US20230183306A1 - Cytokine derived treatment with reduced vascular leak syndrome - Google Patents
Cytokine derived treatment with reduced vascular leak syndrome Download PDFInfo
- Publication number
- US20230183306A1 US20230183306A1 US17/876,987 US202217876987A US2023183306A1 US 20230183306 A1 US20230183306 A1 US 20230183306A1 US 202217876987 A US202217876987 A US 202217876987A US 2023183306 A1 US2023183306 A1 US 2023183306A1
- Authority
- US
- United States
- Prior art keywords
- cells
- conjugate
- hdil
- amino acid
- acid sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000004127 Cytokines Human genes 0.000 title description 19
- 108090000695 Cytokines Proteins 0.000 title description 19
- 238000011282 treatment Methods 0.000 title description 15
- 208000011580 syndromic disease Diseases 0.000 title description 6
- 230000002792 vascular Effects 0.000 title description 6
- 210000000822 natural killer cell Anatomy 0.000 claims abstract description 98
- 102000003812 Interleukin-15 Human genes 0.000 claims abstract description 73
- 108090000172 Interleukin-15 Proteins 0.000 claims abstract description 73
- 230000035755 proliferation Effects 0.000 claims abstract description 64
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 32
- 201000011510 cancer Diseases 0.000 claims abstract description 19
- 208000015181 infectious disease Diseases 0.000 claims abstract description 14
- 108010002350 Interleukin-2 Proteins 0.000 claims abstract description 12
- 102000000588 Interleukin-2 Human genes 0.000 claims abstract description 12
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 5
- 239000003937 drug carrier Substances 0.000 claims abstract description 4
- 150000001413 amino acids Chemical class 0.000 claims description 67
- 210000004027 cell Anatomy 0.000 claims description 62
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 57
- 241000282414 Homo sapiens Species 0.000 claims description 37
- 230000000694 effects Effects 0.000 claims description 35
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 33
- 230000002062 proliferating effect Effects 0.000 claims description 29
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 27
- 229920001184 polypeptide Polymers 0.000 claims description 27
- 210000003289 regulatory T cell Anatomy 0.000 claims description 25
- 230000001939 inductive effect Effects 0.000 claims description 24
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 18
- 210000004369 blood Anatomy 0.000 claims description 15
- 239000008280 blood Substances 0.000 claims description 15
- 230000006698 induction Effects 0.000 claims description 13
- 108020001507 fusion proteins Proteins 0.000 claims description 10
- 102000037865 fusion proteins Human genes 0.000 claims description 10
- 230000001965 increasing effect Effects 0.000 claims description 10
- 101001003140 Homo sapiens Interleukin-15 receptor subunit alpha Proteins 0.000 claims description 9
- 238000000338 in vitro Methods 0.000 claims description 9
- 101001055157 Homo sapiens Interleukin-15 Proteins 0.000 claims description 8
- 102000056003 human IL15 Human genes 0.000 claims description 7
- 208000029462 Immunodeficiency disease Diseases 0.000 claims description 6
- 210000004899 c-terminal region Anatomy 0.000 claims description 5
- 208000037819 metastatic cancer Diseases 0.000 claims description 5
- 208000011575 metastatic malignant neoplasm Diseases 0.000 claims description 5
- 210000005259 peripheral blood Anatomy 0.000 claims description 5
- 239000011886 peripheral blood Substances 0.000 claims description 5
- 230000027455 binding Effects 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims 20
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 39
- 235000001014 amino acid Nutrition 0.000 description 36
- 241000699670 Mus sp. Species 0.000 description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 19
- 108090000623 proteins and genes Proteins 0.000 description 18
- 238000004393 prognosis Methods 0.000 description 17
- 230000001225 therapeutic effect Effects 0.000 description 17
- 231100000673 dose–response relationship Toxicity 0.000 description 16
- 241000282553 Macaca Species 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 201000010099 disease Diseases 0.000 description 14
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 13
- 210000004072 lung Anatomy 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 241000288906 Primates Species 0.000 description 11
- 230000004614 tumor growth Effects 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 10
- 108091035707 Consensus sequence Proteins 0.000 description 9
- 230000010261 cell growth Effects 0.000 description 8
- 239000012636 effector Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 7
- -1 N-succinimidyl (2-pyridyldithio) propionate Chemical class 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 241000282567 Macaca fascicularis Species 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000004663 cell proliferation Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 210000004988 splenocyte Anatomy 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000282560 Macaca mulatta Species 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 3
- 206010050513 Metastatic renal cell carcinoma Diseases 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 101000981253 Mus musculus GPI-linked NAD(P)(+)-arginine ADP-ribosyltransferase 1 Proteins 0.000 description 3
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 3
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 108700025316 aldesleukin Proteins 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 208000021039 metastatic melanoma Diseases 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 229940087463 proleukin Drugs 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000002483 superagonistic effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 101100506090 Caenorhabditis elegans hil-2 gene Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000288950 Callithrix jacchus Species 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- 241000282558 Cercocebus torquatus Species 0.000 description 2
- 241000867607 Chlorocebus sabaeus Species 0.000 description 2
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 241001269238 Data Species 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 241001082241 Lythrum hyssopifolia Species 0.000 description 2
- 241000282561 Macaca nemestrina Species 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000282405 Pongo abelii Species 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 206010037423 Pulmonary oedema Diseases 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000005931 immune cell recruitment Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 230000008823 permeabilization Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- IEUUDEWWMRQUDS-UHFFFAOYSA-N (6-azaniumylidene-1,6-dimethoxyhexylidene)azanium;dichloride Chemical compound Cl.Cl.COC(=N)CCCCC(=N)OC IEUUDEWWMRQUDS-UHFFFAOYSA-N 0.000 description 1
- VILFTWLXLYIEMV-UHFFFAOYSA-N 1,5-difluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(F)C=C1F VILFTWLXLYIEMV-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 229920002567 Chondroitin Polymers 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102220579739 Cohesin subunit SA-1_S51D_mutation Human genes 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- AEMOLEFTQBMNLQ-DTEWXJGMSA-N D-Galacturonic acid Natural products O[C@@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-DTEWXJGMSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102100026885 Interleukin-15 Human genes 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000034486 Multi-organ failure Diseases 0.000 description 1
- 208000010718 Multiple Organ Failure Diseases 0.000 description 1
- 102220561253 Myocardin-related transcription factor B_L52D_mutation Human genes 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 230000006051 NK cell activation Effects 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 102220490907 Olfactomedin-like protein 2A_N72A_mutation Human genes 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 229920000436 Poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 102220586251 Protein yippee-like 4_L45D_mutation Human genes 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010050018 Renal cancer metastatic Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 101800000582 Soluble interleukin-15 receptor subunit alpha Proteins 0.000 description 1
- 102400000046 Soluble interleukin-15 receptor subunit alpha Human genes 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- PVNJLUVGTFULAE-UHFFFAOYSA-N [NH4+].[Cl-].[K] Chemical compound [NH4+].[Cl-].[K] PVNJLUVGTFULAE-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 238000011225 antiretroviral therapy Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- DLGJWSVWTWEWBJ-HGGSSLSASA-N chondroitin Chemical compound CC(O)=N[C@@H]1[C@H](O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@H](O)C=C(C(O)=O)O1 DLGJWSVWTWEWBJ-HGGSSLSASA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- NZNMSOFKMUBTKW-UHFFFAOYSA-N cyclohexanecarboxylic acid Chemical compound OC(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000009034 developmental inhibition Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 231100000294 dose-dependent toxicity Toxicity 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 210000005008 immunosuppressive cell Anatomy 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000010212 intracellular staining Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000000683 nonmetastatic effect Effects 0.000 description 1
- 238000012758 nuclear staining Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 102220311640 rs1382779104 Human genes 0.000 description 1
- 102220280978 rs1555280382 Human genes 0.000 description 1
- 102200147816 rs80356634 Human genes 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/6425—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a receptor, e.g. CD4, a cell surface antigen, i.e. not a peptide ligand targeting the antigen, or a cell surface determinant, i.e. a part of the surface of a cell
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5443—IL-15
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2086—IL-13 to IL-16
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/642—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a cytokine, e.g. IL2, chemokine, growth factors or interferons being the inactive part of the conjugate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
- C07K14/7155—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5047—Cells of the immune system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the present invention relates to a new pharmaceutical composition and associated method for treating cancer and/or infection in a subject.
- Immunotherapies has developed in the last decades so as overcome the inability of the immune system to efficiently protect against the establishment of tumors or microbes, or reject established tumors or microbes.
- immunotherapies those based on cytokines are of particular interest. These molecules, which are soluble molecules, are regulating the humoral and/or cellular immunity. Among them, IL-2, IL-7, IL-12 and IL-15 are of more particular interest since they are inducing NK cells survival and/or proliferation; thus being interesting as adjuvant for treating infection or cancer.
- Human rIL-2 has been shown to result in tumor regression in 25-30% of patients with metastatic melanoma or renal carcinoma.
- Intermittent IL-2 therapy is also used in HIV-infected patients in combination with highly active antiretroviral therapy and restores sustained, protective levels of CD4 + T lymphocytes.
- VLS vascular leak syndrome
- cytokines are actually limited to a maximum NK cells proliferation induction, so as not to induce unacceptable or lethal VLS.
- This safety enables the use of high dose of RLI for treating diseases associated with bad prognosis and lowest dose of RLI for treating diseases associated with correct or good prognosis.
- the invention relates in a first aspect, to a composition for treating a cancer, an infection or an immunodeficiency disorder in a subject by administrating to said subject an amount of a conjugate so as to induce a proliferation of natural killer cells (NK cells) which is the same or higher than the one obtained with high dose of interleukin-2 (HDIL-2), wherein said conjugate comprises:
- the present invention relates to a method for treating a cancer, an infection or an immunodeficiency disorder in a subject comprising the step of administrating to a subject in need thereof an amount of a conjugate so as to induce a proliferation of natural killer cells (NK cells) which is the same or higher than the one obtained with HDIL-2, wherein said conjugate comprises:
- the conjugate is also administrated in an amount inducing a proliferation of CD8 T cells higher than the one obtained with HDIL-2.
- said conjugate is administrated to the subject in an amount inducing a proliferation of Treg cells (FoxP3 + CD4 + CD25 high ) which is less to the one obtained with HDIL-2.
- the present invention relates to a (in vitro) method for determining the therapeutically efficient amount of conjugate to be administrated to a subject suffering from a cancer, from an infection or from an immunodeficient disorder, said method comprising the step of:
- said amount of conjugate induces a ratio of the percentage of proliferating NK cells and/or of CD8 T cells on the one of Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher; and still preferably at least 75% higher than the one obtained with HDIL-2.
- FIG. 1 shows in vitro dose-effect of RLI on human peripheral blood mononuclear cells (PBMC) as compared to IL-2 and IL-15.
- FIG. 2 shows in vitro effect of RLI on human Treg subpopulation as compared to IL-2 and IL-15.
- FIG. 3 resumes the protocol of Mus musculus injection.
- FIG. 4 shows represents the proportion of proliferating NK cells, CD8 + T cells, Foxp3 + CD4 + T cells and Foxp3 ⁇ CD4 + T cells in mice injected with either PBS, IL-2, IL-15 or RLI.
- FIG. 5 represents the ratio of proliferating NK cells to Foxp3 + T cells (Treg) in mice injected with PBS, IL-2, IL-15 or RLI.
- FIG. 6 represents the percentage of IFN ⁇ producing cells among NK cells, CD8+ T cells and CD4+ T cells, and the NK cell cytotoxicity against YAC-1 cell line for the mice injected either with PBS, IL-2, IL-15 or RLI.
- FIG. 7 shows the total cell numbers of donor cells, MP CD8+ T cells, and NK cells in mice injected with donor cells and PBS, IL-2, IL-15 or RLI.
- FIG. 8 represents the VLS in mice injected with donor cells and PBS, IL-2, IL-15 or RLI.
- FIG. 9 represents the evolution of the tumor volume depending on the cytokine regimen.
- FIG. 10 represents the observed and modelized evolution of RLI concentration in macaque blood depending on the injected dose as a function of time.
- FIG. 11 represents the VLS versus the NK and CD8 cells proliferation induced in mice injected with PBS, IL-2, IL-15, and RLI.
- FIG. 12 shows the in vitro proliferation effect at days 3, 4, 5, 6 and 7 on NK cells and on CD8 T cells from PBMC of healthy donors of equimolar doses of RLI, IL-2 and IL-15 as compared to PBS.
- FIG. 13 represents the dose-response effect of RLI on NK cell expansion.
- FIG. 14 represents the dose-response effect of RLI on VLS in lung and liver.
- FIG. 15 represents the dose-response effect of RLI on VLS in lung.
- FIG. 16 represents the dose-response effect of RLI on NK cell expansion.
- FIG. 17 represents the dose-response effect of RLI on Treg cell expansion.
- FIG. 18 represents the dose-response effect of RLI on the ratio of percentage Treg versus NK cells.
- FIG. 19 represents the pharmacological efficacy versus toxicity for RLI.
- the term “subject” denotes a mammal, such as a rodent, a feline, a canine or a primate, and most preferably a human.
- conjugate in its general meaning in the art and refers to a covalent or non covalent complex, preferably to a covalent complex and most preferably to a fusion protein.
- interleukin 2 is used in its general meaning in the art (for the nucleic acid and amino acid sequences, see accession numbers NM_000586.3 and NP_000577.2 respectively).
- high dose of interleukin-2 or “HDIL-2” is well known from the skilled person.
- High dose of IL-2 (600,000-720,000 IU/kg by IV every 8 h) is the most commonly used regimen in the United States.
- Food and Drug Administration (FDA)-approved dosage for treatment of metastatic renal cell carcinoma or melanoma is 600,000 IU/kg administered by IV bolus over 15 minutes every 8 hours for a maximum of 14 doses. Following 9 days of rest, the regimen is repeated, if tolerated by the patient.
- interleukin 15 in its general meaning in the art and refers to a cytokine with structural similarity to IL-2 (GRABSTEIN et al., Science , vol. 264(5161), p:965-968, 1994).
- This cytokine is also known as IL-15, IL15 or MGC9721.
- This cytokine and IL-2 share many biological activities and they were found to bind common hematopoietin receptor subunits. Thus, they may compete for the same receptor, negatively regulating each other's activity. It has been established that IL-15 regulates T and natural killer cells activation and proliferation, and that the number of CD8+ memory cells is shown to be controlled by a balance between this cytokine and IL2.
- IL-15 activity can be measured by determining its proliferation induction on kit225 cell line (HORI et al., Blood , vol. 70(4), p:1069-72, 1987), as disclosed in the Examples.
- Said IL-15 or derivatives thereof have at least 10% of the activity of human interleukin-15 on the proliferation induction of kit225 cell line, preferably at least 25% and more preferably at least 50%.
- Said interleukin 15 is a mammalian interleukin 15, preferably a primate interleukin 15, and more preferably a human interleukin 15.
- Mammalian interleukin 15 can be simply identified by the skilled person. As an example, one can cite Interleukin 15 from Sus scrofa (Accession number ABF82250), from Rattus norvegicus (Accession number NP_037261), from Mus musculus (Accession number NP_032383), from Bos Taurus (Accession number NP_776515), from Oryctolagus cuniculus (Accession number NP_001075685), from Ovies aries (Accession number NP_001009734), from Felis catus (Accession number NP_001009207), from Macaca fascicularis (Accession number BAA19149), from Homo sapiens (Accession number NP_000576), from Macaca Mulatta (Accession number NP_001038196), from Cavia porcellus (Accession number NP_001166300), or from Chlorocebus sabaeus (Accession number A
- mammalian interleukin 15 refers to the consensus sequence SEQ ID n° 1.
- Interleukin 15 can be simply identified by the skilled person. As an example, one can cite Interleukin 15 from Sus scrofa (Accession number ABF82250), from Oryctolagus cuniculus (Accession number NP_001075685), from Macaca fascicularis (Accession number BAA19149), from Homo sapiens (Accession number NP_000576), from Macaca Mulatta (Accession number NP_001038196), or from Chlorocebus sabaeus (Accession number ACI289).
- Sus scrofa Accession number ABF82250
- Oryctolagus cuniculus Accession number NP_001075685
- Macaca fascicularis Accession number BAA19149
- Homo sapiens Accession number NP_000576
- Macaca Mulatta Accession number NP_001038196
- Chlorocebus sabaeus Accession number ACI289
- primary interleukin 15 refers to the consensus sequence SEQ ID n° 2.
- Human interleukin 15 can be simply identify by the skilled person and refers to the amino acids sequence SEQ ID n° 3.
- the term “interleukin 15 derivatives” refers to an amino acid sequence having a percentage of identity of at least 92.5% (i.e. corresponding to about 10 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID n°: 1, SEQ ID n° 2 and SEQ ID n° 3, preferably of at least 96% (i.e. corresponding to about 5 amino acids substitutions), and more preferably of at least 98.5% (i.e. corresponding to about 2 amino acids substitutions) or of at least 99% i.e. corresponding to about 1 amino acid substitution).
- Such derivatives can be simply identified by the skilled person in view of its personal knowledge and of the teaching of the present patent application.
- percentage of identity between two amino acids sequences, means the percentage of identical amino-acids, between the two sequences to be compared, obtained with the best alignment of said sequences, this percentage being purely statistical and the differences between these two sequences being randomly spread over the amino acids sequences.
- best alignment or “optimal alignment”, means the alignment for which the determined percentage of identity (see below) is the highest. Sequences comparison between two amino acids sequences are usually realized by comparing these sequences that have been previously aligned according to the best alignment; this comparison is realized on segments of comparison in order to identify and compare the local regions of similarity.
- the interleukin 15 derivatives are IL-15 agonist or superagonist.
- IL-15 agonist or superagonist One skilled in the art can simply identify an IL-15-agonist or -superagonist.
- IL-15-agonist or -superagonist one can cite the ones disclosed in the International patent application WO 2005/085282 or in ZHU et al. ( J. Immunol ., vol. 183(6), p:3598-607, 2009).
- said IL-15 agonist or superagonist is selected in the group comprising/consisting of L45D, L45E, S51D, L52D, N72D, N72E, N72A, N72S, N72Y and N72P (in reference to sequence of human IL-15, SEQ ID n° 3).
- the sushi domain of IL-15R ⁇ has its general meaning in the art and refers to a domain beginning at the first cysteine residue (C1) after the signal peptide of IL-15R ⁇ , and ending at the fourth cysteine residue (C4) after said signal peptide. Said sushi domain corresponding to a portion of the extracellular region of IL-15R ⁇ is necessary for its binding to IL-15 (WEI et al., J. Immunol ., vol. 167(1), p:277-282, 2001).
- Said sushi domain of IL-15R ⁇ or derivatives thereof has at least 10% of the binding activity of the sushi domain of human IL-15R ⁇ to human interleukin-15, preferably at least 25% and more preferably at least 50%.
- Said binding activity can be simply determined by the method disclosed in WEI et al. (abovementioned, 2001).
- Said sushi domain of the IL-15R ⁇ is the sushi domain of a mammalian IL-15R ⁇ , preferably the sushi domain of a primate IL-15R ⁇ and more preferably the sushi domain of the human IL-15R ⁇ .
- the sushi domain of a mammalian IL-15R ⁇ can be simply identified by the skilled person.
- a mammalian IL-15R ⁇ can be simply identified by the skilled person.
- Rattus norvegicus (Accession number XP_002728555), from Mus musculus (Accession number EDL08026), from Bos Taurus (Accession number XP_002692113), from Oryctolagus cuniculus (Accession number XP_002723298), from Macaca fascicularis (Accession number ACI42785), from Macaca nemestrina (Accession number ACI42783), from Homo sapiens (Accession number CAI41081), from Macaca Mulatta (Accession number NP_001166315), Pongo abelii (Accession number XP_002820541), Cercocebus torquatus (Accession number ACI42784), Callithrix jacchus (
- the term “sushi domain of a mammalian IL-15R ⁇ ” refers to the consensus sequence SEQ ID n° 4.
