US2493209A - Spray or atomizer nozzle - Google Patents
Spray or atomizer nozzle Download PDFInfo
- Publication number
- US2493209A US2493209A US72720A US7272049A US2493209A US 2493209 A US2493209 A US 2493209A US 72720 A US72720 A US 72720A US 7272049 A US7272049 A US 7272049A US 2493209 A US2493209 A US 2493209A
- Authority
- US
- United States
- Prior art keywords
- aperture
- elements
- nozzle
- discs
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007921 spray Substances 0.000 title 1
- 239000007788 liquid Substances 0.000 description 11
- 239000012530 fluid Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- -1 enamels Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/02—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
- B05B1/08—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
- B05B1/083—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
- B05B1/086—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts with a resiliently deformable element, e.g. sleeve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/02—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/14—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/30—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
- B05B1/3006—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the controlling element being actuated by the pressure of the fluid to be sprayed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/34—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B9/00—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
- B05B9/03—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
- B05B9/04—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
- B05B9/0403—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
- B05B9/0426—Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material with a pump attached to the spray gun or discharge device
Definitions
- This invention relates to nozzles for atomizing liquids.
- the principal purpose of the invention is to provide an extremely simple nozzle capable of dividing a stream of liquid into minute particles.
- a further object is to provide such a nozzle which is capable of atomizing a wide range of liquids, such as paints, enamels, oils, insecticides, and the like, and which may be manufactured without reference to exacting tolerances and which does notv require critical adjustments during use.
- a further object is to provide such a nozzle which also functions in a limited manner as a check valve to abruptly and completely check the flow of liquids when the operating pressure upon the liquid is relieved.
- a host of more or less intricate structures have heretofore been proposed or used for the conversion of an integrated body of liquid into finely divided liquid particles projected through the atmosphere from the nozzle aperture or apertures in a broadening stream.
- the problem becomes increasingly diicult as the specified size of the particles is reduced.
- a nozzle which may be capable of eiiiciently atomizing a liquid having certain physical characteristics may not properly serve to atomize liquids having different characteristics.
- the nozzle herein described, while very simple and inexpensive. is adapted to handle liquids having a wide range of viscosities, densities, and surface tension characteristics, and which differ in other respects.
- Fig. 1 is a cross-sectional view of a portion of a sprayer assembly including the nozzle of the invention
- Fig. 2 is a cross-sectional view of one form of the essential elements of the nozzle separated for purposes of illustration;
- Fig. 3 is a front view of the nozzle elements
- Fig. 4 is a perspective view of a modified form of the nozzle elements, separated for purposes of illustration.
- a form of nozzle which may be readily produced in quantity and at low cost is illustrated in the drawing. It consists essentially of two apertured discs clamped together at their peripheries, the apertures being in nonalignment so that liquid flowing through the nozzle is required to flow an appreciable distance laterally between the two discs. The characteristics of the discs' and apertures for the most satisfactory operation of the atomizer nozzle are described below.
- Disc I may be referred to as the inner disc since it is disposed inwardly from outer disc 2 in the nozzle and sprayer structure. Both of these discs may be conveniently formed from sheet metal, preferably a metal such as half hard brasswhich u.. Hsomeresilienoein thatthe spread apart by fluid pressure exerted between the discs and Will spring back together when the pressure has been relieved. It is not necessary that both discs I and 2 possess such resilient qualities, but it is desirable for best results that at least one of these members be somewhat springy or resilient. n
- the two elements of the nozzle are preferably generally flat, since this is the most inexpensive and practical form to employ, but it should be understood that the surfaces forming the interface between the two elements may be other than planar, provided only that the engaging surfaces conform generally to each other.
- Aperture 3 from which the ne liquid particles are emitted is preferably a sharp edged orifice which may be round, elongated to form a slot, as illustrated in Fig. 3, or otherwise shaped.
- Aperture 3 may be located anywhere in disc 2 inside of the marginal portion used for clamping, the central position illustrated being preferred to avoid interference with theatomized stream by the clamping nut 5.
- An outwardly protruding dent 6 is formed in disc 2 at the eventual location of aperture 3 to provide a small cavity 1 between the discs.
- Aperture 3 is then punched, pierced, or drilled at the apex of dent 6.
- the indentation and aperture may be formed by a tool which first draws the metal and then pierces it.
- Aperture 4 may be formed in the same way as aperture 3, if desired, but it is not important whether an orifice with sharp edges is provided. Any small aperture which is not in alignment with aperture 3 in the assembled nozzle is satisfactory for the ,purposes of the invention. The area of aperture 4 should be roughly equal to that of aperture 3.
