | |
US5779460A (en) | Progressive cavity pump with tamper-proof safety | |
US3037458A (en) | Glass pump | |
US2347386A (en) | Pump | |
EP3223285B1 (en) | Pump for pumping smelt | |
US2283263A (en) | Pump | |
JPS59166758A (en) | Shaft and gear product fixed in axial direction | |
US2283348A (en) | Pump | |
US20250020164A1 (en) | Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same | |
US2658454A (en) | Glass-lined pump | |
US10145377B2 (en) | Canned motor pump thrust shoe heat shield | |
US2536638A (en) | Glass-lined pump | |
GB2061399A (en) | A composite pump impeller | |
EP0255336A2 (en) | Rotary displacement pump | |
US3359912A (en) | Insert for shaft driven rotating members | |
US11555505B2 (en) | Bearing assembly with catalyst-free ultra-strong polycrystalline diamond (PCD) material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMAX MAGNESIUM CORPORATION, 600 LANIDEX PLAZA, PAR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NL INDUSTRIES, INC.,;REEL/FRAME:003829/0452 Effective date: 19801107 |
|
AS | Assignment |
Owner name: CONGRESS FINANCIAL CORPORATION, 1133 AVENUE OF THE Free format text: SECURITY INTEREST;ASSIGNOR:AMAX MAGNESIUM A CORP. OF DE;REEL/FRAME:005165/0690 Effective date: 19890831 |
|
AS | Assignment |
Owner name: AMAX MAGNESIUM CORPORATION, A CORP. OF DE, UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMAX INC., A NY CORP.;REEL/FRAME:005161/0219 Effective date: 19890809 Owner name: ITT COMMERCIAL FINANCE CORP., A CORP. OF NV, NEVAD Free format text: SECURITY INTEREST;ASSIGNOR:AMAX MAGNESIUM CORPORATION;REEL/FRAME:005271/0220 Effective date: 19890831 |
|
AS | Assignment |
Owner name: MAGNESIUM CORPORATON OF AMERICA, UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ITT COMMERCIAL FINANCE CORP.;REEL/FRAME:006723/0341 Effective date: 19930922 |