- the polypeptide comprising the amino acid sequence of the sushi domain of a mammalian IL-15R ⁇ refers to the consensus sequence SEQ ID n° 5.
- the sushi domain of a primate IL-15R ⁇ can be simply identified by the skilled person.
- the term “sushi domain of a primate IL-15R ⁇ ” refers to the consensus sequence SEQ ID n° 6.
- the polypeptide comprising the amino acid sequence of the sushi domain of a primate IL-15R ⁇ refers to the consensus sequence SEQ ID n° 7.
- the sushi domain of human IL-15R ⁇ can be simply identified by the skilled person and refers to the amino acids sequence SEQ ID n° 8.
- the polypeptide comprising the amino acid sequence of the sushi domain of human IL-15R ⁇ refers to SEQ ID n° 9.
- the term “derivatives of the sushi domain of the IL-15R ⁇ ” refers to an amino acid sequence having a percentage of identity of at least 92% (i.e. corresponding to about 5 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID n°: 4, SEQ ID n° 5, SEQ ID n° 6, SEQ ID n°: 7, SEQ ID n° 8, and SEQ ID n° 9, preferably of at least 96% (i.e. corresponding to about 2 amino acids substitutions), and more preferably of at least 98% (i.e. corresponding to about 1 amino acids substitutions).
- Such derivatives comprise the four cysteine residues of the sushi domain of L-15R ⁇ and can be simply identified by the skilled person in view of his/her general knowledge and of the teaching of the present patent application. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half life.
- the conjugate comprises (ii) a polypeptide comprising the amino acid sequence of the sushi and hinge domains of IL-15R ⁇ or derivatives thereof.
- the IL-15R ⁇ hinge domain is defined as the amino acid sequence that begins at the first amino residue after the sushi domain and that ends at the last amino acid residue before the first potential site of glycosylation.
- the amino acid sequence of the hinge region consists of the fourteen amino acids which are located after the sushi domain of this IL-15Ralpha, in a C-terminal position relative to said sushi domain, i.e., said IL-15Ralpha hinge region begins at the first amino acid after said (C4) cysteine residue, and ends at the fourteenth amino acid (counting in the standard “from N-terminal to C-terminal” orientation).
- Said sushi and hinge domains of IL-15R ⁇ are the sushi and hinge domains of a mammalian IL-15R ⁇ , preferably the sushi and hinge domains of a primate IL-15R ⁇ and more preferably the sushi and hinge domains of the human IL-15R ⁇ .
- the amino acid sequence of the sushi and hinge domains of a mammalian IL-15R ⁇ can be simply identified by the skilled person.
- the term “sushi and hinge domains of a mammalian IL-15R ⁇ ” refers to the consensus sequence SEQ ID n° 10.
- the amino acid sequence of the sushi and hinge domains of a primate IL-15R ⁇ can be simply identified by the skilled person.
- the term “sushi and hinge domains of a primate IL-15R ⁇ ” refers to the consensus sequence SEQ ID n° 11.
- the amino acid sequence of the sushi and hinge domains of human IL-15R ⁇ can be simply identified by the skilled person.
- the term “sushi and hinge domains of human IL-15R ⁇ ” refers to the consensus sequence SEQ ID n° 12.
- the term “derivatives of the sushi and hinge domains of IL-15R ⁇ ” refers to an amino acid sequence having a percentage of identity of at least 93% (i.e. corresponding to about 5 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID n°: 10, SEQ ID n° 11, and SEQ ID n° 12, preferably of at least 97% (i.e. corresponding to about 2 amino acids substitutions), and more preferably of at least 98% (i.e. corresponding to about 1 amino acids substitution).
- Such derivatives comprise the four cysteine residues of the sushi domain of L-15R ⁇ and can be simply identified by the skilled person in view of its general knowledge and of the teaching of the present patent application. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half-life.
- Both polypeptides a) and b) of the conjugate may be linked non-covalently such as in the complex disclosed in U.S. Pat. No. 8,124,084 B2 and in the International patent application WO 2012/040323.
- Said conjugate or complex can be simply obtained by providing a suitable amount of the polypeptide a), providing a suitable amount of the polypeptide b), admixing both polypeptides under suitable pH and ionic conditions for a duration sufficient to allow complex (i.e. conjugate) formation, and optionally concentrating or purifying said complex.
- the polypeptides of the complex i.e.
- conjugate can be formed, for example, using a peptide synthesizer according to standard methods; by expressing each polypeptide separately in a cell or cell extract, then isolating and purifying the polypeptide.
- the therapeutic polypeptide complex of the invention can be formed by expressing both polypeptides i) and ii) in the same cell or cell extract, then isolating and purifying the complexes, for example, using chromatographic techniques, such as affinity chromatography with antibodies to the lymphokine portion, the lymphokine receptor portion, or to the complex.
- Both polypeptides a) and b) of the conjugate may be also covalently linked using bifunctional protein coupling agents or in a fusion protein.
- Bifunctional protein coupling agents are well known from the skilled person such as methods using them, and include, as examples, N-succinimidyl (2-pyridyldithio) propionate (SPDP), succinimidyl (N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidateHCL), active esters (such as disuccinimidylsuberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-d
- fusion protein refers to a protein created through the joining of two or more genes which originally coded for separate proteins. It is also known as a chimeric protein. Translation of this fusion gene results in a single polypeptide with functional properties deriving from each of the original proteins.
- Recombinant fusion proteins are created artificially by recombinant DNA technology for use in biological research or therapeutics.
- a recombinant fusion protein is a protein created through genetic engineering of a fusion gene. This typically involves removing the stop codon from a cDNA sequence coding for the first protein, then appending the cDNA sequence of the second protein in frame through ligation or overlap extension PCR. That DNA sequence will then be expressed by a cell as a single protein.
- the protein can be engineered to include the full sequence of both original proteins, or only a portion of either.
- the conjugate is a fusion protein.
- the amino acid sequence of interleukin 15 or derivatives thereof can be in a C-terminal or in an N-terminal position relative to the amino acid sequence of the sushi domain of IL-15R ⁇ or derivatives thereof.
- the amino acid sequence of the interleukin 15 or derivatives thereof is in a C-terminal position relative to the amino acid sequence of the sushi domain of IL-15R ⁇ or derivatives thereof.
- amino acid sequence of interleukin 15 or derivatives thereof and the amino acid sequence of the sushi domain of IL-15R ⁇ or derivatives thereof may be separated by a “linker” amino acid sequence.
- Said “linker” amino acid sequence may be of a length sufficient to ensure that the fusion protein form proper secondary and tertiary structures.
- the length of the linker amino acid sequence may vary without significantly affecting the biological activity of the fusion protein.
- the linker amino acid sequence comprises at least one, but less than 30 amino acids e.g., a linker of 5-30 amino acids, preferably of 10-30 amino acids, more preferably of 15-30 amino acids, still more preferably of 15-25 amino acids, most preferably of 18-22 amino acids.
- Preferred linker amino acid sequences are those which allow the conjugate to adopt a proper conformation (i.e., a conformation allowing a proper signal transducing activity through the IL-15Rbeta/gamma signaling pathway).
- linker amino acid sequences (1) will adopt a flexible extended conformation, (2) will not exhibit a propensity for developing ordered secondary structure which could interact with the functional domains of fusion proteins, and (3) will have minimal hydrophobic or charged character which could promote interaction with the functional protein domains.
- the linker amino acid sequence comprises near neutral amino acids selected in the group comprising Gly (G), Asn (N), Ser (S), Thr (T), Ala (A), Leu (L), and Gln (Q), most preferably in the group comprising Gly (G), Asn (N), and Ser (S).
- linker sequences are described in U.S. Pat. Nos. 5,073,627 and 5,108,910.
- Illustrative flexible linkers that are more particularly suitable for the present invention include those coded by the sequences of SEQ ID n° 13 (SGGSGGGGSGGGSGGGGSLQ), SEQ ID n° 14 (SGGSGGGGSGGGSGGGGSGG) or SEQ ID n° 15 (SGGGSGGGGSGGGGSGGGSLQ), and SEQ ID n° 16 (SGGSGGGGSGGGSGGGGS).
- the conjugate corresponds to a fusion protein with the sequence SEQ ID n° 17 or SEQ ID n° 18.
- pharmaceutically acceptable refers to molecular entities and compositions that are physiologically tolerable and do not typically produce allergic or similar undesirable reactions, such as gastric upset, dizziness and the like when administered to a human.
- pharmaceutically acceptable means approvable by a regulatory agency of the Federal or state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a solvent, adjuvant, excipient, or vehicle with which the compound is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- the route of administration of the combination of the invention is preferably parenteral; as used herein, the term “parenteral” includes intravenous, intramuscular, subcutaneous, rectal, vaginal or intraperitoneal administration.
- the pharmaceutical composition contains vehicles which are pharmaceutically acceptable for a formulation intended to be injected. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- intravenous administration is most preferred.
- the conjugate may be solubilized in a buffer or water or incorporated in emulsions, microemulsions, hydrogels (e.g. PLGA-PEG-PLGA triblock copolymers-based hydrogels), in microspheres, in nanospheres, in microparticles, in nanoparticles (e.g. poly(lactic-co-glycolic acid) microparticles (e.g. poly lactic acid (PLA); poly (lactide-co-glycolic acid) (PLGA); polyglutamate microspheres, nanospheres, microparticles or nanoparticles), in liposomes, or other galenic formulations.
- the formulation must be sterile and fluid to the extent of acceptable syringability. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the conjugate can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- the carrier can also be a solvent or a dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils.
- the conjugates of the invention may also be modified, by pegylation as an example, so as to increase its biodisponibility.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- a coating such as lecithin
- surfactants for example, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sulfate, sodium sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate, gelatin, polyols, half-life enhancing covalent and non covalent formulations.
- agents delaying absorption for example, aluminium monostearate, gelatin, polyols, half-life enhancing covalent and non covalent formulations.
- Stabilizers may be added to reduce or prevent such problems.
- Stabilizers include cyclodextrine and derivatives thereof (see U.S. Pat. No. 5,730,969). Suitable preservatives such as sucrose, mannitol, sorbitol, trehalose, dextran and glycerin can also be added to stabilize the final formulation. A stabilizer selected from ionic and non-ionic surfactants, D-glucose, D-galactose, D-xylose, D-galacturonic acid, trehalose, dextrans, hydroxyethyl starches, and mixtures thereof may be added to the formulation. Addition of alkali metal salt or magnesium chloride may stabilize a peptide.
- the peptide may also be stabilized by contacting it with a saccharide selected from the group consisting of dextran, chondroitin sulphuric acid, starch, glycogen, dextrin, and alginic acid salt.
- a saccharide selected from the group consisting of dextran, chondroitin sulphuric acid, starch, glycogen, dextrin, and alginic acid salt.
- Other sugars that can be added include monosaccharides, disaccharides, sugar alcohols, and mixtures thereof (E.g., glucose, mannose, galactose, fructose, sucrose, maltose, lactose, mannitol, xylitol).
- Polyols may stabilize a peptide, and are water-miscible or water-soluble.
- Suitable polyols may be polyhydroxy alcohols, monosaccharides and disaccharides including mannitol, glycerol, ethylene glycol, propylene glycol, trimethyl glycol, vinyl pyrrolidone, glucose, fructose, arabinose, mannose, maltose, sucrose, and polymers thereof.
- Various excipients may also stabilize peptides, including serum albumin, amino acids, heparin, fatty acids and phospholipids, surfactants, metals, polyols, reducing agents, metal chelating agents, polyvinyl pyrrolidone, hydrolysed gelatin, and ammonium sulfate.
- treating means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition.
- treating cancer means the inhibition of the growth of cancer cells.
- treatment also leads to the regression of tumor growth, i.e., the decrease in size of a measurable tumor.
- Most preferably, such treatment leads to the complete regression of the tumor.
- treating an infection means the inhibition of microbes replication/proliferation.
- treating an immunodeficiency disorder means the induction of NK cells and/or T cells.
- an “effective amount” of the conjugate is an amount which is sufficient to induce the regression of tumor growth or of microbes' replication.
- the doses used for the administration can be adapted as a function of various parameters, in particular as a function of the mode of administration used, of the relevant pathology, or alternatively of the desired duration of treatment.
- the form of the pharmaceutical composition, the route of administration, the dosage and the regimen naturally depend on the condition to be treated, the severity of the illness, the age, weight, and sex of the subject, etc.
- the ranges of effective doses provided below are not intended to limit the invention and represent preferred dose ranges. However, the preferred dose can be tailored to the individual subject, as is understood and determinable by one of skill in the art, without undue experimentation.
- the conjugate of the invention Because of the very important safety of the conjugate of the invention, its administration can be envisaged for treating cancer, infection and immunodeficiency disorder with a very important therapeutic window, far from the restricted IL-2 therapeutic window and also from the therapeutic window envisaged for IL-15.
- This safety enable to envisage the use of 1) very high dose of RLI for treating chronic disease with bad prognosis (e.g. metastatic renal adenocarnima or melanoma) and 2) low dose of RLI for treating disease with good prognosis.
- bad prognosis e.g. metastatic renal adenocarnima or melanoma
- low dose of RLI for treating disease with good prognosis e.g. metastatic renal adenocarnima or melanoma
- the administrated amount also induces a proliferation of CD8 T cells that is higher than the one obtained with HDIL-2.
- an effective amount of the at least one conjugate is higher than 40 fmol/kg or 0.2 pmol/kg (1 ng/kg or 5 ng/kg), preferably greater than 1 pmol/kg or 2 pmol/kg (25 ng/kg or 50 ng/kg), and still preferably greater than 4 pmol/kg (100 ng/kg), 20 pmol/kg (500 ng/kg), or even greater than 40 pmol/kg (1 mcg/kg).
- Other dosages are viable, since the molecular weight and the activity of the conjugate thereof may influence it. The skilled artisan is readily credited with determining a suitable dosage that falls within the ranges, or if necessary, outside of the ranges.
- an effective amount of the at least one conjugate corresponds to a blood concentration higher than 4 fmol/ml (0.1 ng/ml), preferably higher than 40 or 80 fmol/ml (1 or 2 ng/ml), and still preferably higher than 0.160 pmol/ml (4 ng/ml).
- the administrated amount of the at least one conjugate is less than 2.4 nmol/kg (60 mcg/kg), preferably less than 2 nmol/kg (50 mcg/kg) or 1.2 nmol/kg (30 mcg/kg), and still preferably less than 1.0 nmol/kg (25 mcg/kg) or even less than 200 pmol/kg (5 mcg/kg).
- the administrated amount of the at least one conjugate corresponds to a blood concentration of less than 0.12 nmol/ml (3,000 ng/ml), preferably less than 80 or 40 pmol/ml (2,000 or 1,000 ng/ml), and still preferably less than 20 pmol/ml (500 ng/ml) or even less than 12 pmol/ml (300 ng/ml).
- the administrated amount also induces a proliferation of CD8 T cells that is higher than the one obtained with HDIL-2.
- the conjugate is used for treating a subject suffering from a disease associated with a bad prognosis.
- a disease associated with a bad prognosis is a disease wherein the median prognosis is less than 2 years, preferably less than 1 year and still preferably less than 6 months.
- a disease associated with a bad prognosis is an advanced (TNM grade IV) or a metastatic cancer.
- the conjugate is administrated in an amount inducing a proliferation of natural killer cells (NK cells) which is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
- NK cells natural killer cells
- the conjugate is administrated in an amount inducing a proliferation of CD8+ T cells, which is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
- an effective amount of the at least one conjugate is comprised between 24 and 2,400 pmol/kg (0.6 and 60 mcg/kg), preferably between 28 and 800 pmol/kg (0.7 and 20 mcg/kg) and still preferably between 32 and 400 pmol/kg (0.8 and 10 mcg/kg).
- the conjugate is administrated in an amount corresponding to a blood concentration comprised between 0.4 pmol/ml and 0.12 nmol/ml (10 ng/ml and 3,000 ng/ml), preferably between 0.48 pmol/ml and 40 pmol/ml (12 ng/ml and 1,000 ng/ml), and still preferably between 0.6 and 20 pmol/ml (15 and 500 ng/ml).
- said conjugate is used for treating a subject having a good prognosis.
- a disease associated with a good prognosis is a disease wherein the median prognosis is more than 3 years, preferably more than 4 years and still preferably more than 5 years.
- a disease associated with a good prognosis is a non-metastatic cancer, preferably a TN grade I, II or III cancer, or an infection.
- the conjugate is administrated in an amount inducing a proliferation of natural killer cells (NK cells) which is the same or at the maximum 50 or 25% higher than the one obtained with HDIL-2; preferably the same or at the maximum 20% higher; and still preferably the same or at the maximum 10% higher than the one obtained with HDIL-2.
- NK cells natural killer cells
- the conjugate is administrated in an amount inducing a proliferation of CD8+ T cells, which is the same or at the maximum 200% higher than the one obtained with HDIL-2; preferably the same or at the maximum 150% higher, and still preferably the same or at the maximum 100% higher than the one obtained with HDIL-2.
- an effective amount of the at least one conjugate is comprised between 2 and 200 pmol/kg (50 and 5,000 ng/kg), preferably between 8 and 200 pmol/kg (200 and 5,000 ng/kg) and still preferably between 20 and 80 pmol/kg (500 and 2,000 ng/kg).
- the conjugate is administrated in an amount corresponding to a blood concentration comprised between 40 fmol/ml and 12 pmol/ml (1 ng/ml and 300 ng/ml), preferably between 80 fmol/ml and 12 pmol/ml (2 ng/ml and 300 ng/ml), and still preferably between 0.16 and 4 pmol/ml (4 and 100 ng/ml).
- the inventors established that said IL-15 derivative NK cells induction is obtained with a regulatory T cells induction inferior to the one obtained with HDIL-2.
- said conjugate is administrated to the subject in an amount inducing a proliferation of Treg cells (FoxP3 + CD4 + CD25 high ) which is less to the one obtained with HDIL-2.
- the conjugate is administrated to the subject in an amount inducing a proliferation of Treg cells which is at least 5% less than the one obtained with HDIL-2; preferably at least 10 or 20% less; and still preferably at least 50% less than the one obtained with HDIL-2.
- the NK and CD8 cells induction obtained with the IL-15 derivative is much more efficient than the one induced by HDIL-2 because of the smallest regulatory T cells induction.
- the conjugate is administrated to the subject in an amount, whose ratio of the induced percentage of proliferating NK cells on the induced percentage of proliferating Treg cells is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher, and still preferably at least 75% higher than the one obtained with HDIL-2.
- the conjugate is administrated to the subject in an amount whose ratio of induced percentage of proliferating CD8 T cells on the induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher, and still preferably at least 75% higher than the one obtained with HDIL-2.
- a preferred treatment course can occur over several stages; most preferably, said administrated amount corresponds to a daily administrated amount.
- This amount can be administrated once a day for between one and 20 days, such as between one and 10 days, preferably between 2 and 5 days, and most preferably between 2 and 4 days.
- the administrated amount may be under a long-lasting form resulting in a long-term administration with similar daily blood concentration of conjugate.
- the present invention relates to a method for determining the therapeutically efficient amount of conjugate to be administrated to a subject suffering from a cancer, from an infection or from an immunodeficient disorder, said method comprising the step of:
- said therapeutically efficient amount of conjugate induces a proliferation of CD8 T cells of said PBMCs which is the same or higher than the one obtained with HDIL-2.
- Said selected therapeutically efficient amount is adapted for treating a cancer, an infection or an immunodeficient disorder in said subject.
- said therapeutically efficient amount is associated to a ratio of the induced percentage of proliferating NK cells and/or of CD8 T cells on the induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher, and still preferably at least 75% higher than the one obtained with HDIL-2.
- said therapeutically efficient amount of conjugate induces a proliferation of NK and/or of CD8 T cells, which is at least 50% higher than the one obtained with the culture medium without conjugate (i.e. without HDIL-2 and IL-15 also).
