US3012890A - Synthetic cocoa butter substitute - Google Patents
Synthetic cocoa butter substitute Download PDFInfo
- Publication number
- US3012890A US3012890A US6572A US657260A US3012890A US 3012890 A US3012890 A US 3012890A US 6572 A US6572 A US 6572A US 657260 A US657260 A US 657260A US 3012890 A US3012890 A US 3012890A
- Authority
- US
- United States
- Prior art keywords
- cocoa butter
- percent
- acid
- butter substitute
- palmitic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000019879 cocoa butter substitute Nutrition 0.000 title description 5
- 229940110456 cocoa butter Drugs 0.000 description 23
- 235000019868 cocoa butter Nutrition 0.000 description 23
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 21
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 11
- 125000005456 glyceride group Chemical group 0.000 description 10
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 10
- 230000008018 melting Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- PVNIQBQSYATKKL-UHFFFAOYSA-N Glycerol trihexadecanoate Natural products CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 7
- 235000021314 Palmitic acid Nutrition 0.000 description 7
- IFABLCIRROMTAN-MDZDMXLPSA-N (e)-1-chlorooctadec-9-ene Chemical compound CCCCCCCC\C=C\CCCCCCCCCl IFABLCIRROMTAN-MDZDMXLPSA-N 0.000 description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 239000003925 fat Substances 0.000 description 6
- 235000019197 fats Nutrition 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 6
- 235000021355 Stearic acid Nutrition 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009884 interesterification Methods 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 235000021313 oleic acid Nutrition 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000001087 glyceryl triacetate Substances 0.000 description 3
- 235000013773 glyceryl triacetate Nutrition 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229960002622 triacetin Drugs 0.000 description 3
- 229960001947 tripalmitin Drugs 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002889 oleic acids Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- -1 stearic acid triglycerides Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 241000364057 Peoria Species 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000009874 alkali refining Methods 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- UMYZHWLYICNGRQ-UHFFFAOYSA-N ethanol;heptane Chemical compound CCO.CCCCCCC UMYZHWLYICNGRQ-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- XBFMJHQFVWWFLA-UHFFFAOYSA-N hexane;pentane Chemical compound CCCCC.CCCCCC XBFMJHQFVWWFLA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 235000021081 unsaturated fats Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/02—Suppositories; Bougies; Bases therefor; Ovules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/04—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/04—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
- C11C3/06—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with glycerol
Definitions
- This invention relates to a novel method of producing synthetic cocoa butter and closely related oleaginous substitutes from inexpensive raw materials.
- Cocoa butter is a fat having unusual physical properties. It melts completely at 3334 C. or slightly below body temperature, and is a hard brittle solid at normal room temperatures. Because of transitions of polymorphic crystalline forms it displays two melting points after rapid chilling. The first form melts at 25 C., then resolidifies as the temperature slowly rises and melts once more at 3334 C. corresponding to the second polymorphic form. Cocoa butter is used in confectionery products largely because its physical properties contribute glossy coatings, absence of stickiness, and favorable volume changes in the molding operation for the enrobed confection. Procedures for slightly raising the melting point of cocoa butter to prevent bloom at summer temperatures are known in the art. Cocoa butter is also widely used, though in small volume, as a suppository vehicle.
- cocoa butter that the unique melting characteristics of cocoa butter are a consequence of the arrangement of the fatty acids in its glycerides is illustrated by a comparison of cocoa butter with mutton tallow which is similar to it in fatty acid composition but unsuitably different in physical properties. Because of demand for the properties which cocoa butter imparts, large quantities of this dollar-per-pound commodity are imported even when domestic fats at less than one-fifth the cost are in plentiful supply.
- cocoa butter composition and structure of cocoa butter have previously been investigated using fractional crystallization techniques and the results have been interpreted to suggest that the structure represents an even distribution of oleic, palmitic, and stearic acid triglycerides.
- a specific modified random rather than an .even pattern characterizes cocoa butter and is responsible for its characteristic melting points and other specific properties.
- Cocoa butter comprises principally monoolefins
- cocoa butter follows neither a strict random nor a strict even pattern of glyceride structure.