- Nozzle element I (Fig. 4), for example,.has three discharge apertures 8 equally spaced from each other and inner disc 9 has a single supply aperture I0 at its center.
- the nozzle herein described can be used with any spraying equipment or pump capable of supplying fluid to the nozzle at pressure above, say; 30 pounds per square inch. The requisite pressure depends somewhat upon the characteristics of the nozzle elements and apertures.
- the fluid is drawn from a container, not shown, through tube I I vand inlet port I2 into chamber I3 of cylinder I4 by the reciprocating action of piston I5 acting in cooperation with check valve I6. ⁇
- the fluid is forced into nozzle chamber I'I whence it ows through aperture 4 of inner nozzle disc I.
- the pressure of this fluid forces discs I and 2 apart to a slight extent to permit the p of the iluld through the lateral broad and shallow passageway thus provided to cavity 1 and aperture 3.
- discharge aperture l may be provided in any convenient shape,'it has been found that improved results are obtained when a slot is used. particularly when supply aperture 4 is laterally disposed with respect to the length of the slot in the nozzle assembly.
- An atomizer nozzle comprising two discs of thin sprlngy metal in abutting face-to-face relationship, one of said discs having a long and narrow slot therein, the portion of said disc immediately surrounding said slot being upstruck to form a lip around said slot and a cavity between said discs at said slot the other of said discs having an aperture therein in nonalignment with said slot, the portion of said disc immediately surrounding said aperture being upstruck to form a lip around said aperture and a cavity between said discs at said aperture.
- An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having nonregistering apertures therein, at least one of said elements being resilient, each of said elements having a cavity inwardly of and communicating with the aperture therein, said elements being substantially in engagement at areas adjacent said cavities.
- An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having nonregistering apertures therein, at least one of said elements being resilient, the aperture in each of said members communicating with a cavity formed inwardly therf-of and between said elements, said elements being substantially in engagement at areas adjacent said cavities.
- An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having central portions thereof in close proximity to each other. said elements having nonregistering apertures therein, at let one of said elements being resilient. the aperture in the outer element communicating with a cavity formed inwardly thereof and between said elements, andthe aperture in the inner element communicating with a cavity formed inwardly thereof and between said elements. whereby the pressure of fluid in said last-named cavity will force the iiuid between the elements to the cavity inwardly of the aperture in the outer element.
- An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having nonregistering apertures therein, at least one of said elements being resilient, said elements normallybeing in face-toface contact with one another, the aperture in the outer element communicating with a cavity formed inwardly thereof and between said elements, and the aperture in the inner element communicating with a cavity formed inwardly thereof and between said elements, whereby the pressure of fluid in said last-named cavity will force the efemcnts out of face-to-face contact with one another and will force iiuid from the last-named cavity between the elements to the cavity inwardly of the aperture in the outer element.
- An atomizer nozzle comprising outer and inner generally flat elements of thin resilient metal clamped together at their peripheries and having nonregistering apertures therein, each of said elements having a cavity inwardly of and communicating with the aperture therein, said elements being substantially in engagement at areas adjacent said cavities.
- An atomizer nozzle comprising outer and inner generally flat elements of thin resilient metal clamped together at their peripheries and having nonregistering apertures therein, the aperture in each of said members communicating with a cavity formed inwardly thereof and between said elements, said elements being substantially in engagement at areas adjacent said cavities.
- An atomizer nozzle comprising outer and inner generally at elements of thin resilient metal clamped together at their peripheries and being otherwise unconiined and having nonregistering apertures therein, the aperture in each of ⁇ said members communicating with a cavity formed inwardly thereof and between said elements, said elements being substantially in engagement at areas adjacent said cavities.
Landscapes
- Nozzles (AREA)
Description
' Jan. 3, 1950 F. A. slMMoNs 2,493,209
SPRAY OR ATOMIZER NOZZLE l Patented Jan. 3, 1950 SPRAY ORVATOMIZER NOZZLE Frank A. Simmons, Elgin, lll., asslgnor to Burgess Battery Company, Lake Zurich, Ill., a corporation of Delaware Application January 25, 1949, Serial No. 72,720
11 Claims. l
This invention relates to nozzles for atomizing liquids.
The principal purpose of the invention is to provide an extremely simple nozzle capable of dividing a stream of liquid into minute particles. A further object is to provide such a nozzle which is capable of atomizing a wide range of liquids, such as paints, enamels, oils, insecticides, and the like, and which may be manufactured without reference to exacting tolerances and which does notv require critical adjustments during use. A further object is to provide such a nozzle which also functions in a limited manner as a check valve to abruptly and completely check the flow of liquids when the operating pressure upon the liquid is relieved.
A host of more or less intricate structures have heretofore been proposed or used for the conversion of an integrated body of liquid into finely divided liquid particles projected through the atmosphere from the nozzle aperture or apertures in a broadening stream. The problem becomes increasingly diicult as the specified size of the particles is reduced. Also, a nozzle which may be capable of eiiiciently atomizing a liquid having certain physical characteristics may not properly serve to atomize liquids having different characteristics. The nozzle herein described, while very simple and inexpensive. is adapted to handle liquids having a wide range of viscosities, densities, and surface tension characteristics, and which differ in other respects.
In the accompanying drawing,
Fig. 1 is a cross-sectional view of a portion of a sprayer assembly including the nozzle of the invention;
Fig. 2 is a cross-sectional view of one form of the essential elements of the nozzle separated for purposes of illustration;
Fig. 3 is a front view of the nozzle elements; and
Fig. 4 is a perspective view of a modified form of the nozzle elements, separated for purposes of illustration.
A form of nozzle which may be readily produced in quantity and at low cost is illustrated in the drawing. It consists essentially of two apertured discs clamped together at their peripheries, the apertures being in nonalignment so that liquid flowing through the nozzle is required to flow an appreciable distance laterally between the two discs. The characteristics of the discs' and apertures for the most satisfactory operation of the atomizer nozzle are described below.
Disc I may be referred to as the inner disc since it is disposed inwardly from outer disc 2 in the nozzle and sprayer structure. Both of these discs may be conveniently formed from sheet metal, preferably a metal such as half hard brasswhich u.. Hsomeresilienoein thatthe spread apart by fluid pressure exerted between the discs and Will spring back together when the pressure has been relieved. It is not necessary that both discs I and 2 possess such resilient qualities, but it is desirable for best results that at least one of these members be somewhat springy or resilient. n
The two elements of the nozzle are preferably generally flat, since this is the most inexpensive and practical form to employ, but it should be understood that the surfaces forming the interface between the two elements may be other than planar, provided only that the engaging surfaces conform generally to each other.
If desired, and if the capacity of the sprayer apparatus is sufficient to permit it, a plurality of apertures may be employed in either or both nozzle elements. Nozzle element I (Fig. 4), for example,.has three discharge apertures 8 equally spaced from each other and inner disc 9 has a single supply aperture I0 at its center.
The nozzle herein described can be used with any spraying equipment or pump capable of supplying fluid to the nozzle at pressure above, say; 30 pounds per square inch. The requisite pressure depends somewhat upon the characteristics of the nozzle elements and apertures. In the apparatus illustrated in Fig. 1, the fluid is drawn from a container, not shown, through tube I I vand inlet port I2 into chamber I3 of cylinder I4 by the reciprocating action of piston I5 acting in cooperation with check valve I6.` The fluid is forced into nozzle chamber I'I whence it ows through aperture 4 of inner nozzle disc I. The pressure of this fluid forces discs I and 2 apart to a slight extent to permit the p of the iluld through the lateral broad and shallow passageway thus provided to cavity 1 and aperture 3. The resilience of one or both of the nozzle elements tends of choke ci! or throttle the now of huid between the discs and the iiuid escapes from this pressure condition as it bursts into cavity 1. It is likely that there is considerable whirling and turbulence of the fluid within this cavity which is thought to cause the breaking up of the fluid into une particles as the material is emitted from discharge aperture 3.
Although, as stated above, discharge aperture l may be provided in any convenient shape,'it has been found that improved results are obtained when a slot is used. particularly when supply aperture 4 is laterally disposed with respect to the length of the slot in the nozzle assembly.
It will be understood that considerable variation is possible in the form and dimensions of the structure described without departing from the principles of the invention. As a specic example of one form of suitable structure. the following 1 dimensions of the discs and apertures when half hard brass is used are given:
Inches Diameter of discs Thickness of inner disc 0.010 Thickness of outer disc 0.010
Dimensions of slot in outer disc 0.040 x 0.008 Diameter of round aperture in inner disc Invention is claimed as follows:
l. An atomizer nozzle comprising two discs of thin sprlngy metal in abutting face-to-face relationship, one of said discs having a long and narrow slot therein, the portion of said disc immediately surrounding said slot being upstruck to form a lip around said slot and a cavity between said discs at said slot the other of said discs having an aperture therein in nonalignment with said slot, the portion of said disc immediately surrounding said aperture being upstruck to form a lip around said aperture and a cavity between said discs at said aperture.
2. An atomsizer nozzle in accordance with claim 1 wherein said aperture is laterally disposed with respect to the length of said slot.
3. An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having nonregistering apertures therein, at least one of said elements being resilient, each of said elements having a cavity inwardly of and communicating with the aperture therein, said elements being substantially in engagement at areas adjacent said cavities.
4. An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having nonregistering apertures therein, at least one of said elements being resilient, the aperture in each of said members communicating with a cavity formed inwardly therf-of and between said elements, said elements being substantially in engagement at areas adjacent said cavities.
5. An atomizer nozzle in accordance with claim 4 wherein an aperture in the outer element is a long 'and narrow slot.
6. An atomizer nozzle in accordance with claim 4 wherein an aperture in the outer element is a sharp-edged oriilce.
7. An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having central portions thereof in close proximity to each other. said elements having nonregistering apertures therein, at let one of said elements being resilient. the aperture in the outer element communicating with a cavity formed inwardly thereof and between said elements, andthe aperture in the inner element communicating with a cavity formed inwardly thereof and between said elements. whereby the pressure of fluid in said last-named cavity will force the iiuid between the elements to the cavity inwardly of the aperture in the outer element.
8. An atomizer nozzle comprising outer and inner elements clamped together at their peripheries and having nonregistering apertures therein, at least one of said elements being resilient, said elements normallybeing in face-toface contact with one another, the aperture in the outer element communicating with a cavity formed inwardly thereof and between said elements, and the aperture in the inner element communicating with a cavity formed inwardly thereof and between said elements, whereby the pressure of fluid in said last-named cavity will force the efemcnts out of face-to-face contact with one another and will force iiuid from the last-named cavity between the elements to the cavity inwardly of the aperture in the outer element.
9. An atomizer nozzle comprising outer and inner generally flat elements of thin resilient metal clamped together at their peripheries and having nonregistering apertures therein, each of said elements having a cavity inwardly of and communicating with the aperture therein, said elements being substantially in engagement at areas adjacent said cavities.
10. An atomizer nozzle comprising outer and inner generally flat elements of thin resilient metal clamped together at their peripheries and having nonregistering apertures therein, the aperture in each of said members communicating with a cavity formed inwardly thereof and between said elements, said elements being substantially in engagement at areas adjacent said cavities.
1l. An atomizer nozzle comprising outer and inner generally at elements of thin resilient metal clamped together at their peripheries and being otherwise unconiined and having nonregistering apertures therein, the aperture in each of`said members communicating with a cavity formed inwardly thereof and between said elements, said elements being substantially in engagement at areas adjacent said cavities.
FRANK A. SIMMONS.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 236,719 Renton Jan. 18, 1881 1,567,051 Gronkwist Dec. 29, 1925 1,869,809 Hewlett' Aug. 2, 1932 2,273,830' Brierly et al Feb. 24, 1942 2,298,934 Foster Oct. 13, 1942 2,308,476 Gerrer Jan. 12, 1943 FOREIGN PATENTS Number Country Date 408,186 Great Britain Apr. 5, 1934 489,508 Germany Jan. 17, 1930
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72720A US2493209A (en) | 1949-01-25 | 1949-01-25 | Spray or atomizer nozzle |
FR1007324D FR1007324A (en) | 1949-01-25 | 1949-12-16 | Improvements relating to a spray nozzle |
DEB1245A DE822666C (en) | 1949-01-25 | 1949-12-25 | Atomizer nozzle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72720A US2493209A (en) | 1949-01-25 | 1949-01-25 | Spray or atomizer nozzle |
Publications (1)
Publication Number | Publication Date |
---|---|
US2493209A true US2493209A (en) | 1950-01-03 |
Family
ID=22109347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US72720A Expired - Lifetime US2493209A (en) | 1949-01-25 | 1949-01-25 | Spray or atomizer nozzle |
Country Status (3)
Country | Link |
---|---|
US (1) | US2493209A (en) |
DE (1) | DE822666C (en) |
FR (1) | FR1007324A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2776660A (en) * | 1954-11-01 | 1957-01-08 | Paul Pouliot | Hydromassaging device |
US2785925A (en) * | 1953-01-23 | 1957-03-19 | Texas Metal And Mfg Company In | Discharge nozzle |
US2961741A (en) * | 1956-05-09 | 1960-11-29 | American Steel Foundries | Hydraulic descaler |
US2987262A (en) * | 1959-11-24 | 1961-06-06 | Lodding Engineering Corp | Removable and replaceable shower device |
US3913846A (en) * | 1971-11-22 | 1975-10-21 | Robertshaw Controls Co | Gas burner orifice |
US20040239045A1 (en) * | 1999-11-18 | 2004-12-02 | Albrecht David E. | Flange plates for fluid port interfaces |
US20050087628A1 (en) * | 2003-10-27 | 2005-04-28 | Hamid Sayar | Asymmetric fluidic flow controller orifice disc for fuel injector |
US20180141744A1 (en) * | 2016-11-22 | 2018-05-24 | Summit Packaging Systems, Inc. | Dual component insert with uniform discharge orifice for fine mist spray |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2418674A1 (en) * | 1978-03-03 | 1979-09-28 | Duveau Francois | Artificial fog generation device - comprises stack of slotted resilient discs at nozzle, with slots of adjacent discs staggered by 45 degrees |
DE2932512C2 (en) * | 1979-08-10 | 1984-11-08 | Gebr. Eickhoff Maschinenfabrik U. Eisengiesserei Mbh, 4630 Bochum | Nozzle for spraying sprinkling liquid, preferably used for dust control |
DE3314020A1 (en) * | 1983-04-18 | 1984-10-18 | Hörauf & Kohler KG, 8900 Augsburg | Hand-actuated liquid atomiser |
FR2903329B3 (en) | 2006-07-10 | 2008-10-03 | Rexam Dispensing Systems Sas | SPRAY NOZZLE, SPRAY DEVICE AND USE THEREOF. |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US236719A (en) * | 1881-01-18 | Vent-plug | ||
US1567051A (en) * | 1921-06-27 | 1925-12-29 | Gronkwist Oscar Robert | Means for injecting liquid fuel and other liquids into explosion motors, furnaces, and the like |
DE489508C (en) * | 1930-01-17 | Friedr Deckel | Injection nozzle for internal combustion engines | |
US1869809A (en) * | 1930-12-24 | 1932-08-02 | John M Hewlett | Liquid atomizing device |
GB408186A (en) * | 1932-12-30 | 1934-04-05 | Saurer Ag Adolph | Improvements in or relating to liquid fuel injecting nozzles for internal combustion engines |
US2273830A (en) * | 1940-11-29 | 1942-02-24 | Ralph C Brierly | Method of making nozzle sprayer plates |
US2298934A (en) * | 1939-02-28 | 1942-10-13 | Miles T Foster | Spray nozzle |
US2308476A (en) * | 1939-11-13 | 1943-01-12 | Giles E Bullock | Spray disk for spray valves |
-
1949
- 1949-01-25 US US72720A patent/US2493209A/en not_active Expired - Lifetime
- 1949-12-16 FR FR1007324D patent/FR1007324A/en not_active Expired
- 1949-12-25 DE DEB1245A patent/DE822666C/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US236719A (en) * | 1881-01-18 | Vent-plug | ||
DE489508C (en) * | 1930-01-17 | Friedr Deckel | Injection nozzle for internal combustion engines | |
US1567051A (en) * | 1921-06-27 | 1925-12-29 | Gronkwist Oscar Robert | Means for injecting liquid fuel and other liquids into explosion motors, furnaces, and the like |
US1869809A (en) * | 1930-12-24 | 1932-08-02 | John M Hewlett | Liquid atomizing device |
GB408186A (en) * | 1932-12-30 | 1934-04-05 | Saurer Ag Adolph | Improvements in or relating to liquid fuel injecting nozzles for internal combustion engines |
US2298934A (en) * | 1939-02-28 | 1942-10-13 | Miles T Foster | Spray nozzle |
US2308476A (en) * | 1939-11-13 | 1943-01-12 | Giles E Bullock | Spray disk for spray valves |
US2273830A (en) * | 1940-11-29 | 1942-02-24 | Ralph C Brierly | Method of making nozzle sprayer plates |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2785925A (en) * | 1953-01-23 | 1957-03-19 | Texas Metal And Mfg Company In | Discharge nozzle |
US2776660A (en) * | 1954-11-01 | 1957-01-08 | Paul Pouliot | Hydromassaging device |
US2961741A (en) * | 1956-05-09 | 1960-11-29 | American Steel Foundries | Hydraulic descaler |
US2987262A (en) * | 1959-11-24 | 1961-06-06 | Lodding Engineering Corp | Removable and replaceable shower device |
US3913846A (en) * | 1971-11-22 | 1975-10-21 | Robertshaw Controls Co | Gas burner orifice |
US20040239045A1 (en) * | 1999-11-18 | 2004-12-02 | Albrecht David E. | Flange plates for fluid port interfaces |
US20050087627A1 (en) * | 2003-10-27 | 2005-04-28 | Hamid Sayar | Fluidic flow controller orifice disc with dual-flow divider for fuel injector |
US20050087630A1 (en) * | 2003-10-27 | 2005-04-28 | Hamid Sayar | Unitary fluidic flow controller orifice disc for fuel injector |
US20050087628A1 (en) * | 2003-10-27 | 2005-04-28 | Hamid Sayar | Asymmetric fluidic flow controller orifice disc for fuel injector |
US20050087629A1 (en) * | 2003-10-27 | 2005-04-28 | Hamid Sayar | Fuel injector with sauter-mean-diameter atomization spray of less than 70 microns |
US20050121543A1 (en) * | 2003-10-27 | 2005-06-09 | Hamid Sayar | Methods of making fluidic flow controller orifice disc for fuel injector |
US7222407B2 (en) | 2003-10-27 | 2007-05-29 | Siemens Vdo Automotive Corporation | Methods of making fluidic flow controller orifice disc for fuel injector |
US7299997B2 (en) | 2003-10-27 | 2007-11-27 | Siemens Vdo Automotive Corporation | Fuel injector with sauter-mean-diameter atomization spray of less than 70 microns |
US7306172B2 (en) | 2003-10-27 | 2007-12-11 | Siemens Vdo Automotive Corporation | Fluidic flow controller orifice disc with dual-flow divider for fuel injector |
US7344090B2 (en) | 2003-10-27 | 2008-03-18 | Siemens Vdo Automotive Corporation | Asymmetric fluidic flow controller orifice disc for fuel injector |
US7448560B2 (en) | 2003-10-27 | 2008-11-11 | Continental Automotive Systems Us, Inc. | Unitary fluidic flow controller orifice disc for fuel injector |
US7469845B2 (en) | 2003-10-27 | 2008-12-30 | Continental Automotive Systems Us, Inc. | Fluidic flow controller orifice disc for fuel injector |
US20180141744A1 (en) * | 2016-11-22 | 2018-05-24 | Summit Packaging Systems, Inc. | Dual component insert with uniform discharge orifice for fine mist spray |
US10370177B2 (en) * | 2016-11-22 | 2019-08-06 | Summit Packaging Systems, Inc. | Dual component insert with uniform discharge orifice for fine mist spray |
Also Published As
Publication number | Publication date |
---|---|
DE822666C (en) | 1951-11-26 |
FR1007324A (en) | 1952-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2493209A (en) | Spray or atomizer nozzle | |
US3521824A (en) | Air-liquid flat spray nozzle | |
US3770209A (en) | Aspirating spray head | |
JP3363152B2 (en) | Consumer product package with spray device using large bubbles | |
US4218855A (en) | Particulate spray nozzle with diffuser | |
GB933706A (en) | Spray gun | |
JPS62204873A (en) | Spray nozzle | |
US2388445A (en) | Spraying proportioner | |
GB1410365A (en) | Aerosol dispenser for fluid products comprising a piston pump assembly for generating compressed air serving as propellant and a product metering device | |
US2984420A (en) | Aerosol devices | |
IL45916A (en) | Spray-nozzle | |
US2647801A (en) | Paint spraying nozzle | |
US4122978A (en) | Pressurized package for dispensing a product in a finely dispersed spray pattern with little dilution by propellant | |
US4356974A (en) | Spray nozzles | |
US3049303A (en) | Spray guns | |
US2563152A (en) | Sprayer nozzle | |
GB996417A (en) | Improvements in liquid spraying devices | |
US2577853A (en) | Atomizing nozzle | |
US3788556A (en) | Compressed air operated dispenser with hydraulic force multiplying means | |
GB1099695A (en) | Improvements in or relating to spray devices | |
US2298934A (en) | Spray nozzle | |
US2734774A (en) | manseau | |
GB1346220A (en) | Valve for pressurized dispensers | |
US1869809A (en) | Liquid atomizing device | |
US3806028A (en) | Spray head |