- Increasing amounts of conjugate correspond to concentration of conjugate comprised between 4 fmol/ml and 120 pmol/ml (0.1 and 3,000 ng/ml), preferably between 40 fmol/ml and 80 pmol/ml (1 and 2,000 ng/ml), and still preferably between 80 fmol/ml and 40 pmol/ml (2 and 1,000 ng/ml).
- HD IL-2 is well known from the skilled person and corresponds to the incubation of PBMC with 50 IU/mL (MURPHY, WELNIAK, BACK et al., J. Immunol ., vol. 170, p:2727-33, 2003; ITOH et al., Cancer Immunol. Immunother ., vol. 32(2), p:88-94, 1990; ETTINGHAUSEN & ROSENBERG, Cancer Res., vol. 46(6), p:2784-92, 1986).
- said subject is suffering from a disease associated with a bad prognosis.
- the step iii) corresponds to the selection of an amount of conjugate inducing a proliferation of natural killer cells (NK cells), which proliferation is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher, and still preferably at least 30% higher than the one obtained with HDIL-2.
- NK cells natural killer cells
- the step iii) also corresponds to the selection of an amount of conjugate inducing a proliferation of CD8 T cells, which proliferation is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
- said conjugate is used for treating a subject having a good prognosis.
- the step iii) corresponds to the selection of an amount of conjugate inducing a proliferation of natural killer cells (NK cells) which is the same or at the maximum least 50 or 25% higher than the one obtained with HDIL-2; preferably the same or the maximum 20% higher, and still preferably the same or at the maximum 10% higher than the one obtained with HDIL-2.
- NK cells natural killer cells
- the step iii) also corresponds to the selection of an amount of conjugate inducing a proliferation of CD8 T cells, which proliferation is the same or at the maximum 200% higher than the one obtained with HDIL-2; preferably the same or at the maximum 150% higher; and still preferably the same or at the maximum 100% higher than the one obtained with HDIL-2.
- the method of the invention further comprises the step of:
- PMOLBC Peripheral Blood Mononuclear Cells
- PBMC peripheral blood mononuclear cells
- CFSE Carboxy Fluorescein Succinimidyl Ester
- PBMCs are incubated for three to seven days at 37° C. in humidified 95% air and 5% CO 2 .
- Cells are collected and stained with anti-CD3, CD4, CD8, CD56 and LIVE/DEAD® Fixable Aqua to select viable cells. Stained cells are acquired immediately on a FACSCanto II flow cytometer (BD BIOSCIENCES) and analyses were performed using FLOWJO software (TREE STAR).
- PBMCs were incubated with a culture medium.
- PBMCs were incubated with 50 IU/mL (3 ng/mL) of human IL-2 (PROLEUKIN, NOVARTIS PHARMA), said amount being equivalent to high dose of IL-2 for human use (MURPHY, WELNIAK, BACK et al., J. Immunol ., vol. 170, p:2727-33, 2003; ITOH et al., Cancer Immunol. Immunother ., vol. 32(2), p:88-94, 1990; ETTINGHAUSEN & ROSENBERG, Cancer Res., vol. 46(6), p:2784-92, 1986).
- a positive control also, we used 2.5 ng/mL of recombinant human IL-15 (CELLGENIX, PRECLINICAL CELLGRO®) corresponding to the same molarity to HDIL-2.
- the percentages of proliferating NK cells, CD8+ T cells and CD4+ T cells were determined daily from day 3 to day 7 by CFSE dilution.
- FIG. 1 shows in vitro dose-effect of RLI on human peripheral blood mononuclear cells (A).
- Human PBMCs were stained with CFSE on day 0 and then treated for 4 and 7 days with dose-escalating concentrations of RLI (2.5; 25; 250; 2500 and 25000 pg/mL).
- PBMCs were harvested, stained and analyzed by Fluorescence-activated cell sorting (FACS). Untreated control cells were simultaneously incubated in medium alone.
- FACS Fluorescence-activated cell sorting
- FIG. 1 B shows the proliferative capacity of RLI, rhIL-15 and rhIL-2.
- Human PBMCs were treated for 4 and 7 days with RLI at 2.5 ng/mL, rhIL-15 at 2.5 ng/mL and rhIL-2 at 50 UI/mL (3 ng/mL).
- Table 1 NK cells
- Table 2 CD8+ T cells
- Table 3 CD4+ T cells
- RLI is able to induce some proliferation in vitro with a dose as low as 25 pg/mL (1 fmol/ml) for NK cells and 250 pg/mL for CD8+ T cells.
- RLI induces equivalent proliferation of NK cells and CD8+ T cells respectively to 2,500 pg/ml rhIL-15 for the first days.
- RLI induced NK cells proliferation 300% higher than rhIL-15 at a dose of 250 pg/ml (10 fold less than rhIL-15) and 50% higher at a dose of 25 pg/ml (100 fold less than rhIL-15).
- RLI induced CD8+ cells proliferation 100% higher than rhIL-15 at a dose of 25 pg/ml (100 fold less than rhIL-15).
- RLI is 10 to 100 times more bioactive than rhIL-15.
- RLI at doses of 250 and 2500 pg/mL showed higher proliferative capacity compared to 3,000 pg/mL IL-2 for NK and CD8+ T cells respectively (Note that equimolar dosage of IL-2 would have been 150 to 1500 pg/mL i.e. 3 to 30 UI/mL).
- NK cells the results show that RLI induced NK cells proliferation 30% higher than rhIL-2 but at a dose of 25 pg/ml (100 fold less than rhIL-2) and equivalent at 2.5 pg/ml (1,000 fold less than rhIL-2).
- RLI is at least 2 to 10 times more bioactive than rhIL-2.
- FIGS. 12 A and 12 B show the proliferative capacity of RLI, rhIL-15 and rhIL-2 at days 3, 4, 5, 6 and 7 on NK cells and CD8 T cells respectively.
- RLI induce a proliferation of NK cells, but also of CD8 T cells, that is greater than the one obtained with equimolar rhIL-1S and also equimolar rhIL-2 and that from the third day following the activation until the seventh day.
- Treg cells were analyzed as published elsewhere (MIYARA et al., Immunity , vol. 30(6), p:899-911, 2009). This strategy allows the discrimination between activated Treg (Foxp3 high CD4 + T cells), resting naturally Treg (Foxp3 low CD45RA + CD4 + T cells) and activated effector CD4 + T cells (Foxp3 Low CD45RA ⁇ CD4+ T cells).
- CFSE-labeled PBMC were obtained as previously described in 1).
- cells were harvested and stained with anti-CD3, anti-CD4, anti-CD8 and LIVE/DEAD® Fixable Aqua to select viable cells.
- Cells were permeabilized following Foxp3 fix/permeabilization protocol (EBIOSCIENCE) and stained with anti-Foxp3. Labelled cells were acquired immediately with a flow cytometer.
- FIG. 2 A shows the proportion of proliferating Foxp3 ⁇ CD4 + T cells.
- FIG. 2 B shows the proportion of proliferating Foxp3 + CD4 + T cells (left panel); Foxp3 low CD4 + T cells (middle panel) and Foxp3 high CD4 + T cells (right panel).
- VLS vascular leak syndrome
- mice were used as an animal model of for immune cells activation and for human VLS.
- RLI activity in this animal model.
- mice obtained from Harlan Laboratories were injected in intraperitoneal (i.p) with 100 ⁇ L of PBS, as a negative control, rhIL-2 (250 000 IU/mouse) as a positive control, rhIL-15 (1.2 ⁇ g/mouse) as comparison and RLI (2.5 ⁇ g/mouse) following the presented protocol in FIG. 3 .
- mice were killed by cervical dislocation and spleens are withdrawn on day 4.
- Spleen was dissociated in a single-cell suspension on a 100 ⁇ m-cell strainer with a back of a syringe.
- blood cells were lysed using ACK solution (Ammonium-Chloride-Potassium).
- Splenocytes were washed twice times in a complete medium and viable cells were counted using KOVA slides. Two millions of splenocytes were stained with following antibodies: anti-CD3, anti-CD4, anti-CD8, NKp46 and LIVE/DEAD® Fixable Aqua to select viable cells.
- splenocytes were permeabilized according to the manufacturing protocol (EBIOSCIENCE FoxP3 permeabilization buffers) and stained with anti-FoxP3 and Ki67. Isotype of Ki67 was used to identify positive cells. Stained cells were acquired immediately on a FACSCANTO II flow cytometer and analyses were performed using FLOWJO SOFTWARE (TREE STAR).
- NK cells are CD3 negative NKp46 positive cells.
- CD8+ T cells were analyzed gating on CD3 and CD8 double positive cells. For Regulatory T cells analyses, intra-nuclear staining of Foxp3 was realized to distinguish regulatory from effectors T cells in the CD4 and CD3 double positive population.
- FIG. 4 represents the proportion of proliferating NK cells, CD8 + T cells, Foxp3 + CD4 + T cells and Foxp3 ⁇ CD4 + T cells at day 4.
- FIG. 5 shows the ratio of proliferating NK cells to Foxp3 + T cells (Treg) ratio at day 7.
- the splenocytes were obtained following previously described protocol.
- splenocytes were cultivated in complete medium supplemented with 5 ng/mL of PMOLA (Phorbol 12-myristate 13-acetate) and 500 ng/mL of Ionomycin during 4 hours. Brefelfin A solution was used to inhibit protein transport (EBIOSCIENCE). Then, cells were collected and stained with following antibodies: anti-CD3, CD4, CD8, NKp46 and LIVE/DEAD® Fixable Aqua to select viable cells. After surface staining, cells were fixed and permeabilized following manufacturing protocol (BD BIOSCIENCES, intracellular staining). Then, permeabilized cells were stained using anti-IFN ⁇ antibody and acquired immediately on a FACS Canto II flow cytometer.
- PMOLA Phorbol 12-myristate 13-acetate
- Ionomycin Ionomycin
- FIG. 6 shows (A) the percentage of IFN ⁇ producing cells among NK cells (left panel), CD8+ T cells (middle panel) and CD4+ T cells were determined (right panel) and (B) the NK cell cytotoxicity against YAC-1 cell line (B) for the mice injected either with PBS, IL-2, IL-15 or RLI.
- FIG. 9 (A) represents the evolution of the tumor volume depending on the cytokine regimen.
- FIG. 9 (B) shows the Area Under the Curve (AUC) for subcutaneous tumor growth in mice treated with the indicated reagents. Data are representative of two separate experiments.
- LDRLI decreases primary tumor growth by 47%, which is similar to HDRLI decreasing primary tumor growth by 46%.
- LDIL-2 has not therapeutic effect
- LDIL-15 has a very modest therapeutic effect ( ⁇ 9% on primary tumor growth).
- HDIL-2 and HDIL-15 present modest but significant therapeutic effects on primary tumor growth ( ⁇ 22% and ⁇ 28% respectively).
- IL-15/IL-15Ralpha-Fc decreases the primary tumor growth by 37%, which is less than with LD and HDRLI, despite a similar effect on CD8 T and NK cells.
- CD8/CD4 Treg and NK/CD4 Treg are less favorable with the IL-15/IL-15Ralpha-Fc than with RLI.
- IL2/602 mAb decreases the primary tumor growth by 51%, which is a little bit higher than with LD or HDRLI, despite a similar effect on CD8 T and NK cells and less favorable ratios CD8/CD4 Treg and NK/CD4 Treg than with RLI. It indicates that the most important immune drivers to control the B6F10 primary tumor growth is more related to the quantitative expansion of CD8 T and NK cells than the relative ratio of these cells with CD4 Treg. Nevertheless, many studies involve the development and activity of CD4 Treg in mouse and human cancers as critical immunosuppressive cells favoring tumor progression through immune escape.
- VLS Vascular Leak Syndrome
- Enriched CFSE labeled Ly5.1+CD8+ T cells were transferred to wild-type mice, followed by 4 daily injections of either PBS, 1.5 ⁇ g (low dose, LD) or 15 ⁇ g (high dose, HD) recombinant human cytokine, including LDIL-2, LDIL-15, HDIL-2 and HDIL-15; 1.5 ⁇ g cytokine plus anti-human cytokine antibody (IL-2/602); 1. 5 ⁇ g IL-15 plus soluble IL-15R ⁇ -Fc (IL-15/sIL-15R ⁇ also called IL-15 non covalent complex); and 2.25 ⁇ g RLI (LD RLI) or 15 ⁇ g RLI (HD RLI).
- This IL-2 dose can be considered so as highest limit dose in term of VLS induction, on the basis of safety—i.e. acceptable risk-benefit balance-, said HDIL-2.
- spleen cells were analyzed for (A) CFSE profiles of donor Ly5.1+CD8+ cells, host CD44high CD122high memory-phenotype CD8+ T cells (MP CD8+), CD4+CD25+ regulatory T cells (Treg) and CD3-NK1.1+ natural killer cells (NK).
- MP CD8+ host CD44high CD122high memory-phenotype CD8+ T cells
- Treg CD4+CD25+ regulatory T cells
- NK CD3-NK1.1+ natural killer cells
- FIG. 7 shows the total cell numbers of donor cells, MP CD8+ T cells, and NK cells were calculated. Data are representative of two separate experiments.
- LDRLI induces a strong proliferation and expansion of transferred Ly5.1+ CD8+ T cells, enriched for CD122+ CD44+ cells (effector and central memory CD8 T cells), 89% of proliferating cells versus 97% of proliferating cells in the HDRLI group.
- LDRLI or HDRLI induces quasi-similar pharmacological effects on target cells, meaning that such very high concentrations of RLI are not required to achieve maximal pharmacological effects.
- LDRLI induces much more proliferation of transferred CD8 T cells than equimolar LDIL-2 (12%), LDIL-15 (13.5%), and even HDIL-2 (52%) or HDIL-15 (62%).
- LDRLI and HDRLI compare very well with superagonist non-covalent complex of IL-2 (IL2/602 mAb; 98%) and of IL-15 (IL-15/IL-15Ralpha-Fc; 98%).
- RLI is highly efficient to amplify NK and CD8 T cells with the more limited efficacy on the expansion of CD4 Tregs, presenting the best ability among all the tested reagents and regimens to shift the immunomodulatory balance towards immunocytotoxicity without amplify immunosuppression.
- VLS vascular leakage syndrome
- FIG. 8 represents the lung edema (higher than the dotted line) as the percent of the total mice weight. Dotted line represents physiologic background level. Data are representative of two separate experiments.
- LDIL-15 and LDIL-2 induce a modest increase of PWW of 7.3% and 17.9% respectively.
- HDIL-15 and HDIL-2 increase the PWW of about 54.5% and 120% respectively.
- HDIL-2 induces a very important PWW increase, consistent with the vascular leakage syndrome arising in some patients treated with HDIL-2.
- the PWW increase is far less than the one induced by HDIL-2, even if such PWW increase is not insignificant.
- the results show that, as compared to the highest limit for VLS, the ones induced by RLI at low and high doses seem acceptable, whereas the NK and CD8+ cells induction by RLI is higher than the one obtained by hIL-15 and hIL-2 (more than 3 fold).
- IL-15/IL-15Ralpha-Fc increases the PWW by 76.4%, which is the double of the VLS induced by LDRLI despite a lower therapeutic efficacy.
- IL-2/602 mAb increases the PWW by 62.6%, which is 39% more than the VLS induced by LDRLI despite similar therapeutic efficacy.
- HDRLI increase the PWW by 96.7% versus 38.2% in the LDRLI group despite quasi-similar pharmacological effects on NK and CD8 T cells and quasi-similar therapeutic efficacy.
- FIG. 11 represent the VLS as a function of NK and CD8+ T cells respectively for the mouse injected with PBS, IL-2, IL-15, and RLI.
- RLI has a very different safety as compared to the one of IL-2 but also to the one of IL-15 (even if IL-15 and RLI potentially use the same signal pathways), which RLI safety is much more favorable to the one of both IL-15 and IL-2.
- RLI presents improved dose margin and therapeutic window compared to IL-15 and IL-2 to leverage effector immune cells to induce therapeutic effects without side effects.
- mice received 4 daily injections of RLI CHO at 0.2 ⁇ g, 0.5 ⁇ g, 1 ⁇ g, or 2 ⁇ g per i.p injection from day 0 to day 3, and then sacrificed at day 4.
- FIG. 13 shows the dose-response effects of RLI on NK cells expansion.
- VLS was evaluated in lungs and liver of treated mice versus control mice (PBS).
- FIG. 14 shows the dose-response effects of RLI on VLS in lungs and livers in mice.
- mice received 4 daily injections of RLI CHO at 0.2 ⁇ g, 0.5 ⁇ g, 1 ⁇ g, 2 ⁇ g, 5 ⁇ g or 25 ⁇ g per ip injection from day 0 to day 3, and then sacrificed at day 4.
- FIG. 15 shows the dose-response effects of RLI on VLS in lungs.
- RLI does not induce VLS in lung from doses 0. 2 ⁇ g to 2 ⁇ g, while RLI at 5 ⁇ g and 25 ⁇ g induces potent VLS with a similar and maximal intensity.
- FIG. 16 shows the dose response of RLI on NK cell expansion
- FIG. 17 shows the dose response of RLI on Treg expansion.
- RLI from dose 0.2 to 5 ⁇ g per injection induces dose-dependent NK cell expansion in spleen, whereas RLI at 25 ⁇ g losses activity and could be considered as detrimental.
- RLI at doses from 0.2 to 2 ⁇ g does not increase the percentage of Treg, while these regimens induce similar increase of the number of Treg as compared to the control.
- RLI at highest doses (5 and 25 ⁇ g) increase the percentage and the number of CD4 Treg.
- FIG. 18 shows the dose-response effect of RLI on the ration of percentage of CD4 Treg versus NK cells and established that RLI presents a specific dose-dependent activity on NK cell proliferation without specific activity on CD4 Tregs.
- the margin of doses between 0.2 and 2 ⁇ g appears active and safe, reflecting the possibility to stimulate cytotoxic immune cells, like NK cells without inducing VLS. The existence of such a pharmaceutical margin is critical to manage efficacy and safety in patients.
- FIG. 19 recapitulates the comparison between NK and CD8 T cell stimulation versus VLS induced by RLI treatment in healthy mice, in addition to the cell therapeutic effect on Renca cell metastatic development.
- FIG. 10 A represents the observed and modelized evolution of RLI concentration depending on the injected dose as a function of time. Data are representative of two different macaques per dose.
- the blood concentrations at 6 h and 12 h are 28.67 and 6.02 ng/ml respectively.
- the blood concentrations at 6 h and 12 h are 0.55 and 0.03 ng/ml respectively, meaning 550 ⁇ g/ml and 30 ⁇ g/ml respectively.
- HED human equivalent dose
- HED(mg/kg) Animal Dose(mg/kg) ⁇ (Animal Km +Human Km )
- Km is a correction factor reflecting the relationship between body weight and body surface area.
- Km 37.
- Km are 3 for mouse, 6 for rabbit, 12 for macaques, 20 for dog, 37 for human adult (See “Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. (2002) Estimating the safe starting dose in clinical trials for therapeutics in adult healthy volunteers , U.S. Food and Drug Administration, Rockville, Md., USA”).
- the administered daily amount of RLI could vary from 1 ng/kg to 60 mcg/kg, depending of the severity of the disease to be treated.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to a pharmaceutical composition for treating a cancer or an infection in a subject by administrating an amount of an IL-15 derivative conjugate so as to induce a proliferation of natural killer cells (NK cells) which is the same or higher than the one obtained with high dose of interleukin-2 (HDIL-2); eventually associated with a pharmaceutically acceptable carrier.
Description
- This International patent application claims the priority of the European patent application EP 13002066.2 filed on Apr. 19, 2013, which is herein incorporated by reference.
- The present invention relates to a new pharmaceutical composition and associated method for treating cancer and/or infection in a subject.
- Immunotherapies has developed in the last decades so as overcome the inability of the immune system to efficiently protect against the establishment of tumors or microbes, or reject established tumors or microbes.
- Among immunotherapies, those based on cytokines are of particular interest. These molecules, which are soluble molecules, are regulating the humoral and/or cellular immunity. Among them, IL-2, IL-7, IL-12 and IL-15 are of more particular interest since they are inducing NK cells survival and/or proliferation; thus being interesting as adjuvant for treating infection or cancer.
- As an example, Human rIL-2 has been shown to result in tumor regression in 25-30% of patients with metastatic melanoma or renal carcinoma. As Intermittent IL-2 therapy is also used in HIV-infected patients in combination with highly active antiretroviral therapy and restores sustained, protective levels of CD4+ T lymphocytes.
- Nevertheless, the use of such cytokines is restricted because of their dose-dependent toxicity, which manifests particularly as vascular leak syndrome (VLS), which is characterized by increased vascular permeability and decreased microcirculatory perfusion, leading to interstitial edema and multiple organ failure within 2-24 h of IL-2 administration.
- The analysis of the mechanism of cytokine-induced VLS has demonstrated the implication of cytokine induced-NK cells in some phases of VLS (ASSIER et al., Cytokines, vol. 32(6), p:280-6, 2005). The VLS implication of T cells has also been established since VLS is accentuated by depletion of Treg cells (KOTTKE et al., Mol. Ther., vol. 16(7), p:1217-26, 2008).
- Finally, the use of cytokines is actually limited to a maximum NK cells proliferation induction, so as not to induce unacceptable or lethal VLS.
- Because of this requirement and problematic safety, the use of high dose of cytokines is actually limited to chronic infections and to advanced metastatic cancer.
- Now, the inventors have surprisingly established that their molecule (RLI) comprising the hIL-15 amino acids sequence shows a very different safety as compared to the one of IL-15 or IL-2, which RLI safety is much more favorable. Finally, their results established that RLI can be used in a therapeutic window, which is unthinkable for both IL-2 and IL-15.
- This safety enables the use of high dose of RLI for treating diseases associated with bad prognosis and lowest dose of RLI for treating diseases associated with correct or good prognosis.
- Thus, the invention relates in a first aspect, to a composition for treating a cancer, an infection or an immunodeficiency disorder in a subject by administrating to said subject an amount of a conjugate so as to induce a proliferation of natural killer cells (NK cells) which is the same or higher than the one obtained with high dose of interleukin-2 (HDIL-2), wherein said conjugate comprises:
-
- a) a polypeptide comprising the amino acid sequence of
interleukin 15 or derivatives thereof, and - b) a polypeptide comprising the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof.
- a) a polypeptide comprising the amino acid sequence of
- In a second aspect, the present invention relates to a method for treating a cancer, an infection or an immunodeficiency disorder in a subject comprising the step of administrating to a subject in need thereof an amount of a conjugate so as to induce a proliferation of natural killer cells (NK cells) which is the same or higher than the one obtained with HDIL-2, wherein said conjugate comprises:
-
- a) a polypeptide comprising the amino acid sequence of
interleukin 15 or derivatives thereof, and - b) a polypeptide comprising the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof.
- a) a polypeptide comprising the amino acid sequence of
- Preferably, the conjugate is also administrated in an amount inducing a proliferation of CD8 T cells higher than the one obtained with HDIL-2.
- In a third preferred embodiment, said conjugate is administrated to the subject in an amount inducing a proliferation of Treg cells (FoxP3+CD4+CD25high) which is less to the one obtained with HDIL-2.
- In a third aspect, the present invention relates to a (in vitro) method for determining the therapeutically efficient amount of conjugate to be administrated to a subject suffering from a cancer, from an infection or from an immunodeficient disorder, said method comprising the step of:
-
- i) contacting peripheral blood mononucleated cells (PBMCs) from said subject with increasing amounts of the conjugate defined previously in culture conditions enabling the proliferation of said PBMCs;
- ii) contacting other PBMCs from said subject with High Dose of interleukin-2 (HDIL-2) in culture conditions enabling the proliferation of said PBMCs; and
- iv) selecting a therapeutically efficient amount of conjugate, said therapeutically efficient amount inducing a proliferation of NK cells of said PBMCs which is the same or higher than the one obtained with HDIL-2.
- Still preferably, said amount of conjugate induces a ratio of the percentage of proliferating NK cells and/or of CD8 T cells on the one of Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher; and still preferably at least 75% higher than the one obtained with HDIL-2.
-
FIG. 1 shows in vitro dose-effect of RLI on human peripheral blood mononuclear cells (PBMC) as compared to IL-2 and IL-15. -
FIG. 2 shows in vitro effect of RLI on human Treg subpopulation as compared to IL-2 and IL-15. -
FIG. 3 resumes the protocol of Mus musculus injection. -
FIG. 4 shows represents the proportion of proliferating NK cells, CD8+ T cells, Foxp3+ CD4+ T cells and Foxp3− CD4+ T cells in mice injected with either PBS, IL-2, IL-15 or RLI. -
FIG. 5 represents the ratio of proliferating NK cells to Foxp3+ T cells (Treg) in mice injected with PBS, IL-2, IL-15 or RLI. -
FIG. 6 represents the percentage of IFNγ producing cells among NK cells, CD8+ T cells and CD4+ T cells, and the NK cell cytotoxicity against YAC-1 cell line for the mice injected either with PBS, IL-2, IL-15 or RLI. -
FIG. 7 shows the total cell numbers of donor cells, MP CD8+ T cells, and NK cells in mice injected with donor cells and PBS, IL-2, IL-15 or RLI. -
FIG. 8 represents the VLS in mice injected with donor cells and PBS, IL-2, IL-15 or RLI. -
FIG. 9 represents the evolution of the tumor volume depending on the cytokine regimen. -
FIG. 10 represents the observed and modelized evolution of RLI concentration in macaque blood depending on the injected dose as a function of time. -
FIG. 11 represents the VLS versus the NK and CD8 cells proliferation induced in mice injected with PBS, IL-2, IL-15, and RLI. -
FIG. 12 shows the in vitro proliferation effect atdays - The
FIG. 13 represents the dose-response effect of RLI on NK cell expansion. -
FIG. 14 represents the dose-response effect of RLI on VLS in lung and liver. -
FIG. 15 represents the dose-response effect of RLI on VLS in lung. -
FIG. 16 represents the dose-response effect of RLI on NK cell expansion. -
FIG. 17 represents the dose-response effect of RLI on Treg cell expansion. -
FIG. 18 represents the dose-response effect of RLI on the ratio of percentage Treg versus NK cells. -
FIG. 19 represents the pharmacological efficacy versus toxicity for RLI. - As used herein, the term “subject” denotes a mammal, such as a rodent, a feline, a canine or a primate, and most preferably a human.
- The term “conjugate” in its general meaning in the art and refers to a covalent or non covalent complex, preferably to a covalent complex and most preferably to a fusion protein.
- The term “
interleukin 2” is used in its general meaning in the art (for the nucleic acid and amino acid sequences, see accession numbers NM_000586.3 and NP_000577.2 respectively). - The expression “high dose of interleukin-2” or “HDIL-2” is well known from the skilled person. High dose of IL-2 (600,000-720,000 IU/kg by IV every 8 h) is the most commonly used regimen in the United States. As an example, the Food and Drug Administration (FDA)-approved dosage for treatment of metastatic renal cell carcinoma or melanoma (cancer with median prognosis of less than 6 months) is 600,000 IU/kg administered by IV bolus over 15 minutes every 8 hours for a maximum of 14 doses. Following 9 days of rest, the regimen is repeated, if tolerated by the patient. Low-dose subcutaneous IL-2 regimens (1-30 million IU/m2/d) have been investigated because they may reduce toxicity but compromise efficacy (FYFE, FISHER & ROSENBERG et al., J. Clin. Oncol., vol. 13, p:668-696, 1995). PROLEUKIN® biological potency is determined by a lymphocyte proliferation bioassay and is expressed in International Units as established by the World Health Organization 1st International Standard for Interleukin-2 (human). The relationship between potency and protein mass is as follows: 18 million International Units PROLEUKIN=1.1 mg protein.
- It should be noticed that the legal authorities (e.g. FDA, EMA, etc.) tolerate much more side effects for treatments of lethal diseases (e.g. metastatic renal cell carcinoma or melanoma) increasing patient survival in the absence of alternative treatments.
- The term “
interleukin 15” in its general meaning in the art and refers to a cytokine with structural similarity to IL-2 (GRABSTEIN et al., Science, vol. 264(5161), p:965-968, 1994). This cytokine is also known as IL-15, IL15 or MGC9721. This cytokine and IL-2 share many biological activities and they were found to bind common hematopoietin receptor subunits. Thus, they may compete for the same receptor, negatively regulating each other's activity. It has been established that IL-15 regulates T and natural killer cells activation and proliferation, and that the number of CD8+ memory cells is shown to be controlled by a balance between this cytokine and IL2. IL-15 activity can be measured by determining its proliferation induction on kit225 cell line (HORI et al., Blood, vol. 70(4), p:1069-72, 1987), as disclosed in the Examples. - Said IL-15 or derivatives thereof have at least 10% of the activity of human interleukin-15 on the proliferation induction of kit225 cell line, preferably at least 25% and more preferably at least 50%.
- Said
interleukin 15 is amammalian interleukin 15, preferably aprimate interleukin 15, and more preferably ahuman interleukin 15. -
Mammalian interleukin 15 can be simply identified by the skilled person. As an example, one can citeInterleukin 15 from Sus scrofa (Accession number ABF82250), from Rattus norvegicus (Accession number NP_037261), from Mus musculus (Accession number NP_032383), from Bos Taurus (Accession number NP_776515), from Oryctolagus cuniculus (Accession number NP_001075685), from Ovies aries (Accession number NP_001009734), from Felis catus (Accession number NP_001009207), from Macaca fascicularis (Accession number BAA19149), from Homo sapiens (Accession number NP_000576), from Macaca Mulatta (Accession number NP_001038196), from Cavia porcellus (Accession number NP_001166300), or from Chlorocebus sabaeus (Accession number ACI289). - As used herein, the term “
mammalian interleukin 15” refers to the consensus sequence SEQ ID n° 1. -
Primate interleukin 15 can be simply identified by the skilled person. As an example, one can citeInterleukin 15 from Sus scrofa (Accession number ABF82250), from Oryctolagus cuniculus (Accession number NP_001075685), from Macaca fascicularis (Accession number BAA19149), from Homo sapiens (Accession number NP_000576), from Macaca Mulatta (Accession number NP_001038196), or from Chlorocebus sabaeus (Accession number ACI289). - As used herein, the term “
primate interleukin 15” refers to the consensus sequence SEQ ID n° 2. -
Human interleukin 15 can be simply identify by the skilled person and refers to the amino acids sequence SEQ ID n° 3. - As used herein, the term “
interleukin 15 derivatives” refers to an amino acid sequence having a percentage of identity of at least 92.5% (i.e. corresponding to about 10 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID n°: 1, SEQ ID n° 2 and SEQ ID n° 3, preferably of at least 96% (i.e. corresponding to about 5 amino acids substitutions), and more preferably of at least 98.5% (i.e. corresponding to about 2 amino acids substitutions) or of at least 99% i.e. corresponding to about 1 amino acid substitution). Such derivatives can be simply identified by the skilled person in view of its personal knowledge and of the teaching of the present patent application. As an example of such derivatives, one can cite those described in the International Patent Application PCT WO 2009/135031. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids increase the polypeptide half life. - As used herein, “percentage of identity” between two amino acids sequences, means the percentage of identical amino-acids, between the two sequences to be compared, obtained with the best alignment of said sequences, this percentage being purely statistical and the differences between these two sequences being randomly spread over the amino acids sequences. As used herein, “best alignment” or “optimal alignment”, means the alignment for which the determined percentage of identity (see below) is the highest. Sequences comparison between two amino acids sequences are usually realized by comparing these sequences that have been previously aligned according to the best alignment; this comparison is realized on segments of comparison in order to identify and compare the local regions of similarity. The best sequences alignment to perform comparison can be realized, beside by a manual way, by using the local homology algorithm developed by SMITH and WATERMAN (Ad. App. Math., vol. 2, p:482, 1981), by using the global homology algorithm developed by NEDDLEMAN and WUNSCH (J. Mol. Biol., vol. 48, p:443, 1970), by using the method of similarities developed by PEARSON and LIPMOLAN (Proc. Natl. Acad. Sci. USA, vol. 85, p:2444, 1988), by using computer softwares using such algorithms (GAP, BESTFIT, BLAST P, BLAST N, FASTA, TFASTA in the Wisconsin Genetics software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis. USA), by using the MUSCLE multiple alignment algorithms (Edgar, Robert C., Nucleic Acids Research, vol. 32, p:1792, 2004). To get the best local alignment, one can preferably use the BLAST software with the BLOSUM 62 matrix. The identity percentage between two sequences of amino acids is determined by comparing these two sequences optimally aligned, the amino acids sequences being able to encompass additions or deletions in respect to the reference sequence in order to get the optimal alignment between these two sequences. The percentage of identity is calculated by determining the number of identical position between these two sequences, and dividing this number by the total number of compared positions, and by multiplying the result obtained by 100 to get the percentage of identity between these two sequences.
- Preferably, the
interleukin 15 derivatives are IL-15 agonist or superagonist. One skilled in the art can simply identify an IL-15-agonist or -superagonist. As a example of IL-15-agonist or -superagonist, one can cite the ones disclosed in the International patent application WO 2005/085282 or in ZHU et al. (J. Immunol., vol. 183(6), p:3598-607, 2009). - Still preferably, said IL-15 agonist or superagonist is selected in the group comprising/consisting of L45D, L45E, S51D, L52D, N72D, N72E, N72A, N72S, N72Y and N72P (in reference to sequence of human IL-15, SEQ ID n° 3).
- As used herein the term “the sushi domain of IL-15Rα” has its general meaning in the art and refers to a domain beginning at the first cysteine residue (C1) after the signal peptide of IL-15Rα, and ending at the fourth cysteine residue (C4) after said signal peptide. Said sushi domain corresponding to a portion of the extracellular region of IL-15Rα is necessary for its binding to IL-15 (WEI et al., J. Immunol., vol. 167(1), p:277-282, 2001).
- Said sushi domain of IL-15Rα or derivatives thereof has at least 10% of the binding activity of the sushi domain of human IL-15Rα to human interleukin-15, preferably at least 25% and more preferably at least 50%. Said binding activity can be simply determined by the method disclosed in WEI et al. (abovementioned, 2001).
- Said sushi domain of the IL-15Rα is the sushi domain of a mammalian IL-15Rα, preferably the sushi domain of a primate IL-15Rα and more preferably the sushi domain of the human IL-15Rα.
- The sushi domain of a mammalian IL-15Rα can be simply identified by the skilled person. As an example, one can cite the sushi domain of a IL-15Rα from Rattus norvegicus (Accession number XP_002728555), from Mus musculus (Accession number EDL08026), from Bos Taurus (Accession number XP_002692113), from Oryctolagus cuniculus (Accession number XP_002723298), from Macaca fascicularis (Accession number ACI42785), from Macaca nemestrina (Accession number ACI42783), from Homo sapiens (Accession number CAI41081), from Macaca Mulatta (Accession number NP_001166315), Pongo abelii (Accession number XP_002820541), Cercocebus torquatus (Accession number ACI42784), Callithrix jacchus (Accession number XP_002750073), or from Cavia porcellus (Accession number NP_001166314).
- As used herein, the term “sushi domain of a mammalian IL-15Rα” refers to the consensus sequence SEQ ID n° 4.
- Preferably, the polypeptide comprising the amino acid sequence of the sushi domain of a mammalian IL-15Rα refers to the consensus sequence SEQ ID n° 5.
- The sushi domain of a primate IL-15Rα can be simply identified by the skilled person. As an example, one can cite sushi domains of IL-15Rα from Oryctolagus cuniculus, from Macaca fascicularis, from Macaca nemestrina, from Homo sapiens, from Macaca Mulatta, Pongo abelii, Cercocebus torquatus, or Callithrix jacchus.
- As used herein, the term “sushi domain of a primate IL-15Rα” refers to the consensus sequence SEQ ID n° 6.
- Preferably, the polypeptide comprising the amino acid sequence of the sushi domain of a primate IL-15Rα refers to the consensus sequence SEQ ID n° 7.
- The sushi domain of human IL-15Rα can be simply identified by the skilled person and refers to the amino acids sequence SEQ ID n° 8.
- Preferably, the polypeptide comprising the amino acid sequence of the sushi domain of human IL-15Rα refers to SEQ ID n° 9.
- As used herein, the term “derivatives of the sushi domain of the IL-15Rα” refers to an amino acid sequence having a percentage of identity of at least 92% (i.e. corresponding to about 5 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID n°: 4, SEQ ID n° 5, SEQ ID n° 6, SEQ ID n°: 7, SEQ ID n° 8, and SEQ ID n° 9, preferably of at least 96% (i.e. corresponding to about 2 amino acids substitutions), and more preferably of at least 98% (i.e. corresponding to about 1 amino acids substitutions). Such derivatives comprise the four cysteine residues of the sushi domain of L-15Rα and can be simply identified by the skilled person in view of his/her general knowledge and of the teaching of the present patent application. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half life.
- According to a preferred embodiment, the conjugate comprises (ii) a polypeptide comprising the amino acid sequence of the sushi and hinge domains of IL-15Rα or derivatives thereof.
- The IL-15Rα hinge domain is defined as the amino acid sequence that begins at the first amino residue after the sushi domain and that ends at the last amino acid residue before the first potential site of glycosylation. In human IL-15Rα, the amino acid sequence of the hinge region consists of the fourteen amino acids which are located after the sushi domain of this IL-15Ralpha, in a C-terminal position relative to said sushi domain, i.e., said IL-15Ralpha hinge region begins at the first amino acid after said (C4) cysteine residue, and ends at the fourteenth amino acid (counting in the standard “from N-terminal to C-terminal” orientation).
- Said sushi and hinge domains of IL-15Rα are the sushi and hinge domains of a mammalian IL-15Rα, preferably the sushi and hinge domains of a primate IL-15Rα and more preferably the sushi and hinge domains of the human IL-15Rα.
- The amino acid sequence of the sushi and hinge domains of a mammalian IL-15Rα can be simply identified by the skilled person. As used herein, the term “sushi and hinge domains of a mammalian IL-15Rα” refers to the consensus sequence SEQ ID n° 10.
- The amino acid sequence of the sushi and hinge domains of a primate IL-15Rα can be simply identified by the skilled person. As used herein, the term “sushi and hinge domains of a primate IL-15Rα” refers to the consensus sequence SEQ ID n° 11.
- The amino acid sequence of the sushi and hinge domains of human IL-15Rα can be simply identified by the skilled person. As used herein, the term “sushi and hinge domains of human IL-15Rα” refers to the consensus sequence SEQ ID n° 12.
- As used herein, the term “derivatives of the sushi and hinge domains of IL-15Rα” refers to an amino acid sequence having a percentage of identity of at least 93% (i.e. corresponding to about 5 amino acids substitutions) with an amino acid sequence selected in the group consisting of SEQ ID n°: 10, SEQ ID n° 11, and SEQ ID n° 12, preferably of at least 97% (i.e. corresponding to about 2 amino acids substitutions), and more preferably of at least 98% (i.e. corresponding to about 1 amino acids substitution). Such derivatives comprise the four cysteine residues of the sushi domain of L-15Rα and can be simply identified by the skilled person in view of its general knowledge and of the teaching of the present patent application. It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half-life.
- Both polypeptides a) and b) of the conjugate may be linked non-covalently such as in the complex disclosed in U.S. Pat. No. 8,124,084 B2 and in the International patent application WO 2012/040323. Said conjugate or complex can be simply obtained by providing a suitable amount of the polypeptide a), providing a suitable amount of the polypeptide b), admixing both polypeptides under suitable pH and ionic conditions for a duration sufficient to allow complex (i.e. conjugate) formation, and optionally concentrating or purifying said complex. The polypeptides of the complex (i.e. conjugate) can be formed, for example, using a peptide synthesizer according to standard methods; by expressing each polypeptide separately in a cell or cell extract, then isolating and purifying the polypeptide. Optionally, the therapeutic polypeptide complex of the invention can be formed by expressing both polypeptides i) and ii) in the same cell or cell extract, then isolating and purifying the complexes, for example, using chromatographic techniques, such as affinity chromatography with antibodies to the lymphokine portion, the lymphokine receptor portion, or to the complex.
- Both polypeptides a) and b) of the conjugate may be also covalently linked using bifunctional protein coupling agents or in a fusion protein.
- Bifunctional protein coupling agents are well known from the skilled person such as methods using them, and include, as examples, N-succinimidyl (2-pyridyldithio) propionate (SPDP), succinimidyl (N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidateHCL), active esters (such as disuccinimidylsuberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as
toluene 2,6diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). - The term “fusion protein” refers to a protein created through the joining of two or more genes which originally coded for separate proteins. It is also known as a chimeric protein. Translation of this fusion gene results in a single polypeptide with functional properties deriving from each of the original proteins. Recombinant fusion proteins are created artificially by recombinant DNA technology for use in biological research or therapeutics. A recombinant fusion protein is a protein created through genetic engineering of a fusion gene. This typically involves removing the stop codon from a cDNA sequence coding for the first protein, then appending the cDNA sequence of the second protein in frame through ligation or overlap extension PCR. That DNA sequence will then be expressed by a cell as a single protein. The protein can be engineered to include the full sequence of both original proteins, or only a portion of either.
- In a preferred embodiment, the conjugate is a fusion protein.
- The amino acid sequence of
interleukin 15 or derivatives thereof can be in a C-terminal or in an N-terminal position relative to the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof. Preferably, the amino acid sequence of theinterleukin 15 or derivatives thereof is in a C-terminal position relative to the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof. - The amino acid sequence of
interleukin 15 or derivatives thereof and the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof may be separated by a “linker” amino acid sequence. Said “linker” amino acid sequence may be of a length sufficient to ensure that the fusion protein form proper secondary and tertiary structures. - The length of the linker amino acid sequence may vary without significantly affecting the biological activity of the fusion protein. Typically, the linker amino acid sequence comprises at least one, but less than 30 amino acids e.g., a linker of 5-30 amino acids, preferably of 10-30 amino acids, more preferably of 15-30 amino acids, still more preferably of 15-25 amino acids, most preferably of 18-22 amino acids.
- Preferred linker amino acid sequences are those which allow the conjugate to adopt a proper conformation (i.e., a conformation allowing a proper signal transducing activity through the IL-15Rbeta/gamma signaling pathway).
- The most suitable linker amino acid sequences (1) will adopt a flexible extended conformation, (2) will not exhibit a propensity for developing ordered secondary structure which could interact with the functional domains of fusion proteins, and (3) will have minimal hydrophobic or charged character which could promote interaction with the functional protein domains.
- Preferably, the linker amino acid sequence comprises near neutral amino acids selected in the group comprising Gly (G), Asn (N), Ser (S), Thr (T), Ala (A), Leu (L), and Gln (Q), most preferably in the group comprising Gly (G), Asn (N), and Ser (S).
- Examples of linker sequences are described in U.S. Pat. Nos. 5,073,627 and 5,108,910.
- Illustrative flexible linkers that are more particularly suitable for the present invention include those coded by the sequences of SEQ ID n° 13 (SGGSGGGGSGGGSGGGGSLQ), SEQ ID n° 14 (SGGSGGGGSGGGSGGGGSGG) or SEQ ID n° 15 (SGGGSGGGGSGGGGSGGGSLQ), and SEQ ID n° 16 (SGGSGGGGSGGGSGGGGS).
- In a still preferred embodiment, the conjugate corresponds to a fusion protein with the sequence SEQ ID n° 17 or SEQ ID n° 18.
- The expression “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce allergic or similar undesirable reactions, such as gastric upset, dizziness and the like when administered to a human. Preferably, as used herein, the expression “pharmaceutically acceptable” means approvable by a regulatory agency of the Federal or state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- The term “carrier” refers to a solvent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- The route of administration of the combination of the invention is preferably parenteral; as used herein, the term “parenteral” includes intravenous, intramuscular, subcutaneous, rectal, vaginal or intraperitoneal administration. Thus, the pharmaceutical composition contains vehicles which are pharmaceutically acceptable for a formulation intended to be injected. These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- Of these, intravenous administration is most preferred.
- The conjugate may be solubilized in a buffer or water or incorporated in emulsions, microemulsions, hydrogels (e.g. PLGA-PEG-PLGA triblock copolymers-based hydrogels), in microspheres, in nanospheres, in microparticles, in nanoparticles (e.g. poly(lactic-co-glycolic acid) microparticles (e.g. poly lactic acid (PLA); poly (lactide-co-glycolic acid) (PLGA); polyglutamate microspheres, nanospheres, microparticles or nanoparticles), in liposomes, or other galenic formulations. In all cases, the formulation must be sterile and fluid to the extent of acceptable syringability. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The conjugate can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- The carrier can also be a solvent or a dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils. The conjugates of the invention may also be modified, by pegylation as an example, so as to increase its biodisponibility.
- The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate, gelatin, polyols, half-life enhancing covalent and non covalent formulations.
- There are numerous causes of peptide instability or degradation, including hydrolysis and denaturation. Hydrophobic interaction may cause clumping of molecules together (i.e. aggregation). Stabilizers may be added to reduce or prevent such problems.
- Stabilizers include cyclodextrine and derivatives thereof (see U.S. Pat. No. 5,730,969). Suitable preservatives such as sucrose, mannitol, sorbitol, trehalose, dextran and glycerin can also be added to stabilize the final formulation. A stabilizer selected from ionic and non-ionic surfactants, D-glucose, D-galactose, D-xylose, D-galacturonic acid, trehalose, dextrans, hydroxyethyl starches, and mixtures thereof may be added to the formulation. Addition of alkali metal salt or magnesium chloride may stabilize a peptide. The peptide may also be stabilized by contacting it with a saccharide selected from the group consisting of dextran, chondroitin sulphuric acid, starch, glycogen, dextrin, and alginic acid salt. Other sugars that can be added include monosaccharides, disaccharides, sugar alcohols, and mixtures thereof (E.g., glucose, mannose, galactose, fructose, sucrose, maltose, lactose, mannitol, xylitol). Polyols may stabilize a peptide, and are water-miscible or water-soluble. Suitable polyols may be polyhydroxy alcohols, monosaccharides and disaccharides including mannitol, glycerol, ethylene glycol, propylene glycol, trimethyl glycol, vinyl pyrrolidone, glucose, fructose, arabinose, mannose, maltose, sucrose, and polymers thereof. Various excipients may also stabilize peptides, including serum albumin, amino acids, heparin, fatty acids and phospholipids, surfactants, metals, polyols, reducing agents, metal chelating agents, polyvinyl pyrrolidone, hydrolysed gelatin, and ammonium sulfate.
- In the context of the invention, the term “treating”, as used herein, means reversing, alleviating, inhibiting the progress of, or preventing the disorder or condition to which such term applies, or one or more symptoms of such disorder or condition.
- The term “treating cancer” as used herein means the inhibition of the growth of cancer cells. Preferably such treatment also leads to the regression of tumor growth, i.e., the decrease in size of a measurable tumor. Most preferably, such treatment leads to the complete regression of the tumor.
- The term “treating an infection” as used herein means the inhibition of microbes replication/proliferation.
- The term “treating an immunodeficiency disorder” as used herein means the induction of NK cells and/or T cells.
- An “effective amount” of the conjugate is an amount which is sufficient to induce the regression of tumor growth or of microbes' replication. The doses used for the administration can be adapted as a function of various parameters, in particular as a function of the mode of administration used, of the relevant pathology, or alternatively of the desired duration of treatment. Naturally, the form of the pharmaceutical composition, the route of administration, the dosage and the regimen naturally depend on the condition to be treated, the severity of the illness, the age, weight, and sex of the subject, etc. The ranges of effective doses provided below are not intended to limit the invention and represent preferred dose ranges. However, the preferred dose can be tailored to the individual subject, as is understood and determinable by one of skill in the art, without undue experimentation.
- Because of the very important safety of the conjugate of the invention, its administration can be envisaged for treating cancer, infection and immunodeficiency disorder with a very important therapeutic window, far from the restricted IL-2 therapeutic window and also from the therapeutic window envisaged for IL-15.
- This safety enable to envisage the use of 1) very high dose of RLI for treating chronic disease with bad prognosis (e.g. metastatic renal adenocarnima or melanoma) and 2) low dose of RLI for treating disease with good prognosis.
- The administrated amount also induces a proliferation of CD8 T cells that is higher than the one obtained with HDIL-2.
- As an illustration, an effective amount of the at least one conjugate is higher than 40 fmol/kg or 0.2 pmol/kg (1 ng/kg or 5 ng/kg), preferably greater than 1 pmol/kg or 2 pmol/kg (25 ng/kg or 50 ng/kg), and still preferably greater than 4 pmol/kg (100 ng/kg), 20 pmol/kg (500 ng/kg), or even greater than 40 pmol/kg (1 mcg/kg). Other dosages are viable, since the molecular weight and the activity of the conjugate thereof may influence it. The skilled artisan is readily credited with determining a suitable dosage that falls within the ranges, or if necessary, outside of the ranges.
- As another illustration, an effective amount of the at least one conjugate corresponds to a blood concentration higher than 4 fmol/ml (0.1 ng/ml), preferably higher than 40 or 80 fmol/ml (1 or 2 ng/ml), and still preferably higher than 0.160 pmol/ml (4 ng/ml).
- Advantageously, the administrated amount of the at least one conjugate is less than 2.4 nmol/kg (60 mcg/kg), preferably less than 2 nmol/kg (50 mcg/kg) or 1.2 nmol/kg (30 mcg/kg), and still preferably less than 1.0 nmol/kg (25 mcg/kg) or even less than 200 pmol/kg (5 mcg/kg).
- Still advantageously, the administrated amount of the at least one conjugate corresponds to a blood concentration of less than 0.12 nmol/ml (3,000 ng/ml), preferably less than 80 or 40 pmol/ml (2,000 or 1,000 ng/ml), and still preferably less than 20 pmol/ml (500 ng/ml) or even less than 12 pmol/ml (300 ng/ml).
- The administrated amount also induces a proliferation of CD8 T cells that is higher than the one obtained with HDIL-2.
- In a first preferred embodiment, the conjugate is used for treating a subject suffering from a disease associated with a bad prognosis.
- As used herein, a disease associated with a bad prognosis is a disease wherein the median prognosis is less than 2 years, preferably less than 1 year and still preferably less than 6 months.
- As used herein, a disease associated with a bad prognosis is an advanced (TNM grade IV) or a metastatic cancer.
- In said embodiment, the conjugate is administrated in an amount inducing a proliferation of natural killer cells (NK cells) which is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
- In said embodiment, the conjugate is administrated in an amount inducing a proliferation of CD8+ T cells, which is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
- As an illustration, an effective amount of the at least one conjugate is comprised between 24 and 2,400 pmol/kg (0.6 and 60 mcg/kg), preferably between 28 and 800 pmol/kg (0.7 and 20 mcg/kg) and still preferably between 32 and 400 pmol/kg (0.8 and 10 mcg/kg).
- As an another illustration, the conjugate is administrated in an amount corresponding to a blood concentration comprised between 0.4 pmol/ml and 0.12 nmol/ml (10 ng/ml and 3,000 ng/ml), preferably between 0.48 pmol/ml and 40 pmol/ml (12 ng/ml and 1,000 ng/ml), and still preferably between 0.6 and 20 pmol/ml (15 and 500 ng/ml).
- In a second preferred embodiment, said conjugate is used for treating a subject having a good prognosis.
- As used herein, a disease associated with a good prognosis is a disease wherein the median prognosis is more than 3 years, preferably more than 4 years and still preferably more than 5 years.
- As used herein, a disease associated with a good prognosis is a non-metastatic cancer, preferably a TN grade I, II or III cancer, or an infection.
- In said embodiment, the conjugate is administrated in an amount inducing a proliferation of natural killer cells (NK cells) which is the same or at the maximum 50 or 25% higher than the one obtained with HDIL-2; preferably the same or at the maximum 20% higher; and still preferably the same or at the maximum 10% higher than the one obtained with HDIL-2.
- In said embodiment, the conjugate is administrated in an amount inducing a proliferation of CD8+ T cells, which is the same or at the maximum 200% higher than the one obtained with HDIL-2; preferably the same or at the maximum 150% higher, and still preferably the same or at the maximum 100% higher than the one obtained with HDIL-2.
- As an illustration, an effective amount of the at least one conjugate is comprised between 2 and 200 pmol/kg (50 and 5,000 ng/kg), preferably between 8 and 200 pmol/kg (200 and 5,000 ng/kg) and still preferably between 20 and 80 pmol/kg (500 and 2,000 ng/kg).
- As an another illustration, the conjugate is administrated in an amount corresponding to a blood concentration comprised between 40 fmol/ml and 12 pmol/ml (1 ng/ml and 300 ng/ml), preferably between 80 fmol/ml and 12 pmol/ml (2 ng/ml and 300 ng/ml), and still preferably between 0.16 and 4 pmol/ml (4 and 100 ng/ml).
- Still surprisingly, the inventors established that said IL-15 derivative NK cells induction is obtained with a regulatory T cells induction inferior to the one obtained with HDIL-2.
- In a third preferred embodiment, said conjugate is administrated to the subject in an amount inducing a proliferation of Treg cells (FoxP3+CD4+CD25high) which is less to the one obtained with HDIL-2.
- Advantageously, the conjugate is administrated to the subject in an amount inducing a proliferation of Treg cells which is at least 5% less than the one obtained with HDIL-2; preferably at least 10 or 20% less; and still preferably at least 50% less than the one obtained with HDIL-2.
- Accordingly, the NK and CD8 cells induction obtained with the IL-15 derivative is much more efficient than the one induced by HDIL-2 because of the smallest regulatory T cells induction.
- Preferably, the conjugate is administrated to the subject in an amount, whose ratio of the induced percentage of proliferating NK cells on the induced percentage of proliferating Treg cells is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher, and still preferably at least 75% higher than the one obtained with HDIL-2.
- Preferably, the conjugate is administrated to the subject in an amount whose ratio of induced percentage of proliferating CD8 T cells on the induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher, and still preferably at least 75% higher than the one obtained with HDIL-2.
- Introduction of the conjugate in these dose ranges can be carried out as a single treatment or over a series of treatments. In effect, while a single dosage provides benefits and can be effectively utilized for disease treatment/management, a preferred treatment course can occur over several stages; most preferably, said administrated amount corresponds to a daily administrated amount. This amount can be administrated once a day for between one and 20 days, such as between one and 10 days, preferably between 2 and 5 days, and most preferably between 2 and 4 days. Now, the administrated amount may be under a long-lasting form resulting in a long-term administration with similar daily blood concentration of conjugate.
- In another aspect, the present invention relates to a method for determining the therapeutically efficient amount of conjugate to be administrated to a subject suffering from a cancer, from an infection or from an immunodeficient disorder, said method comprising the step of:
-
- i) contacting peripheral blood mononucleated cells (PBMCs) from said subject with increasing amounts of the conjugate defined previously in culture conditions enabling the proliferation of said PBMCs;
- ii) contacting other PBMCs from said subject with High Dose of interleukin-2 (HDIL-2) in culture conditions enabling the proliferation of said PBMCs; and
- iv) selecting a therapeutically efficient amount of conjugate, said therapeutically efficient amount of conjugate inducing a proliferation of NK cells of said PBMCs which is the same or higher than the one obtained with HDIL-2.
- Preferably, said therapeutically efficient amount of conjugate induces a proliferation of CD8 T cells of said PBMCs which is the same or higher than the one obtained with HDIL-2.
- Said selected therapeutically efficient amount is adapted for treating a cancer, an infection or an immunodeficient disorder in said subject.
- Still preferably, said therapeutically efficient amount is associated to a ratio of the induced percentage of proliferating NK cells and/or of CD8 T cells on the induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher, and still preferably at least 75% higher than the one obtained with HDIL-2.
- Now, said therapeutically efficient amount of conjugate induces a proliferation of NK and/or of CD8 T cells, which is at least 50% higher than the one obtained with the culture medium without conjugate (i.e. without HDIL-2 and IL-15 also).
- The culture conditions enabling the proliferation of PBMCs in the presence of HDIL-2 are well known from the skilled person and are described in the examples.
- Increasing amounts of conjugate correspond to concentration of conjugate comprised between 4 fmol/ml and 120 pmol/ml (0.1 and 3,000 ng/ml), preferably between 40 fmol/ml and 80 pmol/ml (1 and 2,000 ng/ml), and still preferably between 80 fmol/ml and 40 pmol/ml (2 and 1,000 ng/ml).
- HD IL-2 is well known from the skilled person and corresponds to the incubation of PBMC with 50 IU/mL (MURPHY, WELNIAK, BACK et al., J. Immunol., vol. 170, p:2727-33, 2003; ITOH et al., Cancer Immunol. Immunother., vol. 32(2), p:88-94, 1990; ETTINGHAUSEN & ROSENBERG, Cancer Res., vol. 46(6), p:2784-92, 1986).
- In a first preferred embodiment, said subject is suffering from a disease associated with a bad prognosis.
- In said embodiment, the step iii) corresponds to the selection of an amount of conjugate inducing a proliferation of natural killer cells (NK cells), which proliferation is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher, and still preferably at least 30% higher than the one obtained with HDIL-2.
- Preferably, the step iii) also corresponds to the selection of an amount of conjugate inducing a proliferation of CD8 T cells, which proliferation is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
- In a second preferred embodiment, said conjugate is used for treating a subject having a good prognosis.
- In said embodiment, the step iii) corresponds to the selection of an amount of conjugate inducing a proliferation of natural killer cells (NK cells) which is the same or at the maximum least 50 or 25% higher than the one obtained with HDIL-2; preferably the same or the maximum 20% higher, and still preferably the same or at the maximum 10% higher than the one obtained with HDIL-2.
- Preferably, the step iii) also corresponds to the selection of an amount of conjugate inducing a proliferation of CD8 T cells, which proliferation is the same or at the maximum 200% higher than the one obtained with HDIL-2; preferably the same or at the maximum 150% higher; and still preferably the same or at the maximum 100% higher than the one obtained with HDIL-2.
- In a third preferred embodiment, the method of the invention further comprises the step of:
-
- iii) contacting peripheral blood mononucleated cells (PBMCs) from said subject with increasing equimolar amounts of IL-15 as compared to the conjugate in culture conditions enabling the proliferation of said PBMCs.
- In the following, the invention is described in more detail with reference to amino acid sequences, nucleic acid sequences and examples. However, no limitation of the invention is intended by the details of the examples. Rather, the invention pertains to any embodiment which comprises details which are not explicitly mentioned in the examples herein, but which the skilled person finds without undue effort.
-
-
- For determining the RLI efficiency, we first used an in vitro model corresponding to NK and CD8 T cells purified from human Peripheral Blood Mononuclear Cells (PBMCs) from human healthy donors.
- 1) Human Lymphocytes Proliferation Induction by RLI
- Peripheral Blood Mononuclear Cells (PMOLBC) from healthy volunteers were isolated by FICOLL-HYPAQUE Gradient (LYMPHOPREP™; 1.077 g/mL). Donor blood was obtained in accordance with the official ethics agreement.
- Briefly, PBMC are labeled with 2,5 μM of CFSE (Carboxy Fluorescein Succinimidyl Ester) for 5 minutes and washed with NaCl. Then, PBMCs are incubated for three to seven days at 37° C. in humidified 95% air and 5% CO2. Cells are collected and stained with anti-CD3, CD4, CD8, CD56 and LIVE/DEAD® Fixable Aqua to select viable cells. Stained cells are acquired immediately on a FACSCanto II flow cytometer (BD BIOSCIENCES) and analyses were performed using FLOWJO software (TREE STAR).
- 2×105 PBMC per well were cultured in 96-well U-bottom plates in 100 μL of complete medium (RPMOLI 1640+10% heat-inactivated fetal bovine serum (FBS)+1% L-Glutamine+1% non-essential amino acids+1% sodium-pyruvate+1% penicillin-streptomycin). Then, 100 μL of 2× medium were added to the culture for a final concentration of 2,5 pg/ml, 25 pg/ml, 250 pg/ml, 2.5 ng/ml or 25 ng/ml of RLI (SEQ ID n° 17 or SEQ ID n° 18) produced in CHO cells.
- As a negative control, PBMCs were incubated with a culture medium.
- As a positive control, PBMCs were incubated with 50 IU/mL (3 ng/mL) of human IL-2 (PROLEUKIN, NOVARTIS PHARMA), said amount being equivalent to high dose of IL-2 for human use (MURPHY, WELNIAK, BACK et al., J. Immunol., vol. 170, p:2727-33, 2003; ITOH et al., Cancer Immunol. Immunother., vol. 32(2), p:88-94, 1990; ETTINGHAUSEN & ROSENBERG, Cancer Res., vol. 46(6), p:2784-92, 1986). As a positive control also, we used 2.5 ng/mL of recombinant human IL-15 (CELLGENIX, PRECLINICAL CELLGRO®) corresponding to the same molarity to HDIL-2.
- The percentages of proliferating NK cells, CD8+ T cells and CD4+ T cells were determined daily from
day 3 today 7 by CFSE dilution. - The
FIG. 1 shows in vitro dose-effect of RLI on human peripheral blood mononuclear cells (A). Human PBMCs were stained with CFSE onday 0 and then treated for 4 and 7 days with dose-escalating concentrations of RLI (2.5; 25; 250; 2500 and 25000 pg/mL). Onday 4 andday 7, PBMCs were harvested, stained and analyzed by Fluorescence-activated cell sorting (FACS). Untreated control cells were simultaneously incubated in medium alone. After exclusion of dead cells and doublets, CD3− CD56+ are considered as NK cells, CD3+ CD8+ cells are considered as CD8+ T cells and CD3+ CD4+ cells are considered as CD4+ T cells. Proportion of proliferating NK cells (left panel), CD8+ T cells (middle panel) and CD4+ T cells (right panel) are presented in the upper panel A. TheFIG. 1B shows the proliferative capacity of RLI, rhIL-15 and rhIL-2. Human PBMCs were treated for 4 and 7 days with RLI at 2.5 ng/mL, rhIL-15 at 2.5 ng/mL and rhIL-2 at 50 UI/mL (3 ng/mL). - The raw data are summarized in Table 1 (NK cells), Table 2 (CD8+ T cells) and Table 3 (CD4+ T cells).
-
TABLE 1 Percentage of proliferating cells among NK cells IL-2 50 IU/mL IL-15 RLI RLI RLI RLI RLI Day post- (3000 2500 2.5 25 250 2500 25000 incubation pg/ml) pg/ml pg/ml pg/ml pg/ml pg/ml pg/ ml 3 4.71 3.69 2.04 7.66 8.43 13.7 10.4 4 13.40 10.50 22.20 41.70 40.50 30.2 33.8 5 33.70 16.40 25.80 58.40 51.10 50.2 50.6 6 40.40 30.70 30.30 64.30 ND 53.7 67.5 7 59.80 35.60 19.30 74.90 78.20 79.0 79.8 ND: not determined -
TABLE 2 Percentage of proliferating cells among CD8+ T cells IL-2 50 UI/mL IL-15 RLI RLI RLI RLI RLI Day post- (3000 2500 2.5 25 250 2500 25000 incubation pg/ml) pg/ml pg/ml pg/ml pg/ml pg/ml pg/ ml 3 0.685 2.020 0.349 1.350 3.70 9.33 9.39 4 1.770 1.360 3.520 10.800 33.20 32.00 36.40 5 5.400 3.190 2.190 11.000 39.10 51.30 46.40 6 9.450 4.470 2.290 ND 28.20 45.00 46.40 7 8.990 11.400 7.840 16.400 44.50 46.20 47.10 ND: not determined -
TABLE 3 Percentage of proliferating cells among CD4+ T cells IL-2 50 UI/mL IL-15 RLI RLI RLI RLI RLI Day post- (3000 2500 2.5 25 250 2500 25000 incubation pg/ml) pg/ml pg/ml pg/ml pg/ml pg/ml pg/ ml 3 0.496 0.414 0.994 0.626 3.30 1.69 4.22 4 2.780 2.300 1.490 3.130 5.69 4.34 5.19 5 9.850 12.500 16.900 10.600 20.60 16.00 23.60 6 22.100 15.300 11.000 9.860 11.00 22.40 25.70 7 26.100 20.600 16.100 14.800 25.20 27.70 32.40 - The results show that, as shown in tables 1 to 3 and
FIG. 1 , RLI is able to induce some proliferation in vitro with a dose as low as 25 pg/mL (1 fmol/ml) for NK cells and 250 pg/mL for CD8+ T cells. - As shown in table 1 and 2, at doses of 25 and 250 pg/mL, RLI induces equivalent proliferation of NK cells and CD8+ T cells respectively to 2,500 pg/ml rhIL-15 for the first days. Considering the proliferation at
day 7, RLI inducedNK cells proliferation 300% higher than rhIL-15 at a dose of 250 pg/ml (10 fold less than rhIL-15) and 50% higher at a dose of 25 pg/ml (100 fold less than rhIL-15). At the same day, RLI inducedCD8+ cells proliferation 100% higher than rhIL-15 at a dose of 25 pg/ml (100 fold less than rhIL-15). Thus, considering these parameters, RLI is 10 to 100 times more bioactive than rhIL-15. - Conversely, RLI at doses of 250 and 2500 pg/mL showed higher proliferative capacity compared to 3,000 pg/mL IL-2 for NK and CD8+ T cells respectively (Note that equimolar dosage of IL-2 would have been 150 to 1500 pg/mL i.e. 3 to 30 UI/mL). On NK cells, the results show that RLI induced
NK cells proliferation 30% higher than rhIL-2 but at a dose of 25 pg/ml (100 fold less than rhIL-2) and equivalent at 2.5 pg/ml (1,000 fold less than rhIL-2). On CD8+ T cells, the efficiency of RLI is nearly 400% higher than hhIL-2 at a dose of 250 pg/ml, 100% higher at a dose of 25 pg/ml and equivalent at a dose of 2.5 pg/ml. Thus, considering these parameters, RLI is at least 2 to 10 times more bioactive than rhIL-2. - The same experiment was reproduced with equimolar concentration of RLI, rhIL-2 and rhIL-15.
-
FIGS. 12A and 12B show the proliferative capacity of RLI, rhIL-15 and rhIL-2 atdays - The results confirm that RLI induce a proliferation of NK cells, but also of CD8 T cells, that is greater than the one obtained with equimolar rhIL-1S and also equimolar rhIL-2 and that from the third day following the activation until the seventh day.
- 2) Human Regulatory T Cells and RLI
- Treg cells were analyzed as published elsewhere (MIYARA et al., Immunity, vol. 30(6), p:899-911, 2009). This strategy allows the discrimination between activated Treg (Foxp3high CD4+ T cells), resting naturally Treg (Foxp3low CD45RA+CD4+ T cells) and activated effector CD4+ T cells (Foxp3Low CD45RA−CD4+ T cells).
- Briefly, CFSE-labeled PBMC were obtained as previously described in 1). Two millions of PBMC from healthy volunteers were cultivated in 6-well plates with rhIL-15 (2.5 ng/mL), rhIL-2 (50 IU/mL=3 ng/mL), RLI Pichia (2.5 ng/mL) or medium alone for 6 days. Then cells were harvested and stained with anti-CD3, anti-CD4, anti-CD8 and LIVE/DEAD® Fixable Aqua to select viable cells. Cells were permeabilized following Foxp3 fix/permeabilization protocol (EBIOSCIENCE) and stained with anti-Foxp3. Labelled cells were acquired immediately with a flow cytometer.
- The
FIG. 2A shows the proportion of proliferating Foxp3− CD4+ T cells. - The
FIG. 2B shows the proportion of proliferating Foxp3+ CD4+ T cells (left panel); Foxp3low CD4+ T cells (middle panel) and Foxp3high CD4+ T cells (right panel). - The results show that RLI does not induce any proliferation of Foxp3+CD4+ T cell subsets. On the other hand, rhIL-2 induces strong proliferation of Foxp3+CD4+ T cell subsets including Foxp3high CD4+ T cells, which are highly suppressive Treg cells.
-
- In order to better define the in vie properties of RLI, we decide to use two complementary animal models corresponding to:
- 1) first, the macaque which is a good in vivo model for studying drug activity and drug pharmacokinetic; and
- 2) second, the mouse, which is a good in vivo model for studying cytokine side effects and more particularly vascular leak syndrome (VLS), since macaque can not be used for predicting human VLS.
- 3) Mouse: RLI Safety Confirmation
- Simultaneously, we wanted to determine the RLI safety as compared to similar doses of hIL-2 and of hIL-15. For this purpose, we used mice as an animal model of for immune cells activation and for human VLS. In a first time, we determined RLI activity in this animal model.
- a) Bioactivity of RLI in Mouse In Vivo Model
- C57BL/6 mice obtained from Harlan Laboratories were injected in intraperitoneal (i.p) with 100 μL of PBS, as a negative control, rhIL-2 (250 000 IU/mouse) as a positive control, rhIL-15 (1.2 μg/mouse) as comparison and RLI (2.5 μg/mouse) following the presented protocol in
FIG. 3 . - Mice were killed by cervical dislocation and spleens are withdrawn on
day 4. Spleen was dissociated in a single-cell suspension on a 100 μm-cell strainer with a back of a syringe. Then, blood cells were lysed using ACK solution (Ammonium-Chloride-Potassium). Splenocytes were washed twice times in a complete medium and viable cells were counted using KOVA slides. Two millions of splenocytes were stained with following antibodies: anti-CD3, anti-CD4, anti-CD8, NKp46 and LIVE/DEAD® Fixable Aqua to select viable cells. Then, splenocytes were permeabilized according to the manufacturing protocol (EBIOSCIENCE FoxP3 permeabilization buffers) and stained with anti-FoxP3 and Ki67. Isotype of Ki67 was used to identify positive cells. Stained cells were acquired immediately on a FACSCANTO II flow cytometer and analyses were performed using FLOWJO SOFTWARE (TREE STAR). NK cells are CD3 negative NKp46 positive cells. CD8+ T cells were analyzed gating on CD3 and CD8 double positive cells. For Regulatory T cells analyses, intra-nuclear staining of Foxp3 was realized to distinguish regulatory from effectors T cells in the CD4 and CD3 double positive population. - The
FIG. 4 represents the proportion of proliferating NK cells, CD8+ T cells, Foxp3+ CD4+ T cells and Foxp3− CD4+ T cells atday 4. - The
FIG. 5 shows the ratio of proliferating NK cells to Foxp3+ T cells (Treg) ratio atday 7. - The results show that RLI induces potent proliferation of effector cells without inducing accumulation of Treg as compared to IL-2 and IL-15; these results being the same at
days - Then, we determined immune cells activation in this animal model by RLI as compared to IL-2 and IL-15.
- For this, the splenocytes were obtained following previously described protocol.
- For secretion assays, splenocytes were cultivated in complete medium supplemented with 5 ng/mL of PMOLA (Phorbol 12-myristate 13-acetate) and 500 ng/mL of Ionomycin during 4 hours. Brefelfin A solution was used to inhibit protein transport (EBIOSCIENCE). Then, cells were collected and stained with following antibodies: anti-CD3, CD4, CD8, NKp46 and LIVE/DEAD® Fixable Aqua to select viable cells. After surface staining, cells were fixed and permeabilized following manufacturing protocol (BD BIOSCIENCES, intracellular staining). Then, permeabilized cells were stained using anti-IFNγ antibody and acquired immediately on a FACS Canto II flow cytometer.
- For in vitro cytotoxic assays, NK cells were enriched using mouse NK cell isolation kit II (MILTENYI BIOTECH). Purity was controlled by flow cytometry. 2×104 YAC-1 cells were cultivated in 96-well v-bottom plates with different amounts of NK cells (effector:target ratio (1:1); (5:1) and (10:1)). The final volume was 100 μL per well. After 4 hours of co-culture, supernatants were collected and LDH released was measured using LDH cytotoxicity detection kit (Roche Applied Science). Percentages of cytotoxicity were calculated following this formula: Cytotoxicity (%)=[((“effector:target”−“effector cell control”)−“low control”)/(“high control”−“low control”)]×100.
- The
FIG. 6 shows (A) the percentage of IFNγ producing cells among NK cells (left panel), CD8+ T cells (middle panel) and CD4+ T cells were determined (right panel) and (B) the NK cell cytotoxicity against YAC-1 cell line (B) for the mice injected either with PBS, IL-2, IL-15 or RLI. - The results shows that, considering NK cells and CD8+ T cells, RLI showed a stronger bioactivity compared to equimolar dosage of rhIL-15 and to the high dose regimen of IL-2 in vivo in mice (250,000 IU/day i.e. 15 μg/day).
- Thus, these data confirm in vitro human data showing that at a dosage as low as 2 μg/injection every 3 days RLI is more bioactive than 15 μg daily injection of IL-2.
- So as to better evaluate the safety of RLI, we compared simultaneously in an experimental in vivo tumor model, the anti-tumor activities of such cytokines regimen.
- For this, 106 B16F10 melanoma cells were injected into the upper dermis on the back of mice. Treatment according to the regimen previously described in was started on
day 6 after tumor inoculation, at which time-point tumor nodules were clearly visible and palpable at a size of ≈50-55 mm3. Palpable tumors were measured in two perpendicular diameters using calipers, and the radius was estimated by dividing the mean diameter by two. Tumor volume was calculated assuming spherical growth, using theformula 4/3(πr3) - The
FIG. 9(A) represents the evolution of the tumor volume depending on the cytokine regimen. TheFIG. 9(B) shows the Area Under the Curve (AUC) for subcutaneous tumor growth in mice treated with the indicated reagents. Data are representative of two separate experiments. - As shown in
FIGS. 9A and B and in comparison to PBS group, LDRLI decreases primary tumor growth by 47%, which is similar to HDRLI decreasing primary tumor growth by 46%. LDIL-2 has not therapeutic effect, whereas LDIL-15 has a very modest therapeutic effect (−9% on primary tumor growth). Interestingly, HDIL-2 and HDIL-15 present modest but significant therapeutic effects on primary tumor growth (−22% and −28% respectively). IL-15/IL-15Ralpha-Fc decreases the primary tumor growth by 37%, which is less than with LD and HDRLI, despite a similar effect on CD8 T and NK cells. Nevertheless, the ratio CD8/CD4 Treg and NK/CD4 Treg are less favorable with the IL-15/IL-15Ralpha-Fc than with RLI. IL2/602 mAb decreases the primary tumor growth by 51%, which is a little bit higher than with LD or HDRLI, despite a similar effect on CD8 T and NK cells and less favorable ratios CD8/CD4 Treg and NK/CD4 Treg than with RLI. It indicates that the most important immune drivers to control the B6F10 primary tumor growth is more related to the quantitative expansion of CD8 T and NK cells than the relative ratio of these cells with CD4 Treg. Nevertheless, many studies involve the development and activity of CD4 Treg in mouse and human cancers as critical immunosuppressive cells favoring tumor progression through immune escape. - Further in vivo experiments on the metastatic renal cell carcinoma (Renca) confirms the modest but significant therapeutic effects on primary tumor growth of IL-15 and of IL-2, while a strong lung metastasis development inhibition was observed with a ip daily injection at days 1-4 with 2 μg of RLI.
- b) Vascular Leak Syndrome (VLS)
- Enriched CFSE labeled Ly5.1+CD8+ T cells were transferred to wild-type mice, followed by 4 daily injections of either PBS, 1.5 μg (low dose, LD) or 15 μg (high dose, HD) recombinant human cytokine, including LDIL-2, LDIL-15, HDIL-2 and HDIL-15; 1.5 μg cytokine plus anti-human cytokine antibody (IL-2/602); 1. 5 μg IL-15 plus soluble IL-15Rα-Fc (IL-15/sIL-15Rα also called IL-15 non covalent complex); and 2.25 μg RLI (LD RLI) or 15 μg RLI (HD RLI). This IL-2 dose can be considered so as highest limit dose in term of VLS induction, on the basis of safety—i.e. acceptable risk-benefit balance-, said HDIL-2.
- On
day 5, spleen cells were analyzed for (A) CFSE profiles of donor Ly5.1+CD8+ cells, host CD44high CD122high memory-phenotype CD8+ T cells (MP CD8+), CD4+CD25+ regulatory T cells (Treg) and CD3-NK1.1+ natural killer cells (NK). - The
FIG. 7 shows the total cell numbers of donor cells, MP CD8+ T cells, and NK cells were calculated. Data are representative of two separate experiments. - The results show that LDRLI induces a strong proliferation and expansion of transferred Ly5.1+ CD8+ T cells, enriched for CD122+ CD44+ cells (effector and central memory CD8 T cells), 89% of proliferating cells versus 97% of proliferating cells in the HDRLI group. Thus, LDRLI or HDRLI induces quasi-similar pharmacological effects on target cells, meaning that such very high concentrations of RLI are not required to achieve maximal pharmacological effects.
- LDRLI induces much more proliferation of transferred CD8 T cells than equimolar LDIL-2 (12%), LDIL-15 (13.5%), and even HDIL-2 (52%) or HDIL-15 (62%).
- Moreover, LDRLI and HDRLI compare very well with superagonist non-covalent complex of IL-2 (IL2/602 mAb; 98%) and of IL-15 (IL-15/IL-15Ralpha-Fc; 98%).
- To conclude, RLI is highly efficient to amplify NK and CD8 T cells with the more limited efficacy on the expansion of CD4 Tregs, presenting the best ability among all the tested reagents and regimens to shift the immunomodulatory balance towards immunocytotoxicity without amplify immunosuppression.
- For determining the vascular leakage syndrome (VLS), we evaluated the lung edema related to the ratio between the weights of wet and dry tissues. The mice were exsanguinated under anesthesia. Lung were harvested, immediately weighted and were desiccated for 2 days at 50° C. Water influx was obtained by subtracted dry to wet weights of lungs.
- The
FIG. 8 represents the lung edema (higher than the dotted line) as the percent of the total mice weight. Dotted line represents physiologic background level. Data are representative of two separate experiments. - In comparison to the normal pulmonary wet weight (PWW) from the PBS group, LDIL-15 and LDIL-2 induce a modest increase of PWW of 7.3% and 17.9% respectively. HDIL-15 and HDIL-2 increase the PWW of about 54.5% and 120% respectively. HDIL-2 induces a very important PWW increase, consistent with the vascular leakage syndrome arising in some patients treated with HDIL-2. For HDIL-15, the PWW increase is far less than the one induced by HDIL-2, even if such PWW increase is not insignificant.
- Surprisingly, the results show that, as compared to the highest limit for VLS, the ones induced by RLI at low and high doses seem acceptable, whereas the NK and CD8+ cells induction by RLI is higher than the one obtained by hIL-15 and hIL-2 (more than 3 fold).
- IL-15/IL-15Ralpha-Fc increases the PWW by 76.4%, which is the double of the VLS induced by LDRLI despite a lower therapeutic efficacy. IL-2/602 mAb increases the PWW by 62.6%, which is 39% more than the VLS induced by LDRLI despite similar therapeutic efficacy. In addition, it is interesting to note that HDRLI increase the PWW by 96.7% versus 38.2% in the LDRLI group despite quasi-similar pharmacological effects on NK and CD8 T cells and quasi-similar therapeutic efficacy. So, even if LDRLI and HDRLI compare very well in terms of activity of NK and CD8 T cells and therapeutic activity, meaning that the efficacy plateau is reached with this LD regimen, increasing RLI dose can induce higher VLS, meaning that this toxic effect is not related to the mechanisms involved in treatment efficacy.
- For representing the safety—i.e. strong efficiency and low toxicity—of RLI versus IL-2 and IL-15, the
FIG. 11 represent the VLS as a function of NK and CD8+ T cells respectively for the mouse injected with PBS, IL-2, IL-15, and RLI. - Finally, our results show that RLI has a very different safety as compared to the one of IL-2 but also to the one of IL-15 (even if IL-15 and RLI potentially use the same signal pathways), which RLI safety is much more favorable to the one of both IL-15 and IL-2. By consequence, RLI presents improved dose margin and therapeutic window compared to IL-15 and IL-2 to leverage effector immune cells to induce therapeutic effects without side effects. By contrast it appears difficult to achieve a correct stimulation of the immune system with IL-2, and even with IL-15, without inducing rapidly the VLS phenomenon.
- c) Dose-Response Effect on NK Cell Expansion Versus Toxicity (VLS)
- Dose-ranging effects of RLI on NK cell expansion versus VLS in lung and liver were evaluated according to the protocol as previously described. Mice received 4 daily injections of RLI CHO at 0.2 μg, 0.5 μg, 1 μg, or 2 μg per i.p injection from
day 0 today 3, and then sacrificed atday 4. - The
FIG. 13 shows the dose-response effects of RLI on NK cells expansion. - The results show that the RLI treatment induces a dose-dependent expansion of NK cells in spleen with a starting effect from the first dose of 0.2 μg until 2 μg, with a plateau beginning at 1 μg.
- In parallel to the NK expansion, VLS was evaluated in lungs and liver of treated mice versus control mice (PBS).
- The
FIG. 14 shows the dose-response effects of RLI on VLS in lungs and livers in mice. - The results show that the tested doses of RLI do not induce significant VLS in lung and liver in comparison to the PWW of untreated mice. Now, an emerging signal of VLS could be considered as appearing at the highest dose of 2 μg.
- Again, dose-ranging effects of RLI on NK cell expansion versus VLS in lung were evaluated according to the protocol as previously described with two new doses. Mice received 4 daily injections of RLI CHO at 0.2 μg, 0.5 μg, 1 μg, 2 μg, 5 μg or 25 μg per ip injection from
day 0 today 3, and then sacrificed atday 4. - The
FIG. 15 shows the dose-response effects of RLI on VLS in lungs. - Once again, RLI does not induce VLS in lung from doses 0. 2 μg to 2 μg, while RLI at 5 μg and 25 μg induces potent VLS with a similar and maximal intensity.
- For NK cells, the
FIG. 16 shows the dose response of RLI on NK cell expansion, while theFIG. 17 shows the dose response of RLI on Treg expansion. - Once again, RLI from dose 0.2 to 5 μg per injection induces dose-dependent NK cell expansion in spleen, whereas RLI at 25 μg losses activity and could be considered as detrimental. In parallel, RLI at doses from 0.2 to 2 μg does not increase the percentage of Treg, while these regimens induce similar increase of the number of Treg as compared to the control. In contrast, RLI at highest doses (5 and 25 μg) increase the percentage and the number of CD4 Treg.
- The
FIG. 18 shows the dose-response effect of RLI on the ration of percentage of CD4 Treg versus NK cells and established that RLI presents a specific dose-dependent activity on NK cell proliferation without specific activity on CD4 Tregs. In addition the margin of doses between 0.2 and 2 μg appears active and safe, reflecting the possibility to stimulate cytotoxic immune cells, like NK cells without inducing VLS. The existence of such a pharmaceutical margin is critical to manage efficacy and safety in patients. - The
FIG. 19 recapitulates the comparison between NK and CD8 T cell stimulation versus VLS induced by RLI treatment in healthy mice, in addition to the cell therapeutic effect on Renca cell metastatic development. - Finally, these results confirm the very large safety of RLI, as compared to both IL-15 and IL-2, and established that RLI can be used in a therapeutic window, which is unthinkable for both IL-2 and IL-15: very high dose for bad prognosis patients and very low doses for good prognosis patients.
- Pharmacokinetics with the Macaque
- 4-years old Cynomolgus macaques from about 3 to 4 kgs were injected by RLI (intravenous bolus, 15 min) at different doses (2 macaques at 20 mcg/kg; 2 macaques at 3.5 mcg/kg; macaques).
- The study was conducted in compliance with the current GLP regulations as described in the OECD documents “principles of good laboratory practices” (as revised in 1997). This protocol was reviewed by the Ethics Committee of VETAGRO Sup (France) and approved under number 1162. All experiments will be conducted in accordance with the European Directive 86/609/EEC as published in the French Official Journal of Feb. 13, 2001.
- Analysis of the pharmacokinetic features was done by performing an ELISA bioassay specific to RLI on the blood serum at different time points: t−72 h as t0, t+10 min, t+30 min, t+1 h, t+4 h, t+6 h, t+24 h and t+72 h. The experimental curve based on measured concentrations was analyzed with a two compartments model with zero under intravenous injection according to the usual equation: fitted concentration==IF(time<tinf;InfR*A*(1−EXP(−_lbd1*time))+InfR*B*(1−EXP(lbdz*time)); InfR*A*(EXP(_Ibdl*time))*EXP(−_lbd1*time)+InfR*B*(EXP(lbdz*time))*EXP(−lbdz*time)). (Fitted concentration formula (EXCEL, Fit analysis, two compartment model with zero order intravenous infusion)).
- The
FIG. 10A represents the observed and modelized evolution of RLI concentration depending on the injected dose as a function of time. Data are representative of two different macaques per dose. - The half-lives of the second compartment (t1/2β) are about 3 hours for each experiment. Fitted curves permit to evaluate the remaining concentration of RLI in the whole bloodstream at prolonged time, which are represented in
FIG. 10 (B). - The results show that for the 20 mcg/kg group, the blood concentrations at 6 h and 12 h are 28.67 and 6.02 ng/ml respectively. For the 3.5 mcg/kg group, the blood concentrations at 6 h and 12 h are 0.55 and 0.03 ng/ml respectively, meaning 550 μg/ml and 30 μg/ml respectively.
- According to the tables 1 and 2, such low and very low concentrations are highly efficient to stimulate human NK and CD8 T cells respectively. Now, said NK and CD8 T cells proliferation induction were confirmed in the macaques, while no effect was observed on Treg (data not shown).
- For a better conversion of animal doses to Human equivalent dose, theoretical model exist based on BSA.
- The determination of human equivalent dose (HED) can be obtained on the basis of the following formula:
-
HED(mg/kg)=Animal Dose(mg/kg)×(Animal Km+Human Km) - In this formula, Km is a correction factor reflecting the relationship between body weight and body surface area.
- For a typical adult (
body weight 60 lb., body surface area 1.6 m2), Km is 37. - For the most often used laboratory animal species the average Km are 3 for mouse, 6 for rabbit, 12 for macaques, 20 for dog, 37 for human adult (See “Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research. (2002) Estimating the safe starting dose in clinical trials for therapeutics in adult healthy volunteers, U.S. Food and Drug Administration, Rockville, Md., USA”).
- On the basis of said elements, we can approximate some of the maximal human equivalent doses of RLI as compared to the mouse's experiments. Said doses are summarized in table 4.
-
TABLE 4 Dose/ Dose/ Dose/ Macaque Macaque Home Home injection injection injection Equivalent Equivalent Equivalent Equivalent (mice) (20 g) (30 g) dose dose dose dose mcg mcg/kg mcg/kg (20 g) mcg/kg (30 g) mcg/kg (20 g) mcg/kg (30 g) mcg/kg 2,000 100,000 66,000 25,000 16,500 8,108 5,351 2,250 112,500 74,250 28,125 18,563 9,122 6,020 15,000 750,000 495,000 187,500 123,750 60,811 40,135 0.200 10,000 6,600 2,500 1,650 0.811 0.535 0.020 1,000 0.660 0.250 0.165 0.081 0.054 - Interestingly, we have shown that high-doses (25 ng/ml) but also very low doses (2.5 pg/ml or 25 pg/ml) can stimulate human NK and CD8 T cells of ex vivo human PBMC (tables 1 and 2,
FIG. 1 ). In macaques, such weak or very weak concentrations can be reached at the peak serum level (0.25 hours) (FIGS. 10A and B). For instance, at a dose of 0.01 mcg/kg in Cynomolgus monkeys, the maximum blood concentration can reach about 62.5 pg/ml according to a quasi-linear regression analysis of experimental curves (FIG. 10B ). As shown in table 1, RLI at 25 pg/ml is still superior to HD IL-2 to induce the proliferation on human NK cells. On the basis of these blood concentration in macaque blood and in view of the previous formula, we determined the RLI human equivalent HED RLI) dose for different concentration, which HED RLI are summarized in table 5. -
TABLE 5 Illustrations of some minimal human equivalent doses of RLI based on in vivo monkey and ex vivo human PBMC. Maximum blood Human Macaque dose concentration (macaque) Equivalent dose mcg/kg ng/ml mcg/kg Experimental datas 20.000 287.000 6.486 3.500 22.000 1.135 2.500 15.625 0.811 Extrapolated datas 0.500 3.125 0.162 0.100 0.625 0.032 0.05 0.3125 0.016 0.01 0.0625 0.003 - By conclusion, the administered daily amount of RLI could vary from 1 ng/kg to 60 mcg/kg, depending of the severity of the disease to be treated.
Claims (15)
1. A method for treating a cancer, an infection, or an immunodeficiency disorder in a human, comprising administering a pharmaceutical composition comprising a conjugate to a subject, wherein the conjugate is administered in an effective amount as to induce a proliferation of natural killer cells (NK cells) which is the same or higher than the one obtained with High Dose of interleukin-2 (HDIL-2), wherein said conjugate comprises:
a) a polypeptide comprising the amino acid sequence of interleukin 15 or derivatives thereof having an amino acid sequence having a percentage of identity of at least 92.5% with the amino acid sequence of SEQ ID NO:3, and
b) a polypeptide comprising the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof having an amino acid sequence having a percentage of identity of at least 92% with an amino acid sequence selected in the group consisting of SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:12;
optionally associated with a pharmaceutically acceptable carrier, wherein the effective amount of said conjugate is between 24 and 2400 pmol/kg, preferably between 28 and 800 pmol/kg.
2. The method of claim 1 , wherein the effective amount of said conjugate is between 0.6 and 60 μg/kg, preferably between 0.7 and 20 μg/kg.
3. The method of claim 1 , wherein said interleukin 15 derivative has at least 10% of the activity of human interleukin-15 on the proliferation induction of kit225 cell line, preferably at least 25% and more preferably at least 50%, and/or
has an amino acid sequence having a percentage of identity of at least 98.5% with the amino acid sequence of SEQ ID NO:3, preferably of at least 99%.
4. The method of claim 1 , wherein said derivative of the sushi domain of the IL-15Rα has at least 10%, preferably at least 25% and more preferably at least 50% of the binding activity of the sushi domain of human IL-15Rα, and/or
has an amino acid sequence having a percentage of identity of at least 96% with an amino acid sequence in the group consisting of SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:12, preferably of at least 98%.
5. The method of claim 1 , wherein said conjugate is administrated in an amount inducing a proliferation of CD8 T cells higher than the one obtained with HDIL-2.
6. The method of claim 1 , wherein said composition is for treating an advanced (TNM grade IV) or a metastatic cancer and said administrated amount of conjugate induce a proliferation of NK cells which is higher than the one obtained with HDIL-2.
7. The method of claim 6 , wherein said conjugate is administrated
(I) in an amount inducing a proliferation of NK cells, which is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher, and still preferably at least 30% higher than the one obtained with HDIL-2; and/or
(II) in an amount inducing a proliferation of CD8+ T cells, which is at least 20% higher than the one obtained with HDIL-2; preferably at least 25% higher; and still preferably at least 30% higher than the one obtained with HDIL-2.
8. The method of claim 1 , wherein said composition is for treating anon-metastatic cancer, preferably a TNM grade I, II or III cancer, or an infection, and said administrated amount of conjugate induces a proliferation of NK cells, which is the same or higher than the one obtained with HDIL-2.
9. The method of claim 8 , wherein
(I) said conjugate is administrated in an amount inducing a proliferation of natural killer cells (NK cells) which is the same or at the maximum 50 or 25% higher than the one obtained with HDIL-2; preferably the same or at the maximum 20% higher; and still preferably the same or at the maximum 10% higher than the one obtained with HDIL-2; and/or
(II) said conjugate is administrated in an amount inducing a proliferation of CD8+ T cells, which is the same or at the maximum 200% higher than the one obtained with HDIL-2; preferably the same or at the maximum 150% higher; and still preferably the same or at the maximum 100% higher than the one obtained with HDIL-2; and/or
(III) wherein the conjugate is administrated in an amount corresponding to a blood concentration comprised between 40 fmol/ml and 12 pmol/ml (1 ng/ml and 300 ng/ml), preferably between 80 fmol/ml and 12 pmol/ml (2 ng/ml and 300 ng/ml), and still preferably between 0.16 and 4 pmol/ml (4 and 100 ng/ml).
10. The method of claim 1 , wherein the administrated amount of conjugate induces a proliferation of Treg cells (FoxP3+CD4+CD25high) which is less than the one obtained with HDIL-2, wherein the administrated amount of conjugate preferably induces a proliferation of Treg cells which is at least 5% less than the one obtained with HDIL-2; preferably at least 10 or 20% less; and still preferably at least 50% less than the one obtained with HDIL-2.
11. The method of claim 1 , wherein
(I) the administrated amount corresponds to a ratio of induced percentage of proliferating NK cells on induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher; and still preferably at least 75% higher than the one obtained with HDIL-2; and/or
(II) the administrated amount of conjugate corresponds to a ratio of induced percentage of proliferating CD8 T cells on the induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher; and still preferably at least 75% higher than the one obtained with HDIL-2.
12. The method of claim 1 , wherein
(I) the polypeptides a) and b) of the conjugate are covalently linked in a fusion protein; and/or
(II) said conjugate comprises the amino acid sequence of the interleukin 15 or derivatives thereof in a C-terminal position relative to the amino acid sequence of the sushi domain of the IL-15Rα or derivatives thereof; and/or
(III) the amino acid sequence of the interleukin 15 or derivatives thereof and the amino acid sequence of the sushi domain of the IL-15Rα or derivatives are separated by a linker amino acid sequence having a length of 5-30 amino acids, said linker comprising near neutral amino acids selected in the group comprising Gly (G), Asn (N), Ser (S), Thr (T), Ala (A), Leu (L), and Gln (Q).
13. The method of claim 1 , wherein
(I) the administrated amount corresponds to a daily administration amount; and/or
(II) said composition is administrated parenterally, preferably intravenously.
14. An in vitro method for determining the therapeutically efficient amount of a conjugate to be administrated to a subject suffering from a cancer, from an infection or from an immunodeficiency disorder, said method comprising the steps of:
i) contacting peripheral blood mononucleated cells (PBMCs) from said subject with increasing amounts of a conjugate in culture conditions enabling the proliferation of said PBMCs;
ii) contacting other PBMCs from said subject with High Dose of interleukin-2 (HDIL-2) in culture conditions enabling the proliferation of said PBMCs; and
iv) selecting a therapeutically efficient amount of conjugate, said therapeutically efficient amount inducing a proliferation of NK cells of said PBMCs which is the same or higher than the one obtained with HDIL-2;
wherein said conjugate comprises:
a) a polypeptide comprising the amino acid sequence of interleukin 15 or derivatives thereof having an amino acid sequence having a percentage of identity of at least 92.5% with the amino acid sequence of SEQ ID NO:3, and
b) a polypeptide comprising the amino acid sequence of the sushi domain of IL-15Rα or derivatives thereof having an amino acid sequence having a percentage of identity of at least 92% with an amino acid sequence selected in the group consisting of SEQ ID NO:8, SEQ ID NO:9 and SEQ ID NO:12.
15. The method of claim 14 , wherein
(I) said therapeutically efficient amount of conjugate induces a proliferation of CD8 T cells of said PBMCs which is the same or higher than the one obtained with HDIL-2; and/or
(II) said therapeutically efficient amount of conjugate corresponds to a ratio of the induced percentage of proliferating NK cells and/or of CD8 T cells on the induced percentage of proliferating Treg cells which is at least 25% higher than the one obtained with HDIL-2; preferably at least 50% higher; and still preferably at least 75% higher than the one obtained with HDIL-2; and/or
(III) the increasing amounts of conjugate correspond to concentration of conjugate comprised between 4 fmol/ml and 120 pmol/ml (0,1 and 3,000 ng/ml), preferably between 40 fmol/ml and 80 pmol/ml (1 and 2,000 ng/ml), and still preferably between 80 fmol/ml and 40 pmol/ml (2 and 1,000 ng/ml); and/or
(IV) said method of the invention further comprises the step of:
iii) contacting peripheral blood mononucleated cells (PBMCs) from said subject with increasing equimolar amounts of IL-15 as compared to the conjugate in culture conditions enabling the proliferation of said PBMCs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/876,987 US20230183306A1 (en) | 2013-04-19 | 2022-07-29 | Cytokine derived treatment with reduced vascular leak syndrome |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13002066.2 | 2013-04-19 | ||
EP13002066 | 2013-04-19 | ||
PCT/EP2014/001057 WO2014170032A1 (en) | 2013-04-19 | 2014-04-22 | Cytokine derived treatment with reduced vascular leak syndrome |
US201514785536A | 2015-10-19 | 2015-10-19 | |
US17/876,987 US20230183306A1 (en) | 2013-04-19 | 2022-07-29 | Cytokine derived treatment with reduced vascular leak syndrome |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/001057 Continuation WO2014170032A1 (en) | 2013-04-19 | 2014-04-22 | Cytokine derived treatment with reduced vascular leak syndrome |
US14/785,536 Continuation US11401312B2 (en) | 2013-04-19 | 2014-04-22 | Cytokine derived treatment with reduced vascular leak syndrome |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230183306A1 true US20230183306A1 (en) | 2023-06-15 |
Family
ID=48182699
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/785,536 Active US11401312B2 (en) | 2013-04-19 | 2014-04-22 | Cytokine derived treatment with reduced vascular leak syndrome |
US17/876,987 Pending US20230183306A1 (en) | 2013-04-19 | 2022-07-29 | Cytokine derived treatment with reduced vascular leak syndrome |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/785,536 Active US11401312B2 (en) | 2013-04-19 | 2014-04-22 | Cytokine derived treatment with reduced vascular leak syndrome |
Country Status (12)
Country | Link |
---|---|
US (2) | US11401312B2 (en) |
EP (2) | EP4032540A1 (en) |
JP (3) | JP2016518361A (en) |
KR (2) | KR102539359B1 (en) |
CN (2) | CN109395064A (en) |
CA (1) | CA2909576C (en) |
DK (1) | DK2986312T3 (en) |
ES (1) | ES2906615T3 (en) |
HK (1) | HK1220918A1 (en) |
HU (1) | HUE058364T2 (en) |
PL (1) | PL2986312T3 (en) |
WO (1) | WO2014170032A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CL2006003348A1 (en) | 2005-12-02 | 2008-02-22 | Mount Sinai Medical Ct Of New York University | CHEMICAL AVIAN INFLUENZA VIRUSES; PRODUCTION METHOD OF AN IMMUNOGEN COMPOSITION; AND METHOD TO INDUCE AN IMMUNE RESPONSE TO TWO INFECTIOUS AGENTS IN A BIRD OR HUMAN. |
US10057400B1 (en) | 2012-11-02 | 2018-08-21 | Majen Tech, LLC | Lock screen interface for a mobile device apparatus |
US11431834B1 (en) | 2013-01-10 | 2022-08-30 | Majen Tech, LLC | Screen interface for a mobile device apparatus |
AU2014241843B2 (en) | 2013-03-14 | 2019-05-02 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
HUE058364T2 (en) | 2013-04-19 | 2022-07-28 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
HUE064280T2 (en) | 2013-08-08 | 2024-03-28 | Cytune Pharma | IL-15 and IL-15R-alpha sushi domain-based modulokines |
JP6857498B2 (en) | 2014-02-27 | 2021-04-14 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | Combination method for treating cancer |
EP2915569A1 (en) | 2014-03-03 | 2015-09-09 | Cytune Pharma | IL-15/IL-15Ralpha based conjugates purification method |
WO2017046200A1 (en) * | 2015-09-16 | 2017-03-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Specific interleukin-15 (il-15) antagonist polypeptide and uses thereof for the treatment of inflammatory and auto-immune diseases |
WO2017158436A1 (en) * | 2016-03-17 | 2017-09-21 | Oslo Universitetssykehus Hf | Fusion proteins targeting tumour associated macrophages for treating cancer |
EP3443001B1 (en) | 2016-04-11 | 2025-04-30 | Obsidian Therapeutics, Inc. | REGULATED BIOS CIRCUIT SYSTEMS |
WO2017201352A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Mrna combination therapy for the treatment of cancer |
US11472856B2 (en) | 2016-06-13 | 2022-10-18 | Torque Therapeutics, Inc. | Methods and compositions for promoting immune cell function |
BR112019007288A2 (en) | 2016-10-14 | 2019-07-09 | Xencor Inc | bispecific heterodimeric protein, nucleic acid and expression vector compositions, expression vector, host cell, and methods for producing bispecific heterodimeric protein and for treating cancer in a patient |
US11629340B2 (en) | 2017-03-03 | 2023-04-18 | Obsidian Therapeutics, Inc. | DHFR tunable protein regulation |
JOP20190256A1 (en) | 2017-05-12 | 2019-10-28 | Icahn School Med Mount Sinai | Newcastle disease viruses and uses thereof |
EP3645122A1 (en) | 2017-06-30 | 2020-05-06 | Xencor, Inc. | Targeted heterodimeric fc fusion proteins containing il-15/il-15ra and antigen binding domains |
CA3074826A1 (en) | 2017-09-05 | 2019-03-14 | Torque Therapeutics, Inc. | Therapeutic protein compositions and methods of making and using the same |
EP3746095A4 (en) | 2018-02-01 | 2021-04-21 | Nkmax Co., Ltd. | NATURAL KILLER CELL PRODUCTION PROCESS AND COMPOSITION FOR CANCER TREATMENT |
US11524991B2 (en) | 2018-04-18 | 2022-12-13 | Xencor, Inc. | PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof |
WO2019204592A1 (en) | 2018-04-18 | 2019-10-24 | Xencor, Inc. | Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof |
KR20210003814A (en) | 2018-04-18 | 2021-01-12 | 젠코어 인코포레이티드 | TIM-3 targeting heterodimer fusion protein containing IL-15/IL-15Rα Fc-fusion protein and TIM-3 antigen binding domain |
WO2020077276A2 (en) | 2018-10-12 | 2020-04-16 | Xencor, Inc. | Pd-1 targeted il-15/il-15ralpha fc fusion proteins and uses in combination therapies thereof |
CN113438961A (en) | 2018-12-20 | 2021-09-24 | Xencor股份有限公司 | Targeting heterodimeric Fc fusion proteins containing IL-15/IL-15R α and NKG2D antigen binding domains |
BR112021021481A2 (en) | 2019-04-26 | 2021-12-21 | Prolynx Llc | Slow-release cytokine conjugates |
US20210038684A1 (en) * | 2019-06-11 | 2021-02-11 | Alkermes Pharma Ireland Limited | Compositions and Methods for Cancer Immunotherapy |
TW202128757A (en) | 2019-10-11 | 2021-08-01 | 美商建南德克公司 | Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties |
MX2022004577A (en) | 2019-10-18 | 2022-05-10 | Alkermes Pharma Ireland Ltd | Immunomodulatory il-2 agents in combination with immune checkpoint inhibitors. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595756A (en) * | 1993-12-22 | 1997-01-21 | Inex Pharmaceuticals Corporation | Liposomal compositions for enhanced retention of bioactive agents |
US20090238791A1 (en) * | 2005-10-20 | 2009-09-24 | Institut National De La Sante Et De La Recherche Medicale | Il-15ralpha sushi domain as a selective and potent enhancer of il-15 action through il-15beta/gamma, and hyperagonist (il-15ralpha sushi - il-15) fusion proteins |
WO2012175222A1 (en) * | 2011-06-24 | 2012-12-27 | Cytune | AN IL-15 AND IL-15Rα SUSHI DOMAIN BASED IMMUNOCYTOKINES |
US11273204B2 (en) * | 2013-08-08 | 2022-03-15 | Cytune Pharma | IL-15 and IL-15RAPLHA sushi domain based immunocytokines |
US11401312B2 (en) * | 2013-04-19 | 2022-08-02 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4671958A (en) | 1982-03-09 | 1987-06-09 | Cytogen Corporation | Antibody conjugates for the delivery of compounds to target sites |
GB2148299B (en) | 1983-09-01 | 1988-01-06 | Hybritech Inc | Antibody compositions of therapeutic agents having an extended serum half-life |
GB8422238D0 (en) | 1984-09-03 | 1984-10-10 | Neuberger M S | Chimeric proteins |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
US5011912A (en) | 1986-12-19 | 1991-04-30 | Immunex Corporation | Hybridoma and monoclonal antibody for use in an immunoaffinity purification system |
ES2054753T3 (en) | 1987-09-02 | 1994-08-16 | Ciba Geigy Ag | CONJUGATES OF CYTOKINES WITH IMMUNOGLOBULINS. |
WO1989006692A1 (en) | 1988-01-12 | 1989-07-27 | Genentech, Inc. | Method of treating tumor cells by inhibiting growth factor receptor function |
US5997856A (en) | 1988-10-05 | 1999-12-07 | Chiron Corporation | Method and compositions for solubilization and stabilization of polypeptides, especially proteins |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5073627A (en) | 1989-08-22 | 1991-12-17 | Immunex Corporation | Fusion proteins comprising GM-CSF and IL-3 |
US5108910A (en) | 1989-08-22 | 1992-04-28 | Immunex Corporation | DNA sequences encoding fusion proteins comprising GM-CSF and IL-3 |
US5314995A (en) | 1990-01-22 | 1994-05-24 | Oncogen | Therapeutic interleukin-2-antibody based fusion proteins |
HU219537B (en) | 1991-03-06 | 2001-05-28 | Merck Patent Gmbh. | Humanized and chimaeric monoclonal antibodies comprising of them pharmaceutical composition and the antibodies coding sequence containing of expression vectors, and process for the praparation of antibodies |
JP4124480B2 (en) | 1991-06-14 | 2008-07-23 | ジェネンテック・インコーポレーテッド | Immunoglobulin variants |
US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US5595721A (en) | 1993-09-16 | 1997-01-21 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 |
CA2186747C (en) | 1994-04-06 | 2009-01-27 | Kenneth H. Grabstein | Interleukin-15 |
AU680909B2 (en) | 1994-04-06 | 1997-08-14 | Immunex Corporation | Interleukin-15 |
US5591630A (en) | 1994-05-06 | 1997-01-07 | Immunex Corporation | Monoclonal antibodies that bind interleukin-15 receptors |
US5795966A (en) | 1995-02-22 | 1998-08-18 | Immunex Corp | Antagonists of interleukin-15 |
US7060808B1 (en) | 1995-06-07 | 2006-06-13 | Imclone Systems Incorporated | Humanized anti-EGF receptor monoclonal antibody |
DE19608813C2 (en) | 1996-03-07 | 1998-07-02 | Angewandte Gentechnologie Syst | Conjugate for influencing interactions between proteins |
ES2243995T3 (en) | 1996-04-26 | 2005-12-01 | Beth Israel Deaconess Medical Center, Inc. | INTERLEUCINE ANTAGONISTS-15. |
EP1273304B2 (en) | 1997-02-21 | 2009-07-15 | Amgen Inc. | Use of interleukin-15 |
US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
IL122818A0 (en) | 1997-07-10 | 1998-08-16 | Yeda Res & Dev | Chimeric interleukin-6 soluble receptor/ligand protein analogs thereof and uses thereof |
US6787132B1 (en) | 1997-12-04 | 2004-09-07 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Combined chemo-immunotherapy with liposomal drugs and cytokines |
MXPA01008110A (en) | 1999-02-12 | 2002-10-23 | Scripps Research Inst | Methods for treatment of tumors and metastases using a combination of anti-angiogenic and immuno therapies. |
US7091321B2 (en) | 2000-02-11 | 2006-08-15 | Emd Lexigen Research Center Corp. | Enhancing the circulating half-life of antibody-based fusion proteins |
ES2322936T3 (en) | 2000-09-14 | 2009-07-02 | Beth Israel Deaconess Medical Center, Inc. | MODULATION OF THE T-CELL RESPONSES MEDIATED BY IL-2 AND IL-15. |
PL206701B1 (en) | 2001-03-07 | 2010-09-30 | Merck Patent Gmbh | Expression technology for proteins containing a hybrid isotype antibody moiety |
BR0214650A (en) | 2001-12-04 | 2005-05-03 | Merck Patent Gmbh | Modulated selectivity immunocytokines |
DE10212442A1 (en) | 2002-03-20 | 2003-10-09 | Michael Hesse | Fresh water treatment plant and process for drinking water production |
US7906118B2 (en) | 2005-04-06 | 2011-03-15 | Ibc Pharmaceuticals, Inc. | Modular method to prepare tetrameric cytokines with improved pharmacokinetics by the dock-and-lock (DNL) technology |
CN1703423A (en) | 2002-10-14 | 2005-11-30 | 豪夫迈-罗氏公司 | Antagonists il-15 |
PL216630B1 (en) | 2002-10-17 | 2014-04-30 | Genmab As | Human monoclonal antibodies against cd20 |
US7858081B2 (en) | 2004-02-27 | 2010-12-28 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | IL-15 mutants having agonists/antagonists activity |
WO2005100394A2 (en) | 2004-04-14 | 2005-10-27 | F. Hoffmann-La Roche Ag | PURIFIED INTERLEUKIN-15/Fc FUSION PROTEIN AND PREPARATION THEREOF |
US20060025885A1 (en) | 2004-08-02 | 2006-02-02 | The Form House, Inc. | Apparatus and method for loading data storage devices into carriers |
EP3805245A1 (en) | 2005-05-17 | 2021-04-14 | University of Connecticut | Compositions and methods for immunomodulation in an organism |
NZ569541A (en) | 2006-01-13 | 2012-05-25 | Us Gov Health & Human Serv | Codon optimized IL-15 and IL-15R-alpha genes for expression in mammalian cells |
SG170001A1 (en) | 2006-02-16 | 2011-04-29 | Nascent Biolog Inc | Methods for improving immune function and methods for prevention or treatment of disease in a mammalian subject |
US8404814B2 (en) | 2006-05-08 | 2013-03-26 | Philogen Spa | Anti-EDB antibody-targeted IL-10 cytokine for therapy of rheumatoid arthritis |
FR2906808B1 (en) | 2006-10-10 | 2012-10-05 | Univ Nantes | USE OF MONOCLONAL ANTIBODIES SPECIFIC TO THE O-ACETYLATED FORMS OF GANGLIOSIDE GD2 IN THE TREATMENT OF CERTAIN CANCERS |
CN108948177B (en) | 2007-05-11 | 2022-04-22 | 阿尔托生物科学有限公司 | Fusion molecules and IL-15 variants |
ES2716476T3 (en) | 2007-06-27 | 2019-06-12 | Us Health | IL15 and IL15Ralfa complexes and their uses |
CA2720628A1 (en) | 2007-07-26 | 2009-01-29 | Novagen Holding Corporation | Fusion proteins having mutated immunoglobulin hinge region |
WO2009135031A1 (en) | 2008-04-30 | 2009-11-05 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic | Substituted il-15 |
EP2478110B1 (en) | 2009-09-16 | 2016-01-06 | Immunomedics, Inc. | Class i anti-cea antibodies and uses thereof |
WO2011070214A2 (en) * | 2009-12-11 | 2011-06-16 | Proyecto De Biomedicina Cima S.L. | Novel conjugates and compositions for immunotherapy and antineoplastic treatment |
EP3327040B1 (en) | 2010-09-21 | 2021-06-23 | Altor BioScience Corporation | Multimeric il-15 soluble fusion molecules and methods of making and using same |
WO2012178137A1 (en) | 2011-06-24 | 2012-12-27 | Gillies Stephen D | Light chain immunoglobulin fusion proteins and methods of use thereof |
AU2013334610B2 (en) | 2012-10-24 | 2018-09-13 | Novartis Ag | IL-15R alpha forms, cells expressing IL-15R alpha forms, and therapeutic uses of IL-15R alpha and IL-15/IL-15R alpha complexes |
-
2014
- 2014-04-22 HU HUE14723324A patent/HUE058364T2/en unknown
- 2014-04-22 JP JP2016508046A patent/JP2016518361A/en active Pending
- 2014-04-22 EP EP21214317.6A patent/EP4032540A1/en active Pending
- 2014-04-22 EP EP14723324.1A patent/EP2986312B1/en active Active
- 2014-04-22 CA CA2909576A patent/CA2909576C/en active Active
- 2014-04-22 WO PCT/EP2014/001057 patent/WO2014170032A1/en active Application Filing
- 2014-04-22 CN CN201811066603.6A patent/CN109395064A/en active Pending
- 2014-04-22 CN CN201480034827.2A patent/CN105324124A/en active Pending
- 2014-04-22 DK DK14723324.1T patent/DK2986312T3/en active
- 2014-04-22 KR KR1020217016600A patent/KR102539359B1/en active Active
- 2014-04-22 PL PL14723324T patent/PL2986312T3/en unknown
- 2014-04-22 US US14/785,536 patent/US11401312B2/en active Active
- 2014-04-22 ES ES14723324T patent/ES2906615T3/en active Active
- 2014-04-22 KR KR1020157033166A patent/KR20150145260A/en not_active Ceased
-
2016
- 2016-08-01 HK HK16109137.7A patent/HK1220918A1/en unknown
-
2019
- 2019-02-01 JP JP2019017343A patent/JP2019108332A/en active Pending
-
2021
- 2021-01-29 JP JP2021012605A patent/JP2021073260A/en active Pending
-
2022
- 2022-07-29 US US17/876,987 patent/US20230183306A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5595756A (en) * | 1993-12-22 | 1997-01-21 | Inex Pharmaceuticals Corporation | Liposomal compositions for enhanced retention of bioactive agents |
US20090238791A1 (en) * | 2005-10-20 | 2009-09-24 | Institut National De La Sante Et De La Recherche Medicale | Il-15ralpha sushi domain as a selective and potent enhancer of il-15 action through il-15beta/gamma, and hyperagonist (il-15ralpha sushi - il-15) fusion proteins |
WO2012175222A1 (en) * | 2011-06-24 | 2012-12-27 | Cytune | AN IL-15 AND IL-15Rα SUSHI DOMAIN BASED IMMUNOCYTOKINES |
US10626155B2 (en) * | 2011-06-24 | 2020-04-21 | Cytune Pharma | IL-15 and IL-15R\alpha sushi domain based immunocytokines |
US10899816B2 (en) * | 2011-06-24 | 2021-01-26 | Inserm (Institut National De La Santé Et De La Recherche Medicale) | IL-15 and IL-15Rα sushi domain based immunocytokines |
US11401312B2 (en) * | 2013-04-19 | 2022-08-02 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
US11273204B2 (en) * | 2013-08-08 | 2022-03-15 | Cytune Pharma | IL-15 and IL-15RAPLHA sushi domain based immunocytokines |
Non-Patent Citations (14)
Title |
---|
Auerbach et al (Cancer and Metastasis Reviews, 2000, 19: 167-172) (Year: 2000) * |
Beans (PNAS 2018; 115(50): 12539-12543) (Year: 2018) * |
Bork (Genome Research, 2000,10:398-400) (Year: 2000) * |
Burgess et al. (J. Cell Biol. 111:2129-2138, 1990) (Year: 1990) * |
Gravanis et al. (Chin Clin Oncol, 2014, 3, pages 1 -5) (Year: 2014) * |
Gura T (Science, 1997, 278(5340): 1041-1042) (Year: 1997) * |
Hait (Nature Reviews/Drug Discovery, 2010, 9, pages 253-254) (Year: 2010) * |
Heppner et al. (Cancer Metastasis Review 2:5-23; 1983) (Year: 1983) * |
Jain RK (Scientific American, July 1994,58-65) (Year: 1994) * |
Kulmanov et al (Bioinformatics, 34(4), 2018, 660–668) (Year: 2018) * |
Ma (Modern Drug Discovery 2004, 7(6)) (Year: 2004) * |
Miosge (Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5189-98) (Year: 2015) * |
Skolnick et al (Trends Biotechnol. 2000 Jan;18(1):34-9) (Year: 2000) * |
Sporn et al ("Chemoprevention of Cancer," Carcinogenesis, Vol. 21 (2000), 525-530) (Year: 2000) * |
Also Published As
Publication number | Publication date |
---|---|
US20160068584A1 (en) | 2016-03-10 |
ES2906615T3 (en) | 2022-04-19 |
CN109395064A (en) | 2019-03-01 |
CA2909576A1 (en) | 2014-10-23 |
EP2986312A1 (en) | 2016-02-24 |
HK1220918A1 (en) | 2017-05-19 |
CN105324124A (en) | 2016-02-10 |
HUE058364T2 (en) | 2022-07-28 |
WO2014170032A1 (en) | 2014-10-23 |
JP2019108332A (en) | 2019-07-04 |
KR20150145260A (en) | 2015-12-29 |
PL2986312T3 (en) | 2022-04-19 |
EP2986312B1 (en) | 2021-12-15 |
EP4032540A1 (en) | 2022-07-27 |
DK2986312T3 (en) | 2022-02-14 |
JP2021073260A (en) | 2021-05-13 |
US11401312B2 (en) | 2022-08-02 |
KR102539359B1 (en) | 2023-06-02 |
KR20210066949A (en) | 2021-06-07 |
JP2016518361A (en) | 2016-06-23 |
CA2909576C (en) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230183306A1 (en) | Cytokine derived treatment with reduced vascular leak syndrome | |
Wrangle et al. | IL-2 and beyond in cancer immunotherapy | |
JP5680661B2 (en) | Immunomodulatory polypeptides derived from IL-2 and their use in the treatment of cancer and chronic infections | |
CA2814814C (en) | Polypeptides derived from il-2 having agonist activity, for the therapy of cancer and chronic infections | |
Blaser et al. | Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease | |
CN110437339A (en) | It is a kind of using interleukin 15 as the fusion protein type prodrug of active constituent | |
EP3135294A1 (en) | Use of il-15-il-15 receptor heterodimers to treat lymphopenia | |
Votavova et al. | Increasing the biological activity of IL-2 and IL-15 through complexing with anti-IL-2 mAbs and IL-15Rα-Fc chimera | |
Bailey et al. | New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity | |
TW201825122A (en) | Combination cancer immunotherapy with arginine depleting agent | |
Ng et al. | Stimulation of Natural Killer Cell–Mediated Tumor Immunity by an IL15/TGFβ–Neutralizing Fusion Protein | |
Klein et al. | Engineering a safe monoclonal anti‐human IL‐2 that is effective in a murine model of food allergy and asthma | |
Radi et al. | An Updated Review of Interleukin-2 Therapy in Cancer and Autoimmune Diseases | |
AU2021367306A1 (en) | Multi-functional and multi-valent interleukin-tgf-beta receptor fusion polypeptides | |
WO2022086988A1 (en) | Multi-functional and multi-valent interleukin-tgf-beta receptor fusion polypeptides | |
JP2024515577A (en) | Modified granulocyte colony-stimulating factor (G-CSF) and its binding chimeric cytokine receptor - Patents.com | |
US10759838B2 (en) | Myelin oligodendrocyte glycoprotein, myelin basic protein, and proteolipid protein compositions and methods of use | |
US20070041937A1 (en) | G-csf derivative for inducing immunological tolerance | |
AU2004266031A1 (en) | G-CSF derivative for inducing immunological tolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |