US3770398A - In situ coal gasification process - Google Patents
In situ coal gasification process Download PDFInfo
- Publication number
- US3770398A US3770398A US00181489A US3770398DA US3770398A US 3770398 A US3770398 A US 3770398A US 00181489 A US00181489 A US 00181489A US 3770398D A US3770398D A US 3770398DA US 3770398 A US3770398 A US 3770398A
- Authority
- US
- United States
- Prior art keywords
- gas
- carbon dioxide
- water
- coal deposit
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003245 coal Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 18
- 238000002309 gasification Methods 0.000 title abstract description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000007789 gas Substances 0.000 claims abstract description 78
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 40
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 238000011084 recovery Methods 0.000 claims description 8
- 239000002918 waste heat Substances 0.000 claims description 8
- 238000010521 absorption reaction Methods 0.000 claims description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 11
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 11
- 238000002347 injection Methods 0.000 abstract description 9
- 239000007924 injection Substances 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 239000001257 hydrogen Substances 0.000 abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 241000364021 Tulsa Species 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
- E21B43/247—Combustion in situ in association with fracturing processes or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/40—Separation associated with re-injection of separated materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S48/00—Gas: heating and illuminating
- Y10S48/06—Underground gasification of coal
Definitions
- This invention relates tov the in situ combustion of a coal seam for the recovery of volatile hydrocarbons and a synthetic calorific value gas. More particularly, the present invention is a method for production of volatile hydrocarbons and calorific value gas through optimization of the water-gas shift reaction by introduction of carbon dioxide in combination with steam into a subterranean coal deposit.
- Coal gasification by use of above ground retorting is an old art, one of ,the better known methods being the Lurgi process developed in Germany prior to World War II.
- oxygen and steam are simultaneously injected into a field retort and combusted with an energy content gas, having value sufficient for cominvolves utilization of a fracture network formed within the coal deposit with air injection followed by steam injection for the subsequent production of a water-g shift product gas.
- the water-gas shift reaction involves the intermingling of steam with carbon contained within'the coal at temperatures above 1,000C for the production of a gas containing carbon monoxide and hydrogen.
- the water-gas shift reaction is preferred with a competitive reaction for the formation'of carbon dioxide and hydrogen, from the contacting of the carbon monoxide with steam, being a less preferred reaction as a lower calorific'value gas is then formed. Therefore, what is required is a means for shifting the reaction kinetics.
- the objects of the present invention are accomplished through utilization of a process for the in situ recovery of a synthetic gas, having a high calorific energy value, from a subterranean coal deposit.
- a coal deposit is burned to raise the temperature therein above about 1,000C. as steam is injected therein to produce a water-gas shift reaction product gas.
- the improvement of the process of the present invention comprises introducing carbon dioxide in the coal deposit in order to favor the reaction kinetics to the water-gas shift reaction.
- the combustion and steam flashal usage, and coal tar liquids being produced.
- Underground in situ gasification of coal deposits generally 7 injection steps may be accomplished simultaneously ,or in separate phases wherein the temperature of the reservoir is maintained at/or above about l',000C.
- the carbon dioxide introduced is generally obtained from the gas produced from the coal deposit.
- the steam introduced may be contacted with the produced gas from the coal deposit to regain the waste heat content so as to further expedite the energy balance of the system.
- the product gas formed will consist of steam, carbon dioxide, carbon monoxide and hydrogen.
- the heat content of the product gas may be utilized to preheat the steam production by contacting the fresh water with the gaseous reaction products in a waste heat exchanger and condenser.
- Carbon dioxide is absorbed from the product gas with an absorbent or carbon dioxide solvent, for example an aqueous carbonate solution or monoethanolamine.
- the carbon dioxide recovered is recompressed and combined with the injection steam either in liquid or gaseous form in order to achieve the more preferred reaction equilibrium characteristics of the present invention.
- the reaction conditions of the coal deposit determine the optimum quantity of carbon dioxide to be introduced in order to gain the maximum calorific value and total gas product volume. Therefore, a kinetic design is conducted for each subterranean project to determine the optimum quantities of carbon dioxide to be recycled.
- FIG. 1 a subterranean coal deposit 1 1 is depicted having a calorific value gas being produced through utilization of the process of the present invention.
- An injection well 30 is completed from the earths surface 12 through overburden rock 13 into coal deposit 11 having fractured zone 14 therein.
- the means for fracturing the coal deposit 11 may comprise various and sundry means not disclosed nor pertinent to this discussion.
- Injection well 30 is provided with a wellhead having multiple injection means wherein air 15 and a mixture of steam and carbon dioxide 16 may be introduced simultaneously.
- a production well'40 connects the coal seam 11 through fracture system 14 with the earths surface 12 from which steam, carbon monoxide, carbon dioxide and hydrogen 41 may be produced.
- the produced gas mixture 41 is then introduced into a heat exchanger and condenser system 42 in which water 43 is countercurrently introduced so as to subject the produced gas to a waste heat boiler for the reclamation of energy while leaving a cooled produced gas 44, having for example a temperature of 50C and being at atmospheric pressure.
- the water 45 is then condensed and removed from the produced gas mixture 44.
- the carbon monoxide, carbon dioxide and hydrogen 46 are introduced into a carbon dioxide absorption unit 47 wherein solvent 48 is countercurrently introduced so as to produce carbon dioxide and solvent 49.
- the carbon dioxide 51 is reclaimed from the carbon dioxide solvent 49 in a carbon dioxide recovery unit 50.
- the solvent 48 is recycled to the carbon dioxide absorption unit 47.
- Water-gas product 52 is produced from the carbon dioxide absorptionunit 47 as a high energy, high calorific value synthetic gas.
- the carbon dioxide 51 is recycled through a compressor 52 to form compressed carbon dioxide 54 which is introduced with steam 55 produced from the heated water 56 exiting from the waste heat exchanger and condenser 42 and cycled through a boiler 57, so as to form heated or superheated steam 55 for introduction as steam and carbon dioxide mixture 16 into the injection well 30 for sustenance of the process of the present invention.
- the process of the present invention may further be understood through referral to the following example in which the process to promote the formation of water gas through reinjection of carbon dioxide to provide a buffer against production of carbon dioxide in the subterranean coal deposit at temperatures above 1,000C is illustrated.
- a conventional in situ coal gasification process for the production of a high calorific synthetic gas may be initiated utilizinga starting mixture of 1.0 mole of water to yield a product gas at atmosphere and I ,800F.
- a similar process may be initiated utilizing the improved process of the present invention wherein a mixture of 0.05 moles of carbon dioxide and 0.95 moles of water are injected into the same coal deposit.
- the results indicated in Table 1 may be expected as based upon the reaction kinetics of the system depicting the superior results achieved by utilization of the process of the present invention.
- the present invention allows a significant process for the total recovery of energy value from a coal deposit.
- the invention enhances the art of in situ combustion of coal deposits by representing an economic method for the combustion and reclamation of energy from these deposits through the use of the optimum water-gas shift reaction conducted therein.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Industrial Gases (AREA)
Abstract
A method for in situ coal gasification to recover a calorific value gas by the water-gas shift reaction for the optimum formation of carbon monoxide and hydrogen through the simultaneous introduction of carbon dioxide and steam into an injection well in order to shift the reaction kinetics of the process to favor the water-gas shift reaction.
Description
United States Patent Abraham et al. 1 1 Nov. 6, 1973 [54] IN SITU COAL GASIFICATION PROCESS 3,628,929 12/1971 I Glass et al. 48/210 [75] Inventors: George E. Abraham, Vicksburg, OTHER PUBLICATIONS Carlos Royo Tulsa Okla- McPherson et al., Chemistry, A Textbook for Col- [73] Assignee: Cities Service Oil Company, Tulsa, 8 & i940, Pages 338439- Okla. r Primary Examiner-Morris O. Wolk [22] Filed Sept 1971 Assistant ExaminerR. E. Serwin [2]] Appl. No.: 181,489 Attorney-Joshua J. Ward 52 us. 01 48/202, 48/DIG. 6, 166/256, [571 ABSTRACT 166/270, 299/2, 299/3 A method for in situ coal gasification to recover a calo- [51] Int. Cl. E2lc 43/00, ClOj 5/00 rific value gas by the water-gas shift reaction for the op- [58] Field of Search 48/202, 204, 210, timum f rmation of carbon monoxide and hydrogen 48/215, DIG. 6; 166/256, 270; 299/2, 3 7 through the simultaneous introduction of carbon dioxide and steam into an injection well in order to shift the [56] References Cited reaction kinetics of the process to favor the water-gas UNITED STATES PATENTS shlft reaction- 3,506,309 4/1970 Von Hippel 299/2 8 Claims, 1 Drawing Figure .TTCLSUB PATENTEDHUV 6 ma GEORGE E. ABRAHAM, CARLOS M. ROYO,
INVENTORS BY i I ATTORNEY.
IN SITU COAL GASIFICATION PROCESS BACKGROUND OF THE INVENTION This invention relates tov the in situ combustion of a coal seam for the recovery of volatile hydrocarbons and a synthetic calorific value gas. More particularly, the present invention is a method for production of volatile hydrocarbons and calorific value gas through optimization of the water-gas shift reaction by introduction of carbon dioxide in combination with steam into a subterranean coal deposit.
Production of coal energy by the use of the wells through underground mining has been a continuous subject of interest to the field of energy production. Coal gasification by use of above ground retorting is an old art, one of ,the better known methods being the Lurgi process developed in Germany prior to World War II. By this method, oxygen and steam are simultaneously injected into a field retort and combusted with an energy content gas, having value sufficient for cominvolves utilization of a fracture network formed within the coal deposit with air injection followed by steam injection for the subsequent production of a water-g shift product gas.
The water-gas shift reaction involves the intermingling of steam with carbon contained within'the coal at temperatures above 1,000C for the production of a gas containing carbon monoxide and hydrogen. Generally, the water-gas shift reaction is preferred with a competitive reaction for the formation'of carbon dioxide and hydrogen, from the contacting of the carbon monoxide with steam, being a less preferred reaction as a lower calorific'value gas is then formed. Therefore, what is required is a means for shifting the reaction kinetics.
within the in situ gasification process so that the more preferred reaction of the water-gas shift process will be favored so as to obtain a maximum calorific value gas from the subterranean coal deposit.
It is an object of the present invention to provide a method for the combustion of underground coal beds.
It is another object of the present invention to pro-' vide a method by which the calorific value of the gas produced by in situ coal gasification may be maximized.
It is still a further object of the present invention to utilize the introduction of carbon dioxide simultaneously with that of steam in order to shift the reaction kinetics of an in situ coal gasification process so that the more preferred water-gas shift reaction is favored.
With these and other objects in mind, the present in-' vention may be more fully understood through referral to the following'discussion and description.
SUMMARY OF THE INVENTION The objects of the present invention are accomplished through utilization of a process for the in situ recovery of a synthetic gas, having a high calorific energy value, from a subterranean coal deposit. In the process a coal deposit is burned to raise the temperature therein above about 1,000C. as steam is injected therein to produce a water-gas shift reaction product gas. The improvement of the process of the present invention comprises introducing carbon dioxide in the coal deposit in order to favor the reaction kinetics to the water-gas shift reaction. The combustion and steam mercial usage, and coal tar liquids being produced. Underground in situ gasification of coal deposits generally 7 injection steps may be accomplished simultaneously ,or in separate phases wherein the temperature of the reservoir is maintained at/or above about l',000C. The carbon dioxide introduced is generally obtained from the gas produced from the coal deposit. The steam introduced may be contacted with the produced gas from the coal deposit to regain the waste heat content so as to further expedite the energy balance of the system.
BRIEF DESCRIPTION OF THE DRAWING The present invention may be more readily understood by referral to' the accompanying FIGURE in which a subterranean coal deposit is depicted in combination with the apparatus utilized in practicing the process of the present invention.
DETAILED DESCRIPTION OF THE INVENTION Disclosed herein is a method for distilling coal in situ to recover a synthetic gas having a high calorific energy content. In the process of the present invention, the in situ recovery of a synthetic gas is obtained through the introduction of the combustion'supporting gas into the subterranean coal deposit. The temperature of the coal deposit is raised to above about 1,000C and steam is introduced for the production of a water-gas shift reaction product gas. The improvement of the process of the present invention comprises shifting the reaction kinetics within the reservoir so as to favor the water-gas shift reaction. Generally, syntheticgas formed by the water-gas shift reaction product is described by the following chemical equations:
wherein a less frequently competing reaction may occur described by the following chemical equation.
2C 2H O CH, CO,
Although at temperatures above 1,000C the watergas shift reaction is favored, a still further reaction may occur with the carbon monoxide contained in the formation formed by the water-gas shift reaction recombining with the steam injected according to the following competing chemical reaction:
CO+H, ==CO,+H
It can be shown that above 1,000C the reaction for the formation of carbon monoxide and hydrogendominates with the introduction of carbon dioxide into the the further formation of carbon dioxide through the contacting of carbon monoxide and water or steam so that the reaction formula favor the formation of carbon monoxide and hydrogen. When the formation temperature drops below about 1,000C, the-combustion step must be reinitiated. Therefore, simultaneous combustion and water-gas production is favored.
In general, the product gas formed will consist of steam, carbon dioxide, carbon monoxide and hydrogen. The heat content of the product gas may be utilized to preheat the steam production by contacting the fresh water with the gaseous reaction products in a waste heat exchanger and condenser. Carbon dioxide is absorbed from the product gas with an absorbent or carbon dioxide solvent, for example an aqueous carbonate solution or monoethanolamine. The carbon dioxide recovered is recompressed and combined with the injection steam either in liquid or gaseous form in order to achieve the more preferred reaction equilibrium characteristics of the present invention. Of course, the reaction conditions of the coal deposit determine the optimum quantity of carbon dioxide to be introduced in order to gain the maximum calorific value and total gas product volume. Therefore, a kinetic design is conducted for each subterranean project to determine the optimum quantities of carbon dioxide to be recycled.
The present invention may be more fully understood by referral to the accompanying FIGURE in which a subterranean coal deposit 1 1 is depicted having a calorific value gas being produced through utilization of the process of the present invention. An injection well 30 is completed from the earths surface 12 through overburden rock 13 into coal deposit 11 having fractured zone 14 therein. The means for fracturing the coal deposit 11 may comprise various and sundry means not disclosed nor pertinent to this discussion. Injection well 30 is provided with a wellhead having multiple injection means wherein air 15 and a mixture of steam and carbon dioxide 16 may be introduced simultaneously.
A production well'40 connects the coal seam 11 through fracture system 14 with the earths surface 12 from which steam, carbon monoxide, carbon dioxide and hydrogen 41 may be produced.
The produced gas mixture 41 is then introduced into a heat exchanger and condenser system 42 in which water 43 is countercurrently introduced so as to subject the produced gas to a waste heat boiler for the reclamation of energy while leaving a cooled produced gas 44, having for example a temperature of 50C and being at atmospheric pressure. The water 45 is then condensed and removed from the produced gas mixture 44. The carbon monoxide, carbon dioxide and hydrogen 46 are introduced into a carbon dioxide absorption unit 47 wherein solvent 48 is countercurrently introduced so as to produce carbon dioxide and solvent 49. The carbon dioxide 51 is reclaimed from the carbon dioxide solvent 49 in a carbon dioxide recovery unit 50. The solvent 48 is recycled to the carbon dioxide absorption unit 47. Water-gas product 52 is produced from the carbon dioxide absorptionunit 47 as a high energy, high calorific value synthetic gas. The carbon dioxide 51 is recycled through a compressor 52 to form compressed carbon dioxide 54 which is introduced with steam 55 produced from the heated water 56 exiting from the waste heat exchanger and condenser 42 and cycled through a boiler 57, so as to form heated or superheated steam 55 for introduction as steam and carbon dioxide mixture 16 into the injection well 30 for sustenance of the process of the present invention.
The process of the present invention may further be understood through referral to the following example in which the process to promote the formation of water gas through reinjection of carbon dioxide to provide a buffer against production of carbon dioxide in the subterranean coal deposit at temperatures above 1,000C is illustrated.
EXAMPLE A conventional in situ coal gasification process for the production of a high calorific synthetic gas may be initiated utilizinga starting mixture of 1.0 mole of water to yield a product gas at atmosphere and I ,800F. A similar process may be initiated utilizing the improved process of the present invention wherein a mixture of 0.05 moles of carbon dioxide and 0.95 moles of water are injected into the same coal deposit. The results indicated in Table 1 may be expected as based upon the reaction kinetics of the system depicting the superior results achieved by utilization of the process of the present invention.
TABLE 1 Mole Fraction of Gases Produced/Mole of Water In- Therefore, the present invention, as it applies to the art of in situ combustion of coal deposits, allows a significant process for the total recovery of energy value from a coal deposit. The invention enhances the art of in situ combustion of coal deposits by representing an economic method for the combustion and reclamation of energy from these deposits through the use of the optimum water-gas shift reaction conducted therein.
While the invention hasbeen described above with respect to certain embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope and spirit of the invention as set forth.
Therefore, we claim:
1. In a process for the in situ recovery of a synthetic gas, having a high calorific energy value, from a subterranean coal deposit wherein the coal deposit is burned to raise the temperature therein above about 1,000C and steam is subsequently injected therein to produce water-gas by the water-gas shift reaction, the improvement comprising introducing carbon dioxide into the coal deposit in order to favor the reaction kinetics of the water-gas shift reaction.
2. The process of claim 1 further comprising reinitiating combustion of the coal deposit when the temperature therein becomes less than about 1,000C.
3. The process of claim l wherein the carbon dioxide introduced is obtained from the produced gas from the coal deposit.
4. The process of claim 3 wherein the carbon dioxide is removed from the produced gas by absorption.
5. Theprocess of claim 3 further comprising subjecting the steam introduced to contact with the produced gas from the coal deposit to regain the waste heat contained in the produced gas.
6. In a process for the in situ recovery of a synthetic gas having a high calorific energy value, from a subterranean coal deposit wherein a combustion supporting gas and steam are simultaneously injected into the coal deposit to maintain the temperature therein above about 1,000C and to produce a water-gas by the water-gas shift reaction, the improvement comprising simultaneously introducing carbon dioxide into the coal deposit in order to favor the reaction kinetics of the water-gas shift reaction.
7. The process of claim 6 wherein the carbon dioxide is removed from the produced gas by absorption.
8. The process of claim 6 further comprising subjecting the steam introduced to contact with the produced gas from the coal deposit to regain the wasteheat contained in the produced gas.
# t I t =9:
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,770,398 Dated 116-73 In George E. Abraham & Carlos M. Royo It is certified that error appears in the aboveidentified patent and that said Letters Patent are hereby corrected as shown below:
Col. 2 Line 45 reads 00 H2 should read co H240 Col. 3 Line 45 delete "52" add --53-- Signed and ea'led this 23rd day of April 197R.
(ESEAL) Atte 3t 2 EDWARD LLFIETGHLR,JRQ C MARSHALL DANE Attesting Officer Commissioner of Patents
Claims (7)
- 2. The process of claim 1 further comprising reinitiating combustion of the coal deposit when the temperature therein becomes less than about 1,000*C.
- 3. The process of claim 1 wherein the carbon dioxide introduced is obtained from the produced gas from the coal deposit.
- 4. The process of claim 3 wherein the carbon dioxide is removed from the produced gas by absorption.
- 5. The process of claim 3 further comprising subjecting the steam introduced to contact with the produced gas from the coal deposit to regain the waste heat contained in the produced gas.
- 6. In a process for the in situ recovery of a synthetic gas having a high calorific energy value, from a subterranean coal deposit wherein a combustion supporting gas and steam are simultaneously injected into the coal deposit to maintain the temperature therein above about 1,000*C and to produce a water-gas by the water-gas shift reaction, the improvement comprising simultaneously introducing carbon dioxide into the coal deposit in order to favor the reaction kinetics of the water-gas shift reaction.
- 7. The process of claim 6 wherein the carbon dioxide is removed from the produced gas by absorption.
- 8. The process of claim 6 further comprising subjecting the steam introduced to contact with the produced gas from the coal deposit to regain the waste heat contained in the produced gas.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18148971A | 1971-09-17 | 1971-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3770398A true US3770398A (en) | 1973-11-06 |
Family
ID=22664483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00181489A Expired - Lifetime US3770398A (en) | 1971-09-17 | 1971-09-17 | In situ coal gasification process |
Country Status (2)
Country | Link |
---|---|
US (1) | US3770398A (en) |
CA (1) | CA954039A (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3948320A (en) * | 1975-03-14 | 1976-04-06 | In Situ Technology, Inc. | Method of in situ gasification, cooling and liquefaction of a subsurface coal formation |
US3987852A (en) * | 1974-09-30 | 1976-10-26 | Terry Ruel C | Method of and apparatus for in situ gasification of coal and the capture of resultant generated heat |
US4059151A (en) * | 1975-07-14 | 1977-11-22 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4089374A (en) * | 1976-12-16 | 1978-05-16 | In Situ Technology, Inc. | Producing methane from coal in situ |
US4089372A (en) * | 1975-07-14 | 1978-05-16 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4095650A (en) * | 1977-08-10 | 1978-06-20 | The United States Of America As Represented By The United States Department Of Energy | Method for increasing the calorific value of gas produced by the in situ combustion of coal |
US4122897A (en) * | 1977-12-28 | 1978-10-31 | The United States Of America As Represented By The United States Department Of Energy | In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen |
US4197911A (en) * | 1978-05-09 | 1980-04-15 | Ramcor, Inc. | Process for in situ coal gasification |
US4271676A (en) * | 1979-10-20 | 1981-06-09 | Air Products And Chemicals, Inc. | Method and apparatus for recovering natural gas in a mine |
FR2491945A1 (en) * | 1980-10-13 | 1982-04-16 | Ledent Pierre | PROCESS FOR PRODUCING HIGH HYDROGEN GAS BY COAL UNDERGROUND GASIFICATION |
US4476927A (en) * | 1982-03-31 | 1984-10-16 | Mobil Oil Corporation | Method for controlling H2 /CO ratio of in-situ coal gasification product gas |
US4487264A (en) * | 1982-07-02 | 1984-12-11 | Alberta Oil Sands Technology And Research Authority | Use of hydrogen-free carbon monoxide with steam in recovery of heavy oil at low temperatures |
US4512403A (en) * | 1980-08-01 | 1985-04-23 | Air Products And Chemicals, Inc. | In situ coal gasification |
US4614234A (en) * | 1985-03-14 | 1986-09-30 | Standard Oil Company | Method of recovering coal values by combining underground coal gasification with surface coal liquefaction |
US4648450A (en) * | 1985-11-27 | 1987-03-10 | Amoco Corporation | Method of producing synthesis gas by underground gasification of coal using specific well configuration |
US4649997A (en) * | 1984-12-24 | 1987-03-17 | Texaco Inc. | Carbon dioxide injection with in situ combustion process for heavy oils |
US4703798A (en) * | 1986-06-30 | 1987-11-03 | Texaco Inc. | In situ method for recovering hydrocarbon from subterranean oil shale deposits |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6877555B2 (en) | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US20070193748A1 (en) * | 2006-02-21 | 2007-08-23 | World Energy Systems, Inc. | Method for producing viscous hydrocarbon using steam and carbon dioxide |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US20080289820A1 (en) * | 2006-11-14 | 2008-11-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exloitation Des Procedes Georges Claude | Combined Hydrogen Production and Unconventional Heavy Oil Extraction |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US20150000895A1 (en) * | 2011-12-15 | 2015-01-01 | Linc Energy Ltd | UCG Channel |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3506309A (en) * | 1968-05-16 | 1970-04-14 | Hans Joachim Von Hippel | Method and system for gasifying underground deposits of coal |
US3628929A (en) * | 1969-12-08 | 1971-12-21 | Cities Service Oil Co | Method for recovery of coal energy |
-
1971
- 1971-09-17 US US00181489A patent/US3770398A/en not_active Expired - Lifetime
-
1972
- 1972-08-23 CA CA150,065A patent/CA954039A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3506309A (en) * | 1968-05-16 | 1970-04-14 | Hans Joachim Von Hippel | Method and system for gasifying underground deposits of coal |
US3628929A (en) * | 1969-12-08 | 1971-12-21 | Cities Service Oil Co | Method for recovery of coal energy |
Non-Patent Citations (1)
Title |
---|
McPherson et al., Chemistry, A Textbook for Colleges, Ginn & Co., 1940, pages 338 339. * |
Cited By (308)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3987852A (en) * | 1974-09-30 | 1976-10-26 | Terry Ruel C | Method of and apparatus for in situ gasification of coal and the capture of resultant generated heat |
US3948320A (en) * | 1975-03-14 | 1976-04-06 | In Situ Technology, Inc. | Method of in situ gasification, cooling and liquefaction of a subsurface coal formation |
US4059151A (en) * | 1975-07-14 | 1977-11-22 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4089372A (en) * | 1975-07-14 | 1978-05-16 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4089374A (en) * | 1976-12-16 | 1978-05-16 | In Situ Technology, Inc. | Producing methane from coal in situ |
US4095650A (en) * | 1977-08-10 | 1978-06-20 | The United States Of America As Represented By The United States Department Of Energy | Method for increasing the calorific value of gas produced by the in situ combustion of coal |
US4122897A (en) * | 1977-12-28 | 1978-10-31 | The United States Of America As Represented By The United States Department Of Energy | In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen |
US4197911A (en) * | 1978-05-09 | 1980-04-15 | Ramcor, Inc. | Process for in situ coal gasification |
US4271676A (en) * | 1979-10-20 | 1981-06-09 | Air Products And Chemicals, Inc. | Method and apparatus for recovering natural gas in a mine |
US4512403A (en) * | 1980-08-01 | 1985-04-23 | Air Products And Chemicals, Inc. | In situ coal gasification |
FR2491945A1 (en) * | 1980-10-13 | 1982-04-16 | Ledent Pierre | PROCESS FOR PRODUCING HIGH HYDROGEN GAS BY COAL UNDERGROUND GASIFICATION |
US4476927A (en) * | 1982-03-31 | 1984-10-16 | Mobil Oil Corporation | Method for controlling H2 /CO ratio of in-situ coal gasification product gas |
US4487264A (en) * | 1982-07-02 | 1984-12-11 | Alberta Oil Sands Technology And Research Authority | Use of hydrogen-free carbon monoxide with steam in recovery of heavy oil at low temperatures |
US4649997A (en) * | 1984-12-24 | 1987-03-17 | Texaco Inc. | Carbon dioxide injection with in situ combustion process for heavy oils |
US4614234A (en) * | 1985-03-14 | 1986-09-30 | Standard Oil Company | Method of recovering coal values by combining underground coal gasification with surface coal liquefaction |
US4648450A (en) * | 1985-11-27 | 1987-03-10 | Amoco Corporation | Method of producing synthesis gas by underground gasification of coal using specific well configuration |
US4703798A (en) * | 1986-06-30 | 1987-11-03 | Texaco Inc. | In situ method for recovering hydrocarbon from subterranean oil shale deposits |
US6902003B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
GB2379469A (en) * | 2000-04-24 | 2003-03-12 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6588503B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In Situ thermal processing of a coal formation to control product composition |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
GB2379469B (en) * | 2000-04-24 | 2004-09-29 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6866097B2 (en) | 2000-04-24 | 2005-03-15 | Shell Oil Company | In situ thermal processing of a coal formation to increase a permeability/porosity of the formation |
US6871707B2 (en) | 2000-04-24 | 2005-03-29 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration |
US6877554B2 (en) | 2000-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6880635B2 (en) | 2000-04-24 | 2005-04-19 | Shell Oil Company | In situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio |
US6889769B2 (en) | 2000-04-24 | 2005-05-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected moisture content |
US6896053B2 (en) | 2000-04-24 | 2005-05-24 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources |
US6902004B2 (en) | 2000-04-24 | 2005-06-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a movable heating element |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US6910536B2 (en) | 2000-04-24 | 2005-06-28 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US6913078B2 (en) | 2000-04-24 | 2005-07-05 | Shell Oil Company | In Situ thermal processing of hydrocarbons within a relatively impermeable formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7096941B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation with heat sources located at an edge of a coal layer |
US6923258B2 (en) | 2000-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
WO2001081239A3 (en) * | 2000-04-24 | 2002-05-23 | Shell Oil Co | In situ recovery from a hydrocarbon containing formation |
US7036583B2 (en) | 2000-04-24 | 2006-05-02 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US6948563B2 (en) | 2000-04-24 | 2005-09-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content |
US7017661B2 (en) | 2000-04-24 | 2006-03-28 | Shell Oil Company | Production of synthesis gas from a coal formation |
US6953087B2 (en) | 2000-04-24 | 2005-10-11 | Shell Oil Company | Thermal processing of a hydrocarbon containing formation to increase a permeability of the formation |
US6959761B2 (en) | 2000-04-24 | 2005-11-01 | Shell Oil Company | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6997255B2 (en) | 2000-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US6966372B2 (en) | 2000-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US6994160B2 (en) | 2000-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US6973967B2 (en) | 2000-04-24 | 2005-12-13 | Shell Oil Company | Situ thermal processing of a coal formation using pressure and/or temperature control |
US6994161B2 (en) | 2000-04-24 | 2006-02-07 | Kevin Albert Maher | In situ thermal processing of a coal formation with a selected moisture content |
US6991031B2 (en) | 2000-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products |
US6918443B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range |
US6915850B2 (en) | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US6991033B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing while controlling pressure in an oil shale formation |
US6991036B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | Thermal processing of a relatively permeable formation |
US6929067B2 (en) | 2001-04-24 | 2005-08-16 | Shell Oil Company | Heat sources with conductive material for in situ thermal processing of an oil shale formation |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US6923257B2 (en) | 2001-04-24 | 2005-08-02 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a condensate |
US6994169B2 (en) | 2001-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of an oil shale formation with a selected property |
US6997518B2 (en) | 2001-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing and solution mining of an oil shale formation |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US7004251B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | In situ thermal processing and remediation of an oil shale formation |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US6951247B2 (en) | 2001-04-24 | 2005-10-04 | Shell Oil Company | In situ thermal processing of an oil shale formation using horizontal heat sources |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US6877555B2 (en) | 2001-04-24 | 2005-04-12 | Shell Oil Company | In situ thermal processing of an oil shale formation while inhibiting coking |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US6880633B2 (en) | 2001-04-24 | 2005-04-19 | Shell Oil Company | In situ thermal processing of an oil shale formation to produce a desired product |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US7096942B1 (en) | 2001-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a relatively permeable formation while controlling pressure |
US6918442B2 (en) | 2001-04-24 | 2005-07-19 | Shell Oil Company | In situ thermal processing of an oil shale formation in a reducing environment |
US6991032B2 (en) | 2001-04-24 | 2006-01-31 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US7461691B2 (en) | 2001-10-24 | 2008-12-09 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7114566B2 (en) | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US6932155B2 (en) | 2001-10-24 | 2005-08-23 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US7353872B2 (en) | 2004-04-23 | 2008-04-08 | Shell Oil Company | Start-up of temperature limited heaters using direct current (DC) |
US7481274B2 (en) | 2004-04-23 | 2009-01-27 | Shell Oil Company | Temperature limited heaters with relatively constant current |
US7431076B2 (en) | 2004-04-23 | 2008-10-07 | Shell Oil Company | Temperature limited heaters using modulated DC power |
US7490665B2 (en) | 2004-04-23 | 2009-02-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7424915B2 (en) | 2004-04-23 | 2008-09-16 | Shell Oil Company | Vacuum pumping of conductor-in-conduit heaters |
US7383877B2 (en) | 2004-04-23 | 2008-06-10 | Shell Oil Company | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7370704B2 (en) | 2004-04-23 | 2008-05-13 | Shell Oil Company | Triaxial temperature limited heater |
US7510000B2 (en) | 2004-04-23 | 2009-03-31 | Shell Oil Company | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US7357180B2 (en) | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US7546873B2 (en) | 2005-04-22 | 2009-06-16 | Shell Oil Company | Low temperature barriers for use with in situ processes |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US7575053B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | Low temperature monitoring system for subsurface barriers |
US7575052B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | In situ conversion process utilizing a closed loop heating system |
US7986869B2 (en) * | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7527094B2 (en) | 2005-04-22 | 2009-05-05 | Shell Oil Company | Double barrier system for an in situ conversion process |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7500528B2 (en) | 2005-04-22 | 2009-03-10 | Shell Oil Company | Low temperature barrier wellbores formed using water flushing |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US20070193748A1 (en) * | 2006-02-21 | 2007-08-23 | World Energy Systems, Inc. | Method for producing viscous hydrocarbon using steam and carbon dioxide |
US8286698B2 (en) | 2006-02-21 | 2012-10-16 | World Energy Systems Incorporated | Method for producing viscous hydrocarbon using steam and carbon dioxide |
US8091625B2 (en) | 2006-02-21 | 2012-01-10 | World Energy Systems Incorporated | Method for producing viscous hydrocarbon using steam and carbon dioxide |
US8573292B2 (en) | 2006-02-21 | 2013-11-05 | World Energy Systems Incorporated | Method for producing viscous hydrocarbon using steam and carbon dioxide |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7703519B2 (en) * | 2006-11-14 | 2010-04-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combined hydrogen production and unconventional heavy oil extraction |
US20080289820A1 (en) * | 2006-11-14 | 2008-11-27 | L'air Liquide Societe Anonyme Pour L'etude Et L'exloitation Des Procedes Georges Claude | Combined Hydrogen Production and Unconventional Heavy Oil Extraction |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US20150000895A1 (en) * | 2011-12-15 | 2015-01-01 | Linc Energy Ltd | UCG Channel |
US9051816B2 (en) * | 2011-12-15 | 2015-06-09 | Linc Energy Ltd | UCG channel |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Also Published As
Publication number | Publication date |
---|---|
CA954039A (en) | 1974-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3770398A (en) | In situ coal gasification process | |
US4089372A (en) | Methods of fluidized production of coal in situ | |
US3044545A (en) | In situ combustion process | |
US4454915A (en) | In situ retorting of oil shale with air, steam, and recycle gas | |
US3794116A (en) | Situ coal bed gasification | |
US4662443A (en) | Combination air-blown and oxygen-blown underground coal gasification process | |
US4662439A (en) | Method of underground conversion of coal | |
US7467660B2 (en) | Pumped carbon mining methane production process | |
US4448251A (en) | In situ conversion of hydrocarbonaceous oil | |
US3516495A (en) | Recovery of shale oil | |
US4197911A (en) | Process for in situ coal gasification | |
US2595979A (en) | Underground liquefaction of coal | |
CA1056302A (en) | Recovery of hydrocarbons from coal | |
SU915451A1 (en) | Method of underground gasification of fuel | |
US4457374A (en) | Transient response process for detecting in situ retorting conditions | |
US3480082A (en) | In situ retorting of oil shale using co2 as heat carrier | |
US3605890A (en) | Hydrogen production from a kerogen-depleted shale formation | |
US2801089A (en) | Underground shale retorting process | |
US4026357A (en) | In situ gasification of solid hydrocarbon materials in a subterranean formation | |
US4552214A (en) | Pulsed in situ retorting in an array of oil shale retorts | |
US3548938A (en) | In situ method of producing oil from oil shale | |
US4537252A (en) | Method of underground conversion of coal | |
US3734184A (en) | Method of in situ coal gasification | |
US4036299A (en) | Enriching off gas from oil shale retort | |
US4452689A (en) | Huff and puff process for retorting oil shale |