- cocoa butter In agreement with recent enzymatic studies of others indicating that oleic acid occurs predominately in the 2 position of glycerol molecules, our results show cocoa butter to be predominately composed of glyceride molecules containing at least one oleic acid unit per molecule. Further, our countercurrent distribution fractionation results are consistent with a random distribution of palmitic and stearic acids on the 1 and 3 positions of glycerol.
- soybean oil hydrogenated without crystallization would give a 9:1 stearic to palmitic ratio and the synthetic cocoa butter product would have a higher melting point than the natural cocoa butter, which is desirable for use in enrobing candy in warm climates.
- Direct isolation of saturated diglycerides from a natural fat in a single step process may also be achieved A in commercial practice.
- Appropriate glycerol and interesterification catalyst have been added to lard and the temperature lowered from F. as described by Baur and Lange (J.A.C.S. 73: 3926 (1951)) under conditions of directed interesterification to yield crystalline diglycerides directly.
- Completion of the esterification to triglycerides by oleyl chloride can then be carried out as described in the examples.
- cocoa butter substitute as set forth in Example 1 below, employing the Baur and Lange procedure for pure monoacid diglycerides but employing an equal quantity of tripalrnitin and tristearin instead of using a single pure triglyceride.
- a random mixture of dipalmityl, distearyl, and palmityl stearyl 1,3-diglycerides was thus synthesized.
- the synthesis of the cocoa butter substitute was completed by acylation of the Z-hydroxyl with oleyl chloride.
- the mixed 1,3-diglycerides were crystallized from heptane-ethanol (1:1) and dried, providing the selective recovery of stearic and palmitic acid-containing diglycerides.
- Acylation of the 2-hydroxyl groups was carried out by reacting 2.2 gm. oleyl chloride with 3.5 gms. of the 1,3-mixed glycerides at a pressure of 2 mm. and temperature of 100 C.
- the synthetic cocoa butter melted at 3132 C. had an iodine value of 33.9, and a fatty acid composition of 18.2 percent palmitic, 40.8 percent stearic, and 41.0 percent oleic acids.
- dual melting points were found at 24.5 C. and 3233 C.
- EXAMPLE 2 Preparation of synthetic cocoa-butter Twenty and three-tenths grams of tripalmitin and 20.3 grams of tristean'n were mixed with 22.2 g. of triacetin and 16 m1. of NaOMe (0.0208 g./ml.). This mixture was allowed to melt at 110 C. and maintained with constant stirring for two hours, at which time 6 ml. of dry glycerol was added. Heating at 60 C. was continued for one day. The temperature was then lowered to 47 C. and maintained for two days. It was then slowly lowered over the period of one day to 32 C. and then slowly during another 24 hours to room temperature. Crystals began to form at about 37 C. The mixture was taken up in 200 ml.
- a method of preparing a synthetic cocoa butter substitute comprising reacting substantially equal quantities of tripalmitin and tristearin with glycerol in the presence of triacetin and sodium methoxide catalyst, separating and crystallizing the random mixture of 1,3-diglycerides formed, and acylating the Z-hydroxyl groups thereof with oleyl chloride.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Fats And Perfumes (AREA)
- Edible Oils And Fats (AREA)
Description
United States Patent 3,012,890 SYNTHETIC COCOA BUTTER SUBSTITUTE Herbert J. Button and Charles R. Scholfield, Peoria, Ill., assignors to the United States of America as represented by the Secretary of Agriculture No Drawing. Filed Feb. 3, 1960, Ser. No. 6,572 1 Claim. (Cl. 99-118) (Granted under Title 35, US. Code (1952), sec. 266) A nonexclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America. A
This invention relates to a novel method of producing synthetic cocoa butter and closely related oleaginous substitutes from inexpensive raw materials.
Cocoa butter is a fat having unusual physical properties. It melts completely at 3334 C. or slightly below body temperature, and is a hard brittle solid at normal room temperatures. Because of transitions of polymorphic crystalline forms it displays two melting points after rapid chilling. The first form melts at 25 C., then resolidifies as the temperature slowly rises and melts once more at 3334 C. corresponding to the second polymorphic form. Cocoa butter is used in confectionery products largely because its physical properties contribute glossy coatings, absence of stickiness, and favorable volume changes in the molding operation for the enrobed confection. Procedures for slightly raising the melting point of cocoa butter to prevent bloom at summer temperatures are known in the art. Cocoa butter is also widely used, though in small volume, as a suppository vehicle.
That the unique melting characteristics of cocoa butter are a consequence of the arrangement of the fatty acids in its glycerides is illustrated by a comparison of cocoa butter with mutton tallow which is similar to it in fatty acid composition but unsuitably different in physical properties. Because of demand for the properties which cocoa butter imparts, large quantities of this dollar-per-pound commodity are imported even when domestic fats at less than one-fifth the cost are in plentiful supply.
The triglyceride composition and structure of cocoa butter have previously been investigated using fractional crystallization techniques and the results have been interpreted to suggest that the structure represents an even distribution of oleic, palmitic, and stearic acid triglycerides. By use of countercurrent distribution and application of more than 1,000 extraction stages, we have discovered that a specific modified random rather than an .even pattern characterizes cocoa butter and is responsible for its characteristic melting points and other specific properties.
Employing a solvent system consisting of 3.8 liters of furfural and 3.8 liters of nitroethane equilibrated with liters of pentane-hexane in a ZOO-tube Craig countercurrent apparatus, carried to 1150 transfers by recycling, we have discovered the specific disposition of the glycerides of cocoa butter. Palmito-oleo-stearin is present to the extent of 41 percent and is the main triglyceride. We found tristearin to comprise only 0.16 percent of the total cocoa butter glycerides. We have further discovered that the palmitic and stearic acid moieties are randomly distributed on the 1 and 3 positions of the glycerides.
Thus, we have found that except for a small percentage of trisaturates and linoleic acid-containing glycerides, oleic acid occurs at least once in each glyceride molecule. Cocoa butter comprises principally monoolefins,
namely oleodistearin, 2.2 percent; oleopalmitostearin, 41 percent; and oleodipalmitin, 12 percent. Since the latter glyceride is not permitted under a pure even distribution pattern and the low trisaturates content is inconsistent with a random distribution pattern of fatty acids, it is clear that cocoa butter follows neither a strict random nor a strict even pattern of glyceride structure. In agreement with recent enzymatic studies of others indicating that oleic acid occurs predominately in the 2 position of glycerol molecules, our results show cocoa butter to be predominately composed of glyceride molecules containing at least one oleic acid unit per molecule. Further, our countercurrent distribution fractionation results are consistent with a random distribution of palmitic and stearic acids on the 1 and 3 positions of glycerol.
Numerous variants exist in the conduct of our cocoa butter synthesis. By varying the ratios of palmitic and stearic acid in the triglycerides used for directed interesterification, diglyceride and subsequently triglyceride mixtures of varying composition are obtained with modified melting point and other physical properties.
In commercial practice, natural fats containing palmitic, stearic and C unsaturated fats would be used as starting points for diglyceride synthesis. For example, hydrogenation of lard would yield a 34:l proportion of stearin to palmitin. By single solvent crystallization or other known crystallization procedures the palrnitic acid content of lard may be raised to 50 percent. In a similar manner other fats such as palm oils might be directly hydrogenated or fractionated to increase palmitic acid and subsequently hydrogenated. For example, soybean oil hydrogenated without crystallization would give a 9:1 stearic to palmitic ratio and the synthetic cocoa butter product would have a higher melting point than the natural cocoa butter, which is desirable for use in enrobing candy in warm climates.
Direct isolation of saturated diglycerides from a natural fat in a single step process may also be achieved A in commercial practice. Appropriate glycerol and interesterification catalyst have been added to lard and the temperature lowered from F. as described by Baur and Lange (J.A.C.S. 73: 3926 (1951)) under conditions of directed interesterification to yield crystalline diglycerides directly. Completion of the esterification to triglycerides by oleyl chloride can then be carried out as described in the examples. Since lard and cocoa butter have comparable fatty acid compositions the problem of converting this 10 cents per pound product to a $1.00 per pound product is simply a problem of the rearrangement of position of fatty acids on the glycerol molecule. Under this concept direct formation of the 1,3-palmito stearo diglyceride from lard by directed interesterification and recovery of the olein would be the first step. Conversion of the olein with oleyl chloride and resynthesis of the triglyceride would be a second step. Alkali refining and deodorization would complete the process for rearranging lard into cocoa butter.
Based upon the above findings and interpretations we synthesized a cocoa butter substitute, as set forth in Example 1 below, employing the Baur and Lange procedure for pure monoacid diglycerides but employing an equal quantity of tripalrnitin and tristearin instead of using a single pure triglyceride. A random mixture of dipalmityl, distearyl, and palmityl stearyl 1,3-diglycerides was thus synthesized. The synthesis of the cocoa butter substitute was completed by acylation of the Z-hydroxyl with oleyl chloride.
7 EXAMPLE 1 Tripalmitin (4.42 gm.), tristearin (4.88 gm.), and triacetin (6.75 gm.) were melted and held with stirring for 2 hours at 60 C. under an inert gas after adding '4 3 ml. of sodium methoxide catalyst (0.0208 gin/ml.) (Eckey, U.S. Pat. 2,442,531). To the homogeneous reaction mixture was then added 1.74 ml. of dry glycerol and heating was continued for 24 hours. Then in steps at 2-day intervals, the temperature was lowered to 46, 38, 32, and 27 C. After the addition of 2 drops of glacial acetic acid, the mixed 1,3-diglycerides were crystallized from heptane-ethanol (1:1) and dried, providing the selective recovery of stearic and palmitic acid-containing diglycerides. Acylation of the 2-hydroxyl groups was carried out by reacting 2.2 gm. oleyl chloride with 3.5 gms. of the 1,3-mixed glycerides at a pressure of 2 mm. and temperature of 100 C. The synthetic cocoa butter melted at 3132 C., had an iodine value of 33.9, and a fatty acid composition of 18.2 percent palmitic, 40.8 percent stearic, and 41.0 percent oleic acids. When mixed with natural cocoa butter in 25 and 50 percent proportions, dual melting points were found at 24.5 C. and 3233 C.
EXAMPLE 2 Preparation of synthetic cocoa-butter Twenty and three-tenths grams of tripalmitin and 20.3 grams of tristean'n were mixed with 22.2 g. of triacetin and 16 m1. of NaOMe (0.0208 g./ml.). This mixture was allowed to melt at 110 C. and maintained with constant stirring for two hours, at which time 6 ml. of dry glycerol was added. Heating at 60 C. was continued for one day. The temperature was then lowered to 47 C. and maintained for two days. It was then slowly lowered over the period of one day to 32 C. and then slowly during another 24 hours to room temperature. Crystals began to form at about 37 C. The mixture was taken up in 200 ml. of 1:1 n-heptane, 95 percent ethanol and 2 m1. of glacial acetic acid and allowed to crystallize from the solvent first at room temperature and then a 2 C. for an hour. The crystals were collected on a Buchner funnel. The filtrate was concentrated by evaporation and more crystals formed at 2 C.
The two fractions of diglyceride crystals were analyzed and then combined. Total yield of diglyceride was 37.86 grams or 93.25 percent of original. Composition: 45.69 percent palmitate and 54.31 percent stearate.
Thirty-four and six-tenths grams of the 1-3 randomly distributed diglycerides were reacted with 22.0 grams of oleyl chloride at 1.2 mm. of pressure and at -150 C. for tWo hours. The resulting sample was dissolved in ether, decolorized using carbon black, filtered on a Buchner funnel, and the solvent evaporated. Yield 47.2 gms., iodine value 31.8, palmitic acid 29.5 percent, stearic acid 37.3 percent, oleic acid 36.0 percent, melting point 34-37 C. A portion of this preparation was refined with soda ash and steam deodorized to give a bland product as determined by a taste panel.
Having thus fully disclosed our invention, we claim:
A method of preparing a synthetic cocoa butter substitute comprising reacting substantially equal quantities of tripalmitin and tristearin with glycerol in the presence of triacetin and sodium methoxide catalyst, separating and crystallizing the random mixture of 1,3-diglycerides formed, and acylating the Z-hydroxyl groups thereof with oleyl chloride.
References Cited in the file of this patent UNITED STATES PATENTS 2,442,531 Eckey June 1, 1948 OTHER REFERENCES Cocoa Butter-Like Fats From Domestic Oils by Feuge et al., The Journal of the American Oil Chemists Society, May 1958, vol. XXXV, No. 5, pp. 194199.
An Outline of Organic Chemistry, Revised, by Degeringet et 211., Barnes and Noble, Inc., New York, p. 84.
Lutton: I. Am. Oil Chemists Soc, vol. 4, 1957, pp. 521-522.
Chapman et al.: J. Chem. Soc., 1957, pp. 1502-1509.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6572A US3012890A (en) | 1960-02-03 | 1960-02-03 | Synthetic cocoa butter substitute |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6572A US3012890A (en) | 1960-02-03 | 1960-02-03 | Synthetic cocoa butter substitute |
Publications (1)
Publication Number | Publication Date |
---|---|
US3012890A true US3012890A (en) | 1961-12-12 |
Family
ID=21721532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US6572A Expired - Lifetime US3012890A (en) | 1960-02-03 | 1960-02-03 | Synthetic cocoa butter substitute |
Country Status (1)
Country | Link |
---|---|
US (1) | US3012890A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3410881A (en) * | 1965-02-18 | 1968-11-12 | Procter & Gamble | Process for synthesizing specific complete mixed polyol esters |
US4018806A (en) * | 1975-10-06 | 1977-04-19 | The Procter & Gamble Company | Process for recovering symmetrical diglycerides from glyceride mixtures |
JPS52104506A (en) * | 1976-02-11 | 1977-09-02 | Unilever Nv | Fat and its making method |
US4154749A (en) * | 1977-07-08 | 1979-05-15 | Aarjis Poefabrik A/S | Method for catalytic rearrangement of 1,2-diglycerides into 1,3-diglycerides |
US4199611A (en) * | 1978-08-30 | 1980-04-22 | Asahi Denka Kogyo K.K. | Cacao butter substitute |
EP0010333A1 (en) * | 1978-10-20 | 1980-04-30 | THE PROCTER & GAMBLE COMPANY | Diglyceride manufacture and use in making confectioner's butter |
US4268527A (en) * | 1978-11-21 | 1981-05-19 | Fuji Oil Company, Ltd. | Method for producing cacao butter substitute |
US4996074A (en) * | 1988-11-14 | 1991-02-26 | The Procter & Gamble Company | Tailored beta-prime stable triglyceride hardstock |
FR2683225A1 (en) * | 1991-10-31 | 1993-05-07 | Gattefosse Ets Sa | PROCESS FOR IMPROVING A GLYCEROLYZED OIL. |
US5288619A (en) * | 1989-12-18 | 1994-02-22 | Kraft General Foods, Inc. | Enzymatic method for preparing transesterified oils |
US5324533A (en) * | 1991-07-03 | 1994-06-28 | Van Den Bergh Foods Co., Division Of Conopco Inc. | Chocolate compositions |
US5385744A (en) * | 1991-07-03 | 1995-01-31 | Van Den Bergh Foods Co., Division Of Conopco Inc. | Chocolate-encapsulated fillings |
US5476676A (en) * | 1992-03-11 | 1995-12-19 | Loders Croklaan B.V. | Chocolate compositions based on hardstock fat additives |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2442531A (en) * | 1944-11-06 | 1948-06-01 | Procter & Gamble | Process for treating fats and fatty oils |
-
1960
- 1960-02-03 US US6572A patent/US3012890A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2442531A (en) * | 1944-11-06 | 1948-06-01 | Procter & Gamble | Process for treating fats and fatty oils |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3410881A (en) * | 1965-02-18 | 1968-11-12 | Procter & Gamble | Process for synthesizing specific complete mixed polyol esters |
US4018806A (en) * | 1975-10-06 | 1977-04-19 | The Procter & Gamble Company | Process for recovering symmetrical diglycerides from glyceride mixtures |
FR2328762A1 (en) * | 1975-10-06 | 1977-05-20 | Procter & Gamble | PROCESS FOR THE SEPARATION OF SYMMETRICAL DIGLYCERIDES FROM GLYCERIDE MIXTURES CONTAINING |
JPS6243678B2 (en) * | 1976-02-11 | 1987-09-16 | Unilever Nv | |
JPS52104506A (en) * | 1976-02-11 | 1977-09-02 | Unilever Nv | Fat and its making method |
US4275081A (en) * | 1976-02-11 | 1981-06-23 | Lever Brothers Company | Fat process and composition |
US4154749A (en) * | 1977-07-08 | 1979-05-15 | Aarjis Poefabrik A/S | Method for catalytic rearrangement of 1,2-diglycerides into 1,3-diglycerides |
US4199611A (en) * | 1978-08-30 | 1980-04-22 | Asahi Denka Kogyo K.K. | Cacao butter substitute |
EP0010333A1 (en) * | 1978-10-20 | 1980-04-30 | THE PROCTER & GAMBLE COMPANY | Diglyceride manufacture and use in making confectioner's butter |
US4263216A (en) * | 1978-10-20 | 1981-04-21 | The Procter & Gamble Company | Diglyceride manufacture |
US4268527A (en) * | 1978-11-21 | 1981-05-19 | Fuji Oil Company, Ltd. | Method for producing cacao butter substitute |
US4996074A (en) * | 1988-11-14 | 1991-02-26 | The Procter & Gamble Company | Tailored beta-prime stable triglyceride hardstock |
US5288619A (en) * | 1989-12-18 | 1994-02-22 | Kraft General Foods, Inc. | Enzymatic method for preparing transesterified oils |
US5324533A (en) * | 1991-07-03 | 1994-06-28 | Van Den Bergh Foods Co., Division Of Conopco Inc. | Chocolate compositions |
US5385744A (en) * | 1991-07-03 | 1995-01-31 | Van Den Bergh Foods Co., Division Of Conopco Inc. | Chocolate-encapsulated fillings |
FR2683225A1 (en) * | 1991-10-31 | 1993-05-07 | Gattefosse Ets Sa | PROCESS FOR IMPROVING A GLYCEROLYZED OIL. |
WO1993009211A1 (en) * | 1991-10-31 | 1993-05-13 | Gattefosse S.A. | Method for improving a glycerolyzed oil |
US5441738A (en) * | 1991-10-31 | 1995-08-15 | Gattefosse Sa | Process for improving a glycerolysed oil |
US5476676A (en) * | 1992-03-11 | 1995-12-19 | Loders Croklaan B.V. | Chocolate compositions based on hardstock fat additives |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0041303B1 (en) | Fat blend | |
US4791000A (en) | Fat and edible emulsions with a high content of cis-polyunsaturated fatty acids | |
US4839192A (en) | Hard butter composition containing triglycerides, and process for production thereof | |
US4567056A (en) | Edible fat and a process for producing such fat | |
Sreenivasan | Interesterification of fats | |
US4364868A (en) | Cocoabutter replacement fat compositions | |
EP0069599B1 (en) | Edible fat process | |
US3012890A (en) | Synthetic cocoa butter substitute | |
US5508048A (en) | Enzymatic transesterification starting from high erucic cruciferae oils | |
EP0089082B1 (en) | Margarine fat blend, and a process for producing said fat blend | |
JPH0748980B2 (en) | Margarine fat mixture and method for producing the same | |
KR20100043111A (en) | Method for separation of 1,3-disaturated-2-unsaturated triglyceride | |
JPH08506607A (en) | Acetoglyceride fat synthesis | |
EP1928988B1 (en) | Triglyceride process | |
Duns | Palm oil in margarines and shortenings | |
EP0245076A2 (en) | Edible fats | |
US4072766A (en) | Cocoa butter compositions | |
US4510167A (en) | Margarine fat blend | |
US3431116A (en) | Process for the production of confectionery fats | |
US4230737A (en) | Margarine fat | |
CN113115830B (en) | Fat composition for chocolate | |
AU628644B2 (en) | Enzymatic transesterification of tryglycerides | |
US3944585A (en) | Multi-step crystallization and blending process for making physiochemically designed fat compositions from tallow | |
US4049839A (en) | Physiochemically designed fat compositions from tallow | |
Feuge et al. | Cocoa butter‐like fats from domestic oils |