US2875073A - Core binder and process of making cores - Google Patents
Core binder and process of making cores Download PDFInfo
- Publication number
- US2875073A US2875073A US510583A US51058355A US2875073A US 2875073 A US2875073 A US 2875073A US 510583 A US510583 A US 510583A US 51058355 A US51058355 A US 51058355A US 2875073 A US2875073 A US 2875073A
- Authority
- US
- United States
- Prior art keywords
- parts
- adjunct
- sugar
- binder
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011230 binding agent Substances 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 11
- 235000013339 cereals Nutrition 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 150000007513 acids Chemical class 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 235000019270 ammonium chloride Nutrition 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 3
- ZXPNHQOWDWPUEH-UHFFFAOYSA-N boric acid;sulfuric acid Chemical compound OB(O)O.OS(O)(=O)=O ZXPNHQOWDWPUEH-UHFFFAOYSA-N 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 229920002866 paraformaldehyde Polymers 0.000 claims description 3
- 239000011369 resultant mixture Substances 0.000 claims description 3
- 235000000346 sugar Nutrition 0.000 description 30
- 239000004576 sand Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 13
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 11
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 11
- 235000011130 ammonium sulphate Nutrition 0.000 description 11
- 150000008163 sugars Chemical class 0.000 description 10
- 240000008042 Zea mays Species 0.000 description 8
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 235000005822 corn Nutrition 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 239000008121 dextrose Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 229960004793 sucrose Drugs 0.000 description 4
- SPFMQWBKVUQXJV-BTVCFUMJSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;hydrate Chemical compound O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O SPFMQWBKVUQXJV-BTVCFUMJSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 235000021384 green leafy vegetables Nutrition 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- FBEHFRAORPEGFH-UHFFFAOYSA-N Allyxycarb Chemical compound CNC(=O)OC1=CC(C)=C(N(CC=C)CC=C)C(C)=C1 FBEHFRAORPEGFH-UHFFFAOYSA-N 0.000 description 2
- 208000007976 Ketosis Diseases 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 150000001323 aldoses Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 241001295658 Fabria Species 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- LCQXXBOSCBRNNT-UHFFFAOYSA-K ammonium aluminium sulfate Chemical compound [NH4+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O LCQXXBOSCBRNNT-UHFFFAOYSA-K 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229940077731 carbohydrate nutrients Drugs 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- -1 ketose saccharides Chemical class 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B26/00—Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/167—Mixtures of inorganic and organic binding agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/20—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
- B22C1/22—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
- B22C1/2293—Natural polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/20—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
- B22C1/26—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of carbohydrates; of distillation residues therefrom
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/1315—Non-ceramic binders
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/94—Protection against other undesired influences or dangers against fire
Definitions
- This invention relates to new core binders and to a new process for making cores suitable for use in fabrication of metal castings.
- sand is mulled with about 1 part by weight of cereal binder, 3 parts by weight of water is added and mulled into the mixture, followed by addition and mulling of 1 part by weight of core oil.
- other binders such as bentonite, may also be used.
- the mulling period depends on the type of machine used, and the proportion of binders depends on the design of the core, the properties of the binders and on the metal to be poured, all of which are recognized by those skilled in the art.
- the mulled mixture is rammed or blown into a corebox which is subsequently opened, the core is carefully removed and transferred to a hot oven where it is baked.
- the core After removal from the oven and cooling, the core is an accurately formed hard object which will withstand rough handling. In use, it must retain its shape as molten metal flows and solidifies around it, and should then collapse to an easily removable mass asthe binders slowly burn off.
- the cereal binder such as pregelatinized starch
- the cereal binder is added primarily so that the freshly formed damp core possesses sufiicient wet or green strength to retain its shape until it is placed in the oven.
- the baked core must have high dry or baked strength, most of which is provided by the core oil in the typical process described.
- a further object of this invention is to provide an easily prepared, dry, free-flowing binder which imparts both green and dry strengthto cores.
- a further object of this invention is to decrease volume of gases liberated by sand cores baked with organic binders, particularly cereal binders and sugars. Further, the invention is useful for decreasing volume of gases liberated by core pastes and core washes containing organic binders when the pasted or washed cores are baked. Further objects will appear hereinafter in the description which follows.
- the present invention comprises a mixture of suitable proportions of cereal binder, ucertain sugars which are specified hereinafter, and an adjunct selected from the Cereal binders are well known in the art and include pregelatinized starches and pregelatinized starchy flours, the latter usually containing small amounts of protein or fiber.
- cereal binder includes dextrins which may be employed for certain specific uses.
- sugar means those monoand disaccharides ofan aldose or ketose character, or such non-reducing saccha-rides which may be hydrolyzed under conditions of use herein described to give aldose or ketose saccharides.
- sucrose is elfective as a component of the described binder and is claimed in this invention, while sorbitol is not.
- the sugars which I prefer are dextrose, sucrose, and
- fructose or mixtures thereof but maltose and lactose are Sirupswhich may be made by hydrolysis of starch or from cane sugar by appropriate treatments are-also--effective in carrying out this invention.
- Dextrose greens or hydrol may be treated to prevent crystallization of the dextrose contained therein by boiling them with acid or alkali in accordance with known methods.
- These byproducts may be less efiective than dextrose or sucrose, as is apparent from the data in Table II, but are within the scope of this invention because of their economic advantages.
- the chemical adjuncts which are suitable for purposes of my invention are sulfuric acid; phosphoric acid; any chemical or mixture of chemicals which generates either or both of these acids under the conditions of use, such as ammonium sulfate, ammonium acid sulfate, aluminum sulfate, alums, e. g., ammonium aluminum sulfate, ammonium .rer t taaad th alkali permit-ates.
- n nil mig lq ra mixt of natetq ma h dr ch ri acid; .b i aci T e a r mentioned compounds may act as catalytic agents to promote condensation of sugars, or may decomposeunder the conditions used to produce .such catalytic agents. However, I do not wish to be limited by any tlzteory of the operation of the aforementioned compounds.
- Ammonium sulfate is the preferred adjunct, among the reasons being its effectiveness, cheapness, stability, noncorrosive character and theease with which itmay be blended with ,the other components of the core.
- anyq wfc em nt qn djun wh c are suitable forthe purposes of myjnvention should be used in proportions which yield optimum benefits from their use. These proportions maybe diiferent for each adjunct.
- adjuncts may vary widely.
- 0.25 to 2 parts of cereal binder 0.5 to parts of sugar and from,0.002 to O.l5 part by weight of adjunct p er part by weightof sugar may be used.
- the amount of water may vary from 1.5 to 6.0 percent of the sand. All ,partsabovespecified are parts by weight. In general, volume of gases liberated by baked cores as well as heating time required for cores to attain peak strengths are decreasedas the proportion of the preferred adjunct in thesand is-raised.
- This example ShOWSZ'hOW SIIQHEih of baked cores is increased when certain adjunctsare used with the binders.
- EXAMPLE 2 This example reveals the superiorgreen strength properties of cores preparedawith cerealtbinderin combina tion with a sugar and an adjunct .as compared to vthose prepared with cereal binder .used in.-combination.,with -a core oil.
- the core sandmixture containing cereal binder, sugar and adjunct was prepared, as described in Example l. Green strength and dry.- strength were determined in accordance with procedures described in the Foundry Sand Handbook mentioned above. sResultsare set forth in TableI, i-where percentages .of binder and adjunct are based on .sand.
- a process for producing a core for foundry use which comprises mixing parts of sand, 0.25 to 2 parts of cereal binder, 0.5 to 5 parts of sugar and from 0.002 to 0.15 part of adjunct per part of sugar, and sufiicient water to mull the resultant mixture, molding said mixture and baking it at a temperature of at least 350 K; said sugar-adjunct-binder containing from 1 to 20 parts of adjunct; all parts being on a weight basis; said adjunct being selected from the group consisting of hydrochloric acid; sodium chloride; a mixture consisting of 5 parts by weight of paraformaldehyde and 1 part by weight of ammonium chloride; boric acid; sulfuric acid, phosphoric acid, and salts which producesuch acids under said baking conditions.
- a process for producing a core for foundry use which comprises mixing 100 parts of sand, 0.25 to 2 parts of cereal binder, 0.5 to 5 parts of sugar and from 0.002 to 0.15 part of ammonium sulfate per part of sugar, and suflicient water to mull the resultant mixture, molding said mixture and baking it at a temperature of at least 350' F.; all parts being on a weight basis.
- a composition for bondingilOO parts of core sand consisting of 0.25 to 2 parts ofv cereal binder, 0.5 to 5 parts of sugar and from 0.002 to. 0.15 partof ammonium of parts by .Weightpof sulfate per partpf sugar, all parts on dry weight basis, and suificient water to mull the entire mixture.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Catalysts (AREA)
Description
wh ch.
United States Patent Qfifice 2,875,073 cons BINDER AND PROCESS OF MAKING CORES Charles J. Gogek, Brookfield, Ill.,asslgnor to Corn Products Refining Company, New York, N. Y., a corporation of New Jersey No Drawing. Application May 23, 1955 Serial No. 510,583
4 Claims. (Cl. 106-384) This invention relates to new core binders and to a new process for making cores suitable for use in fabrication of metal castings.
In ordinary practice of making cores, 100 parts of sand is mulled with about 1 part by weight of cereal binder, 3 parts by weight of water is added and mulled into the mixture, followed by addition and mulling of 1 part by weight of core oil. In some cases, where the cores must have special properties, other binders, such as bentonite, may also be used. The mulling period depends on the type of machine used, and the proportion of binders depends on the design of the core, the properties of the binders and on the metal to be poured, all of which are recognized by those skilled in the art. The mulled mixture is rammed or blown into a corebox which is subsequently opened, the core is carefully removed and transferred to a hot oven where it is baked. The variables in these operations are likewise recognized by those skilled in the art. After removal from the oven and cooling, the core is an accurately formed hard object which will withstand rough handling. In use, it must retain its shape as molten metal flows and solidifies around it, and should then collapse to an easily removable mass asthe binders slowly burn off.
In the description of ordinary practice given above, the cereal binder, such as pregelatinized starch, is added primarily so that the freshly formed damp core possesses sufiicient wet or green strength to retain its shape until it is placed in the oven. In addition, the baked core must have high dry or baked strength, most of which is provided by the core oil in the typical process described.
The components added for green strength and baked strength may operate against each other- Thus, core oils decease green strength of sand mixtures. This in some instances is a serious disadvantage, and it is one object of this invention to eliminate such disadvantage by replacing the oil with a binder which doesnot depreciate the green strength.
For foundry use, there is a need for a single dry, freefiowing binder which will part both green and dry strength tocores. A further object of this invention is to provide an easily prepared, dry, free-flowing binder which imparts both green and dry strengthto cores.
' Cores liberate gases as moltenmetal flows around them, and since these gases may be trapped in the ,castgroup specified hereinafter.
2,875,073 Patented Feb. 24, 1959 ings, any means to minimize the volume of gases evolved is of great importance in enabling foundrymen to fabria cate solid metal entirely free frompin-holes and blow-holes. A further object of this invention is to decrease volume of gases liberated by sand cores baked with organic binders, particularly cereal binders and sugars. Further, the invention is useful for decreasing volume of gases liberated by core pastes and core washes containing organic binders when the pasted or washed cores are baked. Further objects will appear hereinafter in the description which follows.
When certain sugars in combination with cereal binder and certain salts or acids are substituted for conventional core oils in typical core sand mixtures, such as those described above, I have unexpectedly found that satisfactory green strength and high baked strength of the cores may be obtained. In addition, "I have unexpectedly found that cores prepared using a mixture of cereal binder and certain sugars in combination with certain acidsfor salts bake just as rapidly or significantly faster than those made with cereal binder and core oil. Further, I have unexpectedly foundthat baked cores prepared using a mixture of cereal binder and certain sugars in combination with certain acids or salts liberate substantially less gases than those made with cereal binder and certain sugars in the absence of the adjuncts hereinafter specified. These findings constitute a pronounced departure from ordinary foundry practice andwould not be anticipated by those skilled in the art. When cereal binder is blended with the sugars hereinafter specifiedand certain salts, there is obtained a dry, free-flowing composition of matter which is much easier to handle thancereal binder and core oil. r
The present invention comprises a mixture of suitable proportions of cereal binder, ucertain sugars which are specified hereinafter, and an adjunct selected from the Cereal binders are well known in the art and include pregelatinized starches and pregelatinized starchy flours, the latter usually containing small amounts of protein or fiber. In addition, the term cereal binder includes dextrins which may be employed for certain specific uses.
By the term sugar, I means those monoand disaccharides ofan aldose or ketose character, or such non-reducing saccha-rides which may be hydrolyzed under conditions of use herein described to give aldose or ketose saccharides. For example, sucrose is elfective as a component of the described binder and is claimed in this invention, while sorbitol is not.
The sugars which I prefer are dextrose, sucrose, and
fructose or mixtures thereof, but maltose and lactose are Sirupswhich may be made by hydrolysis of starch or from cane sugar by appropriate treatments are-also--effective in carrying out this invention. Dextrose greens or hydrol may be treated to prevent crystallization of the dextrose contained therein by boiling them with acid or alkali in accordance with known methods. These byproducts may be less efiective than dextrose or sucrose, as is apparent from the data in Table II, but are within the scope of this invention because of their economic advantages.
The chemical adjuncts which are suitable for purposes of my invention are sulfuric acid; phosphoric acid; any chemical or mixture of chemicals which generates either or both of these acids under the conditions of use, such as ammonium sulfate, ammonium acid sulfate, aluminum sulfate, alums, e. g., ammonium aluminum sulfate, ammonium .rer t taaad th alkali permit-ates. am-
m ta 1d. ho 1, 1d hy r ci i c' q. as s atsh r' a asi raiafqrm ld h d an n nil mig lq ra mixt of natetq ma h dr ch ri acid; .b i aci T e a r mentioned compounds may act as catalytic agents to promote condensation of sugars, or may decomposeunder the conditions used to produce .such catalytic agents. However, I do not wish to be limited by any tlzteory of the operation of the aforementioned compounds.
Ammonium sulfate is the preferred adjunct, among the reasons being its effectiveness, cheapness, stability, noncorrosive character and theease with which itmay be blended with ,the other components of the core.
Obviously, anyq wfc em nt qn djun wh c are suitable forthe purposes of myjnvention should be used in proportions which yield optimum benefits from their use. These proportions maybe diiferent for each adjunct.
The amounts of adjuncts, cereal binders and,sugars may vary widely. For 100 parts of sand, 0.25 to 2 parts of cereal binder, 0.5 to parts of sugar and from,0.002 to O.l5 part by weight of adjunct p er part by weightof sugar may be used. The amount of water may vary from 1.5 to 6.0 percent of the sand. All ,partsabovespecified are parts by weight. In general, volume of gases liberated by baked cores as well as heating time required for cores to attain peak strengths are decreasedas the proportion of the preferred adjunct in thesand is-raised. .Qne t peofmi l ma p dus a r ha na diffe e ma im m ke s ng h a the le HOW- eve hos s i led n h w me nso th -t a h n of this invention and a few simple tests, will be able to arrive at proportions most suitable for their own operl fi nfi a 'lt has been proposed heretofore to, use 1 certain carbo hydrates with or without 'coreoils in core binders, also to usevarious adjuncts therein. See for example B ritish "Pa e t 515,470; U. S. Patent 2,215,825; and G'erman Patent 55 2,3 80. However, as will be apparent from the information herein set forth, my invention differs radically from the prior art and produces unexpected improvements thereover.
The invention will be further illustrated by the examples set forth below which are intended for illustrative and informative purposes and not in any Waylimitin the invention. i
This example ShOWSZ'hOW SIIQHEih of baked cores is increased when certain adjunctsare used with the binders.
-=Various core mixtures containing cereal binder, sugar, and sugar in combination with anadjunct were prepared as follows:
A-weighed amount of American Foundr'ymens Society standard50 70 sand was pouredintoamuller. To this was added 1 percent by weight of pregelatipiz ed cereal binder made in'accordance with the principles of US. Patent 1,939,97 3 and sold under a the trademark ,Mogul.
Then 1 percent by weight (if a sugar (nature of which is described inTable II-)-was-added. Thismixture-served as the control. Identical mixtures of cereal binder and sand were then made to which was added 1 percent by weight of a mixture prepared by thoroughly blending 100 parts of sugar and the amount of an adjunct as set forth in the table.
In each case the whole mass was mixed for a suitable period, the muller stopped, 3 percent by weight of water added, and the mixture mulled again for a suitable period. Where sulfuric acid, phosphoric acid, pyrophosphoric acid, and hydrochloric acid were employed, these were added as solutions in the water, rather than as a blended mixture with the sugar. Specimen cores were prepared according to a method recommended by the American Foundrymens Society (Foundry Sand Handbook, sixth edition, published in 1952 by American Foundrymens Society, Chicago), and were baked in an oven at 400 F.:l0 F.,-f or the length of time shown in Table II. Such cores were tested for tensile strength by the -method described in .the aforementioned handbook, the results being shown in Table II. After the baking was completed, he specimensyvere removed from the oven, cooled to room temperature, andthe breaking strength was determined with an appropriate machine.
7 The results set forth in'IablelI.
In those cases shownin- Table II where a liquid binder was used, cereal binder was mulledwiththe sand, water was added and mulled, and then the liquid binder was added and mulled. If the adjunct was a dry powder, this s added w h .th fis sa inde theadinn w available asaliquid, it was added dissolved in .the. water.
EXAMPLE 2 This example reveals the superiorgreen strength properties of cores preparedawith cerealtbinderin combina tion with a sugar and an adjunct .as compared to vthose prepared with cereal binder .used in.-combination.,with -a core oil. The core sandmixture containing cereal binder, sugar and adjunct was prepared, as described in Example l. Green strength and dry.- strength were determined in accordance with procedures described in the Foundry Sand Handbook mentioned above. sResultsare set forth in TableI, i-where percentages .of binder and adjunct are based on .sand.
.Ia le I GREENLSTRENG'FH. OF "OOREJM'IXEP'URES AN'D BAKED STRENGTH OF ooausrnurannousmomwo amp-an Thisexample showshow .volume of gases liberated by a baked core. isdecreased when thepreferred adjun ct was-used with cereal binder and dextrose. Several baked cores were prepared in the manner de- ,scribed in Example 1. They'we're broken inthemachine used for testing tensile strength and thetwo halves were rubbed together to loosen some of the sand. ,Asatnple of the loose sand was weighedintoa combustionboatand subjected to a temperature of l850-F. in a combustion furnace, the gas released was, collected and measured in accordance with the proceduredescribed in the Foundry Sand Handbook, previously mentioned. The results are listed in Tahlelllwhere percentages of binderandadjunct are based onweightof sand.
, Table II TENSILE STRENGTH F BAKED SPECIMEN OORES Parts of Baking Tensile Sugar Chemical Added Chemical] Time. Stre th,
100 Parts Home p.e
of Sugar Dextrose hydrate Noun 0 120 Do on o 1 170 Ammonium sulfate 2 1 170 do 3 0. 5 155 .do 3 1 230 do 4 1 210 do 5 1 220 .do 0. 5 208 do 10 1 188 do 0. 5 170 .do 15 1 163 Ammonium 2 1 109 Acid sulfate 3 1 225 Ammonium persuliate 1 1 145 -do 2 1 240 3 1 234 5 1 202 3 1 225 3 1 260 4 1 232 3 1 217 0.2 1 232 10.0 1 272 Boric acid 10. 0 1 199 Sodium chloride 1. 0 1 215 Aluminum sulfato 6 1 218 Paraformaldehyde. 5. 0 1 200 Hydrochloric acid.- 0. 1 Pareformaldehyde- 5. 0 1 227 D0 Ammonium chloride 0. 1 Hydro] (deashed), D. B N one 0 0. 5 129 Do do 0 1 167 D0 Ammonium sulfate 3 0. 5 127 D0 do 3 1 221 Hydrol, D. B- N one 0 0. 5 87 Do o 0 1 158 0-. Ammonium sulfate 3 0. 5 113 130-- do 3 1 167 Alkali treat drol do 3 1 217 Dextrose 2nd greens, D, B do 5 1 269 Acid treated dextrose greens do 4 1 215 Corn siru D. B. 50 D. E do 7 1 classes, D. B None D 0. 5 89 D o 0 1 153 Ammonium sulfate 3 0. 6 156 -,do 3 1 158 None 0 0. 5 88 do 0 1 172 Ammonium sulfate 3 0. 5 243 .--do 3 1 238 N one 0 0. 5 68 d0 0 1 163 Ammonium sulfate 3 0. 5 134 do 3 1 211 None 0 0. 5 58 D do 0 1 135 D0 Ammonium sulfate 3 0. 5 113 D0 do 3 1 193 Table III VOLUME or GASES LIBERA'IED PER GRAM OF BAKED AFTER HEATING THE SAND FOR 1 MINUTE AT Gases Binders Used Adjunct Used Evolved V gilante reassessment masseuse??? 0.91% Dextrose hydrate (NHmso 1 These results show that the volume of gases liberated by baked cores prepared with cereal binder and dextrose hydrate blended with 9 percent of ammonium sulfate was more than 30 percent less than corresponding cores prepared without the adjunct.
Those skilled in the art of casting metals will recognize that this reduction in the volume of gases liberated by This is a continuation-in-part of application Serial No. 424,740, filed April 21, 1954, now abandoned.
I claim:
1. A process for producing a core for foundry use which comprises mixing parts of sand, 0.25 to 2 parts of cereal binder, 0.5 to 5 parts of sugar and from 0.002 to 0.15 part of adjunct per part of sugar, and sufiicient water to mull the resultant mixture, molding said mixture and baking it at a temperature of at least 350 K; said sugar-adjunct-binder containing from 1 to 20 parts of adjunct; all parts being on a weight basis; said adjunct being selected from the group consisting of hydrochloric acid; sodium chloride; a mixture consisting of 5 parts by weight of paraformaldehyde and 1 part by weight of ammonium chloride; boric acid; sulfuric acid, phosphoric acid, and salts which producesuch acids under said baking conditions.
2. A process for producing a core for foundry use which comprises mixing 100 parts of sand, 0.25 to 2 parts of cereal binder, 0.5 to 5 parts of sugar and from 0.002 to 0.15 part of ammonium sulfate per part of sugar, and suflicient water to mull the resultant mixture, molding said mixture and baking it at a temperature of at least 350' F.; all parts being on a weight basis.
3. A composition for bonding 100 parts of core sand consisting of 0.25 to 2 parts of cereal binder, 0.5 to 5 parts of sugar and from 0.002 to*0.15 part of adjunct per part of sugar, all parts on dry weight basis, and suflicient Water to mull the entire mixture, said adjunct beingselected from the group consisting of hydrochloric acid; sodium chloride; a mixture consisting paraformaldchyde and 1 part by .Might of ammonium chloride; boric acid; sulfuric acid, phosphoric acid, and salts which product such acids under baking at temperatures of at least 350 F.
4. A composition for bondingilOO parts of core sand consisting of 0.25 to 2 parts ofv cereal binder, 0.5 to 5 parts of sugar and from 0.002 to. 0.15 partof ammonium of parts by .Weightpof sulfate per partpf sugar, all parts on dry weight basis, and suificient water to mull the entire mixture.
"References Cited in thefileof patent NITED STATES PATENTS Nagel Mar. 31, 1925 Weidemann Nov. 22, 1931 Bauer Dcc. '12, 1933 Wallace c Sept. 24,1940
:FQREIGN PATENTS G reat Britain .Dec. 6,-1,939
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 2,875,073 February v24, 1959 Charles J, Gogek It is hereby certified that error appears in the above numbered patent requiring oorreotion end that the said Letters Patent should read as cor-=- reoted-below. v
in the grant, lines 2' and 3, for "assignor to Corn Products Refining tiompeny, of New York, N. L, a corporation of New Jersey," read aesignor to Corn Products Qompeny, a corporation of New Jersey, line 12, for Corn Produets Refining Company, its successors." reed Corn Products Company, ite successors g in the heading to the printed specification, linee 3, A. 5, for "eesign'or to Corn Products Refining Company, New i'ork, N Y a corporation of New Jersey" read an assignor to Corn Products @ompeny, a corporation of New Jersey column 6, lines 59 and 60, strike out "said euger=edjunet=binder containing from 1 to 20 parts of adjunct; h
Signed and sealed this 6th day of October 1959.
(SEAL) At'test:
KARL I. i. E t AXL ROBERT c. WATSON Attesting Officer Conmissioner of'Pmtents
Claims (1)
1. A PROCESS FOR PRODUCING A CORE FOR FOUNDRY USE WHICH COMPRISES MIXING 100 PARTS OF SAND, 0.25 TO 2 PARTS OF CEREAL BINDER, 0.5 TO 5 PARTS OF SUGAR AND FROM O.0002 TO 0.15 PART OF ADJUNCT PER PART OF SUGAR, AND SUFFICIENT WATER TO MULL THE RESULTANT MIXTURE, MOLDING SAID MIXTURE AND BAKING IT AT A TEMPERATURE OF AT LEAST 350* F; SAID SUGAR-ADJUNCT-BINDER CONTAINING FORM 1 TO 20 PARTS OF ADJUNCT; ALL PARTS BEING ON A WEIGHT BASIS; SAID ADJUNCT BEING SELECTED FROM THE GROUP CONSISTING OF HYDROCHLORIC ACID; SODIUM CHLORIDE; A MIXTURE CONSISTING OF 5 PARTS BY WEIGHT OF PARAFORMALDEHYDE AND 1 PART BY WEIGHT OF AMMONIUM CHLORIDE; BORIC ACID; SULFURIC ACID PHOSPHORIC ACID, AND SALTS WHICH PRODUCE SUCH ACIDS UNDER SAID BAKING CONDITIONS.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US510583A US2875073A (en) | 1955-05-23 | 1955-05-23 | Core binder and process of making cores |
DEC11717A DE1023389B (en) | 1955-05-23 | 1955-08-18 | Insulating body resistant to moisture and fire and method for its manufacture |
DEC11721A DE1169085B (en) | 1955-05-23 | 1955-08-19 | Core binder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US510583A US2875073A (en) | 1955-05-23 | 1955-05-23 | Core binder and process of making cores |
Publications (1)
Publication Number | Publication Date |
---|---|
US2875073A true US2875073A (en) | 1959-02-24 |
Family
ID=24031327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US510583A Expired - Lifetime US2875073A (en) | 1955-05-23 | 1955-05-23 | Core binder and process of making cores |
Country Status (2)
Country | Link |
---|---|
US (1) | US2875073A (en) |
DE (2) | DE1023389B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252818A (en) * | 1963-05-01 | 1966-05-24 | Dow Chemical Co | Thermosetting composition for exothermic hot tops |
US3307957A (en) * | 1965-10-05 | 1967-03-07 | Tobler August | Methods of and compositions for making molds and cores |
US3314117A (en) * | 1965-05-10 | 1967-04-18 | British Ind Corp | Method of manufacturing a foundry core |
US3330674A (en) * | 1964-04-06 | 1967-07-11 | Harvest Queen Mill & Elevator | Molding composition containing iron oxide and starch |
US4484616A (en) * | 1982-01-25 | 1984-11-27 | International Minerals & Chemical Corp. | Process for preparing sand cores and molds |
US5250110A (en) * | 1990-10-11 | 1993-10-05 | Degussa Aktiengesellschaft | Dustfree investment material for accurately fitting cast pieces and method of producing these investment materials |
US20100087571A1 (en) * | 2007-01-25 | 2010-04-08 | Roger Jackson | Composite wood board |
FR2968008A1 (en) * | 2010-11-30 | 2012-06-01 | Saint Gobain Isover | SIZING COMPOSITION FOR FIBERS, ESPECIALLY MINERAL, COMPRISING NON-REDUCING SUGAR AND AMMONIUM SALT OF INORGANIC ACID, AND RESULTING PRODUCTS |
US8900495B2 (en) | 2009-08-07 | 2014-12-02 | Knauf Insulation | Molasses binder |
US8940089B2 (en) | 2007-08-03 | 2015-01-27 | Knauf Insulation Sprl | Binders |
US9040652B2 (en) | 2005-07-26 | 2015-05-26 | Knauf Insulation, Llc | Binders and materials made therewith |
US9309436B2 (en) | 2007-04-13 | 2016-04-12 | Knauf Insulation, Inc. | Composite maillard-resole binders |
US9492943B2 (en) | 2012-08-17 | 2016-11-15 | Knauf Insulation Sprl | Wood board and process for its production |
US9493603B2 (en) | 2010-05-07 | 2016-11-15 | Knauf Insulation Sprl | Carbohydrate binders and materials made therewith |
US9505883B2 (en) | 2010-05-07 | 2016-11-29 | Knauf Insulation Sprl | Carbohydrate polyamine binders and materials made therewith |
US9828287B2 (en) | 2007-01-25 | 2017-11-28 | Knauf Insulation, Inc. | Binders and materials made therewith |
US10287462B2 (en) | 2012-04-05 | 2019-05-14 | Knauf Insulation, Inc. | Binders and associated products |
US10508172B2 (en) | 2012-12-05 | 2019-12-17 | Knauf Insulation, Inc. | Binder |
US10767050B2 (en) | 2011-05-07 | 2020-09-08 | Knauf Insulation, Inc. | Liquid high solids binder composition |
US10864653B2 (en) | 2015-10-09 | 2020-12-15 | Knauf Insulation Sprl | Wood particle boards |
US10968629B2 (en) | 2007-01-25 | 2021-04-06 | Knauf Insulation, Inc. | Mineral fibre board |
US11060276B2 (en) | 2016-06-09 | 2021-07-13 | Knauf Insulation Sprl | Binders |
US11248108B2 (en) | 2017-01-31 | 2022-02-15 | Knauf Insulation Sprl | Binder compositions and uses thereof |
US11332577B2 (en) | 2014-05-20 | 2022-05-17 | Knauf Insulation Sprl | Binders |
US11401204B2 (en) | 2014-02-07 | 2022-08-02 | Knauf Insulation, Inc. | Uncured articles with improved shelf-life |
US11846097B2 (en) | 2010-06-07 | 2023-12-19 | Knauf Insulation, Inc. | Fiber products having temperature control additives |
US11939460B2 (en) | 2018-03-27 | 2024-03-26 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
US11945979B2 (en) | 2018-03-27 | 2024-04-02 | Knauf Insulation, Inc. | Composite products |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1431871A (en) * | 1922-01-20 | 1922-10-10 | Burnet Edward | Bottle and like closing device |
US1888441A (en) * | 1930-08-30 | 1932-11-22 | Dow Chemical Co | Mold part |
US1938574A (en) * | 1931-07-24 | 1933-12-12 | Stein Hall Mfg Co | Dextrinization of starch in cereals |
GB515470A (en) * | 1938-04-28 | 1939-12-06 | Alexander Mclaren Wilson | Improvements in and relating to the production of sand cores for foundry purposes |
US2215825A (en) * | 1938-03-16 | 1940-09-24 | Matilda Wallace | Core binder |
US2508359A (en) * | 1947-02-21 | 1950-05-23 | Rose C Baker | Core binder |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE572019C (en) * | 1930-12-02 | 1933-03-09 | Hahn Ulrich | Process for the production of refractory masses |
US2206369A (en) * | 1938-04-29 | 1940-07-02 | Harold K Salzberg | Foundry sand binder |
DE874202C (en) * | 1942-01-29 | 1953-04-20 | Foerderung Forschung Gmbh | Molding and core sand binders |
DE742396C (en) * | 1942-07-18 | 1943-12-02 | Debach Deutsche Backmittel Ges | Core binder |
DE840426C (en) * | 1944-05-26 | 1952-06-09 | Basf Ag | Core binder |
FR912875A (en) * | 1945-03-05 | 1946-08-22 | Schneider & Cie | Adaptation of sweet juices to the role of binder for foundry sands |
-
1955
- 1955-05-23 US US510583A patent/US2875073A/en not_active Expired - Lifetime
- 1955-08-18 DE DEC11717A patent/DE1023389B/en active Pending
- 1955-08-19 DE DEC11721A patent/DE1169085B/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1431871A (en) * | 1922-01-20 | 1922-10-10 | Burnet Edward | Bottle and like closing device |
US1888441A (en) * | 1930-08-30 | 1932-11-22 | Dow Chemical Co | Mold part |
US1938574A (en) * | 1931-07-24 | 1933-12-12 | Stein Hall Mfg Co | Dextrinization of starch in cereals |
US2215825A (en) * | 1938-03-16 | 1940-09-24 | Matilda Wallace | Core binder |
GB515470A (en) * | 1938-04-28 | 1939-12-06 | Alexander Mclaren Wilson | Improvements in and relating to the production of sand cores for foundry purposes |
US2508359A (en) * | 1947-02-21 | 1950-05-23 | Rose C Baker | Core binder |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252818A (en) * | 1963-05-01 | 1966-05-24 | Dow Chemical Co | Thermosetting composition for exothermic hot tops |
US3330674A (en) * | 1964-04-06 | 1967-07-11 | Harvest Queen Mill & Elevator | Molding composition containing iron oxide and starch |
US3314117A (en) * | 1965-05-10 | 1967-04-18 | British Ind Corp | Method of manufacturing a foundry core |
US3307957A (en) * | 1965-10-05 | 1967-03-07 | Tobler August | Methods of and compositions for making molds and cores |
US4484616A (en) * | 1982-01-25 | 1984-11-27 | International Minerals & Chemical Corp. | Process for preparing sand cores and molds |
US5250110A (en) * | 1990-10-11 | 1993-10-05 | Degussa Aktiengesellschaft | Dustfree investment material for accurately fitting cast pieces and method of producing these investment materials |
US9745489B2 (en) | 2005-07-26 | 2017-08-29 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9464207B2 (en) | 2005-07-26 | 2016-10-11 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9434854B2 (en) | 2005-07-26 | 2016-09-06 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9926464B2 (en) | 2005-07-26 | 2018-03-27 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9260627B2 (en) | 2005-07-26 | 2016-02-16 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9040652B2 (en) | 2005-07-26 | 2015-05-26 | Knauf Insulation, Llc | Binders and materials made therewith |
US20100087571A1 (en) * | 2007-01-25 | 2010-04-08 | Roger Jackson | Composite wood board |
US10968629B2 (en) | 2007-01-25 | 2021-04-06 | Knauf Insulation, Inc. | Mineral fibre board |
US10759695B2 (en) | 2007-01-25 | 2020-09-01 | Knauf Insulation, Inc. | Binders and materials made therewith |
US8901208B2 (en) | 2007-01-25 | 2014-12-02 | Knauf Insulation Sprl | Composite wood board |
US11401209B2 (en) | 2007-01-25 | 2022-08-02 | Knauf Insulation, Inc. | Binders and materials made therewith |
US10000639B2 (en) | 2007-01-25 | 2018-06-19 | Knauf Insulation Sprl | Composite wood board |
US8501838B2 (en) | 2007-01-25 | 2013-08-06 | Knauf Insulation Sprl | Composite wood board |
US11453780B2 (en) | 2007-01-25 | 2022-09-27 | Knauf Insulation, Inc. | Composite wood board |
US9828287B2 (en) | 2007-01-25 | 2017-11-28 | Knauf Insulation, Inc. | Binders and materials made therewith |
US11459754B2 (en) | 2007-01-25 | 2022-10-04 | Knauf Insulation, Inc. | Mineral fibre board |
US9447281B2 (en) | 2007-01-25 | 2016-09-20 | Knauf Insulation Sprl | Composite wood board |
US11905206B2 (en) | 2007-01-25 | 2024-02-20 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9309436B2 (en) | 2007-04-13 | 2016-04-12 | Knauf Insulation, Inc. | Composite maillard-resole binders |
US9039827B2 (en) | 2007-08-03 | 2015-05-26 | Knauf Insulation, Llc | Binders |
US11946582B2 (en) | 2007-08-03 | 2024-04-02 | Knauf Insulation, Inc. | Binders |
US8979994B2 (en) | 2007-08-03 | 2015-03-17 | Knauf Insulation Sprl | Binders |
US8940089B2 (en) | 2007-08-03 | 2015-01-27 | Knauf Insulation Sprl | Binders |
US9469747B2 (en) | 2007-08-03 | 2016-10-18 | Knauf Insulation Sprl | Mineral wool insulation |
US8900495B2 (en) | 2009-08-07 | 2014-12-02 | Knauf Insulation | Molasses binder |
US9416248B2 (en) | 2009-08-07 | 2016-08-16 | Knauf Insulation, Inc. | Molasses binder |
US10053558B2 (en) | 2009-08-07 | 2018-08-21 | Knauf Insulation, Inc. | Molasses binder |
US12122878B2 (en) | 2010-05-07 | 2024-10-22 | Knauf Insulation, Inc. | Carbohydrate polyamine binders and materials made therewith |
US12054514B2 (en) | 2010-05-07 | 2024-08-06 | Knauf Insulation, Inc. | Carbohydrate binders and materials made therewith |
US11814481B2 (en) | 2010-05-07 | 2023-11-14 | Knauf Insulation, Inc. | Carbohydrate polyamine binders and materials made therewith |
US10913760B2 (en) | 2010-05-07 | 2021-02-09 | Knauf Insulation, Inc. | Carbohydrate binders and materials made therewith |
US11078332B2 (en) | 2010-05-07 | 2021-08-03 | Knauf Insulation, Inc. | Carbohydrate polyamine binders and materials made therewith |
US9505883B2 (en) | 2010-05-07 | 2016-11-29 | Knauf Insulation Sprl | Carbohydrate polyamine binders and materials made therewith |
US10738160B2 (en) | 2010-05-07 | 2020-08-11 | Knauf Insulation Sprl | Carbohydrate polyamine binders and materials made therewith |
US9493603B2 (en) | 2010-05-07 | 2016-11-15 | Knauf Insulation Sprl | Carbohydrate binders and materials made therewith |
US11846097B2 (en) | 2010-06-07 | 2023-12-19 | Knauf Insulation, Inc. | Fiber products having temperature control additives |
WO2012072938A1 (en) * | 2010-11-30 | 2012-06-07 | Saint-Gobain Isover | Sizing composition for fibers, in particular inorganic fibers, including a non-reducing sugar and an inorganic-acid ammonium salt, and resulting materials |
US9938184B2 (en) | 2010-11-30 | 2018-04-10 | Saint-Gobain Isover | Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products |
EP3415476A1 (en) * | 2010-11-30 | 2018-12-19 | Saint-Gobain Isover | Bonding composition for fibres, in particular mineral, comprising a non-reducing sugar and an ammonium salt of inorganic acid, and resulting products |
EP2646386B1 (en) | 2010-11-30 | 2018-09-12 | Saint-Gobain Isover | Process for the manufacture of acoustically and thermally isolating inorganic fiber product using a sizing composition including a non-reducing sugar and an inorganic-acid ammonium salt, and resulting materials |
US20120263934A1 (en) * | 2010-11-30 | 2012-10-18 | Boris Jaffrennou | Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products |
US9255215B2 (en) * | 2010-11-30 | 2016-02-09 | Saint-Gobain Isover | Sizing composition for fibers, in particular mineral fibers, comprising a non-reducing sugar and an inorganic acid ammonium salt, and resulting products |
RU2594408C2 (en) * | 2010-11-30 | 2016-08-20 | Сэн-Гобэн Изовер | Adhesive composition for fibres, in particular mineral fibres, containing non-reducing sugar and ammonia salt of inorganic acid, and products based thereon |
FR2968008A1 (en) * | 2010-11-30 | 2012-06-01 | Saint Gobain Isover | SIZING COMPOSITION FOR FIBERS, ESPECIALLY MINERAL, COMPRISING NON-REDUCING SUGAR AND AMMONIUM SALT OF INORGANIC ACID, AND RESULTING PRODUCTS |
US10767050B2 (en) | 2011-05-07 | 2020-09-08 | Knauf Insulation, Inc. | Liquid high solids binder composition |
US11453807B2 (en) | 2012-04-05 | 2022-09-27 | Knauf Insulation, Inc. | Binders and associated products |
US10287462B2 (en) | 2012-04-05 | 2019-05-14 | Knauf Insulation, Inc. | Binders and associated products |
US12104089B2 (en) | 2012-04-05 | 2024-10-01 | Knauf Insulation, Inc. | Binders and associated products |
US11725124B2 (en) | 2012-04-05 | 2023-08-15 | Knauf Insulation, Inc. | Binders and associated products |
US10183416B2 (en) | 2012-08-17 | 2019-01-22 | Knauf Insulation, Inc. | Wood board and process for its production |
US9492943B2 (en) | 2012-08-17 | 2016-11-15 | Knauf Insulation Sprl | Wood board and process for its production |
US11384203B2 (en) | 2012-12-05 | 2022-07-12 | Knauf Insulation, Inc. | Binder |
US10508172B2 (en) | 2012-12-05 | 2019-12-17 | Knauf Insulation, Inc. | Binder |
US11401204B2 (en) | 2014-02-07 | 2022-08-02 | Knauf Insulation, Inc. | Uncured articles with improved shelf-life |
US11332577B2 (en) | 2014-05-20 | 2022-05-17 | Knauf Insulation Sprl | Binders |
US10864653B2 (en) | 2015-10-09 | 2020-12-15 | Knauf Insulation Sprl | Wood particle boards |
US11230031B2 (en) | 2015-10-09 | 2022-01-25 | Knauf Insulation Sprl | Wood particle boards |
US11060276B2 (en) | 2016-06-09 | 2021-07-13 | Knauf Insulation Sprl | Binders |
US11248108B2 (en) | 2017-01-31 | 2022-02-15 | Knauf Insulation Sprl | Binder compositions and uses thereof |
US11945979B2 (en) | 2018-03-27 | 2024-04-02 | Knauf Insulation, Inc. | Composite products |
US11939460B2 (en) | 2018-03-27 | 2024-03-26 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
DE1023389B (en) | 1958-01-23 |
DE1169085B (en) | 1964-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2875073A (en) | Core binder and process of making cores | |
US2806270A (en) | Method of making moulds for precision casting | |
US4078599A (en) | Self-curing and water-soluble mold | |
US2905563A (en) | Alkali metal silicate binder for foundry sand molds and process | |
US3832191A (en) | Silicate bonded foundry mold and core sands | |
US3216078A (en) | Process for casting steel and compositions of matter for use therein | |
WO2019085121A1 (en) | Molten salt-based soluble core, preparation method therefor and application | |
US4636262A (en) | Additive for green molding sand | |
JPS5844945A (en) | Mold coating material for prevention of carburization and sulfurization used for organic self-hardening mold | |
US3050796A (en) | Method of improving foundry molds | |
JPH0796347A (en) | Component for investment casting mold | |
JPS6338254B2 (en) | ||
SU530498A1 (en) | Binder for moulding and core sands | |
US3057740A (en) | Inorganic binder for refractory materials | |
GB1171963A (en) | Improvements in or relating to Foundry Moulding Sand Composition | |
US1888441A (en) | Mold part | |
SU703963A1 (en) | Self-solidifying mixture for manufacturing casting moulds and cores | |
US1589604A (en) | Permanent mold | |
US3314806A (en) | Production of refractory objects | |
DE2708265A1 (en) | PROCESS FOR MANUFACTURING A SELF-HOLDING AND WATER-SOLUBLE MOLD | |
SU852434A1 (en) | Suspension for producing ceramic moulds and cores with use of permanent equipment | |
US2790219A (en) | Shell mold structures and processes and compositions for forming the same | |
JPS5536031A (en) | Fluid moldable water soluble mold | |
SU829316A1 (en) | Method of calcining ceramic moulds produced with use of investment patterns | |
SU1766575A1 (en) | Self-hardening sand for mould and rod producing |