US20230322605A1 - Production method for optical fiber base material, and optical fiber base material - Google Patents
Production method for optical fiber base material, and optical fiber base material Download PDFInfo
- Publication number
- US20230322605A1 US20230322605A1 US18/019,538 US202118019538A US2023322605A1 US 20230322605 A1 US20230322605 A1 US 20230322605A1 US 202118019538 A US202118019538 A US 202118019538A US 2023322605 A1 US2023322605 A1 US 2023322605A1
- Authority
- US
- United States
- Prior art keywords
- core portion
- optical fiber
- glass
- ppm
- fiber preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/01228—Removal of preform material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/0124—Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01861—Means for changing or stabilising the diameter or form of tubes or rods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/50—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present disclosure relates to a method for manufacturing an optical fiber preform and an optical fiber preform.
- Patent Literatures 1, 2, and 3 describe methods for adding an alkali metal element or an alkaline earth metal element to a core portion of an optical fiber preform by a diffusion method.
- a method for manufacturing an optical fiber preform of the present disclosure is a method for manufacturing an optical fiber preform made of silica-based glass, the method including: forming a core portion; and forming a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion.
- the forming the core portion includes: adding an alkali element group including an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
- An optical fiber preform of the present disclosure is an optical fiber preform made of silica-based glass, comprising: a core portion including an alkali element group including an alkali metal element and an alkaline earth metal element; and a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion.
- the core portion includes a region that has a mass fraction of chlorine lower than a mass fraction of chlorine on a central axis of the core portion.
- a mass fraction of the alkali element group in the core portion has a maximum value in a region other than the central axis.
- FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to an embodiment.
- FIG. 2 is a cross-sectional view of an optical fiber preform according to an embodiment.
- FIG. 3 is a graph showing concentration distribution of alkali element and concentration distribution of chlorine in a core portion.
- An object of the present disclosure is to provide a method for manufacturing an optical fiber preform capable of improving productivity while suppressing transmission loss.
- a method for manufacturing an optical fiber preform according to an embodiment of the present disclosure is a method for manufacturing an optical fiber preform made of silica-based glass, the method including: forming a core portion; and forming a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion.
- the forming the core portion includes: adding an alkali element group including an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
- the alkali element group is added to the inner surface of the glass pipe, the transmission loss can be reduced. Further, since the glass pipe and the glass rod disposed inside the glass pipe are integrated with each other, productivity can be improved as compared with a case where the glass pipe is solidified to form a glass body serving as the core portion.
- the forming the core portion may further include reducing a diameter of the glass pipe between the adding and the integrating.
- a diameter of the glass pipe between the adding and the integrating.
- the forming the core portion may further include etching an inner surface of the glass pipe between the adding and the integrating. In this case, impurities added to the inner surface of the glass pipe together with the alkali element group may be removed.
- a mean value of a mass fraction of chlorine in the glass rod may be 20 ppm or greater and 2000 ppm or less.
- a mean value of a mass fraction of chlorine in the glass pipe may be 20 ppm or greater and 2000 ppm or less.
- a mean value of a mass fraction of fluorine in the glass rod may be 200 ppm or greater and 5000 ppm or less.
- the number of abnormal portions of the optical fiber preform may be suppressed.
- the abnormal portion indicates a portion which is for example, a crystal of glass caused by a foreign matter or a compound of an alkali element group and chlorine or fluorine, and becomes a defective portion when an optical fiber is formed later.
- a mean value of a mass fraction of fluorine in the glass pipe may be 200 ppm or greater and 5000 ppm or less. In this case, the number of abnormal portions of the optical fiber preform may be suppressed.
- the glass rod may include an outer peripheral portion that including an outer peripheral surface of the glass rod and having a thickness of 0.5 mm.
- a mean value of a mass fraction of chlorine in the outer peripheral portion may be lower than a mean value of a mass fraction of chlorine in an entirety of the glass rod. In this case, the number of abnormal portions of the optical fiber preform may be suppressed.
- the mean value of the mass fraction of chlorine in the outer peripheral portion may be 20 ppm or greater and 2000 ppm or less. In this case, the number of abnormal portions of the optical fiber preform may be suppressed.
- the forming the core portion further may include applying a glass layer around the integrated rod, the glass layer having a refractive index higher than that of the cladding portion.
- the degree of freedom in designing optical characteristics such as an effective cross-sectional area (Aeff) or a cut-off wavelength can be increased.
- a mean value of a mass fraction of chlorine in the glass rod may be 100 ppm or greater and 2000 ppm or less. In this case, by being 100 ppm or greater, an increase in loss due to glass defects can be suppressed, and transmission loss can be suppressed. When it is greater than 2000 ppm, the occurrence frequency of the preform abnormality increases and the yield decreases.
- a mean mass fraction of the alkali element group included in the integrated rod may be 0.2 ppm or greater and 300 ppm or less. In this case, transmission loss can be suppressed.
- a mass fraction of the alkali element group in the integrated rod may have a maximum value at a position other than a central axis of the integrated rod. This is because the alkali element group is arranged in the outer peripheral portion of the glass rod immediately after integration. By having the maximum value at other than the central axis, it is possible to suppress the maximum value to be low and suppress defects such as crystallization compared to the case of adding the same total amount so that the mass fraction becomes the maximum at the central axis.
- the core portion may include any one of sodium, potassium, rubidium, cesium, and calcium as the alkali element group. In this case, transmission loss can be suppressed.
- An optical fiber preform according to an embodiment of the present disclosure is an optical fiber preform made of silica-based glass, comprising: a core portion including an alkali element group including an alkali metal element and an alkaline earth metal element; and a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion.
- the core portion includes a region that has a mass fraction of chlorine lower than a mass fraction of chlorine on a central axis of the core portion.
- a mass fraction of the alkali element group in the core portion has a maximum value in a region other than the central axis.
- the mass fraction of the alkali element group in the core portion may have a maximum value in a region within 50% of a radius of the core portion and other than the central axis.
- the mass fraction of the alkali element group in the core portion has a maximum value in a region within 30% of a radius of the core portion and other than the central axis.
- this optical fiber preform it is possible to achieve both a reduction of abnormal portions and a reduction of glass defect loss by increasing the mean chlorine concentration in the core portion.
- FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to the present embodiment.
- the optical fiber according to the present embodiment may be manufactured by sequentially performing a preparation process S 1 , an addition process S 2 , a diameter reduction process S 3 , an etching process S 4 , a collapse process S 5 , a stretching and grinding process S 6 , a collapse process S 7 , an outside vapor deposition (OVD) process S 8 , and a drawing process S 9 .
- a preparation process S 1 an addition process S 2 , a diameter reduction process S 3 , an etching process S 4 , a collapse process S 5 , a stretching and grinding process S 6 , a collapse process S 7 , an outside vapor deposition (OVD) process S 8 , and a drawing process S 9 .
- ODD outside vapor deposition
- the optical fiber preform 1 (see FIG. 2 ) according to the present embodiment is manufactured by sequentially performing a core portion forming process S 10 of forming the core portion 10 (see FIG. 2 ) made of silica (quartz) - based glass and a cladding portion forming process S 20 of forming the cladding portion 20 surrounding the core portion 10 . That is, the method for manufacturing the optical fiber preform 1 includes the core portion forming process S 10 and the cladding portion forming process S 20 .
- the core portion forming process S 10 includes the preparation process S 1 , the addition process S 2 , the diameter reduction process S 3 , the etching process S 4 , the collapse process S 5 , and the stretching and grinding process S 6 .
- the cladding portion forming process S 20 includes the collapse process S 7 and the OVD process S 8 .
- the preparation process S 1 is a step of preparing the glass pipe and the glass rod for forming the core portion 10 .
- the preparation process S 1 is performed before the addition process S 2 , but the glass rod may be prepared before the collapse process S 5 . That is, the preparation process S 1 may include a glass pipe preparation process performed before the addition process S 2 and a glass rod preparation process performed before the collapse process S 5 .
- the glass pipe is made of silica-based glass.
- the glass pipe is a glass pipe in which an alkali element group is to be diffused as a dopant.
- the alkali element group is a generic name of alkali metal elements and alkaline earth metal elements. That is, the alkali element group consists of alkali metal elements and alkaline earth metal elements.
- An outer diameter (2d) of the glass pipe is 30 mm or greater and 50 mm or less.
- An inner diameter (2i) of the glass pipe is 10 mm or greater and 30 mm or less.
- the glass rod may be made of silica-based glass.
- the glass rod is synthesized by, for example, a VAD (vapor phase axial deposition) method. In order to set the diameter of the glass rod to a desired value, process such as stretching and grinding may be performed.
- the glass rod is integrated with the glass pipe at the collapse process S 5 and used to form the integrated rod.
- the diameter of the glass rod is 3 mm or greater and 15 mm or less.
- Each of the glass pipe and glass rod contains a mass fraction of chlorine and fluorine.
- the mass fraction of other dopants and impurities contained in each of the glass pipe and the glass rod is 10 ppm or less.
- Mass fraction is the ratio of the mass of the element of interest with respect to the mass of the entire object, and is represented by (mass of element of interest) / (total mass). Hereinafter, the mass fraction is also called “concentration”.
- the mean chlorine concentration in the glass pipe is 20 ppm or greater and 2000 ppm or less.
- the refractive index of the core portion 10 can be higher than the refractive index of the cladding portion 20 .
- transmission loss can be suppressed.
- the mean fluorine concentration in the glass pipe is 200 ppm or greater and 5000 ppm or less.
- the number of abnormal portions of the optical fiber preform 1 can be suppressed.
- the mean chlorine concentration in the glass rod is 20 ppm or greater and 2000 ppm or less.
- the refractive index of the core portion 10 can be higher than the refractive index of the cladding portion 20 .
- transmission loss can be suppressed.
- the mean fluorine concentration in glass rod is 200 ppm or greater and 5000 ppm or less.
- the number of abnormal portions of the optical fiber preform 1 can be suppressed.
- the glass rod has an outer peripheral portion that includes the outer peripheral surface of the glass rod and has a thickness of 0.5 mm.
- the outer peripheral portion is, for example, a portion that has a radius of 70% or more and 100% or less, or 90% or more and 100% or less of the radius of the glass rod.
- the mean chlorine concentration in the outer peripheral portion is lower than the mean chlorine concentration in the entire glass rod.
- the mean chlorine concentration in the outer peripheral portion is 20 ppm or greater and 2000 ppm or less.
- the mean concentration is, for example, a concentration represented by the following equation in the case of a mean chlorine concentration.
- Cl(r) represents a local chlorine concentration at a position of a radius r.
- the inner radius of the glass pipe is represented by i.
- the outer radius of the glass pipe is represented by d.
- Calculation for fluorine is performed in the same manner.
- i is set to 0 and d is set to the radius of the glass rod, and the mean concentrations of chlorine and fluorine are calculated by the above equation.
- the local concentration is measured by an electron probe micro analyzer (EPMA) as a concentration at each position along a straight line passing through the center position on the end face having the glass pipe and the glass rod.
- the conditions of measurement by EPMA are, for example, acceleration voltage of 20 kV, probe beam diameter of 0.5 ⁇ m or greater and 1 ⁇ m or less, and measurement interval of 100 nm or less.
- the addition process S 2 is a step of adding an alkali element group to an inner surface of a glass pipe made of silica-based glass.
- a potassium (K) element for example, potassium bromide (KBr) of 6 g or more and 20 g or less is used as a raw material.
- KBr potassium bromide
- one or more of KBr, potassium iodide (KI), rubidium bromide (RbBr), rubidium iodide (RbI), and the like may be used as the raw material.
- the raw material is heated to a temperature of 700° C. or more and 850° C. or less by a first external heat source to generate raw material vapor.
- the first external heat source is, for example, an electric furnace and is provided to heat the raw material.
- the generated raw material vapor is introduced into the glass pipe together with a carrier gas composed of oxygen, the glass pipe is heated from the outside by a second external heat source.
- the second external heat source is, for example, an oxyhydrogen burner, an induction furnace, or a resistance furnace, and is provided to heat the glass pipe.
- the flow rate of the carrier gas is 1 SLM (1 liter/min in terms of standard conditions (0° C., 1.01 ⁇ 10 5 Pa)).
- the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe.
- the heating of the glass pipe is performed by traversing the second external heat source at a speed of 30 mm/min or more and 60 mm/min or less for a total of 8 turns or more and 15 turns or less so that the temperature of the outer surface of the glass pipe becomes 1400° C. or more and 2000° C. or less.
- the alkali element group such as K element is diffused and added to the inner surface of the glass pipe.
- the diameter reduction process S 3 is a step of reducing a diameter of the glass pipe to which the alkali element group is added by the addition process S 2 .
- the diameter reduction process S 3 is performed between the addition process S 2 and the collapse process S 5 .
- the glass pipe is heated from the outside by the second external heat source while flowing oxygen into the glass pipe in a range of 0.5 SLM or more and 1.0 SLM or less.
- the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe.
- the heating of the glass pipe is performed by traversing the second external heat source in a total of 6 turns or more and 10 turns or less so that the outer surface of the glass pipe becomes 1300° C. or more and 2000° C. or less.
- the diameter of the glass pipe is reduced until the inner diameter thereof becomes larger by about 1 mm to 3 mm than the diameter of the glass rod that is to be integrated in the collapse process S 5 .
- the etching process S 4 is a step of etching the inner surface of the glass pipe after the diameter reduction process S 3 .
- the etching process S 4 is performed between the addition process S 2 and the collapse process S 5 .
- vapor phase etching is performed by heating the glass pipe from the outside by the second external heat source while a mixed gas of SF 6 (0.2 SLM or more and 0.4 SLM or less) and chlorine (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe. In this way, the inner surface of the glass pipe containing impurities added together with the target dopant at a high concentration can be scraped, and the impurities can be removed.
- the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe.
- the heating of the glass pipe is performed by traversing the second external heat source in a total of 1 turn or more and 5 turns or less so that the outer surface of the glass pipe becomes 1300° C. or more and 2000° C. or less.
- the collapse process S 5 is a step of integrating the glass pipe and the glass rod disposed inside the glass pipe after the etching process S 4 .
- a glass rod is inserted into a glass pipe and fixed to the center of the glass pipe.
- a mixed gas of oxygen 0.1 SLM or more and 0.5 SLM or less
- He 0.5 SLM or more and 1.0 SLM or less
- the glass pipe and the glass rod are integrated by setting the surface temperature to 2000 or more and 2300° C. or less while reducing the absolute pressure in the glass pipe to 97 kPa or less.
- an integrated rod in which the glass pipe and the glass rod are integrated is formed.
- the diameter of the integrated rod is 20 mm or greater and 40 mm or less.
- the mean mass fraction of the alkali element group included in the integrated rod is 0.2 ppm or more and 300 ppm or less. This makes it possible to suppress transmission loss.
- the integrated rod is stretched to have a diameter of 20 mm or more and 25 mm or less, and the outer peripheral portion of the integrated rod is ground to have a diameter of 15 mm or more and 20 mm or less.
- a core rod constituting the core portion 10 (see FIG. 2 ) of the optical fiber preform 1 is obtained.
- the core portion forming process S 10 may further include a glass layer application process of applying a glass layer around the integrated rod after the stretching and grinding process S 6 .
- a glass layer and an integrated rod are used together as a core rod constituting the core portion 10 (see FIG. 2 ) of the optical fiber preform 1 .
- the glass layer is applied by a known method such as an OVD method or a collapse method.
- the glass layer has a refractive index higher than that of the cladding portion 20 (the first cladding portion 21 and the second cladding portion 22 ; FIG. 2 ).
- the glass layer does not include an alkali element group.
- the glass layer contains chlorine.
- the mean chlorine concentration in the glass layer is 100 ppm or greater and 2000 ppm or less.
- the first cladding portion 21 (see FIG. 2 ) is provided outside the core portion 10 .
- a rod-in-collapse method is used. That is, the core portion 10 is inserted into a glass pipe of silica-based glass to which fluorine is added, and both are heated and integrated by an external heat source.
- the difference in refractive index normalized by the refractive index of pure silica glass between the core portion 10 and the first cladding portion 21 is about 0.34% at maximum.
- a rod in which the core portion 10 and the first cladding portion 21 are integrated is stretched to have a predetermined radius, and then the second cladding portion 22 (see FIG. 2 ) including fluorine is synthesized on the outside of the rod by the OVD method, thereby manufacturing the optical fiber preform 1 .
- an optical fiber can be obtained by drawing the optical fiber preform 1 .
- the drawing speed is 800 m/min or more and 2300 m/min or less, and the drawing tension is 0.5 N, for example.
- FIG. 2 is a cross-sectional view of the optical fiber preform according to the present embodiment.
- the optical fiber preform 1 includes a core portion 10 having a central axis C and a cladding portion 20 .
- the core portion 10 includes an alkali element group, chlorine, and fluorine. Accordingly, the viscosity of the core is reduced during drawing and rearrangement of the glass is promoted. Accordingly, the transmission loss of the optical fiber due to the rayleigh scattering is reduced, and thus the transmission loss may be reduced.
- the core portion 10 includes any one of sodium, potassium, rubidium, cesium, and calcium as an alkali element group.
- the mean concentration of the alkali element group in the core portion 10 is 3 ppm or greater and 200 ppm or less.
- the mean concentration of chlorine in the core portion 10 is 30 ppm or greater and 2000 ppm or less.
- the mean concentration of fluorine in the core portion 10 is 500 ppm or greater and 5000 ppm or less.
- the cladding portion 20 is provided outside of the core portion 10 and surrounds the core portion 10 .
- the cladding portion 20 has a refractive index that is lower than the refractive index of the core portion 19 .
- the cladding portion 20 has a first cladding portion 21 and a second cladding portion 22 .
- the first cladding portion 21 is provided outside the core portion 10 and surrounds the core portion 10 .
- the first cladding portion 21 is made of silica-based glass.
- the first cladding portion 21 contains fluorine.
- the difference in refractive index normalized by the refractive index of pure silica glass between the core portion 10 and the first cladding portion 21 is about 0.34% at maximum.
- the second cladding portion 22 is provided outside the first cladding portion 21 , and surrounds the first cladding portion 21 .
- the second cladding portion 22 is made of silica-based glass.
- the second cladding portion 22 contains fluorine.
- the difference in refractive index normalized by the refractive index of pure silica glass between the first cladding portion 21 and the second cladding portion 22 is about 0.05% to 0.2%.
- FIG. 3 is a graph showing an example of concentration distribution of alkali element and concentration distribution of chlorine in a core portion.
- the horizontal axis indicates a distance (radial position) from the central axis C of the core portion 10 .
- the vertical axis indicates alkali element concentration or chlorine concentration.
- the lowest part of the concentration distribution of chlorine is the boundary between the glass rod and the glass pipe. On the pipe side of the boundary, there is a region to which an alkali element group is added.
- the chlorine concentration in the rod central portion to which the alkali element group is not added is high, and the chlorine concentration in other portions including the pipe portion is lower than that of the rod central portion.
- the concentration of alkali element group in the core portion 10 has a maximum value except for the central axis C.
- the alkali element group in the core portion 10 is added to the inner surface of the glass pipe in the addition process S 2 . Therefore, the position of the maximum value corresponds to the inner peripheral portion of the glass pipe used in the collapse process S 5 .
- the concentration of the alkali element group in the core portion 10 has a maximum value at a position other than the central axis C in a region within 50% of the radius of the core portion 10 .
- the concentration of the alkali element group in the core portion 10 may have a maximum value at a position other than the central axis C in a region within 30% of the radius of the core portion 10 .
- Table 1 shows the mean chlorine concentration in the outer peripheral portion of 0.5 mm thickness of the glass rod used in the collapse process S 5 and the state after integration (the number of abnormal portions) for prototype examples 1 to 8 of the integrated rod manufactured by the above-described manufacturing method (the integrated rod immediately after the integration process S 5 and before the stretching and grinding process S 6 ).
- the glass rod comes into contact with the alkali element group added to the inner circumferential surface of the glass pipe. Therefore, when the chlorine concentration in the outer peripheral portion of the glass rod is high, the occurrence rate of defects (abnormal portions) increases.
- the mass fraction of chlorine becomes 2500 ppm, an increase in the occurrence rate of defects becomes significant, and the number of abnormal portions increases.
- Table 2 shows various characteristics of prototype examples 9 to 13 of the integrated rod manufactured by the above-described manufacturing method.
- prototype examples 9 to 13 the sizes and compositions other than the integrated rod were made equal to each other. It can be seen that increasing the mean chlorine concentration in the integrated rod reduces the transmission loss. This is considered to be because chlorine contained in the integrated rod can repair structural defects of glass generated during drawing and reduce transmission loss caused by defects.
- prototype examples 9 to 13 since the mean chlorine concentration in the outer peripheral portion of 0.5 mm thickness of the glass rod is unified to about 1000 ppm, the number of abnormal portions after integration is also suppressed to a small number.
- Table 3 shows characteristics of prototype examples 14 to 19 of the integrated rod manufactured by the above-described manufacturing method. It can be seen that the preform abnormality (number of abnormal portions) is increased when the mean fluorine concentration in the glass rod is increased. Therefore, the mean fluorine concentration in glass rod is preferably 7000 ppm or less, and more preferably 5500 ppm or less.
- Reference Signs List 1 Optical fiber preform 10 Core portion 20 Cladding portion 21 First cladding portion 22 Second cladding portion C Central axis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Glass Compositions (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
A method for manufacturing an optical fiber preform made of silica-based glass, the method including: forming a core portion; and forming a cladding portion surrounding the core portion, the cladding portion having a refractive index lower than a refractive index of the core portion, wherein the forming the core portion includes: adding an alkali element group consisting of an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
Description
- The present application claims priority to Japanese Patent Application No. 2020-148202 filed on Sep. 3, 2020, and the entire contents of the Japanese patent application are incorporated herein by reference.
- The present disclosure relates to a method for manufacturing an optical fiber preform and an optical fiber preform.
- When an optical fiber is manufactured by drawing an optical fiber preform in which a core portion formed of the silica-based glass includes an alkali metal element or an alkaline earth metal element, viscosity of the core may be reduced and rearrangement of the glass may be promoted. Therefore, the transmission loss of the optical fiber caused by the rayleigh scattering is reduced. As a result, the transmission loss can be reduced.
-
Patent Literatures 1, 2, and 3 describe methods for adding an alkali metal element or an alkaline earth metal element to a core portion of an optical fiber preform by a diffusion method. -
- Patent Literature 1: International Publication No. 2004/020357
- Patent Literature 2: International Publication No. 2005/021455
- Patent Literature 3: International Publication No. 2013/111470
- A method for manufacturing an optical fiber preform of the present disclosure is a method for manufacturing an optical fiber preform made of silica-based glass, the method including: forming a core portion; and forming a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion. The forming the core portion includes: adding an alkali element group including an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
- An optical fiber preform of the present disclosure is an optical fiber preform made of silica-based glass, comprising: a core portion including an alkali element group including an alkali metal element and an alkaline earth metal element; and a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion. The core portion includes a region that has a mass fraction of chlorine lower than a mass fraction of chlorine on a central axis of the core portion. A mass fraction of the alkali element group in the core portion has a maximum value in a region other than the central axis.
-
FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to an embodiment. -
FIG. 2 is a cross-sectional view of an optical fiber preform according to an embodiment. -
FIG. 3 is a graph showing concentration distribution of alkali element and concentration distribution of chlorine in a core portion. - In the methods described in
Patent Literatures 1, 2, and 3, adding an alkali metal element or an alkaline earth metal element to the inner surface of a glass pipe, reducing the diameter, etching, and the like are performed, and then a glass body serving as a core portion of an optical fiber preform is produced. However, since the inside of the glass pipe is hollow, the volume (amount of glass) of the glass pipe is smaller than that of a glass cylindrical body having the same outer diameter. Therefore, the productivity is low. - An object of the present disclosure is to provide a method for manufacturing an optical fiber preform capable of improving productivity while suppressing transmission loss.
- According to the present disclosure, it is possible to provide a method for manufacturing an optical fiber preform and an optical fiber preform capable of improving productivity while suppressing transmission loss.
- Embodiments of the present disclosure are first listed and described. A method for manufacturing an optical fiber preform according to an embodiment of the present disclosure is a method for manufacturing an optical fiber preform made of silica-based glass, the method including: forming a core portion; and forming a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion. The forming the core portion includes: adding an alkali element group including an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
- In the method for manufacturing the optical fiber preform, since the alkali element group is added to the inner surface of the glass pipe, the transmission loss can be reduced. Further, since the glass pipe and the glass rod disposed inside the glass pipe are integrated with each other, productivity can be improved as compared with a case where the glass pipe is solidified to form a glass body serving as the core portion.
- The forming the core portion may further include reducing a diameter of the glass pipe between the adding and the integrating. When the diameter of the glass rod used is greatly different from the hole diameter of the glass pipe, a non-circle is likely to occur in the core portion after integration. In this case, since the hole diameter of the glass pipe can be brought close to the diameter of the glass rod by diameter reduction, occurrence of a non-circle in the core portion is suppressed.
- The forming the core portion may further include etching an inner surface of the glass pipe between the adding and the integrating. In this case, impurities added to the inner surface of the glass pipe together with the alkali element group may be removed.
- A mean value of a mass fraction of chlorine in the glass rod may be 20 ppm or greater and 2000 ppm or less.
- A mean value of a mass fraction of chlorine in the glass pipe may be 20 ppm or greater and 2000 ppm or less.
- A mean value of a mass fraction of fluorine in the glass rod may be 200 ppm or greater and 5000 ppm or less. In this case, the number of abnormal portions of the optical fiber preform may be suppressed. Here, the abnormal portion indicates a portion which is for example, a crystal of glass caused by a foreign matter or a compound of an alkali element group and chlorine or fluorine, and becomes a defective portion when an optical fiber is formed later.
- A mean value of a mass fraction of fluorine in the glass pipe may be 200 ppm or greater and 5000 ppm or less. In this case, the number of abnormal portions of the optical fiber preform may be suppressed.
- The glass rod may include an outer peripheral portion that including an outer peripheral surface of the glass rod and having a thickness of 0.5 mm. A mean value of a mass fraction of chlorine in the outer peripheral portion may be lower than a mean value of a mass fraction of chlorine in an entirety of the glass rod. In this case, the number of abnormal portions of the optical fiber preform may be suppressed.
- The mean value of the mass fraction of chlorine in the outer peripheral portion may be 20 ppm or greater and 2000 ppm or less. In this case, the number of abnormal portions of the optical fiber preform may be suppressed.
- The forming the core portion further may include applying a glass layer around the integrated rod, the glass layer having a refractive index higher than that of the cladding portion. In this case, the degree of freedom in designing optical characteristics such as an effective cross-sectional area (Aeff) or a cut-off wavelength can be increased.
- A mean value of a mass fraction of chlorine in the glass rod may be 100 ppm or greater and 2000 ppm or less. In this case, by being 100 ppm or greater, an increase in loss due to glass defects can be suppressed, and transmission loss can be suppressed. When it is greater than 2000 ppm, the occurrence frequency of the preform abnormality increases and the yield decreases.
- A mean mass fraction of the alkali element group included in the integrated rod may be 0.2 ppm or greater and 300 ppm or less. In this case, transmission loss can be suppressed.
- A mass fraction of the alkali element group in the integrated rod may have a maximum value at a position other than a central axis of the integrated rod. This is because the alkali element group is arranged in the outer peripheral portion of the glass rod immediately after integration. By having the maximum value at other than the central axis, it is possible to suppress the maximum value to be low and suppress defects such as crystallization compared to the case of adding the same total amount so that the mass fraction becomes the maximum at the central axis.
- The core portion may include any one of sodium, potassium, rubidium, cesium, and calcium as the alkali element group. In this case, transmission loss can be suppressed.
- An optical fiber preform according to an embodiment of the present disclosure is an optical fiber preform made of silica-based glass, comprising: a core portion including an alkali element group including an alkali metal element and an alkaline earth metal element; and a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion. The core portion includes a region that has a mass fraction of chlorine lower than a mass fraction of chlorine on a central axis of the core portion. A mass fraction of the alkali element group in the core portion has a maximum value in a region other than the central axis. The mass fraction of the alkali element group in the core portion may have a maximum value in a region within 50% of a radius of the core portion and other than the central axis. The mass fraction of the alkali element group in the core portion has a maximum value in a region within 30% of a radius of the core portion and other than the central axis.
- In this optical fiber preform, it is possible to achieve both a reduction of abnormal portions and a reduction of glass defect loss by increasing the mean chlorine concentration in the core portion.
- Specific examples of a method for manufacturing an optical fiber preform and an optical fiber preform of the present disclosure will be described below with reference to the drawings. It should be noted that the present disclosure is not limited to these examples, but is indicated by the scope of the claims and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted.
-
FIG. 1 is a flowchart illustrating a method for manufacturing an optical fiber according to the present embodiment. In the following description, an example of specific conditions is also described. The optical fiber according to the present embodiment may be manufactured by sequentially performing a preparation process S1, an addition process S2, a diameter reduction process S3, an etching process S4, a collapse process S5, a stretching and grinding process S6, a collapse process S7, an outside vapor deposition (OVD) process S8, and a drawing process S9. - The optical fiber preform 1 (see
FIG. 2 ) according to the present embodiment is manufactured by sequentially performing a core portion forming process S10 of forming the core portion 10 (seeFIG. 2 ) made of silica (quartz) - based glass and a cladding portion forming process S20 of forming thecladding portion 20 surrounding thecore portion 10. That is, the method for manufacturing theoptical fiber preform 1 includes the core portion forming process S10 and the cladding portion forming process S20. The core portion forming process S10 includes the preparation process S1, the addition process S2, the diameter reduction process S3, the etching process S4, the collapse process S5, and the stretching and grinding process S6. The cladding portion forming process S20 includes the collapse process S7 and the OVD process S8. - The preparation process S1 is a step of preparing the glass pipe and the glass rod for forming the
core portion 10. In the present embodiment, the preparation process S1 is performed before the addition process S2, but the glass rod may be prepared before the collapse process S5. That is, the preparation process S1 may include a glass pipe preparation process performed before the addition process S2 and a glass rod preparation process performed before the collapse process S5. - The glass pipe is made of silica-based glass. The glass pipe is a glass pipe in which an alkali element group is to be diffused as a dopant. Here, the alkali element group is a generic name of alkali metal elements and alkaline earth metal elements. That is, the alkali element group consists of alkali metal elements and alkaline earth metal elements. An outer diameter (2d) of the glass pipe is 30 mm or greater and 50 mm or less. An inner diameter (2i) of the glass pipe is 10 mm or greater and 30 mm or less.
- The glass rod may be made of silica-based glass. The glass rod is synthesized by, for example, a VAD (vapor phase axial deposition) method. In order to set the diameter of the glass rod to a desired value, process such as stretching and grinding may be performed. The glass rod is integrated with the glass pipe at the collapse process S5 and used to form the integrated rod. The diameter of the glass rod is 3 mm or greater and 15 mm or less.
- Each of the glass pipe and glass rod contains a mass fraction of chlorine and fluorine. The mass fraction of other dopants and impurities contained in each of the glass pipe and the glass rod is 10 ppm or less. “Mass fraction” is the ratio of the mass of the element of interest with respect to the mass of the entire object, and is represented by (mass of element of interest) / (total mass). Hereinafter, the mass fraction is also called “concentration”.
- The mean chlorine concentration in the glass pipe is 20 ppm or greater and 2000 ppm or less. Thereby, the refractive index of the
core portion 10 can be higher than the refractive index of thecladding portion 20. As a result, transmission loss can be suppressed. The mean fluorine concentration in the glass pipe is 200 ppm or greater and 5000 ppm or less. Thus, the number of abnormal portions of theoptical fiber preform 1 can be suppressed. - The mean chlorine concentration in the glass rod is 20 ppm or greater and 2000 ppm or less. Thereby, the refractive index of the
core portion 10 can be higher than the refractive index of thecladding portion 20. As a result, transmission loss can be suppressed. The mean fluorine concentration in glass rod is 200 ppm or greater and 5000 ppm or less. Thus, the number of abnormal portions of theoptical fiber preform 1 can be suppressed. - The glass rod has an outer peripheral portion that includes the outer peripheral surface of the glass rod and has a thickness of 0.5 mm. The outer peripheral portion is, for example, a portion that has a radius of 70% or more and 100% or less, or 90% or more and 100% or less of the radius of the glass rod. The mean chlorine concentration in the outer peripheral portion is lower than the mean chlorine concentration in the entire glass rod. The mean chlorine concentration in the outer peripheral portion is 20 ppm or greater and 2000 ppm or less.
- Here, the mean concentration is, for example, a concentration represented by the following equation in the case of a mean chlorine concentration.
-
- In the above equation, Cl(r) represents a local chlorine concentration at a position of a radius r. The inner radius of the glass pipe is represented by i. The outer radius of the glass pipe is represented by d. Calculation for fluorine is performed in the same manner. In the case of a glass rod, i is set to 0 and d is set to the radius of the glass rod, and the mean concentrations of chlorine and fluorine are calculated by the above equation. The local concentration is measured by an electron probe micro analyzer (EPMA) as a concentration at each position along a straight line passing through the center position on the end face having the glass pipe and the glass rod. The conditions of measurement by EPMA are, for example, acceleration voltage of 20 kV, probe beam diameter of 0.5 µm or greater and 1 µm or less, and measurement interval of 100 nm or less.
- The addition process S2 is a step of adding an alkali element group to an inner surface of a glass pipe made of silica-based glass. When a potassium (K) element is added as a dopant of the alkali element group, for example, potassium bromide (KBr) of 6 g or more and 20 g or less is used as a raw material. Depending on the type of alkali element group to be added, one or more of KBr, potassium iodide (KI), rubidium bromide (RbBr), rubidium iodide (RbI), and the like may be used as the raw material.
- In the addition process S2, the raw material is heated to a temperature of 700° C. or more and 850° C. or less by a first external heat source to generate raw material vapor. The first external heat source is, for example, an electric furnace and is provided to heat the raw material. While the generated raw material vapor is introduced into the glass pipe together with a carrier gas composed of oxygen, the glass pipe is heated from the outside by a second external heat source. The second external heat source is, for example, an oxyhydrogen burner, an induction furnace, or a resistance furnace, and is provided to heat the glass pipe. The flow rate of the carrier gas is 1 SLM (1 liter/min in terms of standard conditions (0° C., 1.01×105 Pa)).
- In the addition process S2, the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe. The heating of the glass pipe is performed by traversing the second external heat source at a speed of 30 mm/min or more and 60 mm/min or less for a total of 8 turns or more and 15 turns or less so that the temperature of the outer surface of the glass pipe becomes 1400° C. or more and 2000° C. or less. Thus, the alkali element group such as K element is diffused and added to the inner surface of the glass pipe.
- The diameter reduction process S3 is a step of reducing a diameter of the glass pipe to which the alkali element group is added by the addition process S2. The diameter reduction process S3 is performed between the addition process S2 and the collapse process S5. At this time, the glass pipe is heated from the outside by the second external heat source while flowing oxygen into the glass pipe in a range of 0.5 SLM or more and 1.0 SLM or less. In the diameter reduction process S3, the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe. The heating of the glass pipe is performed by traversing the second external heat source in a total of 6 turns or more and 10 turns or less so that the outer surface of the glass pipe becomes 1300° C. or more and 2000° C. or less. The diameter of the glass pipe is reduced until the inner diameter thereof becomes larger by about 1 mm to 3 mm than the diameter of the glass rod that is to be integrated in the collapse process S5.
- The etching process S4 is a step of etching the inner surface of the glass pipe after the diameter reduction process S3. The etching process S4 is performed between the addition process S2 and the collapse process S5. In the etching process S4, vapor phase etching is performed by heating the glass pipe from the outside by the second external heat source while a mixed gas of SF6 (0.2 SLM or more and 0.4 SLM or less) and chlorine (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe. In this way, the inner surface of the glass pipe containing impurities added together with the target dopant at a high concentration can be scraped, and the impurities can be removed. In the etching process S4, the glass pipe is heated by moving the second external heat source along the longitudinal direction of the glass pipe. The heating of the glass pipe is performed by traversing the second external heat source in a total of 1 turn or more and 5 turns or less so that the outer surface of the glass pipe becomes 1300° C. or more and 2000° C. or less.
- The collapse process S5 is a step of integrating the glass pipe and the glass rod disposed inside the glass pipe after the etching process S4. In the collapse process S5, first, a glass rod is inserted into a glass pipe and fixed to the center of the glass pipe. Subsequently, a mixed gas of oxygen (0.1 SLM or more and 0.5 SLM or less) and He (0.5 SLM or more and 1.0 SLM or less) is introduced into the glass pipe, and the glass pipe and the glass rod are integrated by setting the surface temperature to 2000 or more and 2300° C. or less while reducing the absolute pressure in the glass pipe to 97 kPa or less. Thus, an integrated rod in which the glass pipe and the glass rod are integrated is formed. The diameter of the integrated rod is 20 mm or greater and 40 mm or less. The mean mass fraction of the alkali element group included in the integrated rod is 0.2 ppm or more and 300 ppm or less. This makes it possible to suppress transmission loss.
- In the stretching and grinding process S6, the integrated rod is stretched to have a diameter of 20 mm or more and 25 mm or less, and the outer peripheral portion of the integrated rod is ground to have a diameter of 15 mm or more and 20 mm or less. Thus, a core rod constituting the core portion 10 (see
FIG. 2 ) of theoptical fiber preform 1 is obtained. - As a variation, the core portion forming process S10 may further include a glass layer application process of applying a glass layer around the integrated rod after the stretching and grinding process S6. In this case, a glass layer and an integrated rod are used together as a core rod constituting the core portion 10 (see
FIG. 2 ) of theoptical fiber preform 1. The glass layer is applied by a known method such as an OVD method or a collapse method. - The glass layer has a refractive index higher than that of the cladding portion 20 (the
first cladding portion 21 and thesecond cladding portion 22;FIG. 2 ). The glass layer does not include an alkali element group. The glass layer contains chlorine. The mean chlorine concentration in the glass layer is 100 ppm or greater and 2000 ppm or less. - In the rod-in collapse process S7, the first cladding portion 21 (see
FIG. 2 ) is provided outside thecore portion 10. At this time, a rod-in-collapse method is used. That is, thecore portion 10 is inserted into a glass pipe of silica-based glass to which fluorine is added, and both are heated and integrated by an external heat source. The difference in refractive index normalized by the refractive index of pure silica glass between thecore portion 10 and thefirst cladding portion 21 is about 0.34% at maximum. As a result of the addition of thefirst cladding portion 21 by the rod-in-collapse method, it is possible to suppress the water content of thecore portion 10 and thefirst cladding portion 21 in the vicinity thereof to be sufficiently low. - In the OVD process S8, a rod in which the
core portion 10 and thefirst cladding portion 21 are integrated is stretched to have a predetermined radius, and then the second cladding portion 22 (seeFIG. 2 ) including fluorine is synthesized on the outside of the rod by the OVD method, thereby manufacturing theoptical fiber preform 1. - In the drawing process S9, an optical fiber can be obtained by drawing the
optical fiber preform 1. The drawing speed is 800 m/min or more and 2300 m/min or less, and the drawing tension is 0.5 N, for example. -
FIG. 2 is a cross-sectional view of the optical fiber preform according to the present embodiment. As shown inFIG. 2 , theoptical fiber preform 1 includes acore portion 10 having a central axis C and acladding portion 20. Thecore portion 10 includes an alkali element group, chlorine, and fluorine. Accordingly, the viscosity of the core is reduced during drawing and rearrangement of the glass is promoted. Accordingly, the transmission loss of the optical fiber due to the rayleigh scattering is reduced, and thus the transmission loss may be reduced. Thecore portion 10 includes any one of sodium, potassium, rubidium, cesium, and calcium as an alkali element group. The mean concentration of the alkali element group in thecore portion 10 is 3 ppm or greater and 200 ppm or less. The mean concentration of chlorine in thecore portion 10 is 30 ppm or greater and 2000 ppm or less. The mean concentration of fluorine in thecore portion 10 is 500 ppm or greater and 5000 ppm or less. - The
cladding portion 20 is provided outside of thecore portion 10 and surrounds thecore portion 10. Thecladding portion 20 has a refractive index that is lower than the refractive index of the core portion 19. Thecladding portion 20 has afirst cladding portion 21 and asecond cladding portion 22. Thefirst cladding portion 21 is provided outside thecore portion 10 and surrounds thecore portion 10. Thefirst cladding portion 21 is made of silica-based glass. Thefirst cladding portion 21 contains fluorine. The difference in refractive index normalized by the refractive index of pure silica glass between thecore portion 10 and thefirst cladding portion 21 is about 0.34% at maximum. - The
second cladding portion 22 is provided outside thefirst cladding portion 21, and surrounds thefirst cladding portion 21. Thesecond cladding portion 22 is made of silica-based glass. Thesecond cladding portion 22 contains fluorine. The difference in refractive index normalized by the refractive index of pure silica glass between thefirst cladding portion 21 and thesecond cladding portion 22 is about 0.05% to 0.2%. -
FIG. 3 is a graph showing an example of concentration distribution of alkali element and concentration distribution of chlorine in a core portion. The horizontal axis indicates a distance (radial position) from the central axis C of thecore portion 10. The vertical axis indicates alkali element concentration or chlorine concentration. The lowest part of the concentration distribution of chlorine is the boundary between the glass rod and the glass pipe. On the pipe side of the boundary, there is a region to which an alkali element group is added. In addition, for the purpose of achieving both suppression of crystallization and suppression of glass defects, the chlorine concentration in the rod central portion to which the alkali element group is not added is high, and the chlorine concentration in other portions including the pipe portion is lower than that of the rod central portion. - The concentration of alkali element group in the
core portion 10 has a maximum value except for the central axis C. The alkali element group in thecore portion 10 is added to the inner surface of the glass pipe in the addition process S2. Therefore, the position of the maximum value corresponds to the inner peripheral portion of the glass pipe used in the collapse process S5. The concentration of the alkali element group in thecore portion 10 has a maximum value at a position other than the central axis C in a region within 50% of the radius of thecore portion 10. The concentration of the alkali element group in thecore portion 10 may have a maximum value at a position other than the central axis C in a region within 30% of the radius of thecore portion 10. - Table 1 shows the mean chlorine concentration in the outer peripheral portion of 0.5 mm thickness of the glass rod used in the collapse process S5 and the state after integration (the number of abnormal portions) for prototype examples 1 to 8 of the integrated rod manufactured by the above-described manufacturing method (the integrated rod immediately after the integration process S5 and before the stretching and grinding process S6). In the collapse process S5, the glass rod comes into contact with the alkali element group added to the inner circumferential surface of the glass pipe. Therefore, when the chlorine concentration in the outer peripheral portion of the glass rod is high, the occurrence rate of defects (abnormal portions) increases. When the mass fraction of chlorine becomes 2500 ppm, an increase in the occurrence rate of defects becomes significant, and the number of abnormal portions increases.
-
TABLE 1 Prototype example Mean Cl concentration in outer peripheral portion of glass rod [ppm] Number of abnormal portions 1 2510 13 2 2030 8 3 1460 5 4 1090 4 5 550 2 6 220 0 7 110 0 8 20 0 - In prototype examples 1 to 8, in the addition process S2, potassium (K) elements were used as dopants of alkali element groups, and the local K concentration added to the inner circumferential surface of the glass pipe was unified in a range of 100 ppm or more and 200 ppm or less. Therefore, it is considered that the increase in the number of abnormal portions is not caused by the influence of the K concentration but caused by the chlorine concentration in the outer peripheral portion of the glass rod.
- Table 2 shows various characteristics of prototype examples 9 to 13 of the integrated rod manufactured by the above-described manufacturing method. In prototype examples 9 to 13, the sizes and compositions other than the integrated rod were made equal to each other. It can be seen that increasing the mean chlorine concentration in the integrated rod reduces the transmission loss. This is considered to be because chlorine contained in the integrated rod can repair structural defects of glass generated during drawing and reduce transmission loss caused by defects. In prototype examples 9 to 13, since the mean chlorine concentration in the outer peripheral portion of 0.5 mm thickness of the glass rod is unified to about 1000 ppm, the number of abnormal portions after integration is also suppressed to a small number.
-
TABLE 2 Prototype example Mean Cl concentration in integrated rod [ppm] Mean Cl concentration in outer peripheral portion of glass rod [ppm] Mean Cl concentration in outer peripheral portion of glass pipe [ppm] Mean F concentration in outer peripheral portion of glass pipe [ppm] Number of abnormal portions Transmission loss [dB/km] 9 2020 970 980 2510 2 0.145 10 1510 1010 970 2470 3 0.146 11 1010 1030 1010 2500 2 0.148 12 680 980 970 2480 2 0.149 13 380 980 990 2510 1 0.151 - Table 3 shows characteristics of prototype examples 14 to 19 of the integrated rod manufactured by the above-described manufacturing method. It can be seen that the preform abnormality (number of abnormal portions) is increased when the mean fluorine concentration in the glass rod is increased. Therefore, the mean fluorine concentration in glass rod is preferably 7000 ppm or less, and more preferably 5500 ppm or less.
-
TABLE 3 Prototype example Mean Cl concentration in outer peripheral portion of glass rod [ppm] Mean F concentration in outer peripheral portion of glass rod [ppm] Number of abnormal portions 14 1010 290 1 15 1020 680 1 16 1040 1520 2 17 1020 3090 1 18 1000 5480 4 19 1010 7430 8 -
Reference Signs List 1 Optical fiber preform 10 Core portion 20 Cladding portion 21 First cladding portion 22 Second cladding portion C Central axis
Claims (17)
1. A method for manufacturing an optical fiber preform made of silica-based glass, the method comprising:
forming a core portion; and
forming a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion,
wherein the forming the core portion comprises:
adding an alkali element group including an alkali metal element and an alkaline earth metal element to an inner surface of a glass pipe made of silica-based glass; and
integrating the glass pipe and a glass rod disposed inside the glass pipe to form an integrated rod after the adding.
2. The method for manufacturing an optical fiber preform according to claim 1 , wherein the forming the core portion further comprises reducing a diameter of the glass pipe between the adding and the integrating.
3. The method for manufacturing an optical fiber preform according to claim 1 , wherein the forming the core portion further comprises etching an inner surface of the glass pipe between the adding and the integrating.
4. The method for manufacturing an optical fiber preform according to claim 1 , wherein a mean value of a mass fraction of chlorine in the glass rod is 20 ppm or greater and 2000 ppm or less.
5. The method for manufacturing an optical fiber preform according to claim 1 , wherein a mean value of a mass fraction of chlorine in the glass pipe is 20 ppm or greater and 2000 ppm or less.
6. The method for manufacturing an optical fiber preform according to claim 1 , wherein a mean value of a mass fraction of fluorine in the glass rod is 200 ppm or greater and 5000 ppm or less.
7. The method for manufacturing an optical fiber preform according to claim 1 , wherein a mean value of a mass fraction of fluorine in the glass pipe is 200 ppm or greater and 5000 ppm or less.
8. The method for manufacturing an optical fiber preform according to claim 1 , wherein the glass rod includes an outer peripheral portion that including an outer peripheral surface of the glass rod and having a thickness of 0.5 mm, and
a mean value of a mass fraction of chlorine in the outer peripheral portion is lower than a mean value of a mass fraction of chlorine in an entirety of the glass rod.
9. The method for manufacturing an optical fiber preform according to claim 8 , wherein the mean value of the mass fraction of chlorine in the outer peripheral portion is 20 ppm or greater and 2000 ppm or less.
10. The method for manufacturing an optical fiber preform according to claim 1 , wherein the forming the core portion further comprises applying a glass layer around the integrated rod, the glass layer having a refractive index higher than that of the cladding portion.
11. The method for manufacturing an optical fiber preform according to claim 10 , wherein a mean value of a mass fraction of chlorine in the glass layer is 100 ppm or greater and 2000 ppm or less.
12. The method for manufacturing an optical fiber preform according to claim 1 , wherein a mean mass fraction of the alkali element group included in the integrated rod is 0.2 ppm or greater and 300 ppm or less.
13. The method for manufacturing an optical fiber preform according to claim 1 , wherein a mass fraction of the alkali element group in the integrated rod has a maximum value at a position other than a central axis of the integrated rod.
14. The method for manufacturing an optical fiber preform according to claim 1 , wherein the core portion includes any one of sodium, potassium, rubidium, cesium, and calcium as the alkali element group.
15. An optical fiber preform made of silica-based glass, comprising:
a core portion including an alkali element group including an alkali metal element and an alkaline earth metal element; and
a cladding portion that has a refractive index lower than a refractive index of the core portion and surrounds the core portion,
wherein the core portion includes a region that has a mass fraction of chlorine lower than a mass fraction of chlorine on a central axis of the core portion, and
a mass fraction of the alkali element group in the core portion has a maximum value in a region other than the central axis.
16. The optical fiber preform according to claim 15 , wherein the mass fraction of the alkali element group in the core portion has a maximum value in a region within 50% of a radius of the core portion and other than the central axis.
17. The optical fiber preform according to claim 15 , wherein the mass fraction of the alkali element group in the core portion has a maximum value in a region within 30% of a radius of the core portion and other than the central axis.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020148202 | 2020-09-03 | ||
JP2020-148202 | 2020-09-03 | ||
PCT/JP2021/031564 WO2022050190A1 (en) | 2020-09-03 | 2021-08-27 | Production method for optical fiber base material, and optical fiber base material |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230322605A1 true US20230322605A1 (en) | 2023-10-12 |
Family
ID=80491753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/019,538 Pending US20230322605A1 (en) | 2020-09-03 | 2021-08-27 | Production method for optical fiber base material, and optical fiber base material |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230322605A1 (en) |
JP (1) | JPWO2022050190A1 (en) |
CN (1) | CN115989197A (en) |
DK (1) | DK202370061A1 (en) |
WO (1) | WO2022050190A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230167002A1 (en) * | 2021-11-30 | 2023-06-01 | Corning Incorporated | Optical fibers and method of making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025070402A1 (en) * | 2023-09-29 | 2025-04-03 | 古河電気工業株式会社 | Multicore fiber preform manufacturing method and multicore fiber manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040057692A1 (en) * | 2002-08-28 | 2004-03-25 | Ball Laura J. | Low loss optical fiber and method for making same |
JP2007504080A (en) * | 2003-08-29 | 2007-03-01 | コーニング インコーポレイテッド | Optical fiber containing alkali metal oxide and method and apparatus for manufacturing the same |
JP5545236B2 (en) * | 2011-02-03 | 2014-07-09 | 住友電気工業株式会社 | Optical fiber preform manufacturing method |
CN104093674B (en) * | 2012-01-25 | 2016-06-01 | 住友电气工业株式会社 | Fibre parent material preparation method, fibre parent material and optical fiber |
JP6337509B2 (en) * | 2014-02-24 | 2018-06-06 | 住友電気工業株式会社 | Optical fiber preform manufacturing method |
JP5995923B2 (en) * | 2014-08-06 | 2016-09-21 | 古河電気工業株式会社 | Optical fiber preform and optical fiber manufacturing method |
JP6620633B2 (en) * | 2016-03-25 | 2019-12-18 | 住友電気工業株式会社 | Optical fiber |
JP7013697B2 (en) * | 2017-07-12 | 2022-02-01 | 住友電気工業株式会社 | Optical fiber base material |
WO2020027063A1 (en) * | 2018-07-31 | 2020-02-06 | 住友電気工業株式会社 | Optical fiber |
-
2021
- 2021-08-27 WO PCT/JP2021/031564 patent/WO2022050190A1/en active Application Filing
- 2021-08-27 US US18/019,538 patent/US20230322605A1/en active Pending
- 2021-08-27 JP JP2022546292A patent/JPWO2022050190A1/ja active Pending
- 2021-08-27 CN CN202180052380.1A patent/CN115989197A/en active Pending
-
2023
- 2023-02-02 DK DKPA202370061A patent/DK202370061A1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230167002A1 (en) * | 2021-11-30 | 2023-06-01 | Corning Incorporated | Optical fibers and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
WO2022050190A1 (en) | 2022-03-10 |
CN115989197A (en) | 2023-04-18 |
JPWO2022050190A1 (en) | 2022-03-10 |
DK202370061A1 (en) | 2023-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9322990B2 (en) | Optical fiber preform | |
US9139466B2 (en) | Optical fiber preform, optical fiber, and method of manufacturing optical fiber preform | |
CN101239778B (en) | Optical fiber preform manufacturing method and optical fiber manufacturing method | |
US10550030B2 (en) | Optical fiber | |
US20230322605A1 (en) | Production method for optical fiber base material, and optical fiber base material | |
EP3173388B1 (en) | Method of manufacturing optical fiber preform | |
EP4481450A1 (en) | Optical fiber | |
US10723650B2 (en) | Optical fiber preform | |
US10656326B2 (en) | Optical fiber | |
JP2014214079A (en) | Optical fiber preform | |
WO2024190234A1 (en) | Multicore optical fiber | |
CN115667162B (en) | Method for manufacturing optical fiber base material and optical fiber base material | |
US12216309B2 (en) | Optical fiber | |
EP4372433A1 (en) | Optical fiber and optical fiber base material | |
US20250147229A1 (en) | Optical fiber | |
WO2024252898A1 (en) | Reservoir, method for producing optical fiber, and device for producing optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAKUMA, HIROTAKA;KAWAGUCHI, YUKI;SIGNING DATES FROM 20221024 TO 20221025;REEL/FRAME:062582/0251 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |