US20230301801A1 - Implant Authentication and Connectivity - Google Patents
Implant Authentication and Connectivity Download PDFInfo
- Publication number
- US20230301801A1 US20230301801A1 US18/201,489 US202318201489A US2023301801A1 US 20230301801 A1 US20230301801 A1 US 20230301801A1 US 202318201489 A US202318201489 A US 202318201489A US 2023301801 A1 US2023301801 A1 US 2023301801A1
- Authority
- US
- United States
- Prior art keywords
- implant
- joint
- communication module
- joint implant
- knee joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4657—Measuring instruments used for implanting artificial joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0022—Monitoring a patient using a global network, e.g. telephone networks, internet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; Determining position of diagnostic devices within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4528—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4538—Evaluating a particular part of the muscoloskeletal system or a particular medical condition
- A61B5/4571—Evaluating the hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4538—Evaluating a particular part of the muscoloskeletal system or a particular medical condition
- A61B5/4576—Evaluating the shoulder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/45—For evaluating or diagnosing the musculoskeletal system or teeth
- A61B5/4538—Evaluating a particular part of the muscoloskeletal system or a particular medical condition
- A61B5/4585—Evaluating the knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4851—Prosthesis assessment or monitoring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/686—Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6878—Bone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6885—Monitoring or controlling sensor contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/34—Acetabular cups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3662—Femoral shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3859—Femoral components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/389—Tibial components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/40—Joints for shoulders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/40—Joints for shoulders
- A61F2/4059—Humeral shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/40—Joints for shoulders
- A61F2/4081—Glenoid components, e.g. cups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6879—Means for maintaining contact with the body
- A61B5/6882—Anchoring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/38—Joints for elbows or knees
- A61F2/3877—Patellae or trochleae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/468—Testing instruments for artificial joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30079—Properties of materials and coating materials magnetic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30668—Means for transferring electromagnetic energy to implants
- A61F2002/3067—Means for transferring electromagnetic energy to implants for data transfer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/30698—Alarm means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30884—Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30891—Plurality of protrusions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30942—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
- A61F2002/30955—Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using finite-element analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30971—Laminates, i.e. layered products
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/40—Joints for shoulders
- A61F2/4081—Glenoid components, e.g. cups
- A61F2002/4085—Glenoid components, e.g. cups having a convex shape, e.g. hemispherical heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4657—Measuring instruments used for implanting artificial joints
- A61F2002/4666—Measuring instruments used for implanting artificial joints for measuring force, pressure or mechanical tension
Definitions
- the present disclosure relates to a system and method for implant authentication and connectivity, and particularly to a system and method for providing secure authentication and connection between an implant and a remote monitoring platform for tracking implant performance.
- a key component of monitoring a patient's recovery is evaluating the performance of the implant to detect implant dislocation, implant wear, implant malfunction, implant breakage, etc.
- a tibial insert made of polyethylene (“PE”) implanted in a total knee arthroscopy (“TKA”) is susceptible to macroscopic premature failure due to excessive loading and mechanical loosening.
- PET polyethylene
- TKA total knee arthroscopy
- Early identification of improper implant functioning and/or infection and inflammation at the implantation site can lead to corrective treatment solutions prior to implant failure.
- Data relating to postoperative range of motion and load balancing of the new TKA implants can be critical for managing recovery and identification of a proper replacement solution if necessary.
- diagnostic techniques to evaluate implant performance are generally limited to patient feedback and imaging modalities such as X-ray fluoroscopy or magnetic resonance imaging (“MRI”).
- Imaging modalities such as X-ray fluoroscopy or magnetic resonance imaging (“MRI”).
- MRI magnetic resonance imaging
- Imaging modalities offer only limited insight into implant performance.
- X-ray images will not reveal information related to the patient's range of motion or the amount of stress on the knee joint of a patient recovering from a TKA.
- the imaging modalities may provide only an instantaneous snapshot of the implant performance, and therefore fail to provide continuous real time information related to implant performance.
- a joint implant may include a first implant coupled to a first bone of a joint and a second implant coupled to a second bone of the joint.
- the first implant may include at least one marker.
- the second implant may contact the first implant.
- the second implant may include at least one marker reader to detect a position of the marker to identify positional data of the first implant with respect to the second implant.
- the second implant may include at least one load sensor to measure load data between the first and second implants.
- a processor may be operatively coupled to the marker reader and the load sensor. The processor may simultaneously output the positional data and the load data to an external source.
- the marker may be a magnet and the marker reader may be a magnetic sensor.
- the magnetic sensor may be a Hall sensor assembly including at least one Hall sensor.
- the magnet may be a magnetic track disposed along a surface of the first implant.
- the first implant may include a first magnetic track extending along a medial side of the first implant and a second magnetic track extending along a lateral side of the first implant.
- the second implant may include a first Hall sensor assembly on a medial side of the second implant and a second Hall sensor assembly on a lateral side of the second implant.
- the first Hall sensor assembly may be configured to read a magnetic flux density of the first magnetic track and the second Hall sensor assembly configured to read a magnetic flux density of the second magnetic track.
- a central portion of the first magnetic track may be narrower than an anterior end and a posterior end of the first magnetic track.
- the first magnetic track may include curved magnetic lines extending across the first magnetic track.
- the magnetic sensor may be coupled to the load sensor by a connecting element.
- the connecting element may be a rod configured to transmit loads from the magnetic sensor to the load sensor.
- the load sensor may be a strain gauge.
- the joint may be a knee joint.
- the first implant may be a femoral implant and the second implant may be a tibial implant.
- the tibial implant may include a tibial insert and a tibial stem.
- the marker reader and the processor may be disposed within the tibial insert.
- the positional data may include any of a knee flexion angle, knee varus-valgus rotation, knee internal-external rotation, knee medial-lateral translation, superior-inferior translation, anterior-posterior translation, and time derivatives thereof.
- the load data may include any of a medial load magnitude, lateral load magnitude, medial load center and lateral load center.
- the tibial insert may include any of a pH sensor, a temperature sensor and a pressure sensor operatively coupled to the processor.
- the tibial insert may include a spectroscopy sensor.
- the tibial insert may be made of polyethylene.
- the joint implant may include an antenna to transmit the positional data and the load data to an external source.
- the external source may be any of a tablet, computer, smart phone, and remote workstation.
- a joint implant may include a first implant coupled to a first bone of a joint and a second implant coupled to a second bone of the joint.
- the first implant may include a plurality of medial markers located on a medial side of the first implant, and a plurality of lateral markers located on a lateral side of the first implant.
- the second implant may contact the first implant.
- the second implant may include at least one medial marker reader to identify a position of the medial markers and at least one lateral marker reader to identify a position of the lateral markers.
- the position of the medial markers and the position of the lateral markers may provide positional data of the first implant with respect to the second implant.
- the second implant may include a medial load sensor to measure medial load data between the first and second implants on a medial side of the joint implant, a lateral load sensor to measure lateral load data between the first and second implants on a lateral side of the joint implant.
- a processor may be operatively coupled to the medial marker reader, the lateral marker reader, the medial load sensor, and the lateral load sensor. The processor may simultaneously output the positional data, the medial load data, and the lateral load data to an external source.
- a number of medial markers may be different from a number of lateral markers.
- the medial markers and the lateral markers may include magnets located at discrete locations on the first implant.
- the medial marker reader and the lateral marker reader may include a Hall sensor assembly with at least one Hall sensor.
- the medial load sensor and the lateral load sensor may include piezo stacks.
- the joint implant may include a battery disposed within the second implant.
- the joint implant may include a charging circuit disposed within the second implant to charge the battery using power generated by the piezo stacks during loading between the first and second implants.
- the joint may be a knee joint.
- the first implant may be a femoral implant and the second implant may be a tibial implant.
- the tibial implant may include a tibial insert and a tibial stem.
- the marker reader and the processor may be disposed within the tibial insert.
- the positional data may include any of a knee flexion angle, knee varus-valgus rotation, knee internal-external rotation, knee medial-lateral translation, anterior-posterior translation, superior-inferior translation, and time derivatives thereof.
- the medial load data may include a medial load magnitude and a medial load center.
- the tibial insert may include any of a pH sensor, a temperature sensor, accelerometer, gyroscope, inertial measure unit and a pressure sensor operatively coupled to the processor.
- the tibial insert may include a spectroscopy sensor.
- a joint implant system may include a first implant coupled to a first bone of a joint, a second implant coupled to a second bone of the joint, and an external sleeve configured to be removably attached to the joint.
- the first implant may include at least one marker.
- the second implant may contact the first implant.
- the second implant may include at least one marker reader to detect a position of the marker to identify positional data of the first implant with respect to the second implant.
- the second implant may include at least one load sensor to measure load data between the first and second implants.
- a processor may be operatively coupled to the marker reader and the load sensor. The processor may be configured to simultaneously output the positional data and the load data to an external source.
- the joint implant system may include a battery to power the marker reader and the processor.
- the battery may be disposed within the second implant and including a joint implant charging coil.
- the external sleeve may include an external charging coil to charge the battery.
- the battery may be configured to be charged by ultrasonic wireless charging or optical charging.
- a method for monitoring a joint implant performance may include the steps of providing a first implant couplable to a first bone of a joint, providing a second implant couplable to a second bone of the joint, tracking magnetic flux density magnitudes over time using a magnetic sensor, and initiating a warning when a tracked magnetic flux density magnitude is different from a predetermined value.
- the first implant may include at least one magnetic marker.
- the second implant may be configured to contact the first implant.
- the second implant may include at least one magnetic sensor to detect the magnetic flux density of the magnetic marker.
- the magnetic flux density value may be proportional to a thickness of the second implant.
- a method for monitoring a joint implant performance may include the steps of providing a first implant couplable to a first bone of a joint, providing a second implant couplable to a second bone of the joint, tracking a rate of change of a magnetic flux density over time using a magnetic sensor, and initiating a warning when a tracked rate of change of the magnetic flux density exceeds a predetermined value.
- the first implant may include at least one magnetic marker.
- the second implant may be configured to contact the first implant.
- the second implant may include at least one magnetic sensor to detect the magnetic flux density of the magnetic marker.
- the rate of change of the magnetic flux density may be proportional to a wear rate of the second implant.
- a method of monitoring implant performance may include the steps of providing an implant with a first sensor to detect implant temperature, a second sensor to detect a fluid pressure, and a third sensor to detect implant alkalinity, tracking and outputting implant temperature, implant pressure and implant alkalinity over time to an external source using a processor disposed within the implant, and initiating a notification when any of the implant temperature, implant pressure and implant alkalinity, or any combination thereof, exceeds a predetermined value.
- the implant temperature, implant pressure and implant alkalinity may be related to any of an implant failure and an implant infection.
- the fluid pressure may be a synovial fluid pressure.
- An implant such as a joint implant may include a communication module that may interact with an external communication module when the external communication module is placed in proximity or adjacent the joint implant.
- the interaction between the communication modules may initiate wireless transfer of authentication information stored on a memory of the joint implant to an external device which includes the external communication module via a first communication protocol.
- data from the joint implant may be transferred to the external device via a second communication protocol different from the first communication protocol.
- the data may include joint implant or patient information collected by one or more sensors located on or adjacent the joint implant.
- a joint implant may include a first implant coupled to a first bone of a joint, a second implant coupled to a second bone of the joint. a first communication module, and a memory to store authentication information.
- the first communication module may be configured to wirelessly transfer the authentication information to a communication module of an external device when the external device is placed adjacent the joint implant.
- the first communication module may be an NFC communication module.
- the NFC communication module may be configured to transfer the authentication information to the communication module of the external device via NFC.
- the joint implant may include at least one sensor to measure an interaction between the first and second implants.
- the authentication information may include joint implant data or patient data.
- the joint implant may be configured to change from a sleep mode to an advertising mode when the external device is placed adjacent the joint implant.
- the joint implant may include a second communication module.
- the second communication module may be any of BLE, Z-wave or Zigbee module.
- the second communication module may be a BLE module.
- the BLE module may be configured to transfer the measured interaction between the first and second implants to the communication module of the external device via BLE in the advertising mode.
- the joint implant may be configured to return to the sleep mode upon transferring the measured interaction.
- the measured interaction may be any of a load between the first and second implants and position of the first implant with respect to the second implant.
- the joint implant may be a knee joint implant.
- the first implant may be a femoral implant and the second implant may be a tibial implant.
- the tibial implant may include a tibial insert and a tibial stem.
- the first communication module, the second communication module and the memory may be disposed within the tibial insert.
- the position of the first implant with respect to the second implant may include any of a knee flexion angle, knee varus-valgus rotation, knee internal-external rotation, knee medial-lateral translation, superior-inferior translation, anterior-posterior translation, and time derivatives thereof.
- the tibial insert may include any of a pH sensor, a temperature sensor and a pressure sensor operatively coupled to a processor.
- the external device may be any of a smartphone, tablet, watch, and fob.
- the joint implant may be any of hip implant, shoulder implant, and ankle implant.
- the measured interaction may include patient activity data.
- the patient activity data may include any of a patient's gait and a number of steps taken by the patient in a predetermined interval.
- an implant system may include an implant coupled to a patient and an external device including a communication module.
- the implant may include a first communication module, and a memory to store authentication information.
- the first communication module may be configured to wirelessly transfer the authentication information to the communication module of an external device when the external device is placed adjacent the implant.
- the communication module may be configured to communicate with a cloud-based service such that the authentication information from the first communication module is authenticated on the cloud-based service.
- a method for monitoring implant performance may include the steps of placing an external device adjacent an implant coupled to patient to initiate a first communication between the implant and the external device, authenticating implant information via the first communication, initiating a second communication between the implant and the external device upon successful authentication of the first communication, and transferring implant data from the implant to the external device via the second communication.
- the first communication may be an NFC communication and the second communication is a BLE communication.
- FIG. 1 is a front view of a knee joint implant according to an embodiment of the present disclosure
- FIG. 2 is a side view of a femoral implant of the knee joint implant of FIG. 1 ;
- FIG. 3 A is a bottom view of the femoral implant of FIG. 2 ;
- FIG. 3 B is schematic view of encoder tracks of the femoral implant of FIG. 2 ;
- FIG. 4 is a partial view of an encoder read head and a load sensor of a tibial implant of the knee joint implant of FIG. 1 ;
- FIG. 5 A is a front view of an antenna of the knee joint implant of FIG. 1 ;
- FIG. 5 B is a top view of the antenna of FIG. 5 A ;
- FIG. 6 is a perspective side view of a knee joint implant according to another embodiment of the present disclosure.
- FIG. 7 is a perspective front view of a tibial implant of the knee joint implant of FIG. 6 ;
- FIG. 8 is a partial perspective view of an insert of the tibial implant of FIG. 6 ;
- FIG. 9 is a partial top view of the insert of FIG. 8 showing details of various insert components
- FIG. 10 is a perspective side view of the insert of the tibial implant of FIG. 7 ;
- FIG. 11 is a perspective side view of a cover of the insert of FIG. 10 ;
- FIG. 12 are graphs showing magnetic flux density measurements of the implant sensors and knee flexion angles
- FIG. 13 is a graph showing various implant sensor readings of the knee joint implant of FIG. 6 ;
- FIG. 14 is a schematic view of implant sensors of the knee joint implant of FIG. 6 in communication with a processor;
- FIG. 15 is a graph showing voltage measurements of the implant sensors
- FIG. 16 is a schematic view of a charging circuit for the knee joint implant of FIG. 6 ;
- FIG. 17 A is a graph showing measured voltage of the implant sensors
- FIG. 17 B is a graph showing rectified voltage of the implant sensors
- FIG. 18 is a schematic view of a knee joint implant with a charging sleeve according to an embodiment of the present disclosure
- FIG. 19 is a front view of the charging sleeve of the knee joint implant of FIG. 17 ;
- FIG. 20 is a side view of an insert of the knee joint implant of FIG. 17 ;
- FIG. 21 shows top and front views of the insert of FIG. 19 ;
- FIG. 22 A is front view of a knee joint implant according to another embodiment of the present disclosure.
- FIG. 22 B is a side view of the knee joint implant of FIG. 22 A ;
- FIG. 23 A is a front view of a tibial implant according to another embodiment of the present disclosure.
- FIG. 23 B is a top view of an insert of the tibial implant of FIG. 22 A ;
- FIG. 24 A is a front view of a tibial implant according to another embodiment of the present disclosure.
- FIG. 24 B is a top view of an insert of the tibial implant of FIG. 24 A ;
- FIG. 25 A is a front view of a tibial implant according to another embodiment of the present disclosure.
- FIG. 25 B is a top view of an insert of the tibial implant of FIG. 25 A ;
- FIG. 26 is a side view of a knee joint implant according to another embodiment of the present disclosure.
- FIG. 27 is a front view of a tibial implant of the knee joint implant of FIG. 26 ;
- FIG. 28 is a schematic side view of a knee joint implant illustrating various measurements according to another embodiment of the present disclosure.
- FIG. 29 is a schematic side view of a spinal implant assembly according to another embodiment of the present disclosure.
- FIG. 30 is side view of a hip implant according to another embodiment of the present disclosure.
- FIG. 31 A is a schematic view of a sensor assembly of the hip implant of FIG. 30 ;
- FIG. 31 B is a side view of the sensor assembly and an insert of the hip implant of FIG. 31 A ;
- FIG. 31 C is a top view of the sensor assembly and the insert of FIG. 31 B ;
- FIG. 32 is a side view of a hip implant according to another embodiment of the present disclosure.
- FIG. 33 is a partial top view of the hip implant of FIG. 32 ;
- FIG. 34 is a side view of a hip implant according to another embodiment of the present disclosure.
- FIG. 35 is a side view of an electronic assembly of the hip implant of FIG. 34 according to another embodiment of the present disclosure.
- FIG. 36 is a side view of an electronic assembly of the hip implant of FIG. 34 according to another embodiment of the present disclosure.
- FIG. 37 is a side view of a shoulder implant according to another embodiment of the present disclosure.
- FIG. 38 is top view of an insert of the shoulder implant of FIG. 37 ;
- FIG. 39 is a top view of a cup of the shoulder implant of FIG. 37 ;
- FIG. 40 is side view of a shoulder implant according to another embodiment of the present disclosure.
- FIG. 41 is a side view of an insert of the shoulder implant of FIG. 40 ;
- FIG. 42 is a flowchart showing steps to determine implant wear according to another embodiment of the present disclosure.
- FIG. 43 is a first graph showing implant thickness over time
- FIG. 44 is a second graph showing implant thickness over time
- FIG. 45 is a flowchart showing steps to determine implant wear according to another embodiment of the present disclosure.
- FIG. 46 is a flowchart showing for implant data collection according to another embodiment of the present disclosure.
- FIGS. 47 A and 47 B is a flowchart showing steps for patient monitoring according to another embodiment of the present disclosure.
- FIG. 48 is a schematic view of a first communication between an implant and an external device according to an embodiment of the present disclosure.
- FIG. 49 is a schematic view of a second communication between the implant and the external device of FIG. 48 according to an embodiment of the present disclosure
- FIG. 50 is a flowchart showing steps of the first communication between the implant and the external device of FIG. 48 ;
- FIG. 51 is a flowchart showing steps of the second communication between the implant and the external device of FIG. 48 ;
- FIG. 52 is a flowchart showing steps of a first communication between an implant and an external device according to another embodiment of the present disclosure
- FIG. 53 is a flowchart showing steps of a second communication between the implant and the external device of FIG. 52 .
- FIG. 54 is a flowchart showing steps of a communication between an implant and a first responder device according to an embodiment of the present disclosure.
- the terms “load” and “force” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- the terms “magnetic markers” and “markers” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- the terms “power” and “energy” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- the terms “implant” and “prosthesis” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- the term “joint implant” means a joint implant system comprising two or more implants.
- the terms “energy generator” and “energy harvester” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- FIG. 1 is a front view of a knee joint implant 100 according to an embodiment of the present disclosure.
- Knee joint implant 100 includes a femoral implant 102 located on a femur 106 and a tibial implant 104 located on a tibia 108 .
- Tibial implant 104 has a tibial insert 110 configured to contact femoral implant 102 , and a tibial baseplate or tibial stem 112 extending distally into tibia 108 .
- Femoral implant 102 includes a medial encoder track 114 located on a medial side and a lateral encoder track 116 on a lateral side of the femoral implant.
- Tibial insert 110 includes a medial read head 118 and lateral read head 120 to read a magnetic flux density from medial encoder track 114 and lateral encoder track 116 , respectively.
- Medial read head 118 and lateral read head 120 can be any suitable magnetometer configured to detect and measure magnetic flux density, such as a Hall effect sensor. As tibia 108 rotates with reference to femur 106 during knee flexion and extension, medial encoder track 114 and lateral encoder track 116 move along medial read head 118 and lateral read head 120 , respectively. This movement causes a change in magnetic flux density which is detected by read heads 118 , 120 , and can be utilized to measure knee joint implant 100 movement, rotation, speed and range of articulation, motion/activity, joint slip, and other motion related information. The magnetic-mechanic coupling of the read heads with the encoder tracks allows for direct, instantaneous, and continuous measurements of these knee joint implant parameters.
- a data transmitter such as an antenna 122 located on tibial insert 110 transmits the knee joint implant parameters measured by the read heads via Bluetooth or other similar wireless means to an external source such as a smart phone, tablet, monitor, network, etc. to allow for real time review of the knee joint implant performance.
- FIGS. 2 - 3 B illustrate additional details of femoral implant 102 , medial encoder track 114 and lateral encoder track 116 .
- medial encoder track 114 extends from an anterior portion 126 of femoral implant 102 to a posterior portion 128 of the femoral implant along a track axis 130 .
- Medial encoder track 114 includes a central portion 124 which is narrower than anterior and posterior portions 126 , 128 as shown in FIG. 3 A .
- medial encoder track 114 includes arched or curved magnetic lines to compensate for joint rotations in order to maintain uniform readings during a full range of motion of the knee joint.
- lateral encoder track 116 extends from an anterior portion to a posterior portion of the femoral implant and includes a narrow central portion relative to the anterior and posterior portions with arched or curved magnetic lines.
- the conical profile and curved magnetic lines of the encoder tracks are configured to compensate for joint rotational motion and maintain alignment and coupling between the read heads and the tracks. This maximizes measurement collection and measurement accuracy during a full range of motion of the knee joint.
- the shape, size and location of the encoder tracks can vary depending on the implant.
- FIG. 4 shows details of a medial side of tibial insert 110 .
- Tibial insert 110 includes a medial load sensor 132 in connection with medial read head 118 via a medial connector 134 .
- Medial load sensor 132 is a load measuring sensor such as a strain gauge or piezoelectric sensor configured to measure loads or forces transmitted from medial read head 118 via medial connector 134 .
- Medial connector 134 can be a rigid member such as a connecting rod to transmit loads from medial read head 118 to medial load sensor 132 .
- a portion of the medial side of femoral implant 102 directly contacts medial read head 118 to transmit loads (medial side loads), which is then measured by medial load sensor 132 .
- Medial read head 118 is spring-loaded by a medial load spring 136 located below medial load sensor 132 to ensure contact between medial read head 118 and femoral implant 102 .
- a lateral side of tibial insert 110 includes a lateral load sensor, a lateral connector, and a lateral load spring.
- the lateral load sensor is configured to measure lateral loads between femoral implant 102 and tibial implant 104 . Measured medial and lateral loads are transmitted via antenna 122 to an external source.
- knee joint implant 100 can simultaneously provide knee motion information (rotation, speed, flexion angle, etc.) and knee load (medial load, medial load center, lateral load, lateral load center, etc.) in real time to an external source.
- Antenna 122 includes screw threads configured to be attached to tibial insert 110 .
- Antenna 122 can include a coax interface to shield knee joint and improve transmission between knee joint implant 100 and the external source.
- a battery is located adjacent antenna 122 (not shown) to power knee joint implant 100 .
- Antenna 122 can serve as a charging port via radio frequency (RF) or inductive coupling if a rechargeable battery is used.
- RF radio frequency
- the location of battery and antenna 122 in tibial insert 110 allow for convenient access to remove and replace these components if necessary.
- Various other sensors such as a temperature sensor, pressure sensor, accelerometer, gyroscope, magnetometer, pH sensor, etc., can be included in knee joint implant 100 as more fully described below.
- FIG. 6 is a perspective side view of a knee joint implant 200 according to another embodiment of the present disclosure.
- Knee joint implant 200 is similar to knee joint implant 100 , and therefore like elements are referred to with similar numerals within the 200-series of numbers.
- knee joint implant 200 includes a femoral implant 202 , a tibial implant 204 with a tibial insert 210 and a tibial stem 212 .
- knee joint implant 200 includes magnetic medial markers 214 and magnetic lateral markers 216 located at discrete locations along the medial and lateral sides of femoral implant 202 , respectively.
- Tibial insert 210 includes batteries 242 on both medial and lateral sides.
- Batteries 242 can be solid state batteries, lithium ion batteries, lithium carbon monofluoride batteries, lithium thionyl chloride batteries, lithium ion polymer batteries, etc.
- Hall sensor assemblies are used as a medial marker reader 252 and a lateral marker reader 248 to read medial markers 214 and lateral markers 216 , respectively.
- Each Hall sensor assembly can include multiple Hall sensors arranged in various configurations and orientations.
- the Hall sensor assembly can include Hall sensors oriented in Cartesian coordinates.
- medial markers 214 and lateral markers 216 move along medial marker reader 252 and lateral marker reader 248 , respectively.
- This movement causes a change in magnetic flux density, which is detected by marker readers 252 , 248 , to measure knee joint implant 200 movement, rotation, speed and range of articulation, motion/activity, joint slip, and other motion related information.
- the magnetic-mechanic coupling of the marker readers with the markers allows for direct, instantaneous, and continuous measurements of these knee joint implant parameters without the need to process this information via an algorithm or other means.
- While eight Hall sensor assemblies (four on each side) are shown in this embodiment, other embodiments can have more than eight or less than eight Hall sensor assemblies positioned at various locations.
- the arrangement of marker readers and markers provide absolute positions of knee joint implant 200 supporting wake-up-and-read kernels. Thus, no inference of movement by data synchronization techniques is required to obtain absolute position data of knee joint implant 200 .
- the number of medial markers 214 can be different from the number of lateral markers 216 to account for variation in signal fidelity between these sides. For example, seven magnetic markers can be provided on the medial side and only four magnet markers can be provided on the lateral side to improve signal fidelity and motion detection precision on the medial side.
- knee joint implant 200 can simultaneously provide knee motion information (joint rotation, joint speed, joint flexion angle, joint slippage, etc.) and knee load (medial load, medial load center, lateral load, lateral load center, etc.) in real time to an external source.
- the piezo stacks are configured to generate power from the patient's motion by converting pressure on the piezo stacks to charge batteries 242 as more fully described below.
- knee joint implant 200 does not require external charging devices or replacement batteries for the active life of the implant.
- Tibial insert 210 includes an infection or injury detection sensor 244 .
- the infection or injury detection can be a pH sensor configured to measured bacterial infection by measuring the alkalinity of synovial fluid to provide early detection of knee joint implant 200 related infection.
- a temperature and pressure sensor 246 is provided in tibial insert 210 to monitor knee joint implant 200 performance. For example, any increase in temperature and/or pressure may indicate implant-associated infection.
- Pressure sensor 246 is used to measure synovial fluid pressure in this embodiment. Temperature and/or pressure sensor 246 readings can provide early detection of knee joint implant 200 related infection.
- injury detection sensors 244 and 236 provide extended diagnostics with heuristics for first level assessment of infections or injury related to knee joint implant 200 .
- An onboard processor 250 such as a microcontroller unit (“MCU”) is used to read sensors 244 and 236 and process results for transmission to an external source. This data can be retrieved, processed, and transferred by the MCU via antenna 222 continuously, at predefined intervals, or when certain alkalinity, pressure, and/or temperature thresholds, or any combinations thereof, are detected.
- MCU microcontroller unit
- the various sensors and electronic components of tibial insert 210 are contained within an upper cover 256 and a lower cover 258 as shown in FIG. 10 .
- the upper and lower covers can be made from a polymer.
- Antenna 222 is located on an anterior portion of knee joint implant 200 to provide better line of site for transmitting data with less interference.
- the antenna is fixed inside the polymer covers to provide predictable inductance and capacitance.
- a cover 260 encloses the sensors and electronic components of tibial insert 210 as shown in FIG. 11 .
- Cover 260 can be a hermetic cover to hermetically seal tibial insert 210 .
- Cover 260 is preferably made of metal and provides radio frequency (“RF”) shielding to the knee joint.
- RF radio frequency
- knee joint implant 200 provides for convenient maintenance of its components. For example, an in-office or outpatient procedure will allow a surgeon to access the tibia below the patella (an area of minimal tissue allowing for fast recovery) to access component of knee joint implant 200 .
- the electronic components and sensors of knee joint are modular and connector-less allowing for convenient replacement of tibial insert 210 or upgrades to same without impacting the femoral implant or the tibial stem.
- Magnetic flux density measurements 310 are generated from the magnetic-mechanic coupling of marker readers 248 , 252 with the markers 214 , 216 as more fully described above.
- Graphs 302 and 304 show magnetic flux density (mT) measurements from two Hall sensor assemblies (medial marker reader 252 or lateral marker reader 248 ) for a first range of motion of the knee joint.
- graphs 306 and 308 show magnetic flux density (mT) measurements from two Hall sensors (medial marker reader 252 or lateral marker reader 248 ) for a second range of motion of the knee joint.
- the placement of magnetic markers 214 , 216 on the femoral component create a sinusoidal magnetic flux density around femoral implant 202 .
- the marker readers read sine and cosine waveforms.
- the magnitude of the sine and cosine waves are interpolated to a near linear knee flexion angle.
- Placing the individual magnetic markers of medial markers 214 and lateral markers 216 at different separation angles on each condyle of femoral implant 202 creates a phase shift in the measurements from one condyle to the next as the knee rotates. This phase shift can then be used to correct for any rollovers in the interpolated waveform.
- marker readers 248 , 252 and markers 214 , 216 serve as an absolute rotation sensor measuring knee flexion through a full range of motion of knee joint implant 200 .
- the remaining Hall sensor assemblies of marker readers 248 , 252 allow for 6-degrees of freedom movement measurements of knee joint implant 200 as more fully explained below. While an absolute magnetic encoder is disclosed in this embodiment, other embodiments can include a knee joint implant with an incremental magnetic encoder.
- FIG. 13 is a graph showing various implant injury detection sensor readings 404 of knee joint implant 200 for early detection of knee joint implant related infection and/or failure.
- Pressure 408 and temperature 406 are measured using temperature and pressure sensor 246
- alkalinity 410 is measured using pH sensor 244 over time 402 .
- alkalinity 410 measurements of joint synovial fluid can indicate bacterial infection to provide early detection of knee joint implant 200 related infection.
- Increase in pressure 408 and temperature 406 readings may indicate implant-associated infection.
- Variation or change in synovial fluid pressure 408 may indicate implant malfunction.
- FIG. 14 is a schematic view of piezo stacks of medial load sensors 232 and lateral load sensor 254 in communication with a processor 266 .
- Analog impulses generated by the piezo stacks when subjected to loading are converted to continuous digital signals via analog-to-digital converters 262 and 264 as shown in FIG. 14 .
- the continuous digital signals (voltage) 508 can be serially loaded into a shift register and measured as shown in a graph 500 of FIG. 15 .
- a sampling window 506 is selected to identify a peak reading 508 to detect knee joint motion.
- IMU inertial measurement unit
- FIG. 16 is a schematic view of a charging circuit 600 for charging battery 242 of knee joint implant 200 .
- the charging circuit includes a charge circuit 602 connected to a charging coil 606 and piezo stacks of medial load sensors 232 and lateral load sensors 254 via bridge rectifier 604 .
- Charging circuit is configured to direct charge to battery 242 utilizing inputs from one or more piezo stacks from the medial or lateral load sensors. This allows for singular or combined charging using individual or multiple piezo stacks.
- a minimum voltage output threshold of the piezo stacks can be predetermined to initiate battery charging. For example, when a patient is asleep, low piezo stack pulses will not be used to charge battery 242 .
- Raw piezo stack pulses (voltage 704 ) as shown in a graph 700 of FIG. 17 over time 706 are rectified by a voltage rectifier 708 to produce a rectified and smoothed voltage output (voltage 704 ) shown in a graph 702 of FIG. 17 B .
- the rectified and smoothed voltage output from the piezo stacks is used to charge battery 242 .
- power harvesting from motion of knee joint implant 200 is achieved by using the pulses generated by the piezo stacks.
- FIG. 18 is a schematic view of a knee joint implant 800 according to another embodiment of the present disclosure.
- Knee joint implant 800 is similar to knee joint implant 200 , and therefore like elements are referred to with similar numerals within the 800-series of numbers.
- knee joint implant 800 includes a femoral implant 802 , a tibial implant 804 with a tibial stem 812 and a tibial insert 810 .
- knee joint implant 800 includes a chargeable implant coil 872 located in tibial insert 810 which can be charged by an external coil 870 contained in an external sleeve 868 as shown in FIG. 18 .
- External sleeve 868 shown in FIG. 19 includes an outer body 873 made of stretchable fabric or other material. Outer body 873 is configured to be a ready-to-wear pull-on knee sleeve which a patiently can conveniently put on and remove.
- a kneecap indicator 875 allows the patient to conveniently align sleeve 868 with knee joint implant 800 for proper placement of external coil 870 with reference to implant coil 872 for charging.
- external coil 870 is adjacent to implant coil 872 for proper charging.
- External sleeve 868 includes a battery 876 and a microcontroller 874 as shown in FIG. 19 . Battery 876 , which can be conveniently replaced, provides power to external coil 870 .
- external coil 870 may be charged by an external source not located on sleeve 868 .
- FIG. 20 shows a side view of tibial insert 810 of knee joint implant 800 .
- Tibial insert 810 is made of a polymer or other suitable to facilitate charging of implant coil 872 .
- Implant coil 872 is located within tibial insert 810 at an indent or depression at a proximal-anterior corner of the tibial insert as show in FIG. 20 and FIG. 21 (top and front views of tibial implant 810 ). The proximal-anterior location of implant coil 872 maximizes access to external coil 870 for efficient and convenient charging.
- FIGS. 22 A and 22 B show a knee joint implant 900 according to another embodiment of the present disclosure.
- Knee joint implant 900 is similar to knee joint implant 800 , and therefore like elements are referred to with similar numerals within the 900-series of numbers.
- knee joint implant 900 includes a femoral implant 902 , a tibial implant 904 with a tibial stem 912 and a tibial insert 910 .
- knee joint implant 900 includes a chargeable implant coil 972 located at anterior end of tibial insert 910 which can be charged by an external coil 970 (not shown).
- An external sleeve as described with reference knee joint implant 900 , or another charging mechanism can be used to conveniently charge implant coil 972 .
- FIG. 23 A is a front view of a tibial implant 1004 according to an embodiment of the present disclosure.
- Tibial implant 1004 is similar to tibial implant 204 , and therefore like elements are referred to with similar numerals within the 1000-series of numbers.
- tibial implant 1004 includes a tibial stem 1012 and a tibial insert 1010 .
- tibial insert 1010 includes a charging coil 1072 located around a periphery of the tibial insert 1010 as shown in FIG. 23 B .
- a spectroscopy sensor 1074 in tibial insert 1010 serves as an infection detection sensor for tibial implant 1004 .
- Spectroscopy sensor 1074 is configured to identify the onset of biofilm on tibial implant (or a corresponding femoral implant) to provide early detection of implant related infection.
- FIG. 24 A is a front view of a tibial implant 1104 according to an embodiment of the present disclosure.
- Tibial implant 1104 is similar to tibial implant 204 , and therefore like elements are referred to with similar numerals within the 1100-series of numbers.
- tibial implant 1104 includes a tibial stem 1112 and a tibial insert 1110 .
- tibial insert 1110 includes an IMU 1176 and five Hall sensor assemblies for each of the medial and lateral marker readers. The arrangement of the Hall sensor assemblies differ from tibial insert 210 .
- Sensor data from IMU 1176 provides additional knee implant joint movement data as more fully explained above.
- IMU 1176 can detect or confirm knee joint position during continuous loading positions of a patient such as standing. IMU data can reveal, or support measurements related to gait characteristics, stride, speed, etc., of a patient. pH sensor 1144 of tibial insert 1110 is located adjacent to a proximal face of the tibial insert at a central location as shown in FIG. 24 B . All sensors of tibial implant 1104 are powered by batteries located in tibial insert 1110 .
- FIGS. 25 A and 25 B A tibial implant 1204 according to another embodiment of the present disclosure is shown in FIGS. 25 A and 25 B .
- Tibial implant 1204 is similar to tibial implant 204 , and therefore like elements are referred to with similar numerals within the 1200-series of numbers.
- tibial implant 1204 includes a tibial stem 1212 and a tibial insert 1210 .
- tibial insert 1210 includes an IMU 1276 and a pressure sensor.
- Tibial insert 1210 is made of polyethylene and tibial stem 1212 is made of titanium in this embodiment.
- FIG. 26 is a side view of a knee joint implant 1300 according to another embodiment of the present disclosure.
- Knee joint implant 1300 is similar to knee joint implant 200 , and therefore like elements are referred to with similar numerals within the 1300-series of numbers.
- knee joint implant 1300 includes a femoral implant 1302 , a tibial implant 1304 with a tibial stem 1312 and a tibial insert 1310 .
- battery 1342 of knee joint implant 1300 are located in tibial stem 1312 as best shown in FIG. 27 . Locating batteries 1342 in tibial stem provides room for additional sensors in tibial insert 1310 .
- the tibial stem and tibial insert 1310 can be made of polyethylene in this embodiment.
- Various knee joint implant motion data 1301 collected by magnetic markers and marker readers is shown in FIG. 26 .
- Motion data 1301 can include internal-external rotation, medial-lateral rotation, varus-valgus rotation, etc.
- knee joint implant 1400 is shown in FIG. 28 .
- Knee joint implant 1400 is similar to knee joint implant 200 , and therefore like elements are referred to with similar numerals within the 1400-series of numbers.
- knee joint implant 1400 includes a femoral implant 1402 , a tibial implant 1404 with a tibial stem 1412 and a tibial insert 1410 .
- tibial insert 1410 includes an IMU 1476 .
- Sensor data from IMU 1476 provides additional knee implant joint motion data 1401 .
- Motion data 1401 can include internal-external rotation, medial-lateral rotation, varus-valgus rotation, etc. for reviewing knee joint implant 1400 performance.
- Spinal implant assembly 1500 includes a spinal implant 1510 such as a plate, rod, etc., secured to first and second vertebrae by a first fastener 1502 and a second fastener 1504 , respectively.
- the first and second fasteners can be screws as shown in FIG. 29 .
- First fastener 1502 includes magnetic flux density detectors such as Hall sensor assemblies 1506 located along a body of the fastener 1502 .
- Second fastener 1504 includes magnetic markers 1508 located along a body of the fastener. Any movement of second fastener 1504 with respect to the first fastener is detected and measured by Hall sensor assemblies 1506 .
- FIG. 30 is side view of a hip implant 1600 according to an embodiment of the present disclosure.
- Hip implant 1600 includes a stem 1602 , a femoral head 1604 , an insert 1606 and an acetabular component 1608 .
- Magnetic flux density sensors such as Hall sensor assemblies 1626 are located on a flex connect 1628 and placed around femoral head 1604 as shown in FIGS. 31 A and 31 B .
- a connector 1622 on flex connect 1628 allows for convenient connection of femoral head 1604 with stem 1602 .
- Magnetic markers 1630 are located on insert 1606 as best shown in FIG. 31 C . Any motion of insert 1606 is detected by Hall sensor assemblies 1626 by measuring the change in magnetic flux density.
- Hall sensor assemblies 1626 and markers 1630 function as an absolute or incremental encoder to detect hip movement of a patient during daily activity.
- Hip implant 1600 includes a charging coil 1610 located on stem 1602 as shown in FIG. 30 .
- Charging coil 1610 charges a battery 1612 via a connector 1624 to power the various sensors located in hip implant 1600 .
- a load sensor 1614 such a strain gauge detects forces between stem 1602 and acetabular component 1608 to monitor and transmit hip loads during patient rehabilitation and recovery.
- Various electronic components 1616 are located in stem 1602 .
- a pH sensor 1618 located on stem can measure alkalinity and provide early detection notice of implant related infection. Data from these sensors is transmitted to an external source via an antenna 1620 as described with reference to the knee joint implants disclosed above.
- FIG. 32 is a side view of a hip implant 1700 according to another embodiment of the present disclosure.
- Hip implant 1700 is similar to hip implant 1600 , and therefore like elements are referred to with similar numerals within the 1700-series of numbers.
- hip implant 1700 includes a stem 1702 , a femoral head 1704 and an acetabular component (not shown).
- battery 1712 of hip implant 1700 is located away from electric components 1716 as best shown in FIG. 32 .
- Battery 1712 can be conveniently inserted into hip implant 1700 via a slot 1734 as shown in FIG. 33 .
- electric components 1716 can be inserted into hip implant 1700 via a slot 1732 . This allows for convenient replacements and upgrades to the battery and electric components without disturbing hip implant 1700 .
- FIG. 35 A first embodiment of a modular electronic assembly 1801 is shown in FIG. 35 .
- Electronic assembly includes a connector 1822 to connect to femoral head 1804 , various electronic components 1816 , a battery 1812 and an antenna 1820 .
- FIG. 36 Another embodiment of a modular electronic assembly 1801 ′ is shown in FIG. 36 .
- Electronic assembly 1801 ′ includes various electronic components 1816 ′, a battery 1812 ′, a load sensor such as a strain gauge 1814 ′ and an antenna 1820 ′.
- Electronic assembly 1801 ′ includes a pH sensor 1818 ′ to provide early detection of implant related infection.
- FIG. 37 is a side view of a reverse shoulder implant 1900 according to an embodiment of the present disclosure.
- Shoulder implant 1900 includes a stem 1902 , a cup 1904 , an insert 1906 and a glenoid sphere 1908 .
- Magnetic flux density sensors such as Hall sensor assemblies 1922 are located on insert 1906 as shown in FIG. 38 .
- a connector 1920 on cup 1904 as shown in FIG. 39 allows for attachment of the cup to insert 1906 .
- Magnetic markers 1910 are located on glenoid sphere 1908 as best shown in FIG. 37 . Any motion of glenoid sphere 1908 is detected by Hall sensor assemblies 1922 by measuring the change in magnetic flux density.
- Hall sensor assemblies 1922 and markers 1910 function as an absolute or incremental encoder to detect shoulder movement of a patient during daily activity.
- FIG. 40 is a side view of a reverse shoulder implant 2000 according to another embodiment of the present disclosure.
- Shoulder implant 2000 is similar to shoulder implant 1900 , and therefore like elements are referred to with similar numerals within the 2000-series of numbers.
- shoulder implant 2000 includes a stem 2002 , a cup 2004 and an insert 2006 .
- electronic assembly 2012 , battery 2014 and pH sensor 2018 are located in insert 2006 as shown in FIG. 41 .
- only a single component—i.e., the cup, of shoulder implant 2000 can be replaced or upgraded to make changes to sensor collection and transmission of the shoulder implant performance data.
- FIG. 42 is a flowchart showing steps of a method 2100 to determine implant wear according to an embodiment of the present disclosure. While method 2100 is described with reference to a knee joint implant below, method 2100 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above.
- a first step 2102 the initial thickness of the knee joint implant (such as thickness of the tibial insert) is recorded. This can be obtained by measuring the tibial insert prior to implantation, or measured based on the magnetic flux density generated by the magnetic markers as measured by the Hall sensor assemblies.
- periodic measurements of tibial insert thickness are determined in a step 2104 by evaluating the magnetic flux density.
- the decision to replace the tibial insert can be based on a rate of wear threshold 2206 as shown in graph 2200 of FIG. 43 in a step 2110 , or a critical thickness value 2308 as shown in graph 2300 of FIG. 44 in a step 2112 .
- Graph 2200 plots tibial insert thickness 2202 over time 2204 .
- a change in slope 2206 denotes the rate of wear of tibial insert.
- notification to replace the tibial insert is triggered in a step 2114 .
- Graph 2300 plots tibial insert thickness 2302 over time 2304 .
- a notification 2310 is triggered to replace the tibial insert in step 2114 .
- FIG. 45 is a flowchart showing steps of a method 2400 to determine implant wear according to another embodiment of the present disclosure. While method 2400 is described with reference to a knee joint implant below, method 2400 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above.
- a knee angle of a patient with the knee joint implant is measured.
- the knee is then placed in full extension in a step 2404 .
- Hall sensor amplitudes are measured in a step 2408 . This process is repeated over time to track the Hall sensor amplitude. These values are then compared with initial Hall sensor amplitude values obtained when the knee implant joint template was implanted (obtained by performing steps 2412 to 2418 ).
- a difference between the initial Hall sensor amplitudes and current Hall sensor amplitudes from step 2408 represent wear of the tibial insert in a step 2420 .
- a notification to replace the tibial insert is triggered in a step 2422 .
- FIG. 46 is a flowchart showing steps of a method 2500 for implant data collection according to an embodiment of the present disclosure. While method 2500 is described with reference to a knee joint implant below, method 2500 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above.
- a patient is implanted with a knee joint implant.
- the knee joint implant is in a low-power mode (to conserve battery power) until relevant activity is detected (steps 2504 and 2506 ). Once the relevant activity is identified by the sensor(s) of the knee joint implant (step 2508 ), the implant shifts to a high-power mode.
- FIGS. 47 A and 47 B shows steps of a method 2600 for patient monitoring according to an embodiment of the present disclosure. While method 2600 is described with reference to a knee joint implant below, method 2600 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above.
- various sensors within the sensor are activated (steps 2624 , 2626 ) to track and monitor patient rehabilitation and recovery (step 2628 ).
- the tracked data indicates that the desired recovery parameters are achieved, some of the sensors in the knee joint implant are deactivated or turned to a “sleep mode” (step 2616 ).
- the recovery target can be a desired range of motion of the knee joint.
- the knee joint implant Upon identification of an anomalous condition, the knee joint implant can be configured to fully recharge and turn on the previously turned off sensors to provide additional implant performance measurements (step 2624 ). A surgeon can customize the sensor readings and frequency based on the observed condition (steps 2626 and 2628 ). Additional rehabilitation steps for patient recovery can be provided to the patient at this point. The impact of the new rehabilitation steps can be monitored and compared with peers to observe patient recovery (steps 2636 - 2642 ).
- FIGS. 48 and 49 show a system for authenticating and connecting knee joint implant 200 to one or more external devices. While knee joint implant 200 is used as an exemplary example in this embodiment, any implant with sensors including any of the implants disclosed herein, can be used in other embodiments. Wirelessly connecting knee joint implant 200 to an external device allows the knee joint implant to transfer sensor data to the external device and to receive instructions from the external device to change or optimize implant performance if necessary. Ensuring regular sensor data transfer from the knee joint implant to an external source for monitoring implant performance depends, inter alia, on patient compliance and battery capacity of the implant.
- Knee joint implant 200 must be in advertising mode to transfer data to the external device. However, the knee joint implant will be constantly searching for wireless connections such as Bluetooth Low Energy (“BLE”), etc. in the advertising mode and thereby drain battery energy.
- BLE Bluetooth Low Energy
- a patient only needs to place their smartphone 2702 close to knee joint implant 200 to trigger first communication 2700 . No other steps such as password entry, fingerprint authentication, etc., is required. While a smartphone is shown in this embodiment, it should be understood that other patient devices such as a watch, tablet, credential device, fob, etc. can be used in other embodiments.
- authentication data from knee joint implant 200 is transferred via NFC to smartphone 2702 and knee joint implant 200 switches from a deep sleep mode to an advertising mode.
- NFC-enabled knee joint implant and smartphone allow secure and convenient data transfer. NFC utilizes radio frequencies to establish a connection between the two devices, which allows for the exchange of data. NFC interaction does not require any manual configuration and is significantly faster than Bluetooth or Wi-Fi.
- knee joint implant 200 establishes a bi-directional second communication 2800 between knee joint implant 200 and smartphone 2702 which then communicates with external platforms such as cloud-based service 2808 and a remote monitoring platform 2812 as best shown in FIG. 49 .
- Second communication 2800 between knee joint implant 200 and smartphone 2702 can be accomplished using a low energy communication protocol such as a BLE connection 2804 shown in FIG. 49 .
- a distance D2 between knee joint implant 200 and smartphone can be considerably greater than D1—i.e., between 10 to 100 meters, to maintain BLE communication between these devices.
- Smartphone 2702 can function as an intermediary to transfer data obtained from knee joint implant 200 to cloud-based service 2808 via a Wi-Fi connection 2806 or other suitable communication protocols. Data from cloud-based service 2808 can be securely accessed through remote monitoring platform 2812 via a Wi-Fi connection 2810 or other suitable communication protocols.
- a surgeon or health care professional can conveniently and securely receive knee joint implant data to monitor implant performance and patient recovery.
- the authentication and connectivity between knee joint implant and one or more external devices and remote platforms can be conveniently initiated and completed by a patient momentarily bringing their smartphone in proximity with the knee joint implant.
- knee joint implant 200 Prior to initiating a first communication such as an NFC connection between knee joint implant 200 and smartphone 2702 , knee joint implant 200 can be in a deep sleep mode in a step 2902 .
- a deep sleep mode ensures that knee joint implant's battery is not consuming any energy for data transfer.
- a patient then places a mobile device or an external device such as smartphone 2702 adjacent knee joint implant 200 in a step 2904 .
- NFC chips in each of the knee joint implant 200 and smartphone 2702 interact with each other when a distance between the two devices is equal to or less than D1 in a step 2906 .
- the NFC interaction results in switching on knee joint implant 200 to an advertising mode.
- Authentication credentials such as implant serial number, health care professional ID, location of implant, type of implant, patient details, etc. stored on knee joint implant 200 , smartphone 2702 , or a cloud-service platform 2808 , is exchanged via NFC in a step 2908 to complete authentication.
- a communication link between knee joint implant 200 and smartphone 2702 is established in a step 2910 .
- FIG. 53 is a flowchart 3100 describing steps of a first communication between an implant with sensors such as knee joint implant 200 and an external device such as a HCP's smartphone 2702 .
- Flowchart 3100 is similar to flowchart 2900 , and therefore like steps are referred to with similar numerals within the 3100-series.
- an HCP uses an external device to initiate the first communication via NFC in step 3106 .
- FIG. 54 shows a flowchart 3200 showing steps of a second communication following the first communication described in flowchart 3100 .
- Flowchart 3200 is similar to flowchart 300 , and therefore like steps are referred to with similar numeral within the 3200-series.
- knee joint implant 200 Prior to initiating a first communication such as an NFC connection between knee joint implant 200 and a first responder device such as smartphone, watch, fob, etc., knee joint implant 200 can be in a deep sleep mode 3302 .
- the first responder then places the first responder device adjacent knee joint implant 200 in a step 3304 .
- NFC chips in each of the knee joint implant 200 and the first responder device interact with each other when a distance between the two devices is less than D1 in a step 3306 .
- the NFC interaction results in switching on knee joint implant 200 to an advertising mode.
- Authentication credentials such as implant serial number, health care professional ID, location of implant, type of implant, etc., stored on knee joint implant 200 is transmitted to the first responder device via NFC in a step 3308 to complete authentication.
- a communication link between knee joint implant 200 and the first responder device is established in a step 3310 .
- unique patient information stored on knee joint implant such as patient blood type, allergies, diabetes, etc. is transmitted via NFC to a secure app on the first responder device in a step 3310 .
- a first responder can retrieve vital patient information from a disabled, unresponsive, or unconscious patient by simply placing the first responder device in proximity with the knee joint implant. While a knee joint implant is described in this embodiment, any implant with sensors such as the examples disclosed herein, or an implant without sensors but with a memory storing patient data can be used in other embodiments.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Dentistry (AREA)
- Rheumatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Human Computer Interaction (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Prostheses (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 18/108,954 filed on Feb. 13, 2023, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/444,056 filed Feb. 8, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/444,045, filed Feb. 8, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/443,146 filed Feb. 3, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/483,045, filed Feb. 3, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/482,659, filed Feb. 1, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/482,656 filed Feb. 1, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/482,097 filed Jan. 30, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/482,109 filed Jan. 30, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/481,660 filed Jan. 26, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/481,053 filed Jan. 23, 2023, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/431,094 filed Dec. 8, 2022, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/423,932 filed Nov. 9, 2022, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/419,781 filed Oct. 27, 2022, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/419,522 filed Oct. 26, 2022, and which claims the benefit of the filing date of United States Provisional Patent Application No. 63,419,455 filed Oct. 26, 2022, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/359,384 filed Jul. 8, 2022, and which claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/309,809 filed Feb. 14, 2022, the disclosures of all of which are hereby incorporated herein by reference in their entirety.
- The present disclosure relates to a system and method for implant authentication and connectivity, and particularly to a system and method for providing secure authentication and connection between an implant and a remote monitoring platform for tracking implant performance.
- Monitoring patient recovery after joint replacement surgery is critical for proper patient rehabilitation. A key component of monitoring a patient's recovery is evaluating the performance of the implant to detect implant dislocation, implant wear, implant malfunction, implant breakage, etc. For example, a tibial insert made of polyethylene (“PE”) implanted in a total knee arthroscopy (“TKA”) is susceptible to macroscopic premature failure due to excessive loading and mechanical loosening. Early identification of improper implant functioning and/or infection and inflammation at the implantation site can lead to corrective treatment solutions prior to implant failure. Data relating to postoperative range of motion and load balancing of the new TKA implants can be critical for managing recovery and identification of a proper replacement solution if necessary.
- However, diagnostic techniques to evaluate implant performance are generally limited to patient feedback and imaging modalities such as X-ray fluoroscopy or magnetic resonance imaging (“MRI”). Patient feedback can be misleading in some instances. For example, gradual implant wear or dislocation, onset of infection, etc., may be imperceptible to a patient. Further, imaging modalities offer only limited insight into implant performance. For example, X-ray images will not reveal information related to the patient's range of motion or the amount of stress on the knee joint of a patient recovering from a TKA. Furthermore, the imaging modalities may provide only an instantaneous snapshot of the implant performance, and therefore fail to provide continuous real time information related to implant performance.
- Therefore, there exists a need for implants and related methods for tracking implant performance.
- Disclosed herein are joint implants and methods for tracking joint implant performance.
- In accordance with an aspect of the present disclosure a joint implant is provided. A joint implant according to this aspect, may include a first implant coupled to a first bone of a joint and a second implant coupled to a second bone of the joint. The first implant may include at least one marker. The second implant may contact the first implant. The second implant may include at least one marker reader to detect a position of the marker to identify positional data of the first implant with respect to the second implant. The second implant may include at least one load sensor to measure load data between the first and second implants. A processor may be operatively coupled to the marker reader and the load sensor. The processor may simultaneously output the positional data and the load data to an external source.
- Continuing in accordance with this aspect, the marker may be a magnet and the marker reader may be a magnetic sensor. The magnetic sensor may be a Hall sensor assembly including at least one Hall sensor. The magnet may be a magnetic track disposed along a surface of the first implant. The first implant may include a first magnetic track extending along a medial side of the first implant and a second magnetic track extending along a lateral side of the first implant.
- Continuing in accordance with this aspect, the second implant may include a first Hall sensor assembly on a medial side of the second implant and a second Hall sensor assembly on a lateral side of the second implant. The first Hall sensor assembly may be configured to read a magnetic flux density of the first magnetic track and the second Hall sensor assembly configured to read a magnetic flux density of the second magnetic track.
- Continuing in accordance with this aspect, a central portion of the first magnetic track may be narrower than an anterior end and a posterior end of the first magnetic track. The first magnetic track may include curved magnetic lines extending across the first magnetic track.
- Continuing in accordance with this aspect, the magnetic sensor may be coupled to the load sensor by a connecting element. The connecting element may be a rod configured to transmit loads from the magnetic sensor to the load sensor. The load sensor may be a strain gauge.
- Continuing in accordance with this aspect, the joint may be a knee joint. The first implant may be a femoral implant and the second implant may be a tibial implant. The tibial implant may include a tibial insert and a tibial stem. The marker reader and the processor may be disposed within the tibial insert.
- Continuing in accordance with this aspect, the positional data may include any of a knee flexion angle, knee varus-valgus rotation, knee internal-external rotation, knee medial-lateral translation, superior-inferior translation, anterior-posterior translation, and time derivatives thereof. The load data may include any of a medial load magnitude, lateral load magnitude, medial load center and lateral load center. The tibial insert may include any of a pH sensor, a temperature sensor and a pressure sensor operatively coupled to the processor. The tibial insert may include a spectroscopy sensor. The tibial insert may be made of polyethylene.
- Continuing in accordance with this aspect, the joint implant may include an antenna to transmit the positional data and the load data to an external source. The external source may be any of a tablet, computer, smart phone, and remote workstation.
- In accordance with another aspect of the present disclosure, a joint implant is provided. A joint implant according to this aspect, may include a first implant coupled to a first bone of a joint and a second implant coupled to a second bone of the joint. The first implant may include a plurality of medial markers located on a medial side of the first implant, and a plurality of lateral markers located on a lateral side of the first implant. The second implant may contact the first implant. The second implant may include at least one medial marker reader to identify a position of the medial markers and at least one lateral marker reader to identify a position of the lateral markers. The position of the medial markers and the position of the lateral markers may provide positional data of the first implant with respect to the second implant. The second implant may include a medial load sensor to measure medial load data between the first and second implants on a medial side of the joint implant, a lateral load sensor to measure lateral load data between the first and second implants on a lateral side of the joint implant. A processor may be operatively coupled to the medial marker reader, the lateral marker reader, the medial load sensor, and the lateral load sensor. The processor may simultaneously output the positional data, the medial load data, and the lateral load data to an external source.
- Continuing in accordance with this aspect, a number of medial markers may be different from a number of lateral markers. The medial markers and the lateral markers may include magnets located at discrete locations on the first implant. The medial marker reader and the lateral marker reader may include a Hall sensor assembly with at least one Hall sensor. The medial load sensor and the lateral load sensor may include piezo stacks.
- Continuing in accordance with this aspect, the joint implant may include a battery disposed within the second implant. The joint implant may include a charging circuit disposed within the second implant to charge the battery using power generated by the piezo stacks during loading between the first and second implants.
- Continuing in accordance with this aspect, the joint may be a knee joint. The first implant may be a femoral implant and the second implant may be a tibial implant. The tibial implant may include a tibial insert and a tibial stem. The marker reader and the processor may be disposed within the tibial insert. The positional data may include any of a knee flexion angle, knee varus-valgus rotation, knee internal-external rotation, knee medial-lateral translation, anterior-posterior translation, superior-inferior translation, and time derivatives thereof.
- Continuing in accordance with this aspect, the medial load data may include a medial load magnitude and a medial load center. The tibial insert may include any of a pH sensor, a temperature sensor, accelerometer, gyroscope, inertial measure unit and a pressure sensor operatively coupled to the processor. The tibial insert may include a spectroscopy sensor.
- In accordance with another aspect of the present disclosure, a joint implant system is provided. A joint implant system according to this aspect, may include a first implant coupled to a first bone of a joint, a second implant coupled to a second bone of the joint, and an external sleeve configured to be removably attached to the joint. The first implant may include at least one marker. The second implant may contact the first implant. The second implant may include at least one marker reader to detect a position of the marker to identify positional data of the first implant with respect to the second implant. The second implant may include at least one load sensor to measure load data between the first and second implants. A processor may be operatively coupled to the marker reader and the load sensor. The processor may be configured to simultaneously output the positional data and the load data to an external source.
- Continuing in accordance with this aspect, the joint implant system may include a battery to power the marker reader and the processor. The battery may be disposed within the second implant and including a joint implant charging coil. The external sleeve may include an external charging coil to charge the battery. The battery may be configured to be charged by ultrasonic wireless charging or optical charging.
- In another aspect of the present disclosure, a method for monitoring a joint implant performance is provided. A method according to this aspect, may include the steps of providing a first implant couplable to a first bone of a joint, providing a second implant couplable to a second bone of the joint, tracking magnetic flux density magnitudes over time using a magnetic sensor, and initiating a warning when a tracked magnetic flux density magnitude is different from a predetermined value. The first implant may include at least one magnetic marker. The second implant may be configured to contact the first implant. The second implant may include at least one magnetic sensor to detect the magnetic flux density of the magnetic marker. The magnetic flux density value may be proportional to a thickness of the second implant.
- In accordance with another aspect of the present disclosure, a method for monitoring a joint implant performance is provided. A method according to this aspect, may include the steps of providing a first implant couplable to a first bone of a joint, providing a second implant couplable to a second bone of the joint, tracking a rate of change of a magnetic flux density over time using a magnetic sensor, and initiating a warning when a tracked rate of change of the magnetic flux density exceeds a predetermined value. The first implant may include at least one magnetic marker. The second implant may be configured to contact the first implant. The second implant may include at least one magnetic sensor to detect the magnetic flux density of the magnetic marker. The rate of change of the magnetic flux density may be proportional to a wear rate of the second implant.
- In accordance with another aspect of the present disclosure, a method of monitoring implant performance is provided. A method according to this aspect, may include the steps of providing an implant with a first sensor to detect implant temperature, a second sensor to detect a fluid pressure, and a third sensor to detect implant alkalinity, tracking and outputting implant temperature, implant pressure and implant alkalinity over time to an external source using a processor disposed within the implant, and initiating a notification when any of the implant temperature, implant pressure and implant alkalinity, or any combination thereof, exceeds a predetermined value. The implant temperature, implant pressure and implant alkalinity may be related to any of an implant failure and an implant infection. The fluid pressure may be a synovial fluid pressure.
- Disclosed herein are systems and methods for providing secure authentication and connection between an implant and a remote monitoring platform to track implant performance. An implant such as a joint implant may include a communication module that may interact with an external communication module when the external communication module is placed in proximity or adjacent the joint implant. The interaction between the communication modules may initiate wireless transfer of authentication information stored on a memory of the joint implant to an external device which includes the external communication module via a first communication protocol. Upon validation of the authentication information, data from the joint implant may be transferred to the external device via a second communication protocol different from the first communication protocol. The data may include joint implant or patient information collected by one or more sensors located on or adjacent the joint implant.
- In accordance with an aspect of the present disclosure, a joint implant is provided. A joint implant according to this aspect, may include a first implant coupled to a first bone of a joint, a second implant coupled to a second bone of the joint. a first communication module, and a memory to store authentication information. The first communication module may be configured to wirelessly transfer the authentication information to a communication module of an external device when the external device is placed adjacent the joint implant.
- Continuing in accordance with this aspect, the first communication module may be an NFC communication module. The NFC communication module may be configured to transfer the authentication information to the communication module of the external device via NFC. The joint implant may include at least one sensor to measure an interaction between the first and second implants. The authentication information may include joint implant data or patient data. The joint implant may be configured to change from a sleep mode to an advertising mode when the external device is placed adjacent the joint implant.
- Continuing in accordance with this aspect, the joint implant may include a second communication module. The second communication module may be any of BLE, Z-wave or Zigbee module. The second communication module may be a BLE module. The BLE module may be configured to transfer the measured interaction between the first and second implants to the communication module of the external device via BLE in the advertising mode.
- Continuing in accordance with this aspect, the joint implant may be configured to return to the sleep mode upon transferring the measured interaction. The measured interaction may be any of a load between the first and second implants and position of the first implant with respect to the second implant.
- Continuing in accordance with this aspect, the joint implant may be a knee joint implant. The first implant may be a femoral implant and the second implant may be a tibial implant. The tibial implant may include a tibial insert and a tibial stem. The first communication module, the second communication module and the memory may be disposed within the tibial insert.
- Continuing in accordance with this aspect, the position of the first implant with respect to the second implant may include any of a knee flexion angle, knee varus-valgus rotation, knee internal-external rotation, knee medial-lateral translation, superior-inferior translation, anterior-posterior translation, and time derivatives thereof.
- Continuing in accordance with this aspect, the tibial insert may include any of a pH sensor, a temperature sensor and a pressure sensor operatively coupled to a processor.
- Continuing in accordance with this aspect, the external device may be any of a smartphone, tablet, watch, and fob. The joint implant may be any of hip implant, shoulder implant, and ankle implant.
- Continuing in accordance with this aspect, the measured interaction may include patient activity data. The patient activity data may include any of a patient's gait and a number of steps taken by the patient in a predetermined interval.
- In accordance with another aspect of the present disclosure, an implant system is provided. An implant system according to this aspect, may include an implant coupled to a patient and an external device including a communication module. The implant may include a first communication module, and a memory to store authentication information. The first communication module may be configured to wirelessly transfer the authentication information to the communication module of an external device when the external device is placed adjacent the implant.
- Continuing in accordance with this aspect, the communication module may be configured to communicate with a cloud-based service such that the authentication information from the first communication module is authenticated on the cloud-based service.
- In accordance with another aspect of the present disclosure, a method for monitoring implant performance is provided. A method according to this aspect, may include the steps of placing an external device adjacent an implant coupled to patient to initiate a first communication between the implant and the external device, authenticating implant information via the first communication, initiating a second communication between the implant and the external device upon successful authentication of the first communication, and transferring implant data from the implant to the external device via the second communication.
- Continuing in accordance with this aspect, the first communication may be an NFC communication and the second communication is a BLE communication.
- A more complete appreciation of the subject matter of the present disclosure and the various advantages thereof can be realized by reference to the following detailed description, in which reference is made to the following accompanying drawings:
-
FIG. 1 is a front view of a knee joint implant according to an embodiment of the present disclosure; -
FIG. 2 is a side view of a femoral implant of the knee joint implant ofFIG. 1 ; -
FIG. 3A is a bottom view of the femoral implant ofFIG. 2 ; -
FIG. 3B is schematic view of encoder tracks of the femoral implant ofFIG. 2 ; -
FIG. 4 is a partial view of an encoder read head and a load sensor of a tibial implant of the knee joint implant ofFIG. 1 ; -
FIG. 5A is a front view of an antenna of the knee joint implant ofFIG. 1 ; -
FIG. 5B is a top view of the antenna ofFIG. 5A ; -
FIG. 6 is a perspective side view of a knee joint implant according to another embodiment of the present disclosure; -
FIG. 7 is a perspective front view of a tibial implant of the knee joint implant ofFIG. 6 ; -
FIG. 8 is a partial perspective view of an insert of the tibial implant ofFIG. 6 ; -
FIG. 9 is a partial top view of the insert ofFIG. 8 showing details of various insert components; -
FIG. 10 is a perspective side view of the insert of the tibial implant ofFIG. 7 ; -
FIG. 11 is a perspective side view of a cover of the insert ofFIG. 10 ; -
FIG. 12 are graphs showing magnetic flux density measurements of the implant sensors and knee flexion angles; -
FIG. 13 is a graph showing various implant sensor readings of the knee joint implant ofFIG. 6 ; -
FIG. 14 is a schematic view of implant sensors of the knee joint implant ofFIG. 6 in communication with a processor; -
FIG. 15 is a graph showing voltage measurements of the implant sensors; -
FIG. 16 is a schematic view of a charging circuit for the knee joint implant ofFIG. 6 ; -
FIG. 17A is a graph showing measured voltage of the implant sensors; -
FIG. 17B is a graph showing rectified voltage of the implant sensors; -
FIG. 18 is a schematic view of a knee joint implant with a charging sleeve according to an embodiment of the present disclosure; -
FIG. 19 is a front view of the charging sleeve of the knee joint implant ofFIG. 17 ; -
FIG. 20 is a side view of an insert of the knee joint implant ofFIG. 17 ; -
FIG. 21 shows top and front views of the insert ofFIG. 19 ; -
FIG. 22A is front view of a knee joint implant according to another embodiment of the present disclosure; -
FIG. 22B is a side view of the knee joint implant ofFIG. 22A ; -
FIG. 23A is a front view of a tibial implant according to another embodiment of the present disclosure; -
FIG. 23B is a top view of an insert of the tibial implant ofFIG. 22A ; -
FIG. 24A is a front view of a tibial implant according to another embodiment of the present disclosure; -
FIG. 24B is a top view of an insert of the tibial implant ofFIG. 24A ; -
FIG. 25A is a front view of a tibial implant according to another embodiment of the present disclosure; -
FIG. 25B is a top view of an insert of the tibial implant ofFIG. 25A ; -
FIG. 26 is a side view of a knee joint implant according to another embodiment of the present disclosure; -
FIG. 27 is a front view of a tibial implant of the knee joint implant ofFIG. 26 ; -
FIG. 28 is a schematic side view of a knee joint implant illustrating various measurements according to another embodiment of the present disclosure; -
FIG. 29 is a schematic side view of a spinal implant assembly according to another embodiment of the present disclosure; -
FIG. 30 is side view of a hip implant according to another embodiment of the present disclosure; -
FIG. 31A is a schematic view of a sensor assembly of the hip implant ofFIG. 30 ; -
FIG. 31B is a side view of the sensor assembly and an insert of the hip implant ofFIG. 31A ; -
FIG. 31C is a top view of the sensor assembly and the insert ofFIG. 31B ; -
FIG. 32 is a side view of a hip implant according to another embodiment of the present disclosure; -
FIG. 33 is a partial top view of the hip implant ofFIG. 32 ; -
FIG. 34 is a side view of a hip implant according to another embodiment of the present disclosure; -
FIG. 35 is a side view of an electronic assembly of the hip implant ofFIG. 34 according to another embodiment of the present disclosure; -
FIG. 36 is a side view of an electronic assembly of the hip implant ofFIG. 34 according to another embodiment of the present disclosure; -
FIG. 37 is a side view of a shoulder implant according to another embodiment of the present disclosure; -
FIG. 38 is top view of an insert of the shoulder implant ofFIG. 37 ; -
FIG. 39 is a top view of a cup of the shoulder implant ofFIG. 37 ; -
FIG. 40 is side view of a shoulder implant according to another embodiment of the present disclosure; -
FIG. 41 is a side view of an insert of the shoulder implant ofFIG. 40 ; -
FIG. 42 is a flowchart showing steps to determine implant wear according to another embodiment of the present disclosure; -
FIG. 43 is a first graph showing implant thickness over time; -
FIG. 44 is a second graph showing implant thickness over time; -
FIG. 45 is a flowchart showing steps to determine implant wear according to another embodiment of the present disclosure; -
FIG. 46 is a flowchart showing for implant data collection according to another embodiment of the present disclosure; -
FIGS. 47A and 47B is a flowchart showing steps for patient monitoring according to another embodiment of the present disclosure; -
FIG. 48 is a schematic view of a first communication between an implant and an external device according to an embodiment of the present disclosure; -
FIG. 49 is a schematic view of a second communication between the implant and the external device ofFIG. 48 according to an embodiment of the present disclosure; -
FIG. 50 is a flowchart showing steps of the first communication between the implant and the external device ofFIG. 48 ; -
FIG. 51 is a flowchart showing steps of the second communication between the implant and the external device ofFIG. 48 ; -
FIG. 52 is a flowchart showing steps of a first communication between an implant and an external device according to another embodiment of the present disclosure; -
FIG. 53 is a flowchart showing steps of a second communication between the implant and the external device ofFIG. 52 , and -
FIG. 54 is a flowchart showing steps of a communication between an implant and a first responder device according to an embodiment of the present disclosure. - Reference will now be made in detail to the various embodiments of the present disclosure illustrated in the accompanying drawings. Wherever possible, the same or like reference numbers will be used throughout the drawings to refer to the same or like features within a different series of numbers (e.g., 100-series, 200-series, etc.). It should be noted that the drawings are in simplified form and are not drawn to precise scale. Additionally, the term “a,” as used in the specification, means “at least one.” The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import. Although at least two variations are described herein, other variations may include aspects described herein combined in any suitable manner having combinations of all or some of the aspects described.
- As used herein, the terms “load” and “force” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term. Similarly, the terms “magnetic markers” and “markers” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- As used herein, the terms “power” and “energy” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term. Similarly, the terms “implant” and “prosthesis” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term. The term “joint implant” means a joint implant system comprising two or more implants. Similarly, the terms “energy generator” and “energy harvester” will be used interchangeably and as such, unless otherwise stated, the explicit use of either term is inclusive of the other term.
- In describing preferred embodiments of the disclosure, reference will be made to directional nomenclature used in describing the human body. It is noted that this nomenclature is used only for convenience and that it is not intended to be limiting with respect to the scope of the present disclosure. As used herein, when referring to bones or other parts of the body, the term “anterior” means toward the front part of the body or the face, and the term “posterior” means toward the back of the body. The term “medial” means toward the midline of the body, and the term “lateral” means away from the midline of the body. The term “superior” means closer to the head, and the term “inferior” means more distant from the head.
-
FIG. 1 is a front view of a kneejoint implant 100 according to an embodiment of the present disclosure. Kneejoint implant 100 includes afemoral implant 102 located on afemur 106 and atibial implant 104 located on atibia 108.Tibial implant 104 has atibial insert 110 configured to contactfemoral implant 102, and a tibial baseplate ortibial stem 112 extending distally intotibia 108.Femoral implant 102 includes amedial encoder track 114 located on a medial side and alateral encoder track 116 on a lateral side of the femoral implant. While the encoder tracks are shown along a surface offemoral implant 102 inFIG. 1 , these tracks can be located within or partially within a femoral implant on the medial and lateral sides thereof in other embodiments. The encoder tracks can be made of various structures, including magnetic tape of varying lengths and magnetic markers positioned at discrete locations. The resolution of the encoder track can be adjusted depending on the required precision of the measured parameters such as joint displacement, joint rotation, joint slip, etc.Tibial insert 110 includes amedial read head 118 andlateral read head 120 to read a magnetic flux density frommedial encoder track 114 andlateral encoder track 116, respectively.Medial read head 118 andlateral read head 120 can be any suitable magnetometer configured to detect and measure magnetic flux density, such as a Hall effect sensor. Astibia 108 rotates with reference tofemur 106 during knee flexion and extension,medial encoder track 114 andlateral encoder track 116 move alongmedial read head 118 andlateral read head 120, respectively. This movement causes a change in magnetic flux density which is detected by readheads joint implant 100 movement, rotation, speed and range of articulation, motion/activity, joint slip, and other motion related information. The magnetic-mechanic coupling of the read heads with the encoder tracks allows for direct, instantaneous, and continuous measurements of these knee joint implant parameters. A data transmitter such as anantenna 122 located ontibial insert 110 transmits the knee joint implant parameters measured by the read heads via Bluetooth or other similar wireless means to an external source such as a smart phone, tablet, monitor, network, etc. to allow for real time review of the knee joint implant performance. -
FIGS. 2-3B illustrate additional details offemoral implant 102,medial encoder track 114 andlateral encoder track 116. As shown inFIG. 2 ,medial encoder track 114 extends from ananterior portion 126 offemoral implant 102 to aposterior portion 128 of the femoral implant along atrack axis 130.Medial encoder track 114 includes acentral portion 124 which is narrower than anterior andposterior portions FIG. 3A . As shown inFIG. 3B ,medial encoder track 114 includes arched or curved magnetic lines to compensate for joint rotations in order to maintain uniform readings during a full range of motion of the knee joint. Similarly,lateral encoder track 116 extends from an anterior portion to a posterior portion of the femoral implant and includes a narrow central portion relative to the anterior and posterior portions with arched or curved magnetic lines. The conical profile and curved magnetic lines of the encoder tracks are configured to compensate for joint rotational motion and maintain alignment and coupling between the read heads and the tracks. This maximizes measurement collection and measurement accuracy during a full range of motion of the knee joint. The shape, size and location of the encoder tracks can vary depending on the implant. -
FIG. 4 shows details of a medial side oftibial insert 110.Tibial insert 110 includes amedial load sensor 132 in connection withmedial read head 118 via amedial connector 134.Medial load sensor 132 is a load measuring sensor such as a strain gauge or piezoelectric sensor configured to measure loads or forces transmitted frommedial read head 118 viamedial connector 134.Medial connector 134 can be a rigid member such as a connecting rod to transmit loads frommedial read head 118 tomedial load sensor 132. As shown inFIG. 4 , a portion of the medial side offemoral implant 102 directly contactsmedial read head 118 to transmit loads (medial side loads), which is then measured bymedial load sensor 132.Medial read head 118 is spring-loaded by amedial load spring 136 located belowmedial load sensor 132 to ensure contact betweenmedial read head 118 andfemoral implant 102. Similarly, a lateral side oftibial insert 110 includes a lateral load sensor, a lateral connector, and a lateral load spring. The lateral load sensor is configured to measure lateral loads betweenfemoral implant 102 andtibial implant 104. Measured medial and lateral loads are transmitted viaantenna 122 to an external source. Thus, kneejoint implant 100 can simultaneously provide knee motion information (rotation, speed, flexion angle, etc.) and knee load (medial load, medial load center, lateral load, lateral load center, etc.) in real time to an external source. - Details of
antenna 122 are shown inFIGS. 5A and 5B .Antenna 122 includes screw threads configured to be attached totibial insert 110.Antenna 122 can include a coax interface to shield knee joint and improve transmission between kneejoint implant 100 and the external source. A battery is located adjacent antenna 122 (not shown) to power kneejoint implant 100.Antenna 122 can serve as a charging port via radio frequency (RF) or inductive coupling if a rechargeable battery is used. The location of battery andantenna 122 intibial insert 110 allow for convenient access to remove and replace these components if necessary. Various other sensors such as a temperature sensor, pressure sensor, accelerometer, gyroscope, magnetometer, pH sensor, etc., can be included in kneejoint implant 100 as more fully described below. -
FIG. 6 is a perspective side view of a kneejoint implant 200 according to another embodiment of the present disclosure. Kneejoint implant 200 is similar to kneejoint implant 100, and therefore like elements are referred to with similar numerals within the 200-series of numbers. For example, kneejoint implant 200 includes afemoral implant 202, atibial implant 204 with atibial insert 210 and atibial stem 212. However, kneejoint implant 200 includes magneticmedial markers 214 and magneticlateral markers 216 located at discrete locations along the medial and lateral sides offemoral implant 202, respectively. - Details of
tibial insert 210 are shown inFIGS. 7-11 .Tibial insert 210 includesbatteries 242 on both medial and lateral sides.Batteries 242 can be solid state batteries, lithium ion batteries, lithium carbon monofluoride batteries, lithium thionyl chloride batteries, lithium ion polymer batteries, etc. As best shown inFIG. 9 , Hall sensor assemblies, with each assembly including at least one Hall sensor, are used as amedial marker reader 252 and alateral marker reader 248 to readmedial markers 214 andlateral markers 216, respectively. Each Hall sensor assembly can include multiple Hall sensors arranged in various configurations and orientations. For example, the Hall sensor assembly can include Hall sensors oriented in Cartesian coordinates. As the tibia rotates with reference to the femur during knee flexion and extension,medial markers 214 andlateral markers 216 move alongmedial marker reader 252 andlateral marker reader 248, respectively. This movement causes a change in magnetic flux density, which is detected bymarker readers joint implant 200 movement, rotation, speed and range of articulation, motion/activity, joint slip, and other motion related information. The magnetic-mechanic coupling of the marker readers with the markers allows for direct, instantaneous, and continuous measurements of these knee joint implant parameters without the need to process this information via an algorithm or other means. While eight Hall sensor assemblies (four on each side) are shown in this embodiment, other embodiments can have more than eight or less than eight Hall sensor assemblies positioned at various locations. The arrangement of marker readers and markers provide absolute positions of kneejoint implant 200 supporting wake-up-and-read kernels. Thus, no inference of movement by data synchronization techniques is required to obtain absolute position data of kneejoint implant 200. The number ofmedial markers 214 can be different from the number oflateral markers 216 to account for variation in signal fidelity between these sides. For example, seven magnetic markers can be provided on the medial side and only four magnet markers can be provided on the lateral side to improve signal fidelity and motion detection precision on the medial side. - As best shown in
FIG. 9 , three piezo stacks on the medial side serve asmedial load sensors 232, and three piezo stacks on the lateral side serve aslateral load sensors 254. The staggered or non-linear arrangement of the three piezo stacks on the medial and lateral sides allow for net load measurements and identification of resultant load centers at the medial and lateral sides. Thus, kneejoint implant 200 can simultaneously provide knee motion information (joint rotation, joint speed, joint flexion angle, joint slippage, etc.) and knee load (medial load, medial load center, lateral load, lateral load center, etc.) in real time to an external source. The piezo stacks are configured to generate power from the patient's motion by converting pressure on the piezo stacks to chargebatteries 242 as more fully described below. Thus, kneejoint implant 200 does not require external charging devices or replacement batteries for the active life of the implant. -
Tibial insert 210 includes an infection orinjury detection sensor 244. For example, the infection or injury detection can be a pH sensor configured to measured bacterial infection by measuring the alkalinity of synovial fluid to provide early detection of kneejoint implant 200 related infection. A temperature andpressure sensor 246 is provided intibial insert 210 to monitor kneejoint implant 200 performance. For example, any increase in temperature and/or pressure may indicate implant-associated infection.Pressure sensor 246 is used to measure synovial fluid pressure in this embodiment. Temperature and/orpressure sensor 246 readings can provide early detection of kneejoint implant 200 related infection. Thus,injury detection sensors 244 and 236 provide extended diagnostics with heuristics for first level assessment of infections or injury related to kneejoint implant 200. Anonboard processor 250 such as a microcontroller unit (“MCU”) is used to readsensors 244 and 236 and process results for transmission to an external source. This data can be retrieved, processed, and transferred by the MCU viaantenna 222 continuously, at predefined intervals, or when certain alkalinity, pressure, and/or temperature thresholds, or any combinations thereof, are detected. - The various sensors and electronic components of
tibial insert 210 are contained within anupper cover 256 and alower cover 258 as shown inFIG. 10 . The upper and lower covers can be made from a polymer.Antenna 222 is located on an anterior portion of kneejoint implant 200 to provide better line of site for transmitting data with less interference. The antenna is fixed inside the polymer covers to provide predictable inductance and capacitance. Acover 260 encloses the sensors and electronic components oftibial insert 210 as shown inFIG. 11 . Cover 260 can be a hermetic cover to hermetically sealtibial insert 210. Cover 260 is preferably made of metal and provides radio frequency (“RF”) shielding to the knee joint. - The modular design of knee
joint implant 200 provides for convenient maintenance of its components. For example, an in-office or outpatient procedure will allow a surgeon to access the tibia below the patella (an area of minimal tissue allowing for fast recovery) to access component of kneejoint implant 200. The electronic components and sensors of knee joint are modular and connector-less allowing for convenient replacement oftibial insert 210 or upgrades to same without impacting the femoral implant or the tibial stem. - Graphs plotting magnetic
flux density measurements 310 and knee flexion angles 312 are shown inFIG. 12 . Magneticflux density measurements 310 are generated from the magnetic-mechanic coupling ofmarker readers markers Graphs medial marker reader 252 or lateral marker reader 248) for a first range of motion of the knee joint. Similarly,graphs medial marker reader 252 or lateral marker reader 248) for a second range of motion of the knee joint. The placement ofmagnetic markers femoral implant 202. As thefemoral implant 202 rotates around an axis ofrotation 201 shown inFIG. 6 , the marker readers read sine and cosine waveforms. The magnitude of the sine and cosine waves are interpolated to a near linear knee flexion angle. Placing the individual magnetic markers ofmedial markers 214 andlateral markers 216 at different separation angles on each condyle offemoral implant 202 creates a phase shift in the measurements from one condyle to the next as the knee rotates. This phase shift can then be used to correct for any rollovers in the interpolated waveform. Thus,marker readers markers joint implant 200. In addition to the two Hall sensor assemblies on the lateral and medial side oftibial insert 210, the remaining Hall sensor assemblies ofmarker readers joint implant 200 as more fully explained below. While an absolute magnetic encoder is disclosed in this embodiment, other embodiments can include a knee joint implant with an incremental magnetic encoder. -
FIG. 13 is a graph showing various implant injurydetection sensor readings 404 of kneejoint implant 200 for early detection of knee joint implant related infection and/or failure.Pressure 408 andtemperature 406 are measured using temperature andpressure sensor 246, andalkalinity 410 is measured usingpH sensor 244 overtime 402. As more fully explained above,alkalinity 410 measurements of joint synovial fluid can indicate bacterial infection to provide early detection of kneejoint implant 200 related infection. Increase inpressure 408 andtemperature 406 readings may indicate implant-associated infection. Variation or change insynovial fluid pressure 408 may indicate implant malfunction. In addition to predetermined absolute thresholds of the temperature, pressure and alkalinity readings indicating impending infection or implant failure, collective analysis of these readings can offer early detection warning ahead of the failure/infection thresholds. As shown inFIG. 14 , a combination of temperature, pressure and alkalinity may indicate early detection oftrauma 414 orinfection 412. Thus, injury detection sensor readings provide extended diagnostics with heuristics for first level assessment of infections or injury related to kneejoint implant 200. -
FIG. 14 is a schematic view of piezo stacks ofmedial load sensors 232 andlateral load sensor 254 in communication with aprocessor 266. Analog impulses generated by the piezo stacks when subjected to loading are converted to continuous digital signals via analog-to-digital converters FIG. 14 . The continuous digital signals (voltage) 508 can be serially loaded into a shift register and measured as shown in agraph 500 ofFIG. 15 . Asampling window 506 is selected to identify a peak reading 508 to detect knee joint motion. For continuous loading case, such as when a patient is standing, additional sensors such as an inertial measurement unit (“IMU”) located in the tibial insert or other locations on kneejoint implant 200 can be used to detect or confirm knee joint position. Load data from piezo stacks and IMU measurements can be used to create load and motion profiles for patient-specific or patient-independent analyses. -
FIG. 16 is a schematic view of acharging circuit 600 for chargingbattery 242 of kneejoint implant 200. The charging circuit includes acharge circuit 602 connected to a chargingcoil 606 and piezo stacks ofmedial load sensors 232 andlateral load sensors 254 viabridge rectifier 604. Charging circuit is configured to direct charge tobattery 242 utilizing inputs from one or more piezo stacks from the medial or lateral load sensors. This allows for singular or combined charging using individual or multiple piezo stacks. A minimum voltage output threshold of the piezo stacks can be predetermined to initiate battery charging. For example, when a patient is asleep, low piezo stack pulses will not be used to chargebattery 242. Raw piezo stack pulses (voltage 704) as shown in agraph 700 ofFIG. 17 overtime 706 are rectified by avoltage rectifier 708 to produce a rectified and smoothed voltage output (voltage 704) shown in agraph 702 ofFIG. 17B . The rectified and smoothed voltage output from the piezo stacks is used to chargebattery 242. Thus, power harvesting from motion of kneejoint implant 200 is achieved by using the pulses generated by the piezo stacks. -
FIG. 18 is a schematic view of a kneejoint implant 800 according to another embodiment of the present disclosure. Kneejoint implant 800 is similar to kneejoint implant 200, and therefore like elements are referred to with similar numerals within the 800-series of numbers. For example, kneejoint implant 800 includes afemoral implant 802, atibial implant 804 with atibial stem 812 and atibial insert 810. However, kneejoint implant 800 includes achargeable implant coil 872 located intibial insert 810 which can be charged by anexternal coil 870 contained in anexternal sleeve 868 as shown inFIG. 18 . -
External sleeve 868 shown inFIG. 19 includes anouter body 873 made of stretchable fabric or other material.Outer body 873 is configured to be a ready-to-wear pull-on knee sleeve which a patiently can conveniently put on and remove. Akneecap indicator 875 allows the patient to conveniently alignsleeve 868 with kneejoint implant 800 for proper placement ofexternal coil 870 with reference toimplant coil 872 for charging. As shown inFIG. 18 , when a patient alignsexternal sleeve 868 usingkneecap indicator 875 and assumes a flexion position,external coil 870 is adjacent to implantcoil 872 for proper charging.External sleeve 868 includes abattery 876 and amicrocontroller 874 as shown inFIG. 19 .Battery 876, which can be conveniently replaced, provides power toexternal coil 870. In another embodiment,external coil 870 may be charged by an external source not located onsleeve 868. -
FIG. 20 shows a side view oftibial insert 810 of kneejoint implant 800.Tibial insert 810 is made of a polymer or other suitable to facilitate charging ofimplant coil 872.Implant coil 872 is located withintibial insert 810 at an indent or depression at a proximal-anterior corner of the tibial insert as show inFIG. 20 andFIG. 21 (top and front views of tibial implant 810). The proximal-anterior location ofimplant coil 872 maximizes access toexternal coil 870 for efficient and convenient charging. -
FIGS. 22A and 22B show a kneejoint implant 900 according to another embodiment of the present disclosure. Kneejoint implant 900 is similar to kneejoint implant 800, and therefore like elements are referred to with similar numerals within the 900-series of numbers. For example, kneejoint implant 900 includes afemoral implant 902, atibial implant 904 with atibial stem 912 and atibial insert 910. However, kneejoint implant 900 includes achargeable implant coil 972 located at anterior end oftibial insert 910 which can be charged by an external coil 970 (not shown). An external sleeve as described with reference kneejoint implant 900, or another charging mechanism can be used to conveniently chargeimplant coil 972. -
FIG. 23A is a front view of atibial implant 1004 according to an embodiment of the present disclosure.Tibial implant 1004 is similar totibial implant 204, and therefore like elements are referred to with similar numerals within the 1000-series of numbers. For example,tibial implant 1004 includes a tibial stem 1012 and atibial insert 1010. However,tibial insert 1010 includes a chargingcoil 1072 located around a periphery of thetibial insert 1010 as shown inFIG. 23B . Aspectroscopy sensor 1074 intibial insert 1010 serves as an infection detection sensor fortibial implant 1004.Spectroscopy sensor 1074 is configured to identify the onset of biofilm on tibial implant (or a corresponding femoral implant) to provide early detection of implant related infection. -
FIG. 24A is a front view of atibial implant 1104 according to an embodiment of the present disclosure.Tibial implant 1104 is similar totibial implant 204, and therefore like elements are referred to with similar numerals within the 1100-series of numbers. For example,tibial implant 1104 includes atibial stem 1112 and atibial insert 1110. However,tibial insert 1110 includes anIMU 1176 and five Hall sensor assemblies for each of the medial and lateral marker readers. The arrangement of the Hall sensor assemblies differ fromtibial insert 210. Sensor data fromIMU 1176 provides additional knee implant joint movement data as more fully explained above. For example,IMU 1176 can detect or confirm knee joint position during continuous loading positions of a patient such as standing. IMU data can reveal, or support measurements related to gait characteristics, stride, speed, etc., of a patient.pH sensor 1144 oftibial insert 1110 is located adjacent to a proximal face of the tibial insert at a central location as shown inFIG. 24B . All sensors oftibial implant 1104 are powered by batteries located intibial insert 1110. - A
tibial implant 1204 according to another embodiment of the present disclosure is shown inFIGS. 25A and 25B .Tibial implant 1204 is similar totibial implant 204, and therefore like elements are referred to with similar numerals within the 1200-series of numbers. For example,tibial implant 1204 includes atibial stem 1212 and atibial insert 1210. However,tibial insert 1210 includes anIMU 1276 and a pressure sensor.Tibial insert 1210 is made of polyethylene andtibial stem 1212 is made of titanium in this embodiment. -
FIG. 26 is a side view of a kneejoint implant 1300 according to another embodiment of the present disclosure. Kneejoint implant 1300 is similar to kneejoint implant 200, and therefore like elements are referred to with similar numerals within the 1300-series of numbers. For example, kneejoint implant 1300 includes afemoral implant 1302, atibial implant 1304 with atibial stem 1312 and atibial insert 1310. However,battery 1342 of kneejoint implant 1300 are located intibial stem 1312 as best shown inFIG. 27 . Locatingbatteries 1342 in tibial stem provides room for additional sensors intibial insert 1310. The tibial stem andtibial insert 1310 can be made of polyethylene in this embodiment. Various knee jointimplant motion data 1301 collected by magnetic markers and marker readers is shown inFIG. 26 .Motion data 1301 can include internal-external rotation, medial-lateral rotation, varus-valgus rotation, etc. - A knee
joint implant 1400 according to another embodiment of the present disclosure is shown inFIG. 28 . Kneejoint implant 1400 is similar to kneejoint implant 200, and therefore like elements are referred to with similar numerals within the 1400-series of numbers. For example, kneejoint implant 1400 includes afemoral implant 1402, atibial implant 1404 with atibial stem 1412 and atibial insert 1410. However,tibial insert 1410 includes anIMU 1476. Sensor data fromIMU 1476 provides additional knee implantjoint motion data 1401.Motion data 1401 can include internal-external rotation, medial-lateral rotation, varus-valgus rotation, etc. for reviewing kneejoint implant 1400 performance. For example, internal-external rotation measurements exceeding a predetermined threshold can indicate knee joint implant lift-off (instability), medial-lateral rotation measurements exceeding predetermined thresholds can indicate knee joint implant stiffness. Combining these measurements with inputs from the various other sensors oftibial insert 1410 will provide a detailed assessment of kneejoint implant 400 performance. - Referring now to
FIG. 29 , aspinal implant assembly 1500 is shown according to an embodiment of the present disclosure.Spinal implant assembly 1500 includes aspinal implant 1510 such as a plate, rod, etc., secured to first and second vertebrae by afirst fastener 1502 and asecond fastener 1504, respectively. The first and second fasteners can be screws as shown inFIG. 29 .First fastener 1502 includes magnetic flux density detectors such asHall sensor assemblies 1506 located along a body of thefastener 1502.Second fastener 1504 includesmagnetic markers 1508 located along a body of the fastener. Any movement ofsecond fastener 1504 with respect to the first fastener is detected and measured byHall sensor assemblies 1506. Thus, the first and second fasteners function as an absolute or incremental encoder to detect spinal mobility of a patient during daily activity. As described with reference to the knee joint implants disclosed above, various other sensors such as temperature, pressure, pH, load, etc., can be included infast fastener 1502 to provide additional measurements related tospinal implant assembly 1500 performance during a patient's recovery and rehabilitation. Ideally, there should be little to no movement between the first and second vertebrae for successful for spinal fusion. Therefore, any movement detected between the first and second fastener may indicate a compromised spinal implant assembly. -
FIG. 30 is side view of ahip implant 1600 according to an embodiment of the present disclosure.Hip implant 1600 includes astem 1602, afemoral head 1604, aninsert 1606 and anacetabular component 1608. Magnetic flux density sensors such asHall sensor assemblies 1626 are located on aflex connect 1628 and placed aroundfemoral head 1604 as shown inFIGS. 31A and 31B . Aconnector 1622 on flex connect 1628 allows for convenient connection offemoral head 1604 withstem 1602.Magnetic markers 1630 are located oninsert 1606 as best shown inFIG. 31C . Any motion ofinsert 1606 is detected byHall sensor assemblies 1626 by measuring the change in magnetic flux density. Thus,Hall sensor assemblies 1626 andmarkers 1630 function as an absolute or incremental encoder to detect hip movement of a patient during daily activity. -
Hip implant 1600 includes a chargingcoil 1610 located onstem 1602 as shown inFIG. 30 .Charging coil 1610 charges abattery 1612 via aconnector 1624 to power the various sensors located inhip implant 1600. Aload sensor 1614 such a strain gauge detects forces betweenstem 1602 andacetabular component 1608 to monitor and transmit hip loads during patient rehabilitation and recovery. Variouselectronic components 1616, including sensors described with reference to knee joint implants, are located instem 1602. ApH sensor 1618 located on stem can measure alkalinity and provide early detection notice of implant related infection. Data from these sensors is transmitted to an external source via anantenna 1620 as described with reference to the knee joint implants disclosed above. -
FIG. 32 is a side view of ahip implant 1700 according to another embodiment of the present disclosure.Hip implant 1700 is similar tohip implant 1600, and therefore like elements are referred to with similar numerals within the 1700-series of numbers. For example,hip implant 1700 includes astem 1702, afemoral head 1704 and an acetabular component (not shown). However,battery 1712 ofhip implant 1700 is located away fromelectric components 1716 as best shown inFIG. 32 .Battery 1712 can be conveniently inserted intohip implant 1700 via aslot 1734 as shown inFIG. 33 . Similarly,electric components 1716 can be inserted intohip implant 1700 via aslot 1732. This allows for convenient replacements and upgrades to the battery and electric components without disturbinghip implant 1700. -
FIG. 34 is a side view of ahip implant 1800 according to another embodiment of the present disclosure.Hip implant 1800 is similar tohip implant 1600, and therefore like elements are referred to with similar numerals within the 1800-series of numbers. For example,hip implant 1800 includes astem 1802, afemoral head 1804 and an acetabular component (not shown). However,slot 1832 ofhip implant 1800 is configured to receive all electronic components structured as a modularelectronic assembly 1801 or a sensor assembly. Aslot cover 1834 ensures thatelectronic assembly 1801 is secured and sealed inslot 1832. Thus,hip implant 1800 can be easily provided with replacement or upgrades to the electric components without disturbinghip implant 1800. - A first embodiment of a modular
electronic assembly 1801 is shown inFIG. 35 . Electronic assembly includes aconnector 1822 to connect tofemoral head 1804, variouselectronic components 1816, abattery 1812 and anantenna 1820. Another embodiment of a modularelectronic assembly 1801′ is shown inFIG. 36 .Electronic assembly 1801′ includes variouselectronic components 1816′, abattery 1812′, a load sensor such as astrain gauge 1814′ and anantenna 1820′.Electronic assembly 1801′ includes apH sensor 1818′ to provide early detection of implant related infection. -
FIG. 37 is a side view of areverse shoulder implant 1900 according to an embodiment of the present disclosure.Shoulder implant 1900 includes astem 1902, acup 1904, aninsert 1906 and aglenoid sphere 1908. Magnetic flux density sensors such as Hall sensor assemblies 1922 are located oninsert 1906 as shown inFIG. 38 . Aconnector 1920 oncup 1904 as shown inFIG. 39 allows for attachment of the cup to insert 1906.Magnetic markers 1910 are located onglenoid sphere 1908 as best shown inFIG. 37 . Any motion ofglenoid sphere 1908 is detected by Hall sensor assemblies 1922 by measuring the change in magnetic flux density. Thus, Hall sensor assemblies 1922 andmarkers 1910 function as an absolute or incremental encoder to detect shoulder movement of a patient during daily activity. -
Shoulder implant 1900 includes abattery 1914 and anelectronic assembly 1912 located withincup 1904. ApH sensor 1916 is located oncup 1904 to measure alkalinity and provide early detection notice of implant related infection. Anantenna 1918 located oninsert 1906 is provided to transmit sensor data to an external source to monitor and transmitshoulder implant 1900 performance during patient rehabilitation and recovery. Various electronic components ofelectronic assembly 1912, including sensors described with reference to knee joint implants, are located incup 1904. -
FIG. 40 is a side view of areverse shoulder implant 2000 according to another embodiment of the present disclosure.Shoulder implant 2000 is similar toshoulder implant 1900, and therefore like elements are referred to with similar numerals within the 2000-series of numbers. For example,shoulder implant 2000 includes astem 2002, acup 2004 and aninsert 2006. However,electronic assembly 2012,battery 2014 andpH sensor 2018 are located ininsert 2006 as shown inFIG. 41 . Thus, only a single component—i.e., the cup, ofshoulder implant 2000 can be replaced or upgraded to make changes to sensor collection and transmission of the shoulder implant performance data. -
FIG. 42 is a flowchart showing steps of amethod 2100 to determine implant wear according to an embodiment of the present disclosure. Whilemethod 2100 is described with reference to a knee joint implant below,method 2100 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above. In afirst step 2102, the initial thickness of the knee joint implant (such as thickness of the tibial insert) is recorded. This can be obtained by measuring the tibial insert prior to implantation, or measured based on the magnetic flux density generated by the magnetic markers as measured by the Hall sensor assemblies. Once the knee joint implant is implanted, periodic measurements of tibial insert thickness are determined in astep 2104 by evaluating the magnetic flux density. As the polyethylene housing of tibial insert degrades over time, the distance between the markers and Hall sensor assemblies are reduced as measured in astep 2106. This results in increased magnetic flux density values, which are used to estimate tibial insert wear in astep 2108. - The decision to replace the tibial insert can be based on a rate of
wear threshold 2206 as shown ingraph 2200 ofFIG. 43 in a step 2110, or acritical thickness value 2308 as shown ingraph 2300 ofFIG. 44 in astep 2112.Graph 2200 plotstibial insert thickness 2202 overtime 2204. A change inslope 2206 denotes the rate of wear of tibial insert. Whenslope 2206 exceeds the predetermined rate of wear threshold, notification to replace the tibial insert is triggered in astep 2114.Graph 2300 plotstibial insert thickness 2302 overtime 2304. When the tibial insert thickness is less than a predeterminedcritical thickness value 2308, anotification 2310 is triggered to replace the tibial insert instep 2114. -
FIG. 45 is a flowchart showing steps of amethod 2400 to determine implant wear according to another embodiment of the present disclosure. Whilemethod 2400 is described with reference to a knee joint implant below,method 2400 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above. In afirst step 2402, a knee angle of a patient with the knee joint implant is measured. The knee is then placed in full extension in astep 2404. Hall sensor amplitudes are measured in astep 2408. This process is repeated over time to track the Hall sensor amplitude. These values are then compared with initial Hall sensor amplitude values obtained when the knee implant joint template was implanted (obtained by performingsteps 2412 to 2418). As the Hall sensor amplitudes are directly related to a distance between the markers and the marker readers—i.e., a tibial insert thickness, a difference between the initial Hall sensor amplitudes and current Hall sensor amplitudes fromstep 2408 represent wear of the tibial insert in astep 2420. When a predetermined minimum implant thickness is reached in astep 2420, a notification to replace the tibial insert is triggered in astep 2422. -
FIG. 46 is a flowchart showing steps of amethod 2500 for implant data collection according to an embodiment of the present disclosure. Whilemethod 2500 is described with reference to a knee joint implant below,method 2500 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above. In afirst step 2502, a patient is implanted with a knee joint implant. The knee joint implant is in a low-power mode (to conserve battery power) until relevant activity is detected (steps 2504 and 2506). Once the relevant activity is identified by the sensor(s) of the knee joint implant (step 2508), the implant shifts to a high-power mode. Relevant activity to trigger the high-power mode can be patient-specific, and may include knee flexion speed, gait, exposure to sudden impact loads, temperature thresholds, alkalinity levels, etc. Upon identifying the relevant activity and switching over to the high-power mode, various sensors in the knee joint implant record and store sensor measurements on the device (step 2512). This data can be transferred from the patient to a home station when the patient is in the vicinity of the home station or a smart device (step 2514). The data is then transferred from the home station or the smart device to the cloud to be reviewed and analyzed by software, virtual machines and/or by experts (steps 2518, 2520). Relevant information for patient rehabilitation and recovery uncovered from the sensor data is sent back to the patient (steps 2523, 2522) via a client portal. Thus,method 2500 preserves and extends battery life of the knee joint implant by shifting the implant from low-power to high-power mode when required, and shifting the implant back to the low-power mode to conserve energy during other periods. - In some examples, the relevant patient information may be that the knee joint and knee joint implant are in a healthy state, or alternatively that the knee joint is in an infected state. If the knee joint is determined to not be in a healthy state, the clinician can then take steps to review the condition more closely and prepare a plan for treatment if necessary. After review, the clinician can input the state of the joint as determined by the clinician so that the confirmed diagnosis is then associated with the data provided by the joint implant. The diagnosis data combined with corresponding sensor data is then stored in the cloud and henceforth considered in the software's future determinations of the state of a joint and joint implant. In some examples, the software is adapted to adjust and further refine its parameters and/or thresholds used in determining the state of an implant upon receipt of the diagnosis data.
-
FIGS. 47A and 47B shows steps of amethod 2600 for patient monitoring according to an embodiment of the present disclosure. Whilemethod 2600 is described with reference to a knee joint implant below,method 2600 can be applied to any implant with sensors described in the present disclosure, including all of the implants disclosed above. After installing the knee joint implant, various sensors within the sensor are activated (steps 2624, 2626) to track and monitor patient rehabilitation and recovery (step 2628). When the tracked data indicates that the desired recovery parameters are achieved, some of the sensors in the knee joint implant are deactivated or turned to a “sleep mode” (step 2616). For example, the recovery target can be a desired range of motion of the knee joint. Once a patient exhibits the desired knee flexion-extension range, some of the sensors on the knee joint implant can be turned off. Alternatively, peer data can be used to identify recovery thresholds (step 2612). If the recovery threshold or milestones are not achieved, the knee joint implant continues to charge and use all sensors (step 2608). Some sensors in the knee joint implant will be periodically used even after achieving the recovery milestones to monitor for early identification of improper implant performance (step steps 2626 and 2628). Additional rehabilitation steps for patient recovery can be provided to the patient at this point. The impact of the new rehabilitation steps can be monitored and compared with peers to observe patient recovery (steps 2636-2642). -
FIGS. 48 and 49 show a system for authenticating and connecting kneejoint implant 200 to one or more external devices. While kneejoint implant 200 is used as an exemplary example in this embodiment, any implant with sensors including any of the implants disclosed herein, can be used in other embodiments. Wirelessly connecting kneejoint implant 200 to an external device allows the knee joint implant to transfer sensor data to the external device and to receive instructions from the external device to change or optimize implant performance if necessary. Ensuring regular sensor data transfer from the knee joint implant to an external source for monitoring implant performance depends, inter alia, on patient compliance and battery capacity of the implant. For example, a patient with kneejoint implant 200 must regularly establish wireless connection between the implant and the external source to ensure that a surgeon or a health care professional (“HCP”) can regularly monitor implant performance allowing the surgeon or HCP to quickly spot implant malfunction, abnormal patient recovery, etc., and immediately take action to correct same. The knee joint implant itself may be uncomfortable for the patient and they may not want to be reminded of it by having to regularly check it. The patient may be unfamiliar with the technology involved with monitoring the implant, and this can be daunting for some patients. For example, the patient may find it cumbersome to log on regularly to an external device using a password or other authentication credentials and wait for data transfer to be completed. The patient may have difficulty remembering to follow cumbersome monitoring schedules or passwords and may not be able or motivated to comply. Finally, the patient may not understand the importance of monitoring the implant results and may not be able to recognize the importance of following the prescribed schedule. All of these factors can make it difficult to ensure patient compliance to monitor implant performance. Further, implants with sensors require a battery that is not only small enough to fit in the implant, but also powerful enough to provide the necessary energy to all sensors and processing components located within the implant. The battery needs to be reliable and long-lasting, as well as safe to use. Kneejoint implant 200 must be in advertising mode to transfer data to the external device. However, the knee joint implant will be constantly searching for wireless connections such as Bluetooth Low Energy (“BLE”), etc. in the advertising mode and thereby drain battery energy. The systems disclosed herein addresses these issues by providing a convenient and secure authentication and connectivity between kneejoint implant 200 and an external device while simultaneously minimizing battery energy consumption. It should be understood that the term “implant performance” as used herein includes related patient condition such as the condition of tissue and bone around the implant, etc. - As shown in
FIG. 48 , kneejoint implant 200 automatically establishes a bi-directionalfirst communication 2704 with an external device such as a patient'ssmartphone 2702 when the smartphone is placed close to the knee joint implant. In this embodiment,first communication 2700 is a short-range wireless technology such as Near Field Communication (“NFC”) 2704 that enables an NFC chip intibial insert 210 and an NFC chip insmartphone 2702 to interact with each other when they are in close proximity with each other as shown by a distance D1 inFIG. 48 . Distance D1 depends on the short-range technology being used. In the example shown inFIG. 48 , a minimum distance of approximately 10 cm between the implant and the smartphone is necessary for the NFC chips in the tibial insert and the smartphone to interact with each other. A patient only needs to place theirsmartphone 2702 close to kneejoint implant 200 to triggerfirst communication 2700. No other steps such as password entry, fingerprint authentication, etc., is required. While a smartphone is shown in this embodiment, it should be understood that other patient devices such as a watch, tablet, credential device, fob, etc. can be used in other embodiments. Oncefirst communication 2700 is initiated, authentication data from kneejoint implant 200 is transferred via NFC tosmartphone 2702 and kneejoint implant 200 switches from a deep sleep mode to an advertising mode. NFC-enabled knee joint implant and smartphone allow secure and convenient data transfer. NFC utilizes radio frequencies to establish a connection between the two devices, which allows for the exchange of data. NFC interaction does not require any manual configuration and is significantly faster than Bluetooth or Wi-Fi. - In the advertising mode, knee
joint implant 200 establishes a bi-directionalsecond communication 2800 between kneejoint implant 200 andsmartphone 2702 which then communicates with external platforms such as cloud-basedservice 2808 and aremote monitoring platform 2812 as best shown inFIG. 49 .Second communication 2800 between kneejoint implant 200 andsmartphone 2702 can be accomplished using a low energy communication protocol such as aBLE connection 2804 shown inFIG. 49 . A distance D2 between kneejoint implant 200 and smartphone can be considerably greater than D1—i.e., between 10 to 100 meters, to maintain BLE communication between these devices. Once a patient initiates the first communication by bringingsmartphone 2702 in close proximity to knee joint implant, the smartphone no longer needs to be held close to the knee joint implant for data transfer via BLE. Thus, the patient can continue with their daily activities while the knee joint implant is transferring data to one or more external devices.Smartphone 2702 can function as an intermediary to transfer data obtained from kneejoint implant 200 to cloud-basedservice 2808 via a Wi-Fi connection 2806 or other suitable communication protocols. Data from cloud-basedservice 2808 can be securely accessed throughremote monitoring platform 2812 via a Wi-Fi connection 2810 or other suitable communication protocols. Thus, a surgeon or health care professional can conveniently and securely receive knee joint implant data to monitor implant performance and patient recovery. Thus, the authentication and connectivity between knee joint implant and one or more external devices and remote platforms can be conveniently initiated and completed by a patient momentarily bringing their smartphone in proximity with the knee joint implant. Further, assecond communication 2800 provides bi-directional communication, a surgeon or healthcare professional can optimize knee joint implant performance in response to the observed data. Once data transfer is complete, kneejoint implant 200 can switch off advertising mode and fall back to sleep mode to conserve battery energy. While NFC, BLE and Wi-Fi connections are disclosed in this embodiment, it should be understood that any suitable communication protocol can be used in other embodiments. For example, Zigbee, Z-Wave, etc. can be used instead of BLE in other embodiments. - Referring now to
FIG. 50 , there is shown aflowchart 2900 describing steps of a first communication between an implant with sensors such as kneejoint implant 200 and an external device such as a patient'ssmartphone 2702. Prior to initiating a first communication such as an NFC connection between kneejoint implant 200 andsmartphone 2702, kneejoint implant 200 can be in a deep sleep mode in astep 2902. A deep sleep mode ensures that knee joint implant's battery is not consuming any energy for data transfer. A patient then places a mobile device or an external device such assmartphone 2702 adjacent kneejoint implant 200 in astep 2904. NFC chips in each of the kneejoint implant 200 andsmartphone 2702 interact with each other when a distance between the two devices is equal to or less than D1 in astep 2906. The NFC interaction results in switching on kneejoint implant 200 to an advertising mode. Authentication credentials such as implant serial number, health care professional ID, location of implant, type of implant, patient details, etc. stored on kneejoint implant 200,smartphone 2702, or a cloud-service platform 2808, is exchanged via NFC in astep 2908 to complete authentication. Upon successful authentication, a communication link between kneejoint implant 200 andsmartphone 2702 is established in astep 2910. -
FIG. 51 shows aflowchart 3000 describing various steps of a second communication such as a BLE connection between kneejoint implant 200 andsmartphone 2702. As more fully described above, the second communication between kneejoint implant 200 and smartphone follows the first communication. Once the knee joint implant turns on the advertising mode in astep 3002, knee joint implant broadcasts a wireless radio signal which is picked up by a previously paired BLE device such assmartphone 2702 or another device to establish a connection between the knee joint implant and the smartphone or other device. Peripheral devices are now activated to receive data instep 3004. A timer or signal to indicate completion of data transfer can be used to turn off the peripheral devices in astep 3006. Upon realizing that the peripheral devices are turned off, knee joint implant once again returns to a deep sleep mode in astep 3008 to conserve battery energy. Alternately, knee joint implant can include a timer to attempt to reconnect to the peripheral devices if, for example, connection is lost before completion of data transfer. Once connection is restored, data transfer can be completed as shown in astep 3010. -
FIG. 53 is aflowchart 3100 describing steps of a first communication between an implant with sensors such as kneejoint implant 200 and an external device such as a HCP'ssmartphone 2702.Flowchart 3100 is similar toflowchart 2900, and therefore like steps are referred to with similar numerals within the 3100-series. However, an HCP uses an external device to initiate the first communication via NFC instep 3106. Thus, no patient action is required to establish first communication in this embodiment.FIG. 54 shows aflowchart 3200 showing steps of a second communication following the first communication described inflowchart 3100.Flowchart 3200 is similar to flowchart 300, and therefore like steps are referred to with similar numeral within the 3200-series. - Referring now to
FIG. 54 , there is shown aflowchart 3300 describing steps for a first responder such as an EMT, paramedic, firefighter, emergency service personnel, etc. to establish communication with a disabled patient using a patient implant such as kneejoint implant 200. Prior to initiating a first communication such as an NFC connection between kneejoint implant 200 and a first responder device such as smartphone, watch, fob, etc., kneejoint implant 200 can be in adeep sleep mode 3302. The first responder then places the first responder device adjacent kneejoint implant 200 in astep 3304. NFC chips in each of the kneejoint implant 200 and the first responder device interact with each other when a distance between the two devices is less than D1 in astep 3306. The NFC interaction results in switching on kneejoint implant 200 to an advertising mode. Authentication credentials such as implant serial number, health care professional ID, location of implant, type of implant, etc., stored on kneejoint implant 200 is transmitted to the first responder device via NFC in astep 3308 to complete authentication. Upon successful authentication, a communication link between kneejoint implant 200 and the first responder device is established in astep 3310. Upon establishing this secure communication, unique patient information stored on knee joint implant such as patient blood type, allergies, diabetes, etc. is transmitted via NFC to a secure app on the first responder device in astep 3310. Thus, a first responder can retrieve vital patient information from a disabled, unresponsive, or unconscious patient by simply placing the first responder device in proximity with the knee joint implant. While a knee joint implant is described in this embodiment, any implant with sensors such as the examples disclosed herein, or an implant without sensors but with a memory storing patient data can be used in other embodiments. - While a knee joint implant, hip implant, shoulder implant and a spinal implant are disclosed above, all or any of the aspects of the present disclosure can be used with any other implant such as an intramedullary nail, a bone plate, a bone screw, an external fixation device, an interference screw, etc. Although, the present disclosure generally refers to implants, the systems and method disclosed above can be used with trials to provide real time information related to trial performance. While sensors disclosed above are generally located in the tibial implant (tibial insert) of the knee joint implant, the sensors can be located within the femoral implant in other embodiments. Sensor shape, size and configuration can be customized based on the type of implant and patient-specific needs.
- Furthermore, although the invention disclosed herein has been described with reference to particular features, it is to be understood that these features are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications, including changes in the sizes of the various features described herein, may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention. In this regard, the present invention encompasses numerous additional features in addition to those specific features set forth in the paragraphs below. Moreover, the foregoing disclosure should be taken by way of illustration rather than by way of limitation as the present invention is defined in the examples of the numbered paragraphs, which describe features in accordance with various embodiments of the invention, set forth in the paragraphs below.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/201,489 US20230301801A1 (en) | 2022-02-14 | 2023-05-24 | Implant Authentication and Connectivity |
Applications Claiming Priority (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263309809P | 2022-02-14 | 2022-02-14 | |
US202263359384P | 2022-07-08 | 2022-07-08 | |
US202263419455P | 2022-10-26 | 2022-10-26 | |
US202263419522P | 2022-10-26 | 2022-10-26 | |
US202263419781P | 2022-10-27 | 2022-10-27 | |
US202263423932P | 2022-11-09 | 2022-11-09 | |
US202263431094P | 2022-12-08 | 2022-12-08 | |
US202363481053P | 2023-01-23 | 2023-01-23 | |
US202363481660P | 2023-01-26 | 2023-01-26 | |
US202363482097P | 2023-01-30 | 2023-01-30 | |
US202363482109P | 2023-01-30 | 2023-01-30 | |
US202363482656P | 2023-02-01 | 2023-02-01 | |
US202363482659P | 2023-02-01 | 2023-02-01 | |
US202363483045P | 2023-02-03 | 2023-02-03 | |
US202363443146P | 2023-02-03 | 2023-02-03 | |
US202363444056P | 2023-02-08 | 2023-02-08 | |
US202363444045P | 2023-02-08 | 2023-02-08 | |
US18/108,954 US20230255794A1 (en) | 2022-02-14 | 2023-02-13 | Implant Encoder |
US18/201,489 US20230301801A1 (en) | 2022-02-14 | 2023-05-24 | Implant Authentication and Connectivity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/108,954 Continuation US20230255794A1 (en) | 2022-02-14 | 2023-02-13 | Implant Encoder |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230301801A1 true US20230301801A1 (en) | 2023-09-28 |
Family
ID=85505569
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/108,954 Pending US20230255794A1 (en) | 2022-02-14 | 2023-02-13 | Implant Encoder |
US18/183,638 Pending US20230255799A1 (en) | 2022-02-14 | 2023-03-14 | Implant Stability Measurement |
US18/124,773 Pending US20230255795A1 (en) | 2022-02-14 | 2023-03-22 | Tibial Insert |
US18/127,986 Pending US20230255796A1 (en) | 2022-02-14 | 2023-03-29 | Self-Powered Prothesis |
US18/131,594 Pending US20230301800A1 (en) | 2022-02-14 | 2023-04-06 | Implant With Sensor Diagnostics |
US18/133,654 Pending US20230255797A1 (en) | 2022-02-14 | 2023-04-12 | Intra-Operative Gap Detection |
US18/136,411 Pending US20230270566A1 (en) | 2022-02-14 | 2023-04-19 | Implant With Sensor Redundancy |
US18/139,442 Pending US20230255798A1 (en) | 2022-02-14 | 2023-04-26 | Implant Component Recognition In Joint Implants |
US18/142,689 Pending US20230270567A1 (en) | 2022-02-14 | 2023-05-03 | Estimation Of Joint Replacement Poses From Magnetic Field Readings |
US18/196,005 Pending US20230277336A1 (en) | 2022-02-14 | 2023-05-11 | Portable Kinematic Joint Tracking System |
US18/199,078 Pending US20230285167A1 (en) | 2022-02-14 | 2023-05-18 | Smart Implant Peripheral Services |
US18/201,489 Pending US20230301801A1 (en) | 2022-02-14 | 2023-05-24 | Implant Authentication and Connectivity |
US18/328,168 Pending US20230301803A1 (en) | 2022-02-14 | 2023-06-02 | Implant Detachment Detection |
US18/207,253 Pending US20230329880A1 (en) | 2022-02-14 | 2023-06-08 | Magnetic Power Switching |
US18/210,809 Pending US20230320871A1 (en) | 2022-02-14 | 2023-06-16 | Patellar Tendonitis Detection |
US18/213,015 Pending US20230329881A1 (en) | 2022-02-14 | 2023-06-22 | Tibial Insert With Modular Case |
US18/215,316 Pending US20230338167A1 (en) | 2022-02-14 | 2023-06-28 | Smart Shoulder Implant |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/108,954 Pending US20230255794A1 (en) | 2022-02-14 | 2023-02-13 | Implant Encoder |
US18/183,638 Pending US20230255799A1 (en) | 2022-02-14 | 2023-03-14 | Implant Stability Measurement |
US18/124,773 Pending US20230255795A1 (en) | 2022-02-14 | 2023-03-22 | Tibial Insert |
US18/127,986 Pending US20230255796A1 (en) | 2022-02-14 | 2023-03-29 | Self-Powered Prothesis |
US18/131,594 Pending US20230301800A1 (en) | 2022-02-14 | 2023-04-06 | Implant With Sensor Diagnostics |
US18/133,654 Pending US20230255797A1 (en) | 2022-02-14 | 2023-04-12 | Intra-Operative Gap Detection |
US18/136,411 Pending US20230270566A1 (en) | 2022-02-14 | 2023-04-19 | Implant With Sensor Redundancy |
US18/139,442 Pending US20230255798A1 (en) | 2022-02-14 | 2023-04-26 | Implant Component Recognition In Joint Implants |
US18/142,689 Pending US20230270567A1 (en) | 2022-02-14 | 2023-05-03 | Estimation Of Joint Replacement Poses From Magnetic Field Readings |
US18/196,005 Pending US20230277336A1 (en) | 2022-02-14 | 2023-05-11 | Portable Kinematic Joint Tracking System |
US18/199,078 Pending US20230285167A1 (en) | 2022-02-14 | 2023-05-18 | Smart Implant Peripheral Services |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/328,168 Pending US20230301803A1 (en) | 2022-02-14 | 2023-06-02 | Implant Detachment Detection |
US18/207,253 Pending US20230329880A1 (en) | 2022-02-14 | 2023-06-08 | Magnetic Power Switching |
US18/210,809 Pending US20230320871A1 (en) | 2022-02-14 | 2023-06-16 | Patellar Tendonitis Detection |
US18/213,015 Pending US20230329881A1 (en) | 2022-02-14 | 2023-06-22 | Tibial Insert With Modular Case |
US18/215,316 Pending US20230338167A1 (en) | 2022-02-14 | 2023-06-28 | Smart Shoulder Implant |
Country Status (4)
Country | Link |
---|---|
US (17) | US20230255794A1 (en) |
EP (1) | EP4478942A1 (en) |
AU (1) | AU2023219037A1 (en) |
WO (1) | WO2023154559A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117007238A (en) * | 2023-10-07 | 2023-11-07 | 杭州键嘉医疗科技股份有限公司 | Calibration method of knee joint pressure measurement device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004030449D1 (en) * | 2003-07-11 | 2011-01-20 | Depuy Products Inc | IN VIVO JOINT IMPLANT-CYCLE COUNTER |
US20060142670A1 (en) * | 2004-12-29 | 2006-06-29 | Disilvestro Mark R | System and method for determining patient follow-up subsequent to an orthopaedic procedure |
US20070005141A1 (en) * | 2005-06-30 | 2007-01-04 | Jason Sherman | Apparatus, system, and method for transcutaneously transferring energy |
US9259179B2 (en) * | 2012-02-27 | 2016-02-16 | Orthosensor Inc. | Prosthetic knee joint measurement system including energy harvesting and method therefor |
EP2976047B1 (en) * | 2013-03-20 | 2017-11-01 | MiRus LLC | Systems and methods for measuring performance parameters related to orthopedic arthroplasty |
CA3042672C (en) * | 2016-11-02 | 2020-09-29 | Zimmer, Inc. | Device for sensing implant location and impingement |
EP3554425B1 (en) * | 2016-12-14 | 2024-03-13 | Zimmer, Inc. | Shoulder arthroplasty trial assembly comprising sensors |
-
2023
- 2023-02-13 US US18/108,954 patent/US20230255794A1/en active Pending
- 2023-02-14 WO PCT/US2023/013019 patent/WO2023154559A1/en active Application Filing
- 2023-02-14 AU AU2023219037A patent/AU2023219037A1/en active Pending
- 2023-02-14 EP EP23709538.5A patent/EP4478942A1/en active Pending
- 2023-03-14 US US18/183,638 patent/US20230255799A1/en active Pending
- 2023-03-22 US US18/124,773 patent/US20230255795A1/en active Pending
- 2023-03-29 US US18/127,986 patent/US20230255796A1/en active Pending
- 2023-04-06 US US18/131,594 patent/US20230301800A1/en active Pending
- 2023-04-12 US US18/133,654 patent/US20230255797A1/en active Pending
- 2023-04-19 US US18/136,411 patent/US20230270566A1/en active Pending
- 2023-04-26 US US18/139,442 patent/US20230255798A1/en active Pending
- 2023-05-03 US US18/142,689 patent/US20230270567A1/en active Pending
- 2023-05-11 US US18/196,005 patent/US20230277336A1/en active Pending
- 2023-05-18 US US18/199,078 patent/US20230285167A1/en active Pending
- 2023-05-24 US US18/201,489 patent/US20230301801A1/en active Pending
- 2023-06-02 US US18/328,168 patent/US20230301803A1/en active Pending
- 2023-06-08 US US18/207,253 patent/US20230329880A1/en active Pending
- 2023-06-16 US US18/210,809 patent/US20230320871A1/en active Pending
- 2023-06-22 US US18/213,015 patent/US20230329881A1/en active Pending
- 2023-06-28 US US18/215,316 patent/US20230338167A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230338167A1 (en) | 2023-10-26 |
US20230329881A1 (en) | 2023-10-19 |
US20230255797A1 (en) | 2023-08-17 |
AU2023219037A1 (en) | 2024-09-26 |
US20230320871A1 (en) | 2023-10-12 |
US20230255796A1 (en) | 2023-08-17 |
US20230270567A1 (en) | 2023-08-31 |
US20230255799A1 (en) | 2023-08-17 |
US20230255798A1 (en) | 2023-08-17 |
US20230285167A1 (en) | 2023-09-14 |
US20230301803A1 (en) | 2023-09-28 |
US20230301800A1 (en) | 2023-09-28 |
US20230277336A1 (en) | 2023-09-07 |
EP4478942A1 (en) | 2024-12-25 |
US20230270566A1 (en) | 2023-08-31 |
US20230255795A1 (en) | 2023-08-17 |
US20230255794A1 (en) | 2023-08-17 |
US20230329880A1 (en) | 2023-10-19 |
WO2023154559A1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11826164B2 (en) | Subdermal medical system for generating measurement data or providing a therapy | |
AU2021201226B2 (en) | Systems and methods for monitoring an orthopedic implant and rehabilitation | |
KR102548797B1 (en) | Devices, systems and methods for monitoring hip replacements | |
CA2491956C (en) | Strain sensing system | |
US9839374B2 (en) | System and method for vertebral load and location sensing | |
KR20240164586A (en) | Devices, systems and methods for monitoring knee replacements | |
CN103945763A (en) | System and method for vertebral load and location sensing | |
US20230301801A1 (en) | Implant Authentication and Connectivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: ORTHOSENSOR INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALVA, CARLOS O.;VERSTRAETE, MATTHIAS;BLACK, SIMON;SIGNING DATES FROM 20230525 TO 20230907;REEL/FRAME:064824/0556 |
|
AS | Assignment |
Owner name: HOWMEDICA OSTEONICS CORP., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORTHOSENSOR, INC.;REEL/FRAME:065602/0965 Effective date: 20231117 |
|
AS | Assignment |
Owner name: HOWMEDICA OSTEONICS CORP., NEW JERSEY Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A PREVIOUSLY RECORDED AT REEL: 065602 FRAME: 0965. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ORTHOSENSOR, INC.;REEL/FRAME:065776/0915 Effective date: 20231117 |