US20230365836A1 - Cyanoacrylate compositions - Google Patents
Cyanoacrylate compositions Download PDFInfo
- Publication number
- US20230365836A1 US20230365836A1 US18/225,349 US202318225349A US2023365836A1 US 20230365836 A1 US20230365836 A1 US 20230365836A1 US 202318225349 A US202318225349 A US 202318225349A US 2023365836 A1 US2023365836 A1 US 2023365836A1
- Authority
- US
- United States
- Prior art keywords
- pmma
- weight
- percent
- cyanoacrylate
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 125
- 229920001651 Cyanoacrylate Polymers 0.000 title claims abstract description 37
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 135
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 135
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000003381 stabilizer Substances 0.000 claims description 9
- 239000007795 chemical reaction product Substances 0.000 claims description 8
- 229920000858 Cyclodextrin Polymers 0.000 claims description 5
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical group COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 230000035939 shock Effects 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000002562 thickening agent Substances 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 150000003983 crown ethers Chemical class 0.000 claims description 3
- 229910021485 fumed silica Inorganic materials 0.000 claims description 3
- 230000013011 mating Effects 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 2
- 230000009969 flowable effect Effects 0.000 claims description 2
- 239000003349 gelling agent Substances 0.000 claims description 2
- 150000003254 radicals Chemical class 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims 1
- 239000003112 inhibitor Substances 0.000 claims 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 238000011068 loading method Methods 0.000 abstract description 14
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 57
- 229940053009 ethyl cyanoacrylate Drugs 0.000 description 53
- 239000000377 silicon dioxide Substances 0.000 description 27
- 229920001971 elastomer Polymers 0.000 description 22
- 239000004014 plasticizer Substances 0.000 description 15
- -1 1,1-disubstituted ethylene Chemical group 0.000 description 14
- 239000000470 constituent Substances 0.000 description 12
- 239000012745 toughening agent Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 238000013001 point bending Methods 0.000 description 6
- 239000004830 Super Glue Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229940097362 cyclodextrins Drugs 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- ALOUNLDAKADEEB-UHFFFAOYSA-N dimethyl sebacate Chemical compound COC(=O)CCCCCCCCC(=O)OC ALOUNLDAKADEEB-UHFFFAOYSA-N 0.000 description 2
- JJJFUHOGVZWXNQ-UHFFFAOYSA-N enbucrilate Chemical class CCCCOC(=O)C(=C)C#N JJJFUHOGVZWXNQ-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- PZTAGFCBNDBBFZ-UHFFFAOYSA-N tert-butyl 2-(hydroxymethyl)piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CO PZTAGFCBNDBBFZ-UHFFFAOYSA-N 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 description 2
- MJHNUUNSCNRGJE-UHFFFAOYSA-N trimethyl benzene-1,2,4-tricarboxylate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C(C(=O)OC)=C1 MJHNUUNSCNRGJE-UHFFFAOYSA-N 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 1
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- NEFDVAJLNQFZTD-UHFFFAOYSA-N 2,3-diacetyloxypropyl acetate;propane-1,2,3-triol Chemical compound OCC(O)CO.CC(=O)OCC(OC(C)=O)COC(C)=O NEFDVAJLNQFZTD-UHFFFAOYSA-N 0.000 description 1
- AXWCVSOBRFLCJG-UHFFFAOYSA-N 2,5,12,15,22,25-hexaoxatetracyclo[24.4.0.06,11.016,21]triaconta-1(30),6,8,10,16,18,20,26,28-nonaene Chemical compound O1CCOC2=CC=CC=C2OCCOC2=CC=CC=C2OCCOC2=CC=CC=C21 AXWCVSOBRFLCJG-UHFFFAOYSA-N 0.000 description 1
- JYTXVMYBYRTJTI-UHFFFAOYSA-N 2-methoxyethyl 2-cyanoprop-2-enoate Chemical compound COCCOC(=O)C(=C)C#N JYTXVMYBYRTJTI-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- SVJYFWHFQPBIOY-UHFFFAOYSA-N 7,8,16,17-tetrahydro-6h,15h-dibenzo[b,i][1,4,8,11]tetraoxacyclotetradecine Chemical compound O1CCCOC2=CC=CC=C2OCCCOC2=CC=CC=C21 SVJYFWHFQPBIOY-UHFFFAOYSA-N 0.000 description 1
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 1
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- VIZORQUEIQEFRT-UHFFFAOYSA-N Diethyl adipate Chemical compound CCOC(=O)CCCCC(=O)OCC VIZORQUEIQEFRT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 229920002593 Polyethylene Glycol 800 Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- YSSSPARMOAYJTE-UHFFFAOYSA-N dibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC=CC=C21 YSSSPARMOAYJTE-UHFFFAOYSA-N 0.000 description 1
- MXCSCGGRLMRZMF-UHFFFAOYSA-N dibenzo-30-crown-10 Chemical compound O1CCOCCOCCOCCOC2=CC=CC=C2OCCOCCOCCOCCOC2=CC=CC=C21 MXCSCGGRLMRZMF-UHFFFAOYSA-N 0.000 description 1
- BBGKDYHZQOSNMU-UHFFFAOYSA-N dicyclohexano-18-crown-6 Chemical compound O1CCOCCOC2CCCCC2OCCOCCOC2CCCCC21 BBGKDYHZQOSNMU-UHFFFAOYSA-N 0.000 description 1
- QMLGNDFKJAFKGZ-UHFFFAOYSA-N dicyclohexano-24-crown-8 Chemical compound O1CCOCCOCCOC2CCCCC2OCCOCCOCCOC2CCCCC21 QMLGNDFKJAFKGZ-UHFFFAOYSA-N 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 229940014772 dimethyl sebacate Drugs 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229950010048 enbucrilate Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 1
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- RPQUGMLCZLGZTG-UHFFFAOYSA-N octyl cyanoacrylate Chemical class CCCCCCCCOC(=O)C(=C)C#N RPQUGMLCZLGZTG-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- ITCZEZQMUWEPQP-UHFFFAOYSA-N prop-2-enyl 2-cyanoprop-2-enoate Chemical compound C=CCOC(=O)C(=C)C#N ITCZEZQMUWEPQP-UHFFFAOYSA-N 0.000 description 1
- ZTYMNUBYYQNBFP-UHFFFAOYSA-N propyl 2-cyanoprop-2-enoate Chemical class CCCOC(=O)C(=C)C#N ZTYMNUBYYQNBFP-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
- C09J4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/315—Compounds containing carbon-to-nitrogen triple bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09J133/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
Definitions
- This invention relates to cyanoacrylate-containing compositions that include, in addition to the cyanoacrylate component, a polybutylmethacrylate-polymethylmethacrylate copolymer.
- the inventive cyanoacrylate compositions load up to nearly a threefold increase of polybutylmethacrylate-polymethylmethacrylate copolymer over conventional polymethylmethacrylate and cured products of the inventive cyanoacrylate compositions demonstrate improved flexibility in terms of modulus (at comparable loading levels as well as increased loading levels compared to conventional polymethylmethacrylate) without compromising fixture time or tensile shear strength.
- Cyanoacrylate adhesive compositions are well known, and widely used as quick setting, instant adhesives with a wide variety of uses. See H. V. Coover, D. W. Dreifus and J. T. O'Connor, “Cyanoacrylate Adhesives” in Handbook of Adhesives, 27, 463-77, I. Skeist, ed., Van Nostrand Reinhold, New York, 3rd ed. (1990). See also G. H. Millet, “Cyanoacrylate Adhesives” in Structural Adhesives: Chemistry and Technology , S. R. Hartshorn, ed., Plenum Press, New York, p. 249-307 (1986).
- Cyanoacrylate adhesives typically cure to form hard, brittle products. Oftentimes, improvements in flexibility can provide a wider array of commercial opportunities. Flexibility can be somewhat enhanced by the addition of elastomers or plasticizers. Many times the enhanced flexibility is short lived, however, as the product becomes brittle as cure progresses. And while flexibility is introduced to cyanoacrylate adhesives, it is typically not maintained on ageing the product and ordinarily the shear strength of the cured adhesive is reduced as well.
- U.S. Pat. No. 6,310,166 (Hickey) is directed to and claims a method of treating tissue, comprising applying to said tissue a composition comprising a polymerizable 1,1-disubstituted ethylene monomer and poly(vinyl acetate).
- thickeners other than poly(vinyl acetate) are given as “poly(butylmethacrylate) and poly(butylacrylate), also copolymers of various acrylate and methacrylate monomers, such as poly(butylmethacrylate-co-methylmethacrylate)” and that have “a high molecular weight, preferably at least 100,000, or at least 500,000 or at least 1,000,000.” (Col. 4, lines 42-45 and 60-61.)
- Cyanoacrylate compositions which include beyond the cyanoacrylate component, a polybutylmethacrylate-polymethylmethacrylate copolymer (oftentimes referred to in the FIGs. and the Examples as “PBMA-PMMA”) having a molecular weight below about 80,000 Mn are provided.
- the polybutylmethacrylate-polymethylmethacrylate copolymer should have a molecular weight in the range of about 10,000 Mn up to about 80,000 Mn, such as for instance about 60,000 Mn.
- polybutylmethacrylate-polymethylmethacrylate copolymer noted above as a filler provides for improved properties, such as flexibility, without increasing viscosity or compromising strength of the cured product or time to fixture, when compared to comparable cyanoacrylate compositions with polymethylmethacrylate (oftentimes referred to in the FIGs. and the Examples as “PMMA”), as is shown in the Examples.
- PMMA polymethylmethacrylate
- inventive cyanoacrylate compositions provide improved flexibility to cured products thereof, and an enhanced ability to retain that flexibility over time, even at lower loading levels and without showing an undesirable increase in viscosity.
- inventive cyanoacrylate compositions also demonstrate high shear strengths, which are usually lost when plasticizers are added to improve flexibility. Higher loading levels may be achieved using the polybutylmethacrylate-polymethylmethacrylate copolymer, without a significant impact on viscosity and with no observable loss in curing speed.
- This invention is also directed to a method of bonding together two substrates, which method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates.
- the present invention is directed to reaction products of the inventive compositions.
- FIG. 1 A depicts an x-y plot showing the viscosity increase with the increase in amount of PMMA (lower molecular weight, 80,000 g/mol) in an ethyl cyanoacrylate composition.
- FIG. 1 B depicts an x-y plot showing the viscosity increase with the increase in amount of PMMA (higher molecular weight, 450,000 g/mol) in an ethyl cyanoacrylate composition.
- FIG. 1 C depicts an x-y plot showing the viscosity increase with the increase in amount of PBMA-PMMA (60,000 g/mol) in an ethyl cyanoacrylate composition.
- FIG. 1 D depicts an x-y plot showing an amalgam of FIGS. 1 A- 1 C , illustrating the viscosity increase with the increase in amount of the three polymers in an ethyl cyanoacrylate composition.
- FIG. 2 A depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 15.5 percent by weight PMMA (lower molecular weight).
- FIG. 2 B depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 15.5 percent by weight PBMA-PMMA.
- FIG. 3 A depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 4 percent by weight rubber toughener and 15.5 percent by weight PMMA (lower molecular weight).
- FIG. 3 B depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 4 percent by weight rubber toughener and 15.5% of PBMA-PMMA
- FIG. 4 depicts a bar chart of modulus (in MPa) of Samples A, B, E and F, which have 15.5 percent by weight of either PMMA or PBMA-PMMA, with and without 4 percent by weight of silica.
- FIG. 5 depicts a bar chart of modulus (in MPa) of Samples C, D, G and H, which have 15.5 percent by weight of either PMMA or PBMA-PMMA, with and without 4 percent by weight of silica, and 10 percent by weight of plasticizer.
- FIG. 6 depicts a bar chart of modulus (in MPa) of Samples I and J, which have 4 percent by weight of rubber toughener and 3 percent by weight of either PMMA or PBMA-PMMA.
- FIG. 7 depicts a bar chart of modulus (in MPa) of Samples K and L, which have 3 percent by weight of either PMMA or PBMA-PMMA, 6 percent by weight of rubber toughener and 4 percent by weight of silica.
- the cure intervals depicted are 24 hours, 7 days, and 1 month.
- FIG. 8 depicts a bar chart of tensile shear strength (in MPa) of Samples K and L, on two different substrates.
- FIG. 9 depicts a bar chart of modulus (in MPa), of a cyanoacrylate composition made from ethyl cyanoacrylate containing 15.5 percent by weight of either PMMA or PMMA-PBMA of different molecular weights.
- the cure intervals are 24 hours, 7 days and 1 month.
- FIG. 10 depicts a bar chart of modulus (in MPa), of a cyanoacrylate composition made from ethyl cyanoacrylate containing 25 percent by weight of PMMA-PBMA of different molecular weights.
- the cure intervals are 24 hours and 2 weeks.
- this invention is directed to a cyanoacrylate composition, which includes beyond the cyanoacrylate component, a polybutylmethacrylate-polymethylmethacrylate copolymer having a molecular weight below about 80,000 Mn.
- the polybutylmethacrylate-polymethylmethacrylate copolymer has a molecular weight in the range of about 10,000 Mn up to about 80,000 Mn.
- the polybutylmethacrylate-polymethylmethacrylate copolymer has a molecular weight of about 60,000 Mn.
- a polybutylmethacrylate-polymethylmethacrylate copolymer having the molecular weight ceiling noted above has been used with surprising and unexpected results.
- these polybutylmethacrylate-polymethylmethacrylate copolymers are available commercially from Evonik GmbH, Essen, DE under the trade name DYNACOLL.
- DYNACOLL A specific example of such a copolymer is DYNACOLL AC 4830.
- the polybutylmethacrylate-polymethylmethacrylate copolymer should be present in an amount up to about 50 percent by weight of the total composition, such as in the range of about 10 percent by weight to about 45 percent by weight of the total composition, desirably about 15 percent by weight to about 25 percent by weight of the total composition.
- the polybutylmethacrylate-polymethylmethacrylate copolymer influences the cured products of the cyanoacrylate compositions to demonstrate improved flexibility measured using a three point bending test without compromising strength compared to polymethylmethacrylate present at least the same loading level.
- the three point bending test used in the practice of this invention is described as according to ASTM D790-03, which relates to measuring the flexural properties of plastics.
- ASTM D790-03 which relates to measuring the flexural properties of plastics.
- the inventive composition is flowable at room temperature and should have a viscosity up to about 175,000 mPa ⁇ s, such as up′ to about 100,000 mPa ⁇ s.
- the polybutylmethacrylate-polymethylmethacrylate copolymer used in the inventive composition should be present in an amount up to about 50 percent by weight of the total composition and afford a viscosity of the inventive composition of up to about 1750,000 mPa ⁇ s, such as up to about 100,000 mPa ⁇ s.
- the inventive composition should exhibit a Modulus of Elasticity (referred to hereinafter as “modulus”) after a period of time of about 1 week at a temperature of about 22° C. of less than about 2,000 MPa, such as about 1,700 MPa, for instance 1,500 MPa.
- modulus a Modulus of Elasticity
- the polybutylmethacrylate-polymethylmethacrylate copolymer should be present in an amount in the range of about 2 percent by weight to about 45 percent by weight of the total composition.
- the inventive composition should exhibit a modulus after a period of time of about 2 weeks at a temperature of about 22° C. of less than about 2,000 MPa, such as about 1,700 MPa, for instance 1,500 MPa.
- the cyanoacrylate component includes cyanoacrylate monomers which may be chosen with a raft of substituents, such as those represented by H 2 C ⁇ C(CN)—COOR, where R is selected from C 1-15 alkyl, alkoxyalkyl, cycloalkyl, alkenyl, aralkyl, aryl, allyl and haloalkyl groups.
- the cyanoacrylate monomer is selected from methyl cyanoacrylate, ethyl-2-cyanoacrylate, propyl cyanoacrylates, butyl cyanoacrylates (such as n-butyl-2-cyanoacrylate), octyl cyanoacrylates, allyl cyanoacrylate, ⁇ -methoxyethyl cyanoacrylate and combinations thereof.
- a particularly desirable one is ethyl-2-cyanoacrylate.
- the cyanoacrylate component should be included in the compositions in an amount within the range of from about 55 percent by weight to about 98 percent by weight, with the range of about 90 percent by weight to about 99 percent by weight being desirable, and about 95 percent by weight of the total composition being particularly desirable.
- Accelerators may also be included in the inventive cyanoacrylate compositions, such as any one or more selected from calixarenes and oxacalixarenes, silacrowns, crown ethers, cyclodextrins, polyethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds and combinations thereof.
- calixarenes those within the following structure are useful herein:
- R 1 is alkyl, alkoxy, substituted alkyl or substituted alkoxy
- R 2 is H or alkyl
- n is 4, 6 or 8.
- calixarene is tetrabutyl tetra[2-ethoxy-2-oxoethoxy]calix-4-arene.
- a host of crown ethers are known. For instance, any one or more of 15-crown-5, 18-crown-6, dibenzo-18-crown-6, benzo-15-crown-5-dibenzo-24-crown-8, dibenzo-30-crown-10, tribenzo-18-crown-6, asym-dibenzo-22-crown-6, dibenzo-14-crown-4, dicyclohexyl-18-crown-6, dicyclohexyl-24-crown-8, cyclohexyl-12-crown-4, 1,2-decalyl-15-crown-5, 1,2-naphtho-15-crown-5, 3,4,5-naphtyl-16-crown-5, 1,2-methyl-benzo-18-crown-6, 1,2-methylbenzo-5, 6-methylbenzo-18-crown-6, 1,2-t-butyl-18-crown-6, 1,2-vinylbenzo-15-crown-5, 1,2-
- cyclodextrins may be used in connection with the present invention.
- those described and claimed in U.S. Pat. No. 5,312,864 (Wenz), the disclosure of which is hereby expressly incorporated herein by reference, as hydroxyl group derivatives of an ⁇ , ⁇ or ⁇ -cyclodextrin which is at least partly soluble in the cyanoacrylate would be appropriate choices for use herein as the first accelerator component.
- poly(ethylene glycol) di(meth)acrylates suitable for use herein include those within the following structure:
- n is greater than 3, such as within the range of 3 to 12, with n being 9 as particularly desirable. More specific examples include PEG 200 DMA, (where n is about 4) PEG 400 DMA (where n is about 9), PEG 600 DMA (where n is about 14), and PEG 800 DMA (where n is about 19), where the number (e.g., 400) represents the average molecular weight of the glycol portion of the molecule, excluding the two methacrylate groups, expressed as grams/mole (i.e., 400 g/mol).
- a particularly desirable PEG DMA is PEG 400 DMA.
- ethoxylated hydric compounds or ethoxylated fatty alcohols that may be employed
- appropriate ones may be chosen from those within the following structure:
- C m can be a linear or branched alkyl or alkenyl chain
- m is an integer between 1 to 30, such as from 5 to 20
- n is an integer between 2 to 30, such as from 5 to 15, and R may be H or alkyl, such as C 1-6 alkyl.
- the accelerator embraced by the above structures should be included in the compositions in an amount within the range of from about 0.01 percent by weight to about 10 percent by weight, with the range of about 0.1 by weight to about 0.5 percent by weight being desirable, and about 0.4 percent by weight of the total composition being particularly desirable.
- a stabilizer package is also ordinarily found in cyanoacrylate compositions.
- the stabilizer package may include one or more free radical stabilizers and anionic stabilizers, each of the identity and amount of which are well known to those of ordinary skill in the art. See e.g. U.S. Pat. Nos. 5,530,037 and 6,607,632, the disclosures of each of which are hereby incorporated herein by reference.
- the inventive compositions may also include a rubber toughening component.
- the rubber toughening component may be selected from (a) reaction products of the combination of ethylene, methyl acrylate and monomers having carboxylic acid cure sites, (b) dipolymers of ethylene and methyl acrylate, (c) vinylidene chloride-acrylonitrile copolymers, (d) vinyl chloride/vinyl acetate copolymer, (e) copolymers of polyethylene and polyvinyl acetate, and combinations thereof.
- the rubber toughening component is a reaction product of the combination of ethylene, methyl acrylate and monomers having carboxylic acid cure sites, wherein the reaction product is free of release agents, anti-oxidants, stearic acid and polyethylene glycol ether wax.
- the rubber toughener when used, should be present in an amount of up to about 8 percent by weight, such as about 2 percent by weight to about 4 percent by weight of the total composition.
- the inventive compositions may also include a plasticizer.
- suitable plasticizers are legion.
- the plasticizer is suitably selected from at least one of alkyleneglycol diesters or hydroxy carboxylic acid esters.
- Alkyleneglycol diesters of Formula I are useful:
- Useful hydroxy carboxylic acid esters include those wherein the structural formula of the plasticizer contains one or more moieties or “B” or “C” below, but at least one moiety “A”. The two remaining free valences (at both ends of the molecule) are saturated either with —H or —CH 3 ,
- R′ is —C(O)H, —C(O)CH 3 , —C(O)C 2 H 5 .
- R is independently selected from those moieties above i.e. each R group does not have to be the same. The same is true also for R′ where there is more than one R′.
- hydroxy carboxylic acid esters is a citrate ester
- esters of isocitric acid, tartaric acid, malic acid, lactic acid, glyceric acid and glycolic acid are examples.
- Suitable plasticizers for incorporation in the plasticizer component include the following trimethyl trimellitate, diethylene glycol dibenzoate, diethyl malonate, triethyl-O-acetyl citrate, benzylbutyl phthalate, dipropylene glycol dibenzoate, diethyl adipate, tributyl-O-acetyl citrate, dimethyl sebacate, and combinations thereof.
- Plasticizers which have contributed to polymeric materials demonstrating particularly good properties include tributyl-O-acetyl citrate (“TBAC”), triethyl-O-acetyl citrate (“TEAC”), dipropylene glycol dibenzoate (“DPGDB”), diethylene glycol dibenzoate (“DEGBD”) and glycerol triacetate (“GTA”).
- TBAC tributyl-O-acetyl citrate
- TEAC triethyl-O-acetyl citrate
- DPGDB dipropylene glycol dibenzoate
- DEGBD diethylene glycol dibenzoate
- GTA glycerol triacetate
- plasticizer is GTA.
- the plasticizer when used, should be present in an amount of up to about 20 percent by weight, Such as about 5 percent by weight to about 10 percent by weight, of the total composition.
- compositions may also include a thixotrope (such as fumed silica), a gelling agent, and/or a thickener, as appropriate for a given application.
- a thixotrope such as fumed silica
- a gelling agent such as silica
- a thickener such as a thickener
- a method of bonding together two substrates which method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates for a time sufficient to permit the adhesive to fixture.
- reaction products of the so-described compositions there are provided reaction products of the so-described compositions.
- a method of preparing the so-described compositions includes providing a cyanoacrylate component, and combining therewith with mixing a polybutylmethacrylate-polymethylmethacrylate copolymer.
- Silica was added to each of the PMMA-containing ethyl cyanoacrylate composition and the PBMA-PMMA-containing ethyl cyanoacrylate composition at varying levels, as shown below in Tables 2A (for the PMMA-containing compositions) and 2B (for the PBMA-PMMA-containing compositions).
- the PMMA (80,000 g/mol) and the PBMA-PMMA were each added at a level of 15.5 percent by weight.
- Tables 2A and 2B capture the viscosity of silica-containing ethyl cyanoacrylate compositions with PBMA-PMMA and silica-containing ethyl cyanoacrylate compositions with PMMA, at progressively higher loading levels on a percent by weight basis. These data are depicted in FIGS. 2 A and 2 B , respectively.
- PBMA-PMMA when combined with silica, can produce ethyl cyanoacrylate compositions having thixotropy, in a similar way to PMMA.
- a rubber toughener here, VAMAC VCS 5500, from Dow DuPont
- silica levels were added to each of a PMMA-containing ethyl cyanoacrylate composition and a PBMA-PMMA-containing ethyl cyanoacrylate composition.
- the PMMA (80,000 g/mol) and the PBMA-PMMA were added at a level of 15.5 percent by weight.
- Tables 3A and 3B capture the viscosity of silica-containing rubber toughened ethyl cyanoacrylate compositions with PBMA-PMMA and silica-containing rubber toughened ethyl cyanoacrylate compositions with PMMA, respectively, at progressively higher levels on a percent by weight basis. These data are depicted in FIGS. 3 A and 3 B , respectively.
- the viscosity data demonstrates that an ethyl cyanoacrylate composition in gel formed is produced where PBMA-PMMA and silica are combined, in the presence of a rubber toughener.
- Table 4 shows the constituents of four ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.1015 percent by weight.
- the ethyl cyanoacrylate compositions with PBMA-PMMA show improved modulus when compared to the compositions with PMMA, both with and without silica.
- Table 6 shows the constituents of four ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.1015 percent by weight.
- the compositions were prepared using either PMMA or PBMA-PMMA. Here, however, 10 percent by weight of a plasticizer (here, glycerol triacetin) was added to each of the compositions.
- a plasticizer here, glycerol triacetin
- the plasticized ethyl cyanoacrylate compositions with PBMA-PMMA show a decrease in modulus when compared to the compositions with PMMA, both with and without silica.
- the PBMA-PMMA-containing ethyl cyanoacrylate compositions still shows an advantage over PMMA-containing ethyl cyanoacrylate compositions.
- Table 8 shows the constituents of two ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.2145 percent by weight.
- the compositions were prepared using either PMMA or PBMA-PMMA. Here, however, 4 percent by weight of a rubber toughener (here, VAMAC VCS 5500) was added to each of the compositions.
- Example 5 shows that combining PBMA-PMMA with rubber tougheners in an ethyl cyanoacrylate composition confers improved performance over a comparable composition with PMMA instead, with respect to modulus values, without compromising the toughness achieved from the rubber material.
- Table 10 shows the constituents of two ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.2145 percent by weight.
- the compositions were prepared using either PMMA or PBMA-PMMA. Here, however, 6 percent by weight of a rubber toughener (here, VAMAC VCS 5500) and 4 percent by weight of silica was added to each of the compositions.
- the samples were each cured on a plastic mold for a period of time of about 24 hours and the modulus results from the three point bending tests carried out after 24 hours, 7 days and 1 month cure intervals are captured in Table 11 below and shown in FIG. 7 .
- the tensile shear strength results on two different substrates are captured in Table 12 below and shown in FIG. 8 .
- PBMA-PMMA is advantageous over PMMA in cyanoacrylates, as the cured cyanoacrylate with PBMA-PMMA shows lower modulus (and thus greater flexibility) for up to one month.
- significantly PBMA-PMMA having a molecular weight below about 80,000 Mn are preferable, as flexibility can be achieved without as significant an impact on the viscosity. More specifically, a PBMA-PMMA having a molecular weight of 140,000 Mn (along the lines disclosed in the '166 patent) shows significantly higher viscosities than PBMA-PMMA having a molecular weight of 60,000 Mn.
- the PBMA-PMMA-containing ethyl cyanoacrylate composition (of 60,000 Mn, Sample P) showed significant improvement in heat resistance over the PMMA counterpart (Sample R). And the PBMA-PMMA-containing ethyl cyanoacrylate composition (of 60,000 Mn, Sample P) outperformed the PBMA-PMMA-containing ethyl cyanoacrylate composition (of 140,000 Mn, Sample Q).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
- This invention relates to cyanoacrylate-containing compositions that include, in addition to the cyanoacrylate component, a polybutylmethacrylate-polymethylmethacrylate copolymer. The inventive cyanoacrylate compositions load up to nearly a threefold increase of polybutylmethacrylate-polymethylmethacrylate copolymer over conventional polymethylmethacrylate and cured products of the inventive cyanoacrylate compositions demonstrate improved flexibility in terms of modulus (at comparable loading levels as well as increased loading levels compared to conventional polymethylmethacrylate) without compromising fixture time or tensile shear strength.
- Cyanoacrylate adhesive compositions are well known, and widely used as quick setting, instant adhesives with a wide variety of uses. See H. V. Coover, D. W. Dreifus and J. T. O'Connor, “Cyanoacrylate Adhesives” in Handbook of Adhesives, 27, 463-77, I. Skeist, ed., Van Nostrand Reinhold, New York, 3rd ed. (1990). See also G. H. Millet, “Cyanoacrylate Adhesives” in Structural Adhesives: Chemistry and Technology, S. R. Hartshorn, ed., Plenum Press, New York, p. 249-307 (1986).
- Cyanoacrylate adhesives typically cure to form hard, brittle products. Oftentimes, improvements in flexibility can provide a wider array of commercial opportunities. Flexibility can be somewhat enhanced by the addition of elastomers or plasticizers. Many times the enhanced flexibility is short lived, however, as the product becomes brittle as cure progresses. And while flexibility is introduced to cyanoacrylate adhesives, it is typically not maintained on ageing the product and ordinarily the shear strength of the cured adhesive is reduced as well.
- Thus, it would be desirable to impart flexibility to a cyanoacrylate adhesive, which is maintained particularly after ageing, and to at least maintain the strength of the adhesive bond that is formed.
- In an unrelated piece of technology, U.S. Pat. No. 6,310,166 (Hickey) is directed to and claims a method of treating tissue, comprising applying to said tissue a composition comprising a polymerizable 1,1-disubstituted ethylene monomer and poly(vinyl acetate). In the '166 patent, examples of suitable thickeners other than poly(vinyl acetate) are given as “poly(butylmethacrylate) and poly(butylacrylate), also copolymers of various acrylate and methacrylate monomers, such as poly(butylmethacrylate-co-methylmethacrylate)” and that have “a high molecular weight, preferably at least 100,000, or at least 500,000 or at least 1,000,000.” (Col. 4, lines 42-45 and 60-61.)
- Notwithstanding the state of the art and the efforts to date to improve the flexibility of cyanoacrylate compositions, there remained a long felt, yet unmet, need to provide flexibility to cured reaction products of such cyanoacrylate compositions without compromising strength. Until now.
- Cyanoacrylate compositions, which include beyond the cyanoacrylate component, a polybutylmethacrylate-polymethylmethacrylate copolymer (oftentimes referred to in the FIGs. and the Examples as “PBMA-PMMA”) having a molecular weight below about 80,000 Mn are provided. The polybutylmethacrylate-polymethylmethacrylate copolymer should have a molecular weight in the range of about 10,000 Mn up to about 80,000 Mn, such as for instance about 60,000 Mn.
- The inclusion of the polybutylmethacrylate-polymethylmethacrylate copolymer noted above as a filler provides for improved properties, such as flexibility, without increasing viscosity or compromising strength of the cured product or time to fixture, when compared to comparable cyanoacrylate compositions with polymethylmethacrylate (oftentimes referred to in the FIGs. and the Examples as “PMMA”), as is shown in the Examples.
- The inventive cyanoacrylate compositions provide improved flexibility to cured products thereof, and an enhanced ability to retain that flexibility over time, even at lower loading levels and without showing an undesirable increase in viscosity. The inventive cyanoacrylate compositions also demonstrate high shear strengths, which are usually lost when plasticizers are added to improve flexibility. Higher loading levels may be achieved using the polybutylmethacrylate-polymethylmethacrylate copolymer, without a significant impact on viscosity and with no observable loss in curing speed.
- This invention is also directed to a method of bonding together two substrates, which method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates.
- In addition, the present invention is directed to reaction products of the inventive compositions.
- The invention will be more fully understood by a reading of the section entitled “Detailed Description”, which follows.
-
FIG. 1A depicts an x-y plot showing the viscosity increase with the increase in amount of PMMA (lower molecular weight, 80,000 g/mol) in an ethyl cyanoacrylate composition. -
FIG. 1B depicts an x-y plot showing the viscosity increase with the increase in amount of PMMA (higher molecular weight, 450,000 g/mol) in an ethyl cyanoacrylate composition. -
FIG. 1C depicts an x-y plot showing the viscosity increase with the increase in amount of PBMA-PMMA (60,000 g/mol) in an ethyl cyanoacrylate composition. -
FIG. 1D depicts an x-y plot showing an amalgam ofFIGS. 1A-1C , illustrating the viscosity increase with the increase in amount of the three polymers in an ethyl cyanoacrylate composition. -
FIG. 2A depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 15.5 percent by weight PMMA (lower molecular weight). -
FIG. 2B depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 15.5 percent by weight PBMA-PMMA. -
FIG. 3A depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 4 percent by weight rubber toughener and 15.5 percent by weight PMMA (lower molecular weight). -
FIG. 3B depicts an x-y plot showing the viscosity increase with the increase of silica in an ethyl cyanoacrylate composition containing 4 percent by weight rubber toughener and 15.5% of PBMA-PMMA -
FIG. 4 depicts a bar chart of modulus (in MPa) of Samples A, B, E and F, which have 15.5 percent by weight of either PMMA or PBMA-PMMA, with and without 4 percent by weight of silica. -
FIG. 5 depicts a bar chart of modulus (in MPa) of Samples C, D, G and H, which have 15.5 percent by weight of either PMMA or PBMA-PMMA, with and without 4 percent by weight of silica, and 10 percent by weight of plasticizer. -
FIG. 6 depicts a bar chart of modulus (in MPa) of Samples I and J, which have 4 percent by weight of rubber toughener and 3 percent by weight of either PMMA or PBMA-PMMA. -
FIG. 7 depicts a bar chart of modulus (in MPa) of Samples K and L, which have 3 percent by weight of either PMMA or PBMA-PMMA, 6 percent by weight of rubber toughener and 4 percent by weight of silica. The cure intervals depicted are 24 hours, 7 days, and 1 month. -
FIG. 8 depicts a bar chart of tensile shear strength (in MPa) of Samples K and L, on two different substrates. -
FIG. 9 depicts a bar chart of modulus (in MPa), of a cyanoacrylate composition made from ethyl cyanoacrylate containing 15.5 percent by weight of either PMMA or PMMA-PBMA of different molecular weights. The cure intervals are 24 hours, 7 days and 1 month. -
FIG. 10 depicts a bar chart of modulus (in MPa), of a cyanoacrylate composition made from ethyl cyanoacrylate containing 25 percent by weight of PMMA-PBMA of different molecular weights. The cure intervals are 24 hours and 2 weeks. - As noted above, this invention is directed to a cyanoacrylate composition, which includes beyond the cyanoacrylate component, a polybutylmethacrylate-polymethylmethacrylate copolymer having a molecular weight below about 80,000 Mn. In some embodiments, the polybutylmethacrylate-polymethylmethacrylate copolymer has a molecular weight in the range of about 10,000 Mn up to about 80,000 Mn. Desirably, the polybutylmethacrylate-polymethylmethacrylate copolymer has a molecular weight of about 60,000 Mn.
- Here, rather than using a conventional thickener, polymethylmethacrylate, a polybutylmethacrylate-polymethylmethacrylate copolymer having the molecular weight ceiling noted above has been used with surprising and unexpected results. Examples of these polybutylmethacrylate-polymethylmethacrylate copolymers are available commercially from Evonik GmbH, Essen, DE under the trade name DYNACOLL. A specific example of such a copolymer is DYNACOLL AC 4830.
- The polybutylmethacrylate-polymethylmethacrylate copolymer should be present in an amount up to about 50 percent by weight of the total composition, such as in the range of about 10 percent by weight to about 45 percent by weight of the total composition, desirably about 15 percent by weight to about 25 percent by weight of the total composition.
- At this molecular weight and percent by weight in the composition, the polybutylmethacrylate-polymethylmethacrylate copolymer influences the cured products of the cyanoacrylate compositions to demonstrate improved flexibility measured using a three point bending test without compromising strength compared to polymethylmethacrylate present at least the same loading level. The three point bending test used in the practice of this invention is described as according to ASTM D790-03, which relates to measuring the flexural properties of plastics. Here, when the cyanoacrylate composition is cured an assembly constructed from bonded plastic is formed, which is then stored and tested at room temperature and humidity (temperature controlled at 22±1° C., humidity typically in the range 30-50%).
- The inventive composition is flowable at room temperature and should have a viscosity up to about 175,000 mPa·s, such as up′ to about 100,000 mPa·s.
- In one aspect, the polybutylmethacrylate-polymethylmethacrylate copolymer used in the inventive composition should be present in an amount up to about 50 percent by weight of the total composition and afford a viscosity of the inventive composition of up to about 1750,000 mPa·s, such as up to about 100,000 mPa·s.
- In this aspect, once cured, the inventive composition should exhibit a Modulus of Elasticity (referred to hereinafter as “modulus”) after a period of time of about 1 week at a temperature of about 22° C. of less than about 2,000 MPa, such as about 1,700 MPa, for instance 1,500 MPa.
- In another aspect, the polybutylmethacrylate-polymethylmethacrylate copolymer should be present in an amount in the range of about 2 percent by weight to about 45 percent by weight of the total composition.
- In this aspect, once cured, the inventive composition should exhibit a modulus after a period of time of about 2 weeks at a temperature of about 22° C. of less than about 2,000 MPa, such as about 1,700 MPa, for instance 1,500 MPa.
- The cyanoacrylate component includes cyanoacrylate monomers which may be chosen with a raft of substituents, such as those represented by H2C═C(CN)—COOR, where R is selected from C1-15 alkyl, alkoxyalkyl, cycloalkyl, alkenyl, aralkyl, aryl, allyl and haloalkyl groups. Desirably, the cyanoacrylate monomer is selected from methyl cyanoacrylate, ethyl-2-cyanoacrylate, propyl cyanoacrylates, butyl cyanoacrylates (such as n-butyl-2-cyanoacrylate), octyl cyanoacrylates, allyl cyanoacrylate, β-methoxyethyl cyanoacrylate and combinations thereof. A particularly desirable one is ethyl-2-cyanoacrylate.
- The cyanoacrylate component should be included in the compositions in an amount within the range of from about 55 percent by weight to about 98 percent by weight, with the range of about 90 percent by weight to about 99 percent by weight being desirable, and about 95 percent by weight of the total composition being particularly desirable.
- Accelerators may also be included in the inventive cyanoacrylate compositions, such as any one or more selected from calixarenes and oxacalixarenes, silacrowns, crown ethers, cyclodextrins, polyethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds and combinations thereof.
- Of the calixarenes and oxacalixarenes, many are known, and are reported in the patent literature. See e.g. U.S. Pat. Nos. 4,556,700, 4,622,414, 4,636,539, 4,695,615, 4,718,966, and 4,855,461, the disclosures of each of which are hereby expressly incorporated herein by reference.
- For instance, as regards calixarenes, those within the following structure are useful herein:
- where R1 is alkyl, alkoxy, substituted alkyl or substituted alkoxy; R2 is H or alkyl; and n is 4, 6 or 8.
- One particularly desirable calixarene is tetrabutyl tetra[2-ethoxy-2-oxoethoxy]calix-4-arene.
- A host of crown ethers are known. For instance, any one or more of 15-crown-5, 18-crown-6, dibenzo-18-crown-6, benzo-15-crown-5-dibenzo-24-crown-8, dibenzo-30-crown-10, tribenzo-18-crown-6, asym-dibenzo-22-crown-6, dibenzo-14-crown-4, dicyclohexyl-18-crown-6, dicyclohexyl-24-crown-8, cyclohexyl-12-crown-4, 1,2-decalyl-15-crown-5, 1,2-naphtho-15-crown-5, 3,4,5-naphtyl-16-crown-5, 1,2-methyl-benzo-18-crown-6, 1,2-methylbenzo-5, 6-methylbenzo-18-crown-6, 1,2-t-butyl-18-crown-6, 1,2-vinylbenzo-15-crown-5, 1,2-vinylbenzo-18-crown-6, 1,2-t-butyl-cyclohexyl-18-crown-6, asym-dibenzo-22-crown-6 and 1,2-benzo-1,4-benzo-5-oxygen-20-crown-7 may be used. See U.S. Pat. No. 4,837,260 (Sato), the disclosure of which is hereby expressly incorporated herein by reference. Of the silacrowns, again many are known, and are reported in the literature.
- Specific examples of silacrown compounds useful in the inventive compositions include:
- See e.g. U.S. Pat. No. 4,906,317 (Liu), the disclosure of which is hereby expressly incorporated herein by reference.
- Many cyclodextrins may be used in connection with the present invention. For instance, those described and claimed in U.S. Pat. No. 5,312,864 (Wenz), the disclosure of which is hereby expressly incorporated herein by reference, as hydroxyl group derivatives of an α, β or γ-cyclodextrin which is at least partly soluble in the cyanoacrylate would be appropriate choices for use herein as the first accelerator component.
- For instance, poly(ethylene glycol) di(meth)acrylates suitable for use herein include those within the following structure:
- where n is greater than 3, such as within the range of 3 to 12, with n being 9 as particularly desirable. More specific examples include
PEG 200 DMA, (where n is about 4)PEG 400 DMA (where n is about 9),PEG 600 DMA (where n is about 14), andPEG 800 DMA (where n is about 19), where the number (e.g., 400) represents the average molecular weight of the glycol portion of the molecule, excluding the two methacrylate groups, expressed as grams/mole (i.e., 400 g/mol). A particularly desirable PEG DMA isPEG 400 DMA. - And of the ethoxylated hydric compounds (or ethoxylated fatty alcohols that may be employed), appropriate ones may be chosen from those within the following structure:
- where Cm can be a linear or branched alkyl or alkenyl chain, m is an integer between 1 to 30, such as from 5 to 20, n is an integer between 2 to 30, such as from 5 to 15, and R may be H or alkyl, such as C1-6 alkyl.
- When used, the accelerator embraced by the above structures should be included in the compositions in an amount within the range of from about 0.01 percent by weight to about 10 percent by weight, with the range of about 0.1 by weight to about 0.5 percent by weight being desirable, and about 0.4 percent by weight of the total composition being particularly desirable.
- A stabilizer package is also ordinarily found in cyanoacrylate compositions. The stabilizer package may include one or more free radical stabilizers and anionic stabilizers, each of the identity and amount of which are well known to those of ordinary skill in the art. See e.g. U.S. Pat. Nos. 5,530,037 and 6,607,632, the disclosures of each of which are hereby incorporated herein by reference.
- The inventive compositions may also include a rubber toughening component. Oftentimes, the rubber toughening component may be selected from (a) reaction products of the combination of ethylene, methyl acrylate and monomers having carboxylic acid cure sites, (b) dipolymers of ethylene and methyl acrylate, (c) vinylidene chloride-acrylonitrile copolymers, (d) vinyl chloride/vinyl acetate copolymer, (e) copolymers of polyethylene and polyvinyl acetate, and combinations thereof.
- Desirably, the rubber toughening component is a reaction product of the combination of ethylene, methyl acrylate and monomers having carboxylic acid cure sites, wherein the reaction product is free of release agents, anti-oxidants, stearic acid and polyethylene glycol ether wax.
- The rubber toughener, when used, should be present in an amount of up to about 8 percent by weight, such as about 2 percent by weight to about 4 percent by weight of the total composition.
- The inventive compositions may also include a plasticizer. Examples of suitable plasticizers are legion. For instance, the plasticizer is suitably selected from at least one of alkyleneglycol diesters or hydroxy carboxylic acid esters. Alkyleneglycol diesters of Formula I are useful:
- where:
-
- each R is independently phenyl or hydroxyphenyl;
- R′═—[(CH2)n—O]m—;
- n is an integer from 1 to 4; and
- m is 1 or 2.
- Useful hydroxy carboxylic acid esters include those wherein the structural formula of the plasticizer contains one or more moieties or “B” or “C” below, but at least one moiety “A”. The two remaining free valences (at both ends of the molecule) are saturated either with —H or —CH3,
- where:
-
- R is —CH3, —C2H5, -propyl, -iso-propyl, -butyl, -iso-butyl, -sec-butyl, -t-butyl; and
- R′ is —C(O)H, —C(O)CH3, —C(O)C2H5.
- In the case of more than one R group in a molecule, R is independently selected from those moieties above i.e. each R group does not have to be the same. The same is true also for R′ where there is more than one R′.
- Examples of a hydroxy carboxylic acid esters is a citrate ester:
- Thus, the molecule would correspond to “H—B-A-B—H” (H=hydrogen terminus). Other examples are esters of isocitric acid, tartaric acid, malic acid, lactic acid, glyceric acid and glycolic acid.
- Suitable plasticizers for incorporation in the plasticizer component include the following trimethyl trimellitate, diethylene glycol dibenzoate, diethyl malonate, triethyl-O-acetyl citrate, benzylbutyl phthalate, dipropylene glycol dibenzoate, diethyl adipate, tributyl-O-acetyl citrate, dimethyl sebacate, and combinations thereof.
- Plasticizers which have contributed to polymeric materials demonstrating particularly good properties include tributyl-O-acetyl citrate (“TBAC”), triethyl-O-acetyl citrate (“TEAC”), dipropylene glycol dibenzoate (“DPGDB”), diethylene glycol dibenzoate (“DEGBD”) and glycerol triacetate (“GTA”).
- A particularly desirable example of plasticizer is GTA.
- The plasticizer, when used, should be present in an amount of up to about 20 percent by weight, Such as about 5 percent by weight to about 10 percent by weight, of the total composition.
- The inventive compositions may also include a thixotrope (such as fumed silica), a gelling agent, and/or a thickener, as appropriate for a given application.
- Reaction products of the inventive compositions are also provided.
- In another aspect of the invention, there is provided a method of bonding together two substrates, which method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates for a time sufficient to permit the adhesive to fixture.
- In yet another aspect of the invention, there are provided reaction products of the so-described compositions.
- In still another aspect of the invention, there is provided a method of preparing the so-described compositions. The method includes providing a cyanoacrylate component, and combining therewith with mixing a polybutylmethacrylate-polymethylmethacrylate copolymer.
- The invention will be further illustrated by the examples which follow.
- All samples were prepared by mixing together the noted constituents for a sufficient period of time to ensure substantial homogeneity of the constituents. Ordinarily, about 30 minutes suffices, depending of course on the quantity of the constituents used.
- Here, viscosity measurements were taken for PMMA (at two different molecular weights) and PBMA-PMMA (at a 60,000 Mn) in ethyl cyanoacrylate at various loading levels. Tables 1A, 1B and 1C below show the loadings and the observed respective viscosities.
FIGS. 1A, 1B and 1C depict these values, respectively, in an x-y plot. -
TABLE 1A PMMA (80,000 g/mol1) (Wt %) Viscosity (mPa · s) 0 2.06 10 18.4 15.5 66.2 17 106 20 846 -
TABLE 1B PMMA (450,000 g/mol−1) (Wt %) Viscosity (mPa · s) 0 2.06 5 37.6 6 62.1 6.5 84.8 7 175 10 863 -
TABLE 1C PBMA-PMMA (60,000 g/mol−1) (Wt %) Viscosity (mPa · s) 0 2.06 5 5.01 10 12.5 12.5 18.9 13.5 22.9 15.5 33.8 16 35.7 17 44 18 52.3 19 69.2 20 85.7 22 117 23 144 25 232 30 814 - At a loading level of about 20 percent by weight of PBMA-PMMA, the ethyl cyanoacrylate increases viscosity only sparingly to less than 100 mPa·s (about 85 mPa·s). In contrast, PMMA at this loading level shows about a ten-fold increase in viscosity for the lower molecular weight PMMA. And for the higher molecular weight PMMA, at a loading level of only about 10 percent by weight comparable, greater than about 800 mPa·s viscosities are achieved. And in order to reach a viscosity of greater than about 800 mPa·s with PBMA-PMMA, a loading level of about 30 percent by weight should be used. Reference to Table 1D and
FIG. 1D , which captures all of the data of the preceding tables and figures, shows these observations. -
TABLE 1D Identity/Viscosity (mPa · s) Amount PBMA-PMMA PMMA PMMA (Wt %) (60,000 g/mol−1) (80,000 g/mol−1) (450,000 g/mol−1) 0 2.06 2.06 2.06 5 5.01 37.6 6 62.1 6.5 84.8 7 175 10 12.5 18.4 863 12.5 18.9 13.5 22.9 15.5 33.8 66.2 16 35.7 17 44 106 18 52.3 19 69.2 20 85.7 846 22 117 23 144 25 232 30 814 - This data demonstrates that PBMA-PMMA can be used at higher levels than PMMA without compromising the viscosity or as shown later negatively impacting stability and tensile strength performance.
- Silica was added to each of the PMMA-containing ethyl cyanoacrylate composition and the PBMA-PMMA-containing ethyl cyanoacrylate composition at varying levels, as shown below in Tables 2A (for the PMMA-containing compositions) and 2B (for the PBMA-PMMA-containing compositions). The PMMA (80,000 g/mol) and the PBMA-PMMA were each added at a level of 15.5 percent by weight.
-
TABLE 2A Viscosity @ 20 s−1 Casson Viscosity Silica (Wt %) (mPa · s) (mPa · s) 1 59 47 2 240 71 3 535 93 4 1460 94 5 3070 204 6 6450 210 7 13500 782 8 20200 911 -
TABLE 2B Viscosity @ 20 s−1 Casson Viscosity Silica (Wt %) (mPa · s) (mPa · s) 1 143 97 2 462 124 3 1000 173 4 2470 215 5 4170 276 6 10300 331 7 13000 601 8 20600 578 - Tables 2A and 2B capture the viscosity of silica-containing ethyl cyanoacrylate compositions with PBMA-PMMA and silica-containing ethyl cyanoacrylate compositions with PMMA, at progressively higher loading levels on a percent by weight basis. These data are depicted in
FIGS. 2A and 2B , respectively. - This demonstrates that PBMA-PMMA, when combined with silica, can produce ethyl cyanoacrylate compositions having thixotropy, in a similar way to PMMA.
- Four percent by weight of a rubber toughener (here, VAMAC VCS 5500, from Dow DuPont) and varying silica levels were added to each of a PMMA-containing ethyl cyanoacrylate composition and a PBMA-PMMA-containing ethyl cyanoacrylate composition. The PMMA (80,000 g/mol) and the PBMA-PMMA were added at a level of 15.5 percent by weight.
-
TABLE 3A Viscosity @ 20 s−1 Casson Viscosity Silica (Wt %) (mPa · s) (mPa · s) 2 1040 249 4 5940 565 5 8360 474 6 17200 1176 8 24700 1124 -
TABLE 3B Viscosity @ 20 s−1 Casson Viscosity Silica (Wt %) (mPa · s) (mPa · s) 2 788 454 4 2650 538 5 4120 545 6 7220 546 8 33600 566 - Tables 3A and 3B capture the viscosity of silica-containing rubber toughened ethyl cyanoacrylate compositions with PBMA-PMMA and silica-containing rubber toughened ethyl cyanoacrylate compositions with PMMA, respectively, at progressively higher levels on a percent by weight basis. These data are depicted in
FIGS. 3A and 3B , respectively. The viscosity data demonstrates that an ethyl cyanoacrylate composition in gel formed is produced where PBMA-PMMA and silica are combined, in the presence of a rubber toughener. - Table 4 below shows the constituents of four ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.1015 percent by weight.
-
TABLE 4 Samples/Amt (Wt %) Constituents A B E F Ethyl cyanoacrylate 84.4 84.4 80.4 80.4 PBMA-PMMA 15.5 0 15.5 0 PMMA 0 15.5 0 15.5 Silica 0 0 4 4 - The samples were each cured on a plastic mold for a period of time of 24 hours and the modulus results from three point bending tests after the 24 hour cure time are captured in Table 5 below and shown in
FIG. 4 . -
TABLE 5 Sample Modulus (MPa) A 1479 B 2214 E 2065 F 2357 - The ethyl cyanoacrylate compositions with PBMA-PMMA show improved modulus when compared to the compositions with PMMA, both with and without silica.
- Table 6 below shows the constituents of four ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.1015 percent by weight. The compositions were prepared using either PMMA or PBMA-PMMA. Here, however, 10 percent by weight of a plasticizer (here, glycerol triacetin) was added to each of the compositions. Four percent by weight of silica was also added to two of the four compositions.
-
TABLE 6 Samples/Amt (Wt %) Constituents C D G H Ethyl cyanoacrylate 74.4 74.4 70.4 70.4 PBMA-PMMA 15.5 0 15.5 0 PMMA 0 15.5 0 15.5 Plasticizer 10 10 10 10 Silica 0 0 4 4 - The samples were each cured on a plastic mould for a period of time of 24 hours and the modulus results for three point bending tests after the 24 hours cure time are captured in Table 7 below and shown in
FIG. 5 . -
TABLE 7 Sample Modulus (MPa) C 1193 D 1347 G 1136 H 1578 - The plasticized ethyl cyanoacrylate compositions with PBMA-PMMA show a decrease in modulus when compared to the compositions with PMMA, both with and without silica. In combination with traditional plasticisers, the PBMA-PMMA-containing ethyl cyanoacrylate compositions still shows an advantage over PMMA-containing ethyl cyanoacrylate compositions.
- Table 8 shows the constituents of two ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.2145 percent by weight. The compositions were prepared using either PMMA or PBMA-PMMA. Here, however, 4 percent by weight of a rubber toughener (here, VAMAC VCS 5500) was added to each of the compositions.
-
TABLE 8 Samples/Amt(Wt %) Constituents I J Ethyl cyanoacrylate 92.8 92.8 Rubber toughener 4 4 PBMA-PMMA 3 0 PMMA 0 3 - The samples were each cured on a plastic mold for a period of time of about 24 hours and the modulus results from the three point bending tests carried out after the 24 hour cure are captured in Table 9 below and shown in
FIG. 6 (together with Samples A and B). -
TABLE 9 Sample Modulus (MPa) I 1216 J 1487 - As in Example 5, this shows that combining PBMA-PMMA with rubber tougheners in an ethyl cyanoacrylate composition confers improved performance over a comparable composition with PMMA instead, with respect to modulus values, without compromising the toughness achieved from the rubber material.
- Table 10 shows the constituents of two ethyl cyanoacrylate compositions, each of which containing a package of stabilizer, accelerator and shock resistant additive at a level of 0.2145 percent by weight. The compositions were prepared using either PMMA or PBMA-PMMA. Here, however, 6 percent by weight of a rubber toughener (here, VAMAC VCS 5500) and 4 percent by weight of silica was added to each of the compositions.
-
TABLE 10 Samples/Amt(Wt %) Constituents K L Ethyl cyanoacrylate 92.8 92.8 Fumed silica 4 4 Rubber toughener 6 6 PBMA-PMMA 3 0 PMMA 0 3 - The samples were each cured on a plastic mold for a period of time of about 24 hours and the modulus results from the three point bending tests carried out after 24 hours, 7 days and 1 month cure intervals are captured in Table 11 below and shown in
FIG. 7 . -
TABLE 11 Modulus (MPa) Cure Time K L 24 hours 1096 1196 7 days 1385 1861 1 month 1667 2140 - The tensile shear strength results on two different substrates are captured in Table 12 below and shown in
FIG. 8 . -
TABLE 12 Tensile Shear Strength (MPa) Sample GBMS GBAI K 26.14 18.38 L 20.24 19.54 - The data captured in Table 13 below shows the percent loss in terms of modulus as the cured products age. These data indicate that ethyl cyanoacrylate compositions containing PBMA-PMMA fare better over time with respect to modulus than those containing PMMA, all other constituents being the same. In addition, the PBMA-PMMA-containing ethyl cyanoacrylate compositions show a lower percent modulus loss (or, a higher percent retention) of their initial modulus on ageing.
-
TABLE 13 Cure Time/Modulus (% Loss) Sample 1 week 1 month K 26 52 L 56 79 - Long term ageing shows that not only does PBMA-PMMA-containing ethyl cyanoacrylate compositions have improved modulus over PMMA-containing ethyl cyanoacrylate compositions, but also that they retain flexibility more effectively.
- In Table 14, several grades of PBMA-PMMA copolymer (and one PMMA polymer) are presented showing their respective molecular weights, viscosity, stability and modulus, at 15.5 percent by weight in ethyl cyanoacrylate.
-
TABLE 14 Stability/ Modulus/Time (MPa) Mol Wt Visc. Time (aged 24 7 1 Grade (Mn) (mPa · s) at RT) hours days month AC 30,000 13.1 <24 hours 813 1265 2396 1420 AC 60,000 23.5 >1 year 1445 1394 2389 4830 AC 80,000 41.5 <3 days 1764 1710 2043 2740 AC 140,000 76.1 <4 days 1594 1860 2274 1750 PMMA 80,000 66.2 >1 year 2214 2194 2617 - In Table 15, two grades of PBMA-PMMA copolymer (and one PMMA polymer) are presented showing their respective molecular weights and amount used in ethyl cyanoacrylate. Physical characteristics, viscosity and modulus are captured.
-
TABLE 15 PBMA-PMMA Amount Visc. Modulus/Time (MPa) Mol Wt (Mn) (Wt %) (mPa · s) 24 hours 1 week 2 weeks 60,000 15.5 23.5 1445 1394 Not tested 25 239 1506 Not 1564 tested 45 59,400 1422 2089 2103 140,000 15.5 76.1 1594 1860 Not tested 25 896 1329 Not 1973 tested 45 Semi- Too thick to test solid PMMA 15.5 68 2214 2194 NT (80,000) - Based on this data, it is seen that PBMA-PMMA is advantageous over PMMA in cyanoacrylates, as the cured cyanoacrylate with PBMA-PMMA shows lower modulus (and thus greater flexibility) for up to one month. And significantly PBMA-PMMA having a molecular weight below about 80,000 Mn are preferable, as flexibility can be achieved without as significant an impact on the viscosity. More specifically, a PBMA-PMMA having a molecular weight of 140,000 Mn (along the lines disclosed in the '166 patent) shows significantly higher viscosities than PBMA-PMMA having a molecular weight of 60,000 Mn.
- Long term ageing was conducted on bonded parts constructed from grit-blasted mild steel, where the assemblies were exposed to an elevated temperature condition for the time period shown in Table 16. The parts were bonded by an ethyl cyanoacrylate composition containing PMMA or a PBMA-PMMA copolymer of either 60,000 Mn or 140,000 Mn, each in an amount appropriate to yield a viscosity in the range of about 66 to about 76 mPa's. Samples P and Q contain the PBMA-PMMA copolymer and Sample R contains the PMMA. The assemblies were removed from the temperature condition after the given time frame and allowed to reach room temperature before testing bond strengths.
-
TABLE 16 Bond Strength (MPa) Bond Strength Amt 24 hour 3 weeks Retained/3 weeks @ Sample Filler (Wt %) RT Cure @ 120° C. 120° C. (%) P PBMA-PMMA 19.0 22.96 11.26 49 (60,000 g/mol) Q PBMA-PMMA 15.5 24.3 10.43 43 (140, 000 g/mol) R PMMA (80,000 15.5 22.231 9.88 44 g/mol) - The PBMA-PMMA-containing ethyl cyanoacrylate composition (of 60,000 Mn, Sample P) showed significant improvement in heat resistance over the PMMA counterpart (Sample R). And the PBMA-PMMA-containing ethyl cyanoacrylate composition (of 60,000 Mn, Sample P) outperformed the PBMA-PMMA-containing ethyl cyanoacrylate composition (of 140,000 Mn, Sample Q).
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/225,349 US20230365836A1 (en) | 2018-02-12 | 2023-07-24 | Cyanoacrylate compositions |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1802243.4 | 2018-02-12 | ||
GBGB1802243.4A GB201802243D0 (en) | 2018-02-12 | 2018-02-12 | Cyanoacrylate compositions |
PCT/EP2019/053335 WO2019155069A1 (en) | 2018-02-12 | 2019-02-11 | Cyanoacrylate compositions |
US16/987,648 US11725119B2 (en) | 2018-02-12 | 2020-08-07 | Cyanoacrylate compositions |
US18/225,349 US20230365836A1 (en) | 2018-02-12 | 2023-07-24 | Cyanoacrylate compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/987,648 Division US11725119B2 (en) | 2018-02-12 | 2020-08-07 | Cyanoacrylate compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230365836A1 true US20230365836A1 (en) | 2023-11-16 |
Family
ID=61731326
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/987,648 Active 2039-06-06 US11725119B2 (en) | 2018-02-12 | 2020-08-07 | Cyanoacrylate compositions |
US18/225,349 Pending US20230365836A1 (en) | 2018-02-12 | 2023-07-24 | Cyanoacrylate compositions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/987,648 Active 2039-06-06 US11725119B2 (en) | 2018-02-12 | 2020-08-07 | Cyanoacrylate compositions |
Country Status (5)
Country | Link |
---|---|
US (2) | US11725119B2 (en) |
EP (1) | EP3752544A1 (en) |
GB (1) | GB201802243D0 (en) |
TW (1) | TWI806962B (en) |
WO (1) | WO2019155069A1 (en) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906317A (en) | 1983-11-10 | 1990-03-06 | Loctite Corporation | Instant adhesive composition and bonding method employing same |
US4622414A (en) | 1984-01-27 | 1986-11-11 | Loctite Limited | Novel calixarene compounds |
US4556700A (en) | 1984-01-30 | 1985-12-03 | Loctite Limited | Instant adhesive composition utilizing calixarene accelerators |
US4695615A (en) | 1984-11-21 | 1987-09-22 | Loctite (Ireland) Limited | Instant adhesive composition utilizing mixed functionality calixarenes as accelerators |
US4718966A (en) | 1984-01-30 | 1988-01-12 | Loctite (Ireland) Ltd. | Bonding method utilizing cyanoacrylate adhesive having calixarene accelerator |
US4636539A (en) | 1984-01-30 | 1987-01-13 | Loctite (Ireland) Limited | Instant adhesive composition utilizing calixarene accelerators |
IE59509B1 (en) | 1987-01-21 | 1994-03-09 | Loctite Ireland Ltd | Functionalised oxacalixarenes, their preparation and use in instant adhesive compositions |
JP2569738B2 (en) | 1988-07-08 | 1997-01-08 | 東亞合成株式会社 | Adhesive composition |
DE4009621A1 (en) | 1990-03-26 | 1991-10-02 | Henkel Kgaa | (ALPHA) -CYANACRYLATE ADHESIVE COMPOSITIONS |
TW359683B (en) | 1993-12-23 | 1999-06-01 | Loctite Ireland Ltd | Sterilized cyanoacrylate adhesive composition, and a method of making such composition |
BR9711198A (en) | 1996-08-16 | 1999-08-17 | Loctite Ireland Ltd | Adhesive cyanoacrylate compositions for glass junction |
US6310166B1 (en) * | 1999-08-12 | 2001-10-30 | Closure Medical Corporation | Sterilized cyanoacrylate solutions containing thickeners |
JP5098127B2 (en) * | 2001-09-12 | 2012-12-12 | 大日本印刷株式会社 | Adhesive composition and thermal transfer sheet |
DE10225237A1 (en) * | 2002-06-06 | 2003-12-18 | Uhu Gmbh & Co Kg | adhesive composition |
CN108368373B (en) * | 2015-12-02 | 2021-05-28 | Agc株式会社 | Coating composition and coated body |
JP6508261B2 (en) * | 2017-06-21 | 2019-05-08 | Agc株式会社 | Curable composition |
-
2018
- 2018-02-12 GB GBGB1802243.4A patent/GB201802243D0/en not_active Ceased
-
2019
- 2019-02-11 WO PCT/EP2019/053335 patent/WO2019155069A1/en unknown
- 2019-02-11 TW TW108104480A patent/TWI806962B/en active
- 2019-02-11 EP EP19704326.8A patent/EP3752544A1/en not_active Ceased
-
2020
- 2020-08-07 US US16/987,648 patent/US11725119B2/en active Active
-
2023
- 2023-07-24 US US18/225,349 patent/US20230365836A1/en active Pending
Non-Patent Citations (1)
Title |
---|
Machine translation of EP1369463. (Year: 2003) * |
Also Published As
Publication number | Publication date |
---|---|
WO2019155069A1 (en) | 2019-08-15 |
EP3752544A1 (en) | 2020-12-23 |
TWI806962B (en) | 2023-07-01 |
TW201936821A (en) | 2019-09-16 |
US11725119B2 (en) | 2023-08-15 |
GB201802243D0 (en) | 2018-03-28 |
US20210002455A1 (en) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2121777B1 (en) | Cyanoacrylate compositions incorporating graphite platelets | |
US6835789B1 (en) | Cyanoacrylate compositions | |
US10947418B2 (en) | Cyanoacrylate compositions | |
JP6794460B2 (en) | Cyanoacrylate composition | |
US9528034B2 (en) | Cyanoacrylate compositions | |
US20200255692A1 (en) | Cyanoacrylate compositions | |
WO2010029134A1 (en) | Toughened cyanoacrylate compositions | |
US20200255693A1 (en) | Toughened, low odor/low bloom cyanoacrylate compositions | |
JPS6248713B2 (en) | ||
KR102763374B1 (en) | Cyanoacrylate composition | |
US20230365836A1 (en) | Cyanoacrylate compositions | |
US8303705B2 (en) | Cyanoacrylate compositions | |
CN115768845A (en) | Cyanoacrylate compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |