+

US2160150A - Impact wrench - Google Patents

Impact wrench Download PDF

Info

Publication number
US2160150A
US2160150A US170218A US17021837A US2160150A US 2160150 A US2160150 A US 2160150A US 170218 A US170218 A US 170218A US 17021837 A US17021837 A US 17021837A US 2160150 A US2160150 A US 2160150A
Authority
US
United States
Prior art keywords
hammer
anvil
grooves
jaws
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US170218A
Inventor
Francis A Jimerson
Harold C Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ingersoll Rand Co
Original Assignee
Ingersoll Rand Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingersoll Rand Co filed Critical Ingersoll Rand Co
Priority to US170218A priority Critical patent/US2160150A/en
Application granted granted Critical
Publication of US2160150A publication Critical patent/US2160150A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • B25B21/026Impact clutches

Definitions

  • Patented . May 30, 1939 IMPACT WRENCH Fronois A. .limer-son and Hoo-ola c. Reynolds,
  • Devices of this type are usually provided with an anvil member adapted to4 engage the work and a hammer member through which the driving force of the motor is transmitted to the anvil.
  • the connecting means between the motor and the hammer is so constructed that the motor will rotate the hammer and anvil so long as the work resistance is insuilicient to overcome the driving torque.
  • this connection is designed to dis- ⁇ e'ngage the hammer and the anvil.
  • the stored energy is employed to impart an additional angular velocity to the hammer over that imparted by the motor during the time that the hammer and anvil are re-engaging and the kinetic energy of the hammer is transformed into work delivered to the anvil.
  • a great many forms of such connections have been proposed, but they' connection which will disengage the clutch member completely upon a slight angle of rotation vof 5o the motor.
  • a still further object is to provide a driving 55 connection which is of rugged construction and not subject to excessive wear requiring frequent repairs.
  • Figure 1 is an elevational view in section of a device constructed in accordance with the principles of the present invention, l
  • Figure 2 is a View in section taken along the line 2-2 of Figure 1,
  • Figure 3 is a view partly in section and partly in elevation of a portion of the device illustrated in Figure 1 showing the hammer and anvil disengaged, and
  • Figure 4 is a developed view of a portion of the device of Figure 1 illustrating the parts in operating position.
  • the rotary impact device is generally imndicated at I and consists of a casing 3 secured to the motor 5 by means of the bolts 1.
  • the motor 5 may be any suitably controlled reversible motor having a shaft 9 rotating in the bearing I I.
  • a iiange I3 is formed'on the shaft 9 to prevent movement of the shaft 9 toward the motor.
  • Thehexagonal portion I5 is formed on the shaft 9 in juxtaposition to th iiange I3.
  • This hexagonal portion may, of course, be of any other desired construction so long as it will prevent relative rotation of the rotary driving head I1 with respect to the shaft 9 and Will permit the shaft 9 to rotate the head I1 which is surrounded by a cup-shaped hammer I9 extending into the casing 3.
  • On the bottom of the cup-shaped hammer are clutch teeth 2
  • 'I'he anvil 25 consists of a cylindrical portion 21 surmounted by a ange 29 on the upper surface of which are mounted the clutch teeth 23.
  • a bearing 3l situated within the tool may be secured to the anvil, a shank 35,I
  • wrench 33 is secured by any means, such as the set screw 31 to the shank 35, and is provided with a socket 39 adapted to engage the nut 4
  • an extension 45 is formed on the hexagonal portion I5 of the shaft 9.
  • This extension is recessed in a guide rod 41 which passes through the bottom wall of the hammer I9 into a recess 49 formed in the upper part of the anvil member 25.
  • Guide rod 41 acts as a spacer between drive head I1 and anvil 21 to hold the anvil down during disengagement of the clutch teeth 2
  • which permits the spring 53 to rotate with respect to the head I'I.
  • a spring 53 rests against the thrust bearing 5
  • the purpose of the spring is normally to hold the hammer clutch jaws 2
  • channels or races 51 are formed on the side of the driving member I1. These channels 51 are formed as shown in Figs. 3 and 4 with inclined surfaces 59'and 6
  • the hammer member I9 is provided with grooves 65 which are so placed that they cooperate with the channels 51 formed on the driving head. 'Ihese grooves communicate with openings 61 which extend through the wall of the hammerbmember I9 and permit the insertion of the balls 13.
  • grooves 51 and 65 and ball members 13, which are guided in them, is to permit the hammer I9 to disengage the anvil member 29 upon encountering a predetermined resistance thereof to rotation, and to assist in storing in the spring 53 energy which is subsequently expended upon the anvil by the hammer.
  • 9 is forced to move much faster than the driver 9 and because of this increased velocity, the kinetic energy thereof is increased as the square ofl the velocity.
  • the grooves 65 cause the balls 13 to roll preferably almost down to the bottoms of the grooves 51 before the jaws 2
  • the arrangement above described provides the least possible friction in contacting parts.
  • the bearing of balls 13 With the grooves 51 and 65 is substantially without friction and in addition the balls 13, as they roll, move a very slight distance in the grooves which enables the grooves to be made relatively short.
  • the grooves may be made only half the ⁇ length of cam surfaces previously used in similar applications for impact Wrenches as is well known in the art. This permits the provision of a plurality of sets of grooves 51 and 65 to give suitable bearing and support for the hammer I9.
  • or jaws 23 is optional. With two sets of such jaws, two blows are delivered to the anvil 29 at each revolution when the nut 4
  • a rotary impact tool having an anvil and a hammer for striking the anvil, clutch members on the hammer and anvil, a spring to normally hold the clutch members in engagement, driving means for the hammer, and means connecting the hammer and driving means comprising V-shaped channels on the driving means having the arms of the V inclined at an angle to the horizontal substantially less than ninety degrees, inverted V-shaped grooves on the hammer member having arms at the same angle to the horizontal as the arms of said channels, and ball members retained in said V-shaped channels by said 'inverted V-shaped groove.
  • a rotary impact tool having an anvil and a hammer for striking the anvil, disengageable cooperating clutch members on. the hammer and anvil, a spring to normally hold said clutch members in engagement, driving means for the hammer, and means whereby the driving means may drive the hammer member when the clutch members are engaged and to disengage the clutch member when the driving means is incapable of driving the hammer member comprising V- shaped channels on the driving means having the arms of the V inclined at an angle to the horizontal substantially less than ninety degrees, inverted V-shaped grooves on the -hammer having the arms of the V at the-same angle to the horizontal as the armsy of said channels, and means guided by said channels and grooves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Description

May 30, 1939. FTA. .nMERsoN ET AL 2,160,150
` IMPACT WRENCH Filed Oct. 2l, 1957 THEAR ATTORNEY,
Patented .May 30, 1939 IMPACT WRENCH Fronois A. .limer-son and Hoo-ola c. Reynolds,
Athens, Pa., assignors to Ingersoll-Rand Company, Jersey City, N. J.,
Jersey a corporation of New Applioation ootobor 2.1, 1937', serial No. 110,213
z claims. (cl. 1Qz.3o.5)
impact blows to the tool in order that the tool` may overcome the work resistance.
Devices of this type are usually provided with an anvil member adapted to4 engage the work and a hammer member through which the driving force of the motor is transmitted to the anvil. The connecting means between the motor and the hammer is so constructed that the motor will rotate the hammer and anvil so long as the work resistance is insuilicient to overcome the driving torque. However, when the torsion set up bythe work is greater than the driving torque and sufiicient to prevent movement of the anvil by the hammer, this connection is designed to dis-` e'ngage the hammer and the anvil.
While the hammer and the anvil are disengaging, theenergy supplied by the motor is stored in a spring or accumulator device, and as soon as these parts are completely disengaged the stored' energy is imparted to cause the hammer to reengage with and impact against the anvil jaws. v
Thus the stored energy is employed to impart an additional angular velocity to the hammer over that imparted by the motor during the time that the hammer and anvil are re-engaging and the kinetic energy of the hammer is transformed into work delivered to the anvil. A great many forms of such connections have been proposed, but they' connection which will disengage the clutch member completely upon a slight angle of rotation vof 5o the motor. y
It is still a further object to provide a device which is novel and which will overcome work resistance effectively and efiiciently.
A still further object is to provide a driving 55 connection which is of rugged construction and not subject to excessive wear requiring frequent repairs.
` These and further objects will be apparent from the following description of which the drawing is a part.
In the drawing, similar reference numerals refer to similar parts.
Figure 1 is an elevational view in section of a device constructed in accordance with the principles of the present invention, l
Figure 2 is a View in section taken along the line 2-2 of Figure 1,
Figure 3 is a view partly in section and partly in elevation of a portion of the device illustrated in Figure 1 showing the hammer and anvil disengaged, and
Figure 4 is a developed view of a portion of the device of Figure 1 illustrating the parts in operating position.
Referring to Fig. 1 the rotary impact device is generally imndicated at I and consists of a casing 3 secured to the motor 5 by means of the bolts 1. The motor 5 may be any suitably controlled reversible motor having a shaft 9 rotating in the bearing I I. A iiange I3 is formed'on the shaft 9 to prevent movement of the shaft 9 toward the motor. Thehexagonal portion I5 is formed on the shaft 9 in juxtaposition to th iiange I3. This hexagonal portion may, of course, be of any other desired construction so long as it will prevent relative rotation of the rotary driving head I1 with respect to the shaft 9 and Will permit the shaft 9 to rotate the head I1 which is surrounded by a cup-shaped hammer I9 extending into the casing 3.
On the bottom of the cup-shaped hammer are clutch teeth 2| which are adapted to engagewith corresponding clutch teeth 23 mounted on the upper face of the anvil member 25. These clutch teeth 2| and 23 provide a disengageable driving means between the hammer member I9 and the anvil member 25. 'I'he anvil 25 consists of a cylindrical portion 21 surmounted by a ange 29 on the upper surface of which are mounted the clutch teeth 23. A bearing 3l situated within the tool may be secured to the anvil, a shank 35,I
formed as an integral part of the anvil, extends from the cylindrical portion 21 of the anvil. The
wrench 33 is secured by any means, such as the set screw 31 to the shank 35, and is provided with a socket 39 adapted to engage the nut 4| in order that the nut may be secured to the bolt 43.
It is desirable that the hammer member I9 be maintained in axial alignment with the shaft 9 at all times, and for this reason an extension 45 is formed on the hexagonal portion I5 of the shaft 9. This extension is recessed in a guide rod 41 which passes through the bottom wall of the hammer I9 into a recess 49 formed in the upper part of the anvil member 25. Guide rod 41 acts as a spacer between drive head I1 and anvil 21 to hold the anvil down during disengagement of the clutch teeth 2| and 23. cient diameter to permit rotation of the guide member therein, and the guide member in turn permits free rotation of the extension 45 formed.
on the shaft I I.
Within the head I1, and surrounding the guide rod 41, is a thrust bearing 5| which permits the spring 53 to rotate with respect to the head I'I. A spring 53 rests against the thrust bearing 5| at one end thereof, and the other end rests in a well 55 formed in the bottom wall of the hammer member I9. The purpose of the spring is normally to hold the hammer clutch jaws 2| in engagement with the anvil clutch jaws 23, and to absorb and impart energy.v
The apparatus above described is an impact wrench of a conventional design and the driving connection between the head I1 and the hammer I9 will now be described.
On the side of the driving member I1, channels or races 51 are formed. These channels 51 are formed as shown in Figs. 3 and 4 with inclined surfaces 59'and 6| which meet at their lowermost point 63. Several of these doubly inclined channels are provided, and there is no intercommunication between the separate channels. The hammer member I9 is provided with grooves 65 which are so placed that they cooperate with the channels 51 formed on the driving head. 'Ihese grooves communicate with openings 61 which extend through the wall of the hammerbmember I9 and permit the insertion of the balls 13.
The arrangement of grooves 51 and 65 and ball members 13, which are guided in them, is to permit the hammer I9 to disengage the anvil member 29 upon encountering a predetermined resistance thereof to rotation, and to assist in storing in the spring 53 energy which is subsequently expended upon the anvil by the hammer.
Thus, when the torque of the shaft 9, transmitted through the jaws `2| and 23, is insuflicient to turn the anvil 29 due to the resistance of nut 4|, the jaws 2| and 23 disengage by raising the hammer I9 against the compression of spring 53 during which the balls 13 roll up grooves 51 and the grooves 55 correspondingly rise to lift the hammer I9. 'As soon as the jaws 2| rise to the height of jaws 23 they slide on top of the latter until rotated to a point of complete disengagement therewith. Jaws 2I are then free of jaws 23 and spring 53 tends to extend itself. In so doing, the hammer |9 is forced to move much faster than the driver 9 and because of this increased velocity, the kinetic energy thereof is increased as the square ofl the velocity. As the The recess 49 is of suflispring 53 extends, the grooves 65 cause the balls 13 to roll preferably almost down to the bottoms of the grooves 51 before the jaws 2| and 23 reengage so that the jaws strike each other with the maximum possible impact.
The arrangement above described provides the least possible friction in contacting parts. The bearing of balls 13 With the grooves 51 and 65 is substantially without friction and in addition the balls 13, as they roll, move a very slight distance in the grooves which enables the grooves to be made relatively short. Actually, the grooves may be made only half the `length of cam surfaces previously used in similar applications for impact Wrenches as is well known in the art. This permits the provision of a plurality of sets of grooves 51 and 65 to give suitable bearing and support for the hammer I9.
The number of jaws 2| or jaws 23 is optional. With two sets of such jaws, two blows are delivered to the anvil 29 at each revolution when the nut 4| is being set.
It is understood that in setting nut 4| the hammering of the hammer I9 upon anvil 29 continues as long as power is applied to shaft 9 and that it is this hammering that causes the nut 4| to be turned to its seat. A very important advantage of this wrench is `that the reaction upon the tool itself is negligible so that little effort is required by the operator to prevent the casing from turning. This property is in a large measure due to the frictionless structure provided by this invention.
We claim:
1. In a rotary impact tool having an anvil and a hammer for striking the anvil, clutch members on the hammer and anvil, a spring to normally hold the clutch members in engagement, driving means for the hammer, and means connecting the hammer and driving means comprising V-shaped channels on the driving means having the arms of the V inclined at an angle to the horizontal substantially less than ninety degrees, inverted V-shaped grooves on the hammer member having arms at the same angle to the horizontal as the arms of said channels, and ball members retained in said V-shaped channels by said 'inverted V-shaped groove.
2. In a rotary impact tool having an anvil and a hammer for striking the anvil, disengageable cooperating clutch members on. the hammer and anvil, a spring to normally hold said clutch members in engagement, driving means for the hammer, and means whereby the driving means may drive the hammer member when the clutch members are engaged and to disengage the clutch member when the driving means is incapable of driving the hammer member comprising V- shaped channels on the driving means having the arms of the V inclined at an angle to the horizontal substantially less than ninety degrees, inverted V-shaped grooves on the -hammer having the arms of the V at the-same angle to the horizontal as the armsy of said channels, and means guided by said channels and grooves.
FRANCIS A. JIMERSON. HAROLD C. REYNOLDS.
US170218A 1937-10-21 1937-10-21 Impact wrench Expired - Lifetime US2160150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US170218A US2160150A (en) 1937-10-21 1937-10-21 Impact wrench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US170218A US2160150A (en) 1937-10-21 1937-10-21 Impact wrench

Publications (1)

Publication Number Publication Date
US2160150A true US2160150A (en) 1939-05-30

Family

ID=22619032

Family Applications (1)

Application Number Title Priority Date Filing Date
US170218A Expired - Lifetime US2160150A (en) 1937-10-21 1937-10-21 Impact wrench

Country Status (1)

Country Link
US (1) US2160150A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539678A (en) * 1945-08-31 1951-01-30 Ingersoll Rand Co Impact tool
US2544736A (en) * 1945-05-23 1951-03-13 Otto E Szekely Rotary impact hand tool
US2587712A (en) * 1945-09-29 1952-03-04 Adiel Y Dodge Overload released clutch
US2641948A (en) * 1951-01-09 1953-06-16 Groov Pin Corp Driver tool for self-tapping inserts
US2684738A (en) * 1949-12-27 1954-07-27 Reuben A Kaplan Rotary impact tool
US2691434A (en) * 1949-10-11 1954-10-12 Ingersoll Rand Co Biasing mechanism for impact wrenches
US2712254A (en) * 1953-05-14 1955-07-05 Schodeberg Carl Theodore Power driven impact tool
US2720956A (en) * 1951-10-17 1955-10-18 Holman Brothers Ltd Impact wrenches
US2725961A (en) * 1951-12-11 1955-12-06 Spencer B Maurer Torque control for rotary impact tool
US2725918A (en) * 1955-01-11 1955-12-06 Ingersoll Rand Co Tube rolling device
US2745528A (en) * 1953-01-05 1956-05-15 Chicago Pneumatic Tool Co Reversible impact wrench
US2792732A (en) * 1955-09-23 1957-05-21 Black & Decker Mfg Co Rotary impacting nut running tool
US2881884A (en) * 1955-01-12 1959-04-14 Chicago Pneumatic Tool Co Impact clutch
DE1109107B (en) * 1957-01-31 1961-06-15 Bosch Gmbh Robert Motor-driven rotary impact device
US3001428A (en) * 1960-02-23 1961-09-26 Master Power Corp Rotary impact wrench
US3053360A (en) * 1960-12-30 1962-09-11 Albertson & Co Inc Rotary impact wrench mechanism
US3207237A (en) * 1962-07-03 1965-09-21 Bosch Gmbh Robert Apparatus for applying or dislodging screws and similar threaded fasteners
US5836403A (en) * 1996-10-31 1998-11-17 Snap-On Technologies, Inc. Reversible high impact mechanism
US20070181319A1 (en) * 2005-09-13 2007-08-09 Whitmine Jason P Impact rotary tool with drill mode
US20070289759A1 (en) * 2006-05-30 2007-12-20 Markus Hartmann Hand-held machine tool with slip clutch
US20090038816A1 (en) * 2007-08-09 2009-02-12 Joshua Odell Johnson Impact wrench
US20110203824A1 (en) * 2010-02-19 2011-08-25 Elger William A Impact device
CN103395047A (en) * 2012-03-05 2013-11-20 英格索尔-兰德公司 Power tool with titanium hammer case and associated flange interface
EP2743034A2 (en) 2012-12-12 2014-06-18 Ingersoll-Rand Company Torque-limited impact tool
CN104148702A (en) * 2013-05-14 2014-11-19 罗伯特·博世有限公司 Handheld tool apparatus
US9289886B2 (en) 2010-11-04 2016-03-22 Milwaukee Electric Tool Corporation Impact tool with adjustable clutch
US9434056B2 (en) 2013-12-12 2016-09-06 Ingersoll-Rand Company Impact tools with pressure verification and/or adjustment
US9669526B2 (en) 2014-01-07 2017-06-06 Ingersoll-Rand Company Tools with socket retainers
US20200039037A1 (en) * 2011-04-05 2020-02-06 Ingersoll-Rand Company Impact wrench having dynamically tuned drive components and method thereof
US20210339361A1 (en) * 2020-05-01 2021-11-04 Milwaukee Electric Tool Corporation Rotary impact tool
US11351663B2 (en) * 2019-12-24 2022-06-07 Ingersoll-Rand Industrial U.S., Inc. Latching hammer impact wrench
US11536107B2 (en) 2017-09-21 2022-12-27 Schlumberger Technology Corporation Systems and methods for downhole service tools
US11707818B2 (en) * 2019-09-20 2023-07-25 Milwaukee Electric Tool Corporation Two-piece hammer for impact tool
US11821277B2 (en) 2021-08-31 2023-11-21 Schlumberger Technology Corporation Downhole tool for jarring
US12084934B2 (en) 2021-06-25 2024-09-10 Schlumberger Technology Corporation Slot cutter system and operations
US12098608B2 (en) 2021-06-25 2024-09-24 Schlumberger Technology Corporation Cutting tool and controls for downhole mechanical services

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2544736A (en) * 1945-05-23 1951-03-13 Otto E Szekely Rotary impact hand tool
US2539678A (en) * 1945-08-31 1951-01-30 Ingersoll Rand Co Impact tool
US2587712A (en) * 1945-09-29 1952-03-04 Adiel Y Dodge Overload released clutch
US2691434A (en) * 1949-10-11 1954-10-12 Ingersoll Rand Co Biasing mechanism for impact wrenches
US2684738A (en) * 1949-12-27 1954-07-27 Reuben A Kaplan Rotary impact tool
US2641948A (en) * 1951-01-09 1953-06-16 Groov Pin Corp Driver tool for self-tapping inserts
US2720956A (en) * 1951-10-17 1955-10-18 Holman Brothers Ltd Impact wrenches
US2725961A (en) * 1951-12-11 1955-12-06 Spencer B Maurer Torque control for rotary impact tool
US2745528A (en) * 1953-01-05 1956-05-15 Chicago Pneumatic Tool Co Reversible impact wrench
US2712254A (en) * 1953-05-14 1955-07-05 Schodeberg Carl Theodore Power driven impact tool
US2725918A (en) * 1955-01-11 1955-12-06 Ingersoll Rand Co Tube rolling device
US2881884A (en) * 1955-01-12 1959-04-14 Chicago Pneumatic Tool Co Impact clutch
US2792732A (en) * 1955-09-23 1957-05-21 Black & Decker Mfg Co Rotary impacting nut running tool
DE1109107B (en) * 1957-01-31 1961-06-15 Bosch Gmbh Robert Motor-driven rotary impact device
US3001428A (en) * 1960-02-23 1961-09-26 Master Power Corp Rotary impact wrench
US3053360A (en) * 1960-12-30 1962-09-11 Albertson & Co Inc Rotary impact wrench mechanism
US3207237A (en) * 1962-07-03 1965-09-21 Bosch Gmbh Robert Apparatus for applying or dislodging screws and similar threaded fasteners
US5836403A (en) * 1996-10-31 1998-11-17 Snap-On Technologies, Inc. Reversible high impact mechanism
US8122971B2 (en) 2005-09-13 2012-02-28 Techtronic Power Tools Technology Limited Impact rotary tool with drill mode
US20110011606A1 (en) * 2005-09-13 2011-01-20 Whitmire Jason P Impact rotary tool with drill mode
US20070181319A1 (en) * 2005-09-13 2007-08-09 Whitmine Jason P Impact rotary tool with drill mode
US7861797B2 (en) * 2006-05-30 2011-01-04 Hilti Aktiengesellschaft Hand-held machine tool with slip clutch
US20070289759A1 (en) * 2006-05-30 2007-12-20 Markus Hartmann Hand-held machine tool with slip clutch
US20090038816A1 (en) * 2007-08-09 2009-02-12 Joshua Odell Johnson Impact wrench
US7673702B2 (en) * 2007-08-09 2010-03-09 Ingersoll-Rand Company Impact wrench
US20110203824A1 (en) * 2010-02-19 2011-08-25 Elger William A Impact device
US8297373B2 (en) 2010-02-19 2012-10-30 Milwaukee Electric Tool Corporation Impact device
US9289886B2 (en) 2010-11-04 2016-03-22 Milwaukee Electric Tool Corporation Impact tool with adjustable clutch
US11992921B2 (en) * 2011-04-05 2024-05-28 Ingersoll-Rand Industrial U.S., Inc. Impact wrench having dynamically tuned drive components and method thereof
US20200039037A1 (en) * 2011-04-05 2020-02-06 Ingersoll-Rand Company Impact wrench having dynamically tuned drive components and method thereof
CN103395047A (en) * 2012-03-05 2013-11-20 英格索尔-兰德公司 Power tool with titanium hammer case and associated flange interface
CN103395047B (en) * 2012-03-05 2017-06-13 英格索尔-兰德公司 Power tool with titanium hammer housing and associated flange-interface
US9272400B2 (en) 2012-12-12 2016-03-01 Ingersoll-Rand Company Torque-limited impact tool
EP2743034A2 (en) 2012-12-12 2014-06-18 Ingersoll-Rand Company Torque-limited impact tool
CN104148702A (en) * 2013-05-14 2014-11-19 罗伯特·博世有限公司 Handheld tool apparatus
US20140338944A1 (en) * 2013-05-14 2014-11-20 Robert Bosch Gmbh Hand tool device
EP2803447B1 (en) * 2013-05-14 2022-11-02 Robert Bosch GmbH Handheld tool apparatus
US10046449B2 (en) * 2013-05-14 2018-08-14 Robert Bosch Gmbh Hand tool device
CN104148702B (en) * 2013-05-14 2020-03-03 罗伯特·博世有限公司 Hand-held tool device
US10780562B2 (en) 2013-05-14 2020-09-22 Robert Bosch Gmbh Hand tool device
US9434056B2 (en) 2013-12-12 2016-09-06 Ingersoll-Rand Company Impact tools with pressure verification and/or adjustment
US9669526B2 (en) 2014-01-07 2017-06-06 Ingersoll-Rand Company Tools with socket retainers
US11536107B2 (en) 2017-09-21 2022-12-27 Schlumberger Technology Corporation Systems and methods for downhole service tools
US11707818B2 (en) * 2019-09-20 2023-07-25 Milwaukee Electric Tool Corporation Two-piece hammer for impact tool
US11351663B2 (en) * 2019-12-24 2022-06-07 Ingersoll-Rand Industrial U.S., Inc. Latching hammer impact wrench
US20210339361A1 (en) * 2020-05-01 2021-11-04 Milwaukee Electric Tool Corporation Rotary impact tool
US12053862B2 (en) * 2020-05-01 2024-08-06 Milwaukee Electric Tool Corporation Rotary impact tool
US12084934B2 (en) 2021-06-25 2024-09-10 Schlumberger Technology Corporation Slot cutter system and operations
US12098608B2 (en) 2021-06-25 2024-09-24 Schlumberger Technology Corporation Cutting tool and controls for downhole mechanical services
US11821277B2 (en) 2021-08-31 2023-11-21 Schlumberger Technology Corporation Downhole tool for jarring

Similar Documents

Publication Publication Date Title
US2160150A (en) Impact wrench
US2822677A (en) Spring holder
US2923191A (en) Power operated, predetermined torque release, axial-impact type hand tool
US2539678A (en) Impact tool
US2196589A (en) Impact tool
US3269466A (en) Impact tool
US3442360A (en) Power operated,predetermined torque release,bolt driver
US2957323A (en) Rolling impulse clutch
US2219865A (en) Impact wrench
US2514914A (en) Impact wrench
US2765059A (en) Torque control clutch device
US2836272A (en) Impact clutch
US2753965A (en) Impact tools
US2191608A (en) Electric hammer attachment
US2725961A (en) Torque control for rotary impact tool
US2691434A (en) Biasing mechanism for impact wrenches
US2128761A (en) Impact wrench
US2127855A (en) Power-operated tool
US2343332A (en) Impact clutch
US2268412A (en) Rotary impact tool
US3208569A (en) Impact clutch with sliding key in anvil
GB466339A (en) Improvements in or relating to power operated wrenches
US3006446A (en) Impact tools
US2563711A (en) Impact tool
US2718803A (en) Impact wrench
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载