US3667119A - Method of jointing and terminating electric cables - Google Patents
Method of jointing and terminating electric cables Download PDFInfo
- Publication number
- US3667119A US3667119A US813621A US3667119DA US3667119A US 3667119 A US3667119 A US 3667119A US 813621 A US813621 A US 813621A US 3667119D A US3667119D A US 3667119DA US 3667119 A US3667119 A US 3667119A
- Authority
- US
- United States
- Prior art keywords
- stranded conductor
- conductor
- metal
- impregnant
- heat sink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000004020 conductor Substances 0.000 claims abstract description 169
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 65
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 238000003466 welding Methods 0.000 claims abstract description 30
- 230000001464 adherent effect Effects 0.000 claims abstract description 16
- 239000002904 solvent Substances 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 241001481833 Coryphaena hippurus Species 0.000 description 1
- 235000014820 Galium aparine Nutrition 0.000 description 1
- 240000005702 Galium aparine Species 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/20—Cable fittings for cables filled with or surrounded by gas or oil
- H02G15/24—Cable junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
- H01R4/029—Welded connections
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49174—Assembling terminal to elongated conductor
- Y10T29/49179—Assembling terminal to elongated conductor by metal fusion bonding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49194—Assembling elongated conductors, e.g., splicing, etc.
- Y10T29/49195—Assembling elongated conductors, e.g., splicing, etc. with end-to-end orienting
- Y10T29/49197—Assembling elongated conductors, e.g., splicing, etc. with end-to-end orienting including fluid evacuating or pressurizing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49718—Repairing
- Y10T29/49746—Repairing by applying fluent material, e.g., coating, casting
Definitions
- the bonding process is preferably a welding process, suitably MIG welding, UNITEDSTATES PATENTS comprising a first stage in which the end of the stranded coni ductor is sealed by a layer of weld metal and a second stage in 464,475 12/1891 Flsher 174/21 which the connection is completed 2.799.721 7/1957 Floyd, Jr .29/630 F X 3,242,255 3/1966 Falkenstein et a1 ..174/20 X 20 Claims, 10 Drawing Figures PATENTEDJUN 6 I872 SHEET 1 or 3 METHOD OF JOINTING AND TERMINATING ELECTRIC CABLES i
- This invention relates to a method of jointing and terminating electric cables having a conductor made up of a plurality of wires constituting a strand through the interstices of which a liquid impregnant for the cable dielectric can pass.
- a liquid impregnant ismeant an impregnant which is liquid at the normal working temperature of the cable or which becomes liquid at a temperature which the strand may reach during the jointing or terminating process.
- An important example of an impregnant which is liquid at the normal working temperature is the free-flowing oil used in oil-filled cables having longitudinal passages to facilitate access of the impregnant to all partsof the dielectric.
- An example of an impregnant which becomes liquid at a temperature which the strand may reach during the jointing or terminating process is the compound, based on an oil-wax mixture, used in mass-impregnated non-draining (MIND) cables.
- MIND mass-impregnated non-draining
- the method in accordance with the invention comprises forming a heat sink surrounding the end of the stranded conductor and bonding the stranded conductor to a terminal or to another conductor by a process entailing the application in the molten state of an adherent body of metal to substantially the whole of the cut end face of the stranded conductor or between the cut end face of the stranded conductor and the end of the terminal or of the other conductor while removing liquid impregnant from the interstices between the wires of the stranded conductor in the region of a cut end thereof by applying vacuum to the stranded conductor.
- the bonding process may be a soldering or brazing process but for maximum mechanical strength and reliability a welding process is preferred.
- the arc welding technique known as M.l.'G. (metal/inert gas) welding, which entails transfer of metal from an electrode to the work across an arc struck in an inert atmosphere, normally argon, is especially suitable.
- we prefer to build up thecoherent body of metal by a two stage welding process comprising a first stage in which a thin layer of metal is applied to the cut end of the stranded conductor to seal it, while the vacuum is maintained on the conductor end, followed by a second stage in which the stranded conductor end is again subjected to vacuum and a larger quantity of metal is applied to connect the conductor to another conductor or to a terminal.
- this stage will usually resemble a casting operation, since it will entail filling a cavity bounded on at least one side by the cut end of a stranded conductor with molten metal.
- the heat sink may take the form of a jig which prevents separation of the individual wires of the conductor during welding, and is afterwards removed.
- the heat sink or part of it may become bonded to the weld, so forming a permanent part of the joint or termination.
- the heat sink may comprise a metal sleeve (which may be solid, longitudinally cut, or longitudinally divided into two or more parts) contiguous with the stranded conductor, which becomes bonded to the weld, and an outer part which is removable.
- the conductors will usually extend substantially horizontally, and an aperture will be provided through the surrounding wall of the heat sink (including any sleeve) for the introduction of bonding metal. Normally this aperture should be located at the top of the heat sink.
- the conductor will usually extend vertically, and an annular heat sink then allows access for bonding metal through its open upper end.
- the heat sink serves to prevent undue temperature rise at the cut-back end of the cable dielectric, minimizes annealing of the conductor ends, and (in the case of an arc welding process) prevents bum-back of individual wire ends which would result in inadequate welding.
- Vacuum is preferably applied to the strand by a surrounding manifold, preferably in the form of an annular groove in the inner wall of the heat sink.
- the end of the manifold further from the cut end of the stranded conductor is sealed by resilient means, e.g. a rubber washer, to increase the effectiveness of the suction at the cut end face of the conductor.
- resilient means e.g. a rubber washer
- FIGS. 1-5 show successive stages in a cable jointing method
- FIGS. 6-8 show successive stages in one cable terminating method
- FIGS. 9 and 10 show modified terminating methods at a stage corresponding to that of FIG. 8.
- the jointing method to be described is especially suitable for jointing corresponding conductors of adjacent lengths of a multicore oil-filled cable of the kind having ducts or passages for the impregnant located in the interstices between the cores.
- the cable ends are first cut back in the usual way, and if the conductors to be joined are non-circular, they are preferably circularized in the region where the joint is to be made, e.g. by squeezing between semi-circular dies.
- a heat sink 1 made of a metal of good thermal conductivity is assembled about the conductor end.
- the heat sink is of copper if the conductors to be joined are of aluminum or of mild steel or stainless steel if the conductors are of copper.
- the end face 2 of the heat sink is inclined with respect to a plane perpendicular to the conductor axis and serves as a cutting jig for trimming the conductor end.
- the position of the cut is such that, in the completed joint the end of the conductors are spaced further apart at their upper than their lower edges.
- an angle of from l530 between the plane of the cut and the plane perpendicular to the conductor axis is suitable.
- the heat sink has a cylindrical through bore 3 which make close contact with the peripheral surface of the stranded conductor 4, and the bore is formed with an annular groove 5 in, communication with an outlet 6 on the outer surface of the mold, so that heat sink can act also as a vacuum manifold through which oil can be extracted from the interstices between the wires of the strand.
- a rubber washer 7 is interposed between the heat sink and the cut-back end of the cable dielectric 8 to seal the adjacent end of the manifold and so to increase the effectiveness of the suction at the cut end face 9 of the conductor. In addition, it acts as a jig to prevent splaying of thewires of the strand.
- the outlet 6 is connected to a vacuum pump by which oil is drawn from the conductor until oil no longer flows from its cut surface. It has been found sufficient to reduce the pressure at the vacuum pump to a few millimeters of mercury (absolute), the pressure increasing to substantially atmospheric pressure at the cut end face of the stranded conductor.
- the opposite end of the cable length is connected to an oil reservoir so that any oil withdrawn from the cable length by the vacuum pump is continuously replaced under hydrostatic pressure.
- the cut surafce of the conductor is washed with a suitable volatile solvent for the oil, e.g. a few milliliters of petroleum ether. Clearance of excess solvent may be assisted, if required, by placing a cap over the flat end face 2 of the heat sink surrounding the cut end 9 of the conductor and/or by applying an inert gas under pressure to the cut end.
- the cap may simply consist of an end plate and a peripheral wall in the form of a suitably shaped circular gasket which can be held under pressure against the end face 2 of the heat sink.
- a thin adherent layer (FIG. 2) of weld metal is applied to the whole of the cut end face of the conductor by means of an MIG welding gun.
- the hot heat sink is quickly removed from the end of the conductor.
- it has sufficient thermal capacity to ensure that it acts alone to prevent an undue rise in the temperature of the conductor during welding, but it can if necessary be force cooled, for example by water circulation.
- the second conductor 11 (FIG. 3) is similarly prepared, and the prepared ends of the two conductors are cleaned by wire brushing and washing with solvent. They are then brought into alignment with a small gap between them in another heat sink 12 generally similar to the heat sink 1 but in the form of a mold which surrounds both conductor ends and provides access to the V-shaped gap 13 between them, the lower part of the gap being closed by the bottom of the mold.
- a vacuum pump is connected to annular grooves 14 in the bores of the two parts of the heat sink,and the washing of the prepared end surfaces of the conductors is repeated.
- the weld formed between the two conductors is dressed down, e.g. by filing or milling, to the conductor diameter, prior to insulation of the joint in the usual way.
- a separate manifold may be applied between that heat sink and the cutback end of the cable dielectric.
- This manifold may for example be in the form of a thin-walled sleeve which surrounds and is sealed at each end by binding to the conductor and which has. intermediate its ends an enlargement which provides an annular passage between the sleeve and the conductor. The enlargement is provided withan outlet for connection to a vacuum pump.
- a further possibility is to provide an additional manifold between the vacuum manifold and the end of the stranded conductor.
- the additional manifold may be connected to a source of inert gas under pressure, before or during applica- ,tion of vacuum to the vacuum manifold, to facilitate oil clearance.
- the termination method illustrated in FIGS. 6-8 is similar to the jointing method already described up to the stage shown in FIG. 2.
- the prepared conductor end 16 is inserted in a composite heat sink 17 comprising an inner part 18 in the form of a sleeve of the same metal as the conductor, which is to become a permanent part of the termination, and an outer, removable part 19 in screw-threaded engagement with it.
- a vacuum manifold 20 preferably also acts as an auxiliary heat sink. Cleaning of the conductor end is completed after assembly of the heat sink and with the vacuum applied, and after clearance of solvent the space 21 is filled with an adherent body of weld metal 22 (FIG. 7) using an MIG welding gun, so forming a permanent connection between the conductor end and the sleeve 18.
- This sleeve is preferably longitudinally cut, the cut 23 preferably being located in the position where the depth of the weld metal 22 is smallest. This cut enables the sleeve 18 to contract with the weld metal as it cools, so facilitating removal of the outer part 19 of the heat sink.
- a terminal stem 24 (FIG. 8) is screwed onto the sleeve 18, the mating threads preferably being electrotinned and sweated to ensure a sound connection, and the termination insulated in any conventional way.
- the terminal stem 24 may be of a metal dissimilar to the metal of the stranded conductor, e.g. of copper if the stranded conductor is of aluminum this avoids the problem of bimetallic corrosion where, as is usual, the termination is provided with an insulator having an exposed end-fitting of a copper-base alloy, and enables a connection relying upon mechanical pressure to be used at the other end of the terminal stem.
- FIGS. 9 and 10 show modified terminations which also permit use of copper terminal stems on altuninum conductors; in both cases the whole of the heat sink 17 becomes a permanent part of the termination, and the terminal stem 24 is bolted to it.
- the heat sink comprises an inner sleeve 25 of aluminum secured in an outer body 26 of copper by a preformed, permanent, electrotinned and sweated screwed connection.
- aluminum sleeve 27 is secured in copper body 28 by a pressure welding process, e.g. friction welding or flash butt welding, as a preliminary step, preferably carried out in the factory.
- the cleaning techniques so far described will usually be inadequate, and appropriate modifications will be needed.
- the wires of the strand may be slightly separated and the bulk of the impregnant between them melted out by gentle heat from a propane torch. Residue is then removed by washing several times with a suitable hot solvent (for example a free-flowing insulating oil), preferably aided by brushing. After washing with a volatile solvent e. g.naphtha) to remove the cleaning solvent the heat sink (1) may be applied, and jointing or termination then proceeds as already described.
- a suitable hot solvent for example a free-flowing insulating oil
- the method in accordance with the present invention may be used in jointing and terminating cables having a hollow stranded conductor, as is more fully described and claimed in our U.S. application No. 813,523 filed on the same day as this Application.
- connecting is used to embrace both jointing and terminating.
- a method of connecting an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of 1. applying to the cut end of the impregnant-containing stranded conductor and another conductive member a mould that acts as a heat sink and forms a manifold surrounding said stranded conductor in a region removed from said end and 2.
- a method as claimed in claim 1 comprising the preliminary step of cutting the end of the stranded conductor so that its end face is inclined at an angle of from l5-30 with respect to a plane perpendicular to the conductor axis.
- a method as claimed in claim 5 comprising sealing the end of the manifold further from the cut end of the stranded conductor by resilient means to increase the effectiveness of the suction at the cut end face of the conductor.
- a method as claimed in claim 1 comprising washing the end of the stranded conductor with a solvent for the liquid impregnant prior to bonding.
- a method of connecting an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric, and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of l. surrounding the cut end of the impregnant-containing stranded conductor with a heat sink comprising a metal sleeve contiguous with the stranded conductor and 2.
- a method of jointing an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of l. forming a first heat sink surrounding the cut end of the impregnant-containing stranded conductor,
- a method of terminating an electric cable comprising (a) an outer sheath, (b) a li uid-impregnated dielectric and (c) at least one conductor in t e form 0 a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of l. forming a first heat sink surrounding the cut end of the impregnant-containing stranded conductor,
- a method as claimed in claim 19 in which vacuum is applied to the stranded conductor by means of a surrounding manifold formed by an annular groove in the bore of the heat sink.
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Earth Drilling (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
- Processing Of Terminals (AREA)
- Wire Processing (AREA)
Abstract
Electric cables having at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass are jointed or terminated by forming a heat sink surrounding the end of the stranded conductor and bonding the stranded conductor to a terminal or to another conductor by the application in the molten state of an adherent body of metal to substantially the whole of the cut end face of the stranded conductor or between the cut end face of the stranded conductor and the end of the terminal or of the other conductor. During bonding, liquid impregnant is removed from the interstices between the wires of the stranded conductor in the region of a cut end thereof by applying vacuum to the stranded conductor. The bonding process is preferably a welding process, suitably MIG welding, comprising a first stage in which the end of the stranded conductor is sealed by a layer of weld metal and a second stage in which the connection is completed.
Description
D United States Patent 1151 3,667 ,1 1 9 Cleaver et a1. [45] June 6, 1972 [5 ME OF JOINTING AND 3,321,568 5 1967 Venturelli ..174 20 x TERMINATING ELECTRIC CABLES 3,485,935 12/1969 Kreuger..... 29/628 x 1,952,097 3/1934 Shanklin. .,174/22 [72] Inventors: John Stephen Cleaver, Faversham; Peter 2,015,542 9/1935 Zeiss 174/22 Guilford, Erith; Frederick James Kimpton, 3,264,697 8/1966 Price et al.. 164/65 x Bexleyheath, Kent; Thomas J g 3,453,372 7/1969 Gahir et al. ..174 22 Beekenham, Kent; Norman Richard Stein- 3,555,620 1 1971 Bucy ..18/D1G. 62 g, Dolphin q South Wale all of 3,469,307 9/1969 Lorch ..29/628 x England 3,524,038 8/1970 OKelly, Jr. ..228/2O x [73] Assignee: British Insulated Callenders Cables FOREIGN PATENTS 0R APPLICATIONS Limited, London, England 1,146,939 2/1961 Germany ..l74/19 [221 Flledl 1969 508,036 12 1937 Great Britain.... ..174 20 21 Appl. No.: 813,621
Primary Examiner-John F. Campbell Assistant Examiner--Robert W. Church {30] Foreign Application Priority Data AttarneyWebb, Burden, Robinson & Webb Apr. 11, 1968 Great Britain ..17,484/68 June 10, 1968 Great Britain ..27,499/68 [57] ABSTRACT June 10, 1968 Great Britain.. ...27,500/68 Electric cables having at least one conductor in the form of a Nov. 1 1, 1968 Great Britain,, .,53,37]/68 strand through the interstices of which liquid impregnant for Nov. 11, 1968 Great Britain ..53,372/68 the Ca l dielectric can pass are jointed or terminated b forming a heat sink surrounding the end of the stranded con- 52 US. (:1 ..29/628 R, 29/474.6 R, 29/488 R, duetor and bonding the stranded conductor to a terminal or to 29/494 R 29/401 R, 134/21 R 15 49 R, 1 4 100 another conductor by the application in the molten state of an R, 164/10 R 174 19 R, 174 20 R, 22 4 adherent body of metal to substantially the whole of the cut 51 Int. Cl ..H0lr 43/00 end feee of the Stranded eehdueter er between the em end [58] Field of Search ..l64/108, 100; 18/36; feee 0f the Stranded eehdueter and the end of the terminal or 29/624630 488, 494, 401 4746; 174/19 22, 23 of the other conductor. During bonding, liquid impregnant is R, 20; 156/49; 34/15; 134/21; 228/44 removed from the interstices between the wires of the stranded conductor in the region of a cut end thereof by ap- 56] References Cited plying vacuum to the stranded conductor. The bonding process is preferably a welding process, suitably MIG welding, UNITEDSTATES PATENTS comprising a first stage in which the end of the stranded coni ductor is sealed by a layer of weld metal and a second stage in 464,475 12/1891 Flsher 174/21 which the connection is completed 2.799.721 7/1957 Floyd, Jr .29/630 F X 3,242,255 3/1966 Falkenstein et a1 ..174/20 X 20 Claims, 10 Drawing Figures PATENTEDJUN 6 I872 SHEET 1 or 3 METHOD OF JOINTING AND TERMINATING ELECTRIC CABLES i This invention relates to a method of jointing and terminating electric cables having a conductor made up of a plurality of wires constituting a strand through the interstices of which a liquid impregnant for the cable dielectric can pass. By the term a liquid impregnant ismeant an impregnant which is liquid at the normal working temperature of the cable or which becomes liquid at a temperature which the strand may reach during the jointing or terminating process. An important example of an impregnant which is liquid at the normal working temperature is the free-flowing oil used in oil-filled cables having longitudinal passages to facilitate access of the impregnant to all partsof the dielectric. An example of an impregnant which becomes liquid at a temperature which the strand may reach during the jointing or terminating process is the compound, based on an oil-wax mixture, used in mass-impregnated non-draining (MIND) cables.
The method in accordance with the invention comprises forming a heat sink surrounding the end of the stranded conductor and bonding the stranded conductor to a terminal or to another conductor by a process entailing the application in the molten state of an adherent body of metal to substantially the whole of the cut end face of the stranded conductor or between the cut end face of the stranded conductor and the end of the terminal or of the other conductor while removing liquid impregnant from the interstices between the wires of the stranded conductor in the region of a cut end thereof by applying vacuum to the stranded conductor.
The bonding process may be a soldering or brazing process but for maximum mechanical strength and reliability a welding process is preferred. The arc welding technique known as M.l.'G. (metal/inert gas) welding, which entails transfer of metal from an electrode to the work across an arc struck in an inert atmosphere, normally argon, is especially suitable. We prefer to build up thecoherent body of metal by a two stage welding process comprising a first stage in which a thin layer of metal is applied to the cut end of the stranded conductor to seal it, while the vacuum is maintained on the conductor end, followed by a second stage in which the stranded conductor end is again subjected to vacuum and a larger quantity of metal is applied to connect the conductor to another conductor or to a terminal. Although in the second stage the metal is applied by a welding process, this stage will usually resemble a casting operation, since it will entail filling a cavity bounded on at least one side by the cut end of a stranded conductor with molten metal. I
The heat sink may take the form of a jig which prevents separation of the individual wires of the conductor during welding, and is afterwards removed. Alternatively the heat sink or part of it may become bonded to the weld, so forming a permanent part of the joint or termination. For example the heat sink may comprise a metal sleeve (which may be solid, longitudinally cut, or longitudinally divided into two or more parts) contiguous with the stranded conductor, which becomes bonded to the weld, and an outer part which is removable. In the case of a joint, the conductors will usually extend substantially horizontally, and an aperture will be provided through the surrounding wall of the heat sink (including any sleeve) for the introduction of bonding metal. Normally this aperture should be located at the top of the heat sink. In the case of a termination, the conductor will usually extend vertically, and an annular heat sink then allows access for bonding metal through its open upper end.
The heat sink serves to prevent undue temperature rise at the cut-back end of the cable dielectric, minimizes annealing of the conductor ends, and (in the case of an arc welding process) prevents bum-back of individual wire ends which would result in inadequate welding.
Vacuum is preferably applied to the strand by a surrounding manifold, preferably in the form of an annular groove in the inner wall of the heat sink.
Preferably the end of the manifold further from the cut end of the stranded conductor is sealed by resilient means, e.g. a rubber washer, to increase the effectiveness of the suction at the cut end face of the conductor.
It will usually be necessary to remove residues of impregnant from the cut end of the stranded conductor by washing with a suitable solvent while vacuum is applied to the conductor and before the bonding process begins.
The invention will be further described, by way of example, with reference to the accompanying drawings wherein:
FIGS. 1-5 show successive stages in a cable jointing method,
FIGS. 6-8 show successive stages in one cable terminating method, and
FIGS. 9 and 10 show modified terminating methods at a stage corresponding to that of FIG. 8.
The jointing method to be described is especially suitable for jointing corresponding conductors of adjacent lengths of a multicore oil-filled cable of the kind having ducts or passages for the impregnant located in the interstices between the cores. The cable ends are first cut back in the usual way, and if the conductors to be joined are non-circular, they are preferably circularized in the region where the joint is to be made, e.g. by squeezing between semi-circular dies.
A heat sink 1 made of a metal of good thermal conductivity is assembled about the conductor end. Preferably the heat sink is of copper if the conductors to be joined are of aluminum or of mild steel or stainless steel if the conductors are of copper. The end face 2 of the heat sink is inclined with respect to a plane perpendicular to the conductor axis and serves as a cutting jig for trimming the conductor end. The position of the cut is such that, in the completed joint the end of the conductors are spaced further apart at their upper than their lower edges. Depending on the conductor size, an angle of from l530 between the plane of the cut and the plane perpendicular to the conductor axis is suitable.
The heat sink has a cylindrical through bore 3 which make close contact with the peripheral surface of the stranded conductor 4, and the bore is formed with an annular groove 5 in, communication with an outlet 6 on the outer surface of the mold, so that heat sink can act also as a vacuum manifold through which oil can be extracted from the interstices between the wires of the strand. Preferably a rubber washer 7 is interposed between the heat sink and the cut-back end of the cable dielectric 8 to seal the adjacent end of the manifold and so to increase the effectiveness of the suction at the cut end face 9 of the conductor. In addition, it acts as a jig to prevent splaying of thewires of the strand.
After the heat sink has been firmly attached to the conductor, the outlet 6 is connected to a vacuum pump by which oil is drawn from the conductor until oil no longer flows from its cut surface. It has been found sufficient to reduce the pressure at the vacuum pump to a few millimeters of mercury (absolute), the pressure increasing to substantially atmospheric pressure at the cut end face of the stranded conductor. In accordance with normal practice, the opposite end of the cable length is connected to an oil reservoir so that any oil withdrawn from the cable length by the vacuum pump is continuously replaced under hydrostatic pressure.
Large gaps are present in the conductor end, as there usually will be if an initially non-circular strand has been circularized, these are preferably plugged by insertion of short lengths of wire, e.g., from the piece trimmed from the end of the strand.
While the vacuum continues to be applied, the cut surafce of the conductor is washed with a suitable volatile solvent for the oil, e.g. a few milliliters of petroleum ether. Clearance of excess solvent may be assisted, if required, by placing a cap over the flat end face 2 of the heat sink surrounding the cut end 9 of the conductor and/or by applying an inert gas under pressure to the cut end. The cap may simply consist of an end plate and a peripheral wall in the form of a suitably shaped circular gasket which can be held under pressure against the end face 2 of the heat sink.
When this cleaning process is complete and with the vacuum still applied, a thin adherent layer (FIG. 2) of weld metal is applied to the whole of the cut end face of the conductor by means of an MIG welding gun. On completion of this operation, the hot heat sink is quickly removed from the end of the conductor. Preferably it has sufficient thermal capacity to ensure that it acts alone to prevent an undue rise in the temperature of the conductor during welding, but it can if necessary be force cooled, for example by water circulation.
The second conductor 11 (FIG. 3) is similarly prepared, and the prepared ends of the two conductors are cleaned by wire brushing and washing with solvent. They are then brought into alignment with a small gap between them in another heat sink 12 generally similar to the heat sink 1 but in the form of a mold which surrounds both conductor ends and provides access to the V-shaped gap 13 between them, the lower part of the gap being closed by the bottom of the mold.
A vacuum pump is connected to annular grooves 14 in the bores of the two parts of the heat sink,and the washing of the prepared end surfaces of the conductors is repeated.
Clearance of solvent may be assisted, in a similar way to that described above, by the use of a cap which fits over and seals the top of the cavity in the mould and which may allow for the application of gas pressure to the cavity. On completion of the cleaning process and while vacuum is still applied, the space 13 is filled with an adherent body of weld metal 15 (FIG. 4) by means of an MTG welding gun, and the heatsink is quickly removed to avoid over-heating the conductor ends. This heat sink also may be force-cooled if required. 1
As a final operation (FIG. 5) the weld formed between the two conductors is dressed down, e.g. by filing or milling, to the conductor diameter, prior to insulation of the joint in the usual way.
Instead of forming vacuum manifolds by providing annular grooves in either of the heat sinks l and 12, a separate manifold may be applied between that heat sink and the cutback end of the cable dielectric. This manifold may for example be in the form of a thin-walled sleeve which surrounds and is sealed at each end by binding to the conductor and which has. intermediate its ends an enlargement which provides an annular passage between the sleeve and the conductor. The enlargement is provided withan outlet for connection to a vacuum pump.
A further possibility is to provide an additional manifold between the vacuum manifold and the end of the stranded conductor. The additional manifold may be connected to a source of inert gas under pressure, before or during applica- ,tion of vacuum to the vacuum manifold, to facilitate oil clearance.
A v Although it is preferable always to coat the cut surface of the conductor with welding metal, as described above, it may in some circumstances be possible to obtain a sufficient temporary sealing of the cut end of the conductor in the first stage by mechanically deforming the end of the strand, as by hammering while the strand is supported in a suitable jig or mold.
The termination method illustrated in FIGS. 6-8 is similar to the jointing method already described up to the stage shown in FIG. 2.
The prepared conductor end 16 is inserted in a composite heat sink 17 comprising an inner part 18 in the form of a sleeve of the same metal as the conductor, which is to become a permanent part of the termination, and an outer, removable part 19 in screw-threaded engagement with it.
A vacuum manifold 20 preferably also acts as an auxiliary heat sink. Cleaning of the conductor end is completed after assembly of the heat sink and with the vacuum applied, and after clearance of solvent the space 21 is filled with an adherent body of weld metal 22 (FIG. 7) using an MIG welding gun, so forming a permanent connection between the conductor end and the sleeve 18. This sleeve is preferably longitudinally cut, the cut 23 preferably being located in the position where the depth of the weld metal 22 is smallest. This cut enables the sleeve 18 to contract with the weld metal as it cools, so facilitating removal of the outer part 19 of the heat sink.
Finally a terminal stem 24 (FIG. 8) is screwed onto the sleeve 18, the mating threads preferably being electrotinned and sweated to ensure a sound connection, and the termination insulated in any conventional way. The terminal stem 24 may be of a metal dissimilar to the metal of the stranded conductor, e.g. of copper if the stranded conductor is of aluminum this avoids the problem of bimetallic corrosion where, as is usual, the termination is provided with an insulator having an exposed end-fitting of a copper-base alloy, and enables a connection relying upon mechanical pressure to be used at the other end of the terminal stem.
FIGS. 9 and 10 show modified terminations which also permit use of copper terminal stems on altuninum conductors; in both cases the whole of the heat sink 17 becomes a permanent part of the termination, and the terminal stem 24 is bolted to it. In the construction of FIGS. 9, the heat sink comprises an inner sleeve 25 of aluminum secured in an outer body 26 of copper by a preformed, permanent, electrotinned and sweated screwed connection. In the construction of FIG. 10, aluminum sleeve 27 is secured in copper body 28 by a pressure welding process, e.g. friction welding or flash butt welding, as a preliminary step, preferably carried out in the factory.
In the case of a cable having an impregnant which is not free-flowing at ambient temperature, the cleaning techniques so far described will usually be inadequate, and appropriate modifications will be needed. Thus for a mass-impregnated non-draining compound, the wires of the strand may be slightly separated and the bulk of the impregnant between them melted out by gentle heat from a propane torch. Residue is then removed by washing several times with a suitable hot solvent (for example a free-flowing insulating oil), preferably aided by brushing. After washing with a volatile solvent e. g.naphtha) to remove the cleaning solvent the heat sink (1) may be applied, and jointing or termination then proceeds as already described.
The method in accordance with the present invention may be used in jointing and terminating cables having a hollow stranded conductor, as is more fully described and claimed in our U.S. application No. 813,523 filed on the same day as this Application.
In the following claims the term connecting is used to embrace both jointing and terminating.
We claim: I
1. A method of connecting an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of 1. applying to the cut end of the impregnant-containing stranded conductor and another conductive member a mould that acts as a heat sink and forms a manifold surrounding said stranded conductor in a region removed from said end and 2. introducing metal in the molten state into said mold to form therein a body of metalthat adheres to substantially the whole of the cut end face of the stranded conductor and to the other conductive member while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor at said region to leave said cut end substantially free of said impregnant by applying vacuum to said manifold.
2. A method as claimed in claim '1 in which the bonding process is a metal/inert gas welding process.
3. A method as claimed in claim 1 in which the heat sink is made of a metal of good thermal conductivity.
4. A method as claimed in claim 1 comprising the preliminary step of cutting the end of the stranded conductor so that its end face is inclined at an angle of from l5-30 with respect to a plane perpendicular to the conductor axis.
5. A method as claimed in claim 1 in which said manifold is formed by an annular groove in the bore of said mold.
6. A method as claimed in claim 5 comprising sealing the end of the manifold further from the cut end of the stranded conductor by resilient means to increase the effectiveness of the suction at the cut end face of the conductor.
7. A method as claimed in claim 1 comprising washing the end of the stranded conductor with a solvent for the liquid impregnant prior to bonding.
8. A method as claimed in claim 7 in which washing is carried out while vacuum is applied to the conductor end.
9. A method of connecting an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric, and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of l. surrounding the cut end of the impregnant-containing stranded conductor with a heat sink comprising a metal sleeve contiguous with the stranded conductor and 2. bonding the stranded conductor at least to the sleeve by a process entailing the application in the molten state of an adherent body'of metal to substantially the whole of the cut end face of the stranded conductor'and to the sleeve while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from the said cut end to leave said cut end substantially free of said impregnant.
10. A method as claimed in claim 9 in which the heat sink comprises a removable outer part.
11. A method as claimed in claim 10 in which the removable outer part is in screw-threaded engagement with the metal sleeve. 7
12. A method as claimed in claim 10 in which the metal sleeve is of the same metal as the stranded conductor and the removable outer part of the heat sink is of a different metal.
13. A method as claimed in claim 12 in which the metal sleeve is longitudinally cut to allow it to contract with the bonding metal as it cools.
14. A method as claimed in claim 9 in which the metal sleeve is longitudinally divided into at least two parts.
15. A method as claimed in claim 9 in which the metal sleeve constitutes substantially the whole of the heat sink.
16. A method as claimed in claim 9 in which bonding is effected by a metal/inert gas welding process.
17. A method of jointing an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of l. forming a first heat sink surrounding the cut end of the impregnant-containing stranded conductor,
2. sealing said cut end of the stranded conductor by a welding process entailing the application in the molten state of an adherent layer of metal to substantially the whole of said cut end face of the stranded conductor while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor, in a region removed from said end, to leave said cut end substantially free of said impregnant removing said first heat sink and 3. forming a second heat sink surrounding the sealed end of the stranded conductor and an end of another conductor, and
4. bonding the stranded conductor to the other conductor by a process entailing the application in the molten state of an adherent body of metal between the sealed end of the stranded conductor and the end of the other conductor while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from said end to leave said sealed end substantially free of said impregnant.
18. A method as claimed in claim 17 in which vacuum is applied to the stranded conductor by means of a surrounding manifold formed by an annular groove in the bore of the heat sink.
19. A method of terminating an electric cable comprising (a) an outer sheath, (b) a li uid-impregnated dielectric and (c) at least one conductor in t e form 0 a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of l. forming a first heat sink surrounding the cut end of the impregnant-containing stranded conductor,
2. sealing said cut end of the stranded conductor by a welding process entailing the application in the molten state of an adherent layer of metal to substantially the whole of said cut end face while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from said end to leave said cut end substantially free of said impregnant 3. removing said first heat sink and replacing it with a second heat sink comprising a sleeve contiguous with and made of the same metal as the stranded conductor and 4. bonding the stranded conductor to the said sleeve by a welding process entailing the application in the molten state of an adherent body of metal to the sealed end of the stranded conductor and to the sleeve while again contemporaneously removing liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from said end to leave said sealed end substantially free of said impregnant.
20. A method as claimed in claim 19 in which vacuum is applied to the stranded conductor by means of a surrounding manifold formed by an annular groove in the bore of the heat sink.
j ,Patent No.3,667,ll'9 Dated June 6L 1972 Inventofls) I John Stephen Cleaver et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
(SEAL) Attest:
EDWARD M.FL ETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents FORM USCOMMDC 60376-P69 U.S GOVERNMENT PRINTING OFFICE: I969 0-366'33.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No.3 ,667 ,119 Dated June 6 1972 lnventofls) John Stephen Cleaver et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents 1 FORM PC4050 (10-69) USCOMM-DC sows-pas 5 \LS GOVERNMENT PRINTING OFFICES I969 0 355-334.
Claims (28)
1. A method of connecting an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of 1. applying to the cut end of the impregnant-containing stranded conductor and another conductive member a mould that acts as a heat sink and forms a manifold surrounding said stranded conductor in a region removed from said end and 2. introducing metal in the molten state into said mold to form therein a body of metal that adheres to substantially the whole of the cut end face of the stranded conductor and to the other conductive member while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor at said region to leave said cut end substantially free of said impregnant by applying vacuum to said manifold.
2. introducing metal in the molten state into said mold to form therein a body of metal that adheres to substantially the whole of the cut end face of the stranded conductor and to the other conductive member while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor at said region to leave said cut end substantially free of said impregnant by applying vacuum to said manifold.
2. A method as claimed in claim 1 in which the bonding process is a metal/inert gas welding process.
2. boNding the stranded conductor at least to the sleeve by a process entailing the application in the molten state of an adherent body of metal to substantially the whole of the cut end face of the stranded conductor and to the sleeve while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from the said cut end to leave said cut end substantially free of said impregnant.
2. sealing said cut end of the stranded conductor by a welding process entailing the application in the molten state of an adherent layer of metal to substantially the whole of said cut end face of the stranded conductor while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor, in a region removed from said end, to leave said cut end substantially free of said impregnant removing said first heat sink and
2. sealing said cut end of the stranded conductor by a welding process entailing the application in the molten state of an adherent layer of metal to substantially the whole of said cut end face while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from said end to leave said cut end substantially free of said impregnant
3. removing said first heat sink and rePlacing it with a second heat sink comprising a sleeve contiguous with and made of the same metal as the stranded conductor and
3. forming a second heat sink surrounding the sealed end of the stranded conductor and an end of another conductor, and
3. A method as claimed in claim 1 in which the heat sink is made of a metal of good thermal conductivity.
4. A method as claimed in claim 1 comprising the preliminary step of cutting the end of the stranded conductor so that its end face is inclined at an angle of from 15*-30* with respect to a plane perpendicular to the conductor axis.
4. bonding the stranded conductor to the other conductor by a process entailing the application in the molten state of an adherent body of metal between the sealed end of the stranded conductor and the end of the other conductor while contemporaneously removing said liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from said end to leave said sealed end substantially free of said impregnant.
4. bonding the stranded conductor to the said sleeve by a welding process entailing the application in the molten state of an adherent body of metal to the sealed end of the stranded conductor and to the sleeve while again contemporaneously removing liquid impregnant from the interstices between the wires of the stranded conductor by applying vacuum to the stranded conductor in a region removed from said end to leave said sealed end substantially free of said impregnant.
5. A method as claimed in claim 1 in which said manifold is formed by an annular groove in the bore of said mold.
6. A method as claimed in claim 5 comprising sealing the end of the manifold further from the cut end of the stranded conductor by resilient means to increase the effectiveness of the suction at the cut end face of the conductor.
7. A method as claimed in claim 1 comprising washing the end of the stranded conductor with a solvent for the liquid impregnant prior to bonding.
8. A method as claimed in claim 7 in which washing is carried out while vacuum is applied to the conductor end.
9. A method of connecting an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric, and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of
10. A method as claimed in claim 9 in which the heat sink comprises a removable outer part.
11. A method as claimed in claim 10 in which the removable outer part is in screw-threaded engagement with the metal sleeve.
12. A method as claimed in claim 10 in which the metal sleeve is of the same metal as the stranded conductor and the removable outer part of the heat sink is of a different metal.
13. A method as claimed in claim 12 in which the metal sleeve is longitudinally cut to allow it to contract with the bonding metal as it cools.
14. A method as claimed in claim 9 in which the metal sleeve is longitudinally divided into at least two parts.
15. A method as claimed in claim 9 in which the metal sleeve constitutes substantially the whole of the heat sink.
16. A method as claimed in claim 9 in which bonding is effected by a metal/inert gas welding process.
17. A method of jointing an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of
18. A method as claimed in claim 17 in which vacuum is applied to the stranded conductor by means of a surrounding manifold formed by an annular groove in the bore of the heat sink.
19. A method of terminating an electric cable comprising (a) an outer sheath, (b) a liquid-impregnated dielectric and (c) at least one conductor in the form of a strand through the interstices of which liquid impregnant for the cable dielectric can pass, comprising the steps of
20. A method as claimed in claim 19 in which vacuum is applied to the stranded conductor by means of a surrounding manifold formed by an annular groove in the bore of the heat sink.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1748468 | 1968-04-11 | ||
GB5337268A GB1262871A (en) | 1968-04-11 | 1968-04-11 | Method of jointing and terminating electric cables |
GB2750068 | 1968-06-10 | ||
GB2749968 | 1968-06-10 | ||
GB5337168 | 1968-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3667119A true US3667119A (en) | 1972-06-06 |
Family
ID=27516188
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US813621A Expired - Lifetime US3667119A (en) | 1968-04-11 | 1969-04-04 | Method of jointing and terminating electric cables |
US813523A Expired - Lifetime US3688397A (en) | 1968-04-11 | 1969-04-04 | Method of jointing and terminating electric cables |
US00255560A Expired - Lifetime US3718273A (en) | 1968-04-11 | 1972-05-22 | Kit of parts for use in jointing electric cables |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US813523A Expired - Lifetime US3688397A (en) | 1968-04-11 | 1969-04-04 | Method of jointing and terminating electric cables |
US00255560A Expired - Lifetime US3718273A (en) | 1968-04-11 | 1972-05-22 | Kit of parts for use in jointing electric cables |
Country Status (6)
Country | Link |
---|---|
US (3) | US3667119A (en) |
CA (2) | CA934531A (en) |
DE (2) | DE1918167C3 (en) |
FR (2) | FR2006069A1 (en) |
NL (2) | NL6905622A (en) |
SE (1) | SE365658B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3787607A (en) * | 1972-05-31 | 1974-01-22 | Teleprompter Corp | Coaxial cable splice |
US3795758A (en) * | 1973-06-08 | 1974-03-05 | Anaconda Co | High voltage cable joint and heat sink sleeve for use therein |
US3934786A (en) * | 1974-11-20 | 1976-01-27 | Jerome Underground Transmission Equipment, Inc. | Method and apparatus for splicing and welding stranded electrical cables |
US4043031A (en) * | 1974-08-02 | 1977-08-23 | Felten & Guilleaume Carlswerk Ag | Method of manufacturing internally cooled high-energy cable |
US6105247A (en) * | 1997-06-16 | 2000-08-22 | Alcatel | Method of making a cable joint |
US10319488B2 (en) * | 2015-08-19 | 2019-06-11 | Nkt Hv Cables Gmbh | Conductor for a power transmission cable and a process for the production of the conductor |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA711122B (en) * | 1970-03-09 | 1971-11-24 | British Insulated Callenders | Improvements in cable joints |
US3790737A (en) * | 1972-03-29 | 1974-02-05 | Utec Constructors Inc | Preparing cable for splicing |
DE19513462A1 (en) * | 1995-04-08 | 1996-10-10 | Abb Patent Gmbh | Device for connecting two cable ends |
US8572838B2 (en) | 2011-03-02 | 2013-11-05 | Honeywell International Inc. | Methods for fabricating high temperature electromagnetic coil assemblies |
US8466767B2 (en) | 2011-07-20 | 2013-06-18 | Honeywell International Inc. | Electromagnetic coil assemblies having tapered crimp joints and methods for the production thereof |
US8860541B2 (en) | 2011-10-18 | 2014-10-14 | Honeywell International Inc. | Electromagnetic coil assemblies having braided lead wires and methods for the manufacture thereof |
US9076581B2 (en) | 2012-04-30 | 2015-07-07 | Honeywell International Inc. | Method for manufacturing high temperature electromagnetic coil assemblies including brazed braided lead wires |
US8754735B2 (en) | 2012-04-30 | 2014-06-17 | Honeywell International Inc. | High temperature electromagnetic coil assemblies including braided lead wires and methods for the fabrication thereof |
US9027228B2 (en) | 2012-11-29 | 2015-05-12 | Honeywell International Inc. | Method for manufacturing electromagnetic coil assemblies |
US9722464B2 (en) | 2013-03-13 | 2017-08-01 | Honeywell International Inc. | Gas turbine engine actuation systems including high temperature actuators and methods for the manufacture thereof |
CN105345413B (en) * | 2015-12-04 | 2017-07-04 | 常州信息职业技术学院 | The production technology of welded chain cable |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US464475A (en) * | 1891-12-01 | Henry w | ||
US1952097A (en) * | 1932-05-20 | 1934-03-27 | Gen Electric | Stop joint for electric cables |
US2015542A (en) * | 1935-09-24 | Means for temporarily closing the | ||
GB508036A (en) * | 1937-12-24 | 1939-06-26 | Standard Telephones Cables Ltd | Improvements in or relating to electric cables |
US2799721A (en) * | 1953-01-09 | 1957-07-16 | Amp Inc | Connector |
DE1146939B (en) * | 1961-08-22 | 1963-04-11 | Siemens Ag | End preparation of multi-wire conductors of electrical cables with a dielectric soaked with liquid to viscous compounds |
US3242255A (en) * | 1964-02-03 | 1966-03-22 | Cons Edison Co New York Inc | Cable terminal assembly |
US3264697A (en) * | 1963-04-17 | 1966-08-09 | Roehr Prod Co Inc | Method of forming composite metal bodies |
US3321568A (en) * | 1963-04-10 | 1967-05-23 | Pirelli | Method and apparatus for joining together sections of oil-filled cable |
US3453372A (en) * | 1966-05-25 | 1969-07-01 | British Insulated Callenders | Joints for electric cables |
US3469307A (en) * | 1964-11-06 | 1969-09-30 | British Insulated Callenders | Mineral insulated electric cables |
US3485935A (en) * | 1965-11-04 | 1969-12-23 | Nl Kabelfabrieken Nv | High voltage cable joint |
US3524038A (en) * | 1967-05-05 | 1970-08-11 | Arcair Co | Method and apparatus for cutting and gouging metal employing suction to remove debris |
US3555620A (en) * | 1967-10-17 | 1971-01-19 | Harry R Bucy | Mold for pressure injected material vented through ejector pin guides |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2133398A (en) * | 1938-10-18 | M puritz | ||
US2089052A (en) * | 1929-01-16 | 1937-08-03 | Gen Electric | High tension cable system |
US2282003A (en) * | 1937-12-24 | 1942-05-05 | Int Standard Electric Corp | Electric cable |
US2234396A (en) * | 1938-02-16 | 1941-03-11 | Paul M Bundy | Welding clamp |
US2259367A (en) * | 1939-03-08 | 1941-10-14 | Nat Tube Co | Apparatus for cooling pipe insides |
US2356614A (en) * | 1940-07-05 | 1944-08-22 | Proos Cornelis Frederik | Joint for oil-insulated high-tension cables |
US2285025A (en) * | 1940-08-08 | 1942-06-02 | Gordon C French | Pipe opening and flaring tool |
GB693969A (en) * | 1950-04-18 | 1953-07-08 | Standard Telephones Cables Ltd | Improvements in or relating to joints for coaxial cable |
US2967899A (en) * | 1955-06-15 | 1961-01-10 | Pirelli | Stop joints and feeding joints for singlecore oil-filled electric cables |
US3063393A (en) * | 1957-12-04 | 1962-11-13 | Hupp Corp | Welding apparatus |
US3130478A (en) * | 1958-04-04 | 1964-04-28 | Empire Prod Inc | Method of applying electric coupler elements and protecting sleeves to cables |
US3068315A (en) * | 1960-01-25 | 1962-12-11 | Gen Cable Corp | Joint for aluminum sheathed cables |
DE1178032B (en) * | 1960-04-21 | 1964-09-17 | Innocenti Soc Generale | Process for cooling roll mandrels for tube rolling mills |
US3320659A (en) * | 1964-07-02 | 1967-05-23 | Jerome Jack | Method of connecting cable ends |
US3358751A (en) * | 1965-04-19 | 1967-12-19 | Gen Dynamics Corp | Heat sink |
US3430686A (en) * | 1967-10-31 | 1969-03-04 | American Standard Inc | Heat shield for soldering plumbing lines |
-
1969
- 1969-04-04 US US813621A patent/US3667119A/en not_active Expired - Lifetime
- 1969-04-04 US US813523A patent/US3688397A/en not_active Expired - Lifetime
- 1969-04-08 CA CA047981A patent/CA934531A/en not_active Expired
- 1969-04-08 CA CA047980A patent/CA924884A/en not_active Expired
- 1969-04-09 SE SE04980/69A patent/SE365658B/xx unknown
- 1969-04-10 DE DE1918167A patent/DE1918167C3/en not_active Expired
- 1969-04-10 DE DE1918168A patent/DE1918168C3/en not_active Expired
- 1969-04-10 FR FR6911135A patent/FR2006069A1/fr not_active Withdrawn
- 1969-04-10 FR FR6911136A patent/FR2006070A1/fr not_active Withdrawn
- 1969-04-11 NL NL6905622A patent/NL6905622A/xx unknown
- 1969-04-11 NL NL6905621A patent/NL6905621A/xx unknown
-
1972
- 1972-05-22 US US00255560A patent/US3718273A/en not_active Expired - Lifetime
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2015542A (en) * | 1935-09-24 | Means for temporarily closing the | ||
US464475A (en) * | 1891-12-01 | Henry w | ||
US1952097A (en) * | 1932-05-20 | 1934-03-27 | Gen Electric | Stop joint for electric cables |
GB508036A (en) * | 1937-12-24 | 1939-06-26 | Standard Telephones Cables Ltd | Improvements in or relating to electric cables |
US2799721A (en) * | 1953-01-09 | 1957-07-16 | Amp Inc | Connector |
DE1146939B (en) * | 1961-08-22 | 1963-04-11 | Siemens Ag | End preparation of multi-wire conductors of electrical cables with a dielectric soaked with liquid to viscous compounds |
US3321568A (en) * | 1963-04-10 | 1967-05-23 | Pirelli | Method and apparatus for joining together sections of oil-filled cable |
US3264697A (en) * | 1963-04-17 | 1966-08-09 | Roehr Prod Co Inc | Method of forming composite metal bodies |
US3242255A (en) * | 1964-02-03 | 1966-03-22 | Cons Edison Co New York Inc | Cable terminal assembly |
US3469307A (en) * | 1964-11-06 | 1969-09-30 | British Insulated Callenders | Mineral insulated electric cables |
US3485935A (en) * | 1965-11-04 | 1969-12-23 | Nl Kabelfabrieken Nv | High voltage cable joint |
US3453372A (en) * | 1966-05-25 | 1969-07-01 | British Insulated Callenders | Joints for electric cables |
US3524038A (en) * | 1967-05-05 | 1970-08-11 | Arcair Co | Method and apparatus for cutting and gouging metal employing suction to remove debris |
US3555620A (en) * | 1967-10-17 | 1971-01-19 | Harry R Bucy | Mold for pressure injected material vented through ejector pin guides |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3787607A (en) * | 1972-05-31 | 1974-01-22 | Teleprompter Corp | Coaxial cable splice |
US3795758A (en) * | 1973-06-08 | 1974-03-05 | Anaconda Co | High voltage cable joint and heat sink sleeve for use therein |
US4043031A (en) * | 1974-08-02 | 1977-08-23 | Felten & Guilleaume Carlswerk Ag | Method of manufacturing internally cooled high-energy cable |
US3934786A (en) * | 1974-11-20 | 1976-01-27 | Jerome Underground Transmission Equipment, Inc. | Method and apparatus for splicing and welding stranded electrical cables |
US6105247A (en) * | 1997-06-16 | 2000-08-22 | Alcatel | Method of making a cable joint |
US10319488B2 (en) * | 2015-08-19 | 2019-06-11 | Nkt Hv Cables Gmbh | Conductor for a power transmission cable and a process for the production of the conductor |
Also Published As
Publication number | Publication date |
---|---|
US3718273A (en) | 1973-02-27 |
DE1918168B2 (en) | 1974-03-14 |
DE1918168C3 (en) | 1974-10-10 |
NL6905622A (en) | 1969-10-14 |
DE1918167C3 (en) | 1974-10-24 |
DE1918167A1 (en) | 1969-10-23 |
DE1918167B2 (en) | 1974-03-28 |
US3688397A (en) | 1972-09-05 |
FR2006070A1 (en) | 1969-12-19 |
DE1918168A1 (en) | 1969-12-18 |
CA934531A (en) | 1973-10-02 |
CA924884A (en) | 1973-04-24 |
NL6905621A (en) | 1969-10-14 |
FR2006069A1 (en) | 1969-12-19 |
SE365658B (en) | 1974-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3667119A (en) | Method of jointing and terminating electric cables | |
US6125533A (en) | Insulated wire termination, method, and machine | |
US10374329B2 (en) | Method of making a litz wire solder termination | |
US4268957A (en) | Process for splicing a coaxial cable with a conductor composed of individually enameled wire strands to a coaxial connector | |
US4174563A (en) | Wire wrap post terminator for stranded wire | |
US2396283A (en) | Method of terminating high-tension cables | |
CN109494542B (en) | Method for connecting electrical aluminium conductors to aluminium pipes | |
GB2052891A (en) | Method of attaching a contact element to an electric line | |
US2707826A (en) | Method of making cold welded wire joints | |
US2452580A (en) | Termination for electric power cables | |
US2158492A (en) | Undersea cable system | |
US2604570A (en) | Electric connection and method for producing the same | |
US2362963A (en) | Barrier joint or termination for electric power cables | |
EP3979424A1 (en) | Conductor joint and method for joining conductors | |
GB2177336A (en) | Improvement in electrical connections | |
US1281517A (en) | Splice for conductors. | |
US1876585A (en) | A coepoeatiobt ojt ne w | |
JPS61138481A (en) | Method of connecting conductor of power cable and joint obtained by the same | |
US2080743A (en) | Split insulating joint for electrical cables | |
GB1262872A (en) | Method of jointing and terminating electric cables | |
US4299028A (en) | Method for connecting substrates | |
JPS6132367A (en) | How to connect conductors of bare wire insulated cables | |
SU436518A3 (en) | ||
SU1309128A1 (en) | Method of connecting multiconductor cable end with lug | |
JP2005251744A (en) | Method of electrically connecting a plurality of insulation-coated conductive wires mutually |