US20230181957A1 - Resistance regulation device for stationary exercise equipment - Google Patents
Resistance regulation device for stationary exercise equipment Download PDFInfo
- Publication number
- US20230181957A1 US20230181957A1 US18/049,108 US202218049108A US2023181957A1 US 20230181957 A1 US20230181957 A1 US 20230181957A1 US 202218049108 A US202218049108 A US 202218049108A US 2023181957 A1 US2023181957 A1 US 2023181957A1
- Authority
- US
- United States
- Prior art keywords
- resistance
- exercise equipment
- rotary knob
- stationary exercise
- axle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001514 detection method Methods 0.000 claims abstract description 36
- 230000005389 magnetism Effects 0.000 claims abstract description 35
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000009194 climbing Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- UUTKICFRNVKFRG-WDSKDSINSA-N (4R)-3-[oxo-[(2S)-5-oxo-2-pyrrolidinyl]methyl]-4-thiazolidinecarboxylic acid Chemical compound OC(=O)[C@@H]1CSCN1C(=O)[C@H]1NC(=O)CC1 UUTKICFRNVKFRG-WDSKDSINSA-N 0.000 claims 3
- 239000000470 constituent Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/005—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
- A63B21/0051—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using eddy currents induced in moved elements, e.g. by permanent magnets
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0087—Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/00058—Mechanical means for varying the resistance
- A63B21/00069—Setting or adjusting the resistance level; Compensating for a preload prior to use, e.g. changing length of resistance or adjusting a valve
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/012—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using frictional force-resisters
- A63B21/015—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using frictional force-resisters including rotating or oscillating elements rubbing against fixed elements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/22—Resisting devices with rotary bodies
- A63B21/225—Resisting devices with rotary bodies with flywheels
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/06—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
- A63B22/0605—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B24/00—Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
- A63B24/0062—Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/30—Speed
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/50—Force related parameters
- A63B2220/51—Force
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/50—Force related parameters
- A63B2220/58—Measurement of force related parameters by electric or magnetic means
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/805—Optical or opto-electronic sensors
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
- A63B2220/833—Sensors arranged on the exercise apparatus or sports implement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2225/00—Miscellaneous features of sport apparatus, devices or equipment
- A63B2225/50—Wireless data transmission, e.g. by radio transmitters or telemetry
Definitions
- the present invention relates to a stationary exercise equipment resistance regulation device, and more particularly to a device that regulates resistance induced in stationary exercise equipment.
- stationary exercise equipment Various types are available in the market to suit people's needs for exercising.
- a stationary bicycle that is equipped with a flywheel is one of the favorites for most sports or exercise participants.
- the market-available flywheel-based exercise bikes are designed to allow a user to adjust the exercise intensity for his or her own and a resistance regulation knob is often provided to regulate or adjust the magnitude of a resisting force induced during the process of exercise.
- a large resisting force means a large consumption of calories, and oppositely, a small resisting force consumes a small amount of calorie during the exercise. This makes it possible to achieve a desired result of exercise.
- the primary objective of the present invention is to provide a stationary exercise equipment resistance regulation device equipped with a rotary knob.
- the present invention provides a stationary exercise equipment resistance regulation device that comprises a stator holder, an axle, a circuit board, a magnetism detection element, a rotary knob, and a magnet.
- a rotary knob When the rotary knob is operated and rotated, the axle rotates, with a threaded member of the stator holder serving as a fulcrum point, to thereby generate a displacement distance to drive a resistance device to move downward.
- a distance between a magnet and the magnetism detection element is changed so that a magnitude of an induced voltage or a rotation turn signal is changed due to variation of a magnetic force detected by the magnetism detection element.
- the induced voltage or the rotation turn signal is transmitted through a signal transmission wire or a wireless transmission module to a signal processing device, and based on the induced voltage or the rotation turn signal, the signal processing device identifies a resisting force level and calculates data of one of a resisting force magnitude and wattage that the resistance device applies to the stationary exercise equipment.
- a plurality of magnets are circularly arranged on the stator holder about a center defined by the axle.
- the plurality of magnets have tops each of which is combined with an extension bar that extends upwards.
- the circuit board is arranged on the rotary knob, and the circuit board is located in a space between the axle and the magnets.
- a pair of magnetism detection elements are provided on the circuit board, and the magnetism detection elements are spaced from the extension bars by a distance in a horizontal direction.
- the magnetism detection elements of the circuit board detect a magnetic force of the magnets, and in an entire range of the stroke distance, the magnetism detection elements are effective in detecting the magnetic force of the magnets so as to generate an induced voltage corresponding to a magnitude of the magnetic force or to generate a rotation turn signal corresponding to the rotation of the axle.
- a pair of magnets are mounted in the circular seat and circularly arranged about a center defined by an axle.
- a sensor mounted circuit board is arranged in a rotary knob in a horizontal direction.
- a plurality of magnetism detection elements are circularly spaced from each other and arranged on the sensor mounted circuit board at a location corresponding to the pair of magnets.
- the plurality of magnetism detection elements detect magnetic forces of the magnets, so as to generate an induced voltage corresponding to magnitude of the magnetic forces or to generate a rotation turn signal corresponding to the rotation of the rotary knob.
- the present invention utilizes an arrangement of a stationary exercise equipment resistance regulation structure to allow an exerciser to operate, through a simple operation of rotation, so as to drive the resistance device to apply a corresponding resisting force to the flywheel of the stationary exercise equipment, and also to implement accurate identification of a resisting force level according to the variation of the stroke distance to thereby calculate data of one of a resisting force magnitude and wattage that the resistance device applies to the stationary exercise equipment.
- FIG. 1 is a schematic view showing a stationary exercise equipment resistance regulation device according to the present invention mounted to an exercise bicycle;
- FIG. 2 is a side elevational view showing a spatial relationship between the stationary exercise equipment resistance regulation device according to the present invention and the exercise bicycle;
- FIG. 3 is a schematic view showing a stationary exercise equipment resistance regulation device according to the present invention mounted to an alternative exercise bicycle;
- FIG. 4 is an enlarged view showing a wire is wound around a reel mounted to a bottom end of the axle of the stationary exercise equipment resistance regulation device as shown in FIG. 3 ;
- FIG. 5 is a perspective view showing the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 6 is a side elevational view showing the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 7 is an exploded view showing the stationary exercise equipment resistance regulation device according to the present invention in a condition where components are separated;
- FIG. 8 is a cross-sectional view taken along line A-A of FIG. 6 ;
- FIG. 9 is a schematic view showing a first embodiment of the stationary exercise equipment resistance regulation device according to the present invention in electrical connection with a signal processing device;
- FIG. 10 is a cross-sectional view showing a second embodiment of the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 11 is a schematic view showing the second embodiment of the stationary exercise equipment resistance regulation device according to the present invention in electrical connection with a signal processing device;
- FIG. 12 is a perspective view showing a third embodiment of the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 13 is a side elevational view showing the third embodiment of the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 14 is an exploded view showing the third embodiment of the stationary exercise equipment resistance regulation device according to the present invention in a condition where components are separated;
- FIG. 15 is a cross-sectional view taken along line B-B of FIG. 13 , showing the third embodiment of the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 16 is a cross-sectional view showing the third implement example of the stationary exercise equipment resistance regulation device according to the present invention in an operation of a rotary knob being depressed down;
- FIG. 17 is a side elevational view showing a fourth embodiment of the stationary exercise equipment resistance regulation device according to the present invention.
- FIG. 18 is a cross-sectional view taken along line C-C of FIG. 17 ;
- FIG. 19 is an exploded view showing the fourth embodiment of the stationary exercise equipment resistance regulation device according to the present invention in a condition where components are separated.
- FIG. 1 is a schematic view showing a stationary exercise equipment resistance regulation device 100 according to the present invention mounted to an exercise bicycle 1 , as shown in the drawing, an exercise bicycle 1 comprises a flywheel 11 and a pedal 12 .
- the stationary exercise equipment resistance regulation device 100 according to the present invention is positioned on and mounted to a frame 13 of the exercise bicycle 1 and is combinable with a resistance device 2 at a location corresponding to and adjacent to the flywheel 11 .
- the user may operate the stationary exercise equipment resistance regulation device 100 to control the resistance device 2 in order to adjust or regulate a resisting force applied to the flywheel 11 of the exercise bicycle 1 for generating an effect of exercise that resembles cycling outdoors.
- the resistance device 2 comprises at least one permanent magnet 21 .
- FIG. 3 is a schematic view showing a stationary exercise equipment resistance regulation device according to the present invention mounted to an alternative exercise bicycle.
- the instant implementing example has constituent components that are generally similar to those of the previous implementing example as shown in FIG. 1 , and for consistency, identical elements are designated with similar references.
- an alternative exercise bicycle la comprises a flywheel 11 and a pedal 12 , in which the flywheel 11 is arranged behind the pedal 12 .
- the stationary exercise equipment resistance regulation device 100 is positionable on and mounted to a frame 13 of the exercise bicycle 1 a. Further, a reel 42 is mounted to the bottom end of the axle 4 of the stationary exercise equipment resistance regulation device 100 .
- a resistance device 2 is arranged at a location corresponding to and adjacent to the flywheel 11 .
- a pulling wire 9 is connected between the resistance device 2 and the reel 42 .
- FIG. 4 is an enlarged view showing an end of the pulling wire 9 is wound around the reel 42 , and the other end thereof is connected to the resistance device 2 .
- the reel 42 is positioned at the bottom end of the axle 4 of the stationary exercise equipment resistance regulation device 100 , and is rotatable about the axle 4 . Accordingly, a user may operate the stationary exercise equipment resistance regulation device 100 to control the resistance device 2 through the reel 42 and the pulling wire 9 in order to adjust or regulate a resisting force applied to the flywheel 11 of the exercise bicycle 1 a.
- FIG. 5 is a perspective view showing the stationary exercise equipment resistance regulation device 100 according to a first embodiment of the present invention.
- FIG. 6 is a side elevational view showing the stationary exercise equipment resistance regulation device 100 according to the first embodiment of the present invention.
- FIG. 7 is an exploded view showing the stationary exercise equipment resistance regulation device 100 according to the first embodiment of the present invention in a condition where components are separated.
- FIG. 8 is a cross-sectional view taken along line A-A of FIG. 6 .
- the stationary exercise equipment resistance regulation device 100 generally comprises a stator holder 3 , an axle 4 , a circuit board 5 , and a rotary knob 6 .
- the stator holder 3 comprises a threaded member 31 inserted into a central through hole of the stator holder 3 .
- the axle 4 comprises a bolt section 41 , and the bolt section 41 has an external thread that is screwable onto an internal thread of the threaded member 31 .
- the axle 4 has a top end projecting beyond the stator holder 3 by a distance to form a free top end and a bottom end combined with the resistance device 2 .
- the circuit board 5 is provided with at least one magnetism detection element 51 mounted thereon.
- the rotary knob 6 is connected, by means of an axle connection portion 61 , to the free top end of the axle 4 .
- a stroke distance “d” is set between a bottom end of the rotary knob 6 and a top of the stator holder 3 .
- At least one magnet 62 is mounted to the bottom end of the rotary knob 6 to correspond to and face the magnetism detection element 51 .
- the magnet 62 is arranged at a position that corresponds to the magnetism detection element 51 mounted on the circuit board 5 , and is spaced from the magnetism detection element 51 by the stroke distance “d”.
- the stroke distance “d” between the bottom end of the rotary knob 6 and the top of the stator holder 3 is changed, so that a distance between the magnet 62 and the magnetism detection element 51 varies so that the magnetism detection element 51 detects a different magnetic force magnitude and generates, in response thereto, an induced voltage corresponding to the magnetic force magnitude or a rotation turn signal that is sent to the circuit board 5 .
- FIG. 9 it is a schematic view showing the stationary exercise equipment resistance regulation device 100 is set in electrical connection with a signal processing device 7 .
- the induced voltage or rotation turn signal generated by the magnetism detection element 51 is sent to the circuit board 5 , and is then transmitted through a signal transmission wire 8 to the signal processing device 7 .
- the signal processing device 7 Based on the induced voltage or the rotation turn signal, the signal processing device 7 identifies, through conversion, a level of resisting force and determines, through calculation, data of one of resisting force magnitude and wattage that the resistance device 2 applies to the flywheel 11 of the stationary exercise equipment 1 .
- the signal processing device 7 may be further provided with a display device 71 , which displays the data of resisting force level, resisting force magnitude, and wattage.
- the magnet 62 can be of a known structure of magnet, such as north and south poles are respectively on two opposite surfaces of the magnet to measure an intensity of a magnetic field for conversion into an electrical voltage and calculation of a distance and a level.
- two opposite surfaces are magnetized to form multiple poles and two Hall elements are adopted to count the number of turns, and multiple signals and multiple levels may be acquired or identified in each of the turns. Adopting multiple magnets may enable calculation of rotation turns.
- the signal processing device 7 can be for example electronic instrument mounted on the stationary exercise equipment 1 , a personal intelligent mobile device, a computer workstation, a gateway, or cloud device.
- the stationary exercise equipment can be for example one of an indoor stationary bicycle, a rowing machine, an indoor bicycle trainer, an elliptical trainer, a treadmill machine, a climbing trainer, a jogging machine, and a spinner bike.
- FIG. 10 is a cross-sectional view showing a second embodiment of the stationary exercise equipment resistance regulation device 100 a according to the present invention
- FIG. 11 is a schematic view showing the second embodiment of the stationary exercise equipment resistance regulation device 100 a according to the second embodiment of the present invention in electrical connection with the signal processing device.
- the instant embodiment has constituent components that are generally similar to those of the first implementing example, and for consistency, identical elements are designated with similar references.
- an opposite arrangement in which at least one magnet 62 is arranged on the stator holder 3 , while the circuit board 5 is mounted to the bottom end of the rotary knob 6 and at least one magnetism detection element 51 is mounted on the circuit board 5 at a location corresponding to the magnet 62 .
- a wireless transmission module 81 that is in electrical connection with the circuit board 5 is mounted on the rotary knob 6 at a predetermined location.
- the magnetism detection element 51 of the circuit board 5 mounted to the bottom end of the rotary knob 6 detects a variation of the magnetic force of the magnet 62 arranged on the stator holder 3 , and generates, in response thereto, an induced voltage or a rotation turn signal fed to the circuit board 5 .
- the induced voltage or the rotation turn signal is transmitted, in a wireless manner, through the wireless transmission module 81 to the signal processing device 7 , and the signal processing device 7 , based on the displacement distance to determine a resisting force level and calculate the data of one of resisting force magnitude and wattage that the resistance device 2 applied to the stationary exercise equipment 1 .
- Such data of resisting force level, resisting force magnitude, and wattage may be then displayed on the display device 71 .
- FIGS. 12 - 14 are respectively a perspective view, a side elevational view, and an exploded view showing a third embodiment of the stationary exercise equipment resistance regulation device 100 b according to the present invention
- the instant embodiment has constituent components that are generally similar to those of the second implementing example, and for consistency, identical elements are designated with similar references.
- a circular seat 64 is secured on the top end of the stator holder 3 .
- a plurality of magnets 62 are mounted in the circular seat 64 and circularly arranged about a center defined by the axle 4 .
- Each of the magnets 62 is connected, at a top thereof, with an extension bar 63 that extends upwards.
- the extension bar 63 is made of a magnetic permeability material, so that the extension bar 63 functions to extend an effective magnetic force of the magnet 62 further upwards.
- the rotary knob 6 has an interior space in which a circuit board 5 is arranged in a vertical direction, and a pair of magnetism detection elements 51 are arranged on the circuit board 5 and adjacent to a bottom edge thereof.
- a wireless transmission module 81 that is in electrical connection with the circuit board 5 is mounted on the rotary knob 6 at a predetermined location.
- FIG. 15 it is a cross-sectional view taken along line B-B of FIG. 13 .
- the rotary knob 6 is coupled to the top of the axle 4 by means of a rotatable ring member 65 which is rotatable about the axle 4 , and a stroke distance “d” is arranged between the bottom end of the rotary knob 6 and the top of the stator holder 3 .
- the circuit board 5 is arranged in a space between the axle 4 and the magnets 62 , so that the magnetism detection elements 51 have a spacing distance from each of the extension bar 63 in a horizontal direction.
- the rotary knob 6 When the rotary knob 6 is rotated by the user, the rotary knob 6 is rotatable about the axle 4 through the rotatable ring member 65 , so that the magnetism detection elements 51 on the circuit board 5 detect the magnetic force of each of the magnets 62 . Since each of the magnets 62 is provided with an extension bar 63 mounted thereto, in the entire range of the stroke distance “d”, the magnetism detection elements 51 may effectively detect the magnetic force of each of the magnets 62 to thereby generate an induced voltage or a rotation turn signal fed to the circuit board 5 .
- the induced voltage or the rotation turn signal is transmitted, in a wireless manner, through the wireless transmission module 81 to the signal processing device 7 , and the signal processing device 7 determine a resisting force level and calculate the data of one of resisting force magnitude and wattage that the resistance device 2 applied to the stationary exercise equipment 1 , based on the rotary numbers of the rotary knob 6 .
- Such data of resisting force level, resisting force magnitude, and wattage may be then displayed on the display device 71 .
- the axle 4 When the user forcibly presses down the rotary knob 6 , the axle 4 is caused to generate a downward displacement distance in a longitudinal direction to drive the resistance device 2 to move downward and apply a pressing force to the flywheel 11 to make emergency stop of the flywheel 11 .
- FIGS. 17 - 19 are respectively a side elevational view, a cross-sectional view taken along line C-C of FIG. 17 and an exploded view showing a fourth embodiment of the stationary exercise equipment resistance regulation device 100 c according to the present invention.
- the instant embodiment has constituent components that are generally similar to those of the third embodiment as shown in FIGS. 12 - 16 , and for consistency, identical elements are designated with similar references.
- a pair of adjacent magnets 62 a, 62 b are mounted in the circular seat 64 and circularly arranged about a center defined by the axle 4 .
- the rotary knob 6 has an interior space in which a circuit board 5 is arranged in a vertical direction and further a sensor mounted circuit board 5 a is arranged in a horizontal direction with respect to the circuit board 5 .
- a plurality of magnetism detection elements 51 are mounted on the sensor mounted circuit board 5 a and circularly arranged about the center defined by the axle 4 at a location corresponding to the magnets 62 a, 62 b.
- the magnetism detection elements 51 on the sensor mounted circuit board 5 a detect the magnetic force of the magnets 62 a, 62 b and then generate a series of induced voltage or rotation turn signal.
- a signal processing device may be used to determine a resisting force level and calculate the data of one of resisting force magnitude and wattage based on the induced voltage or rotation turn signal.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Networks Using Active Elements (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
A stationary exercise equipment resistance regulation device includes a stator holder, an axle, a circuit board, at least one magnetism detection element, a rotary knob, and at least one magnet. When the rotary knob is operated to rotate, a distance between a magnet and the magnetism detection element is changed so as to vary a magnetic force detected by the magnetism detection element to thereby change a magnitude of an induced voltage or generate a rotation turn signal. Based on the induced voltage or the rotation turn signal, a signal processing device identifies a resisting force level and calculates data of one of a resisting force magnitude and wattage that the resistance device applies to the stationary exercise equipment.
Description
- The present invention relates to a stationary exercise equipment resistance regulation device, and more particularly to a device that regulates resistance induced in stationary exercise equipment.
- Various types of stationary exercise equipment are available in the market to suit people's needs for exercising. Among these various types of stationary exercise equipment, a stationary bicycle that is equipped with a flywheel is one of the favorites for most sports or exercise participants.
- The market-available flywheel-based exercise bikes are designed to allow a user to adjust the exercise intensity for his or her own and a resistance regulation knob is often provided to regulate or adjust the magnitude of a resisting force induced during the process of exercise. A large resisting force means a large consumption of calories, and oppositely, a small resisting force consumes a small amount of calorie during the exercise. This makes it possible to achieve a desired result of exercise.
- However, the known structures of flywheel-based exercise bikes involve an improper or extremely complicated design of mechanism. This makes the operation difficult or results in easy damage.
- Further, in the designs of high-end flywheel-based exercise bikes, to accurately calculate the amount of consumption of calorie in the use of the exercise equipment, it often needs to know the magnitude of the resistance and conducting computation, based on available information, to determine data of work, resistance level, and consumed calorie for the exercise. However, the known designs suffer issues of poor accuracy, difficulty of calibration, and inaccurate result of calculation.
- Thus, the primary objective of the present invention is to provide a stationary exercise equipment resistance regulation device equipped with a rotary knob.
- To achieve the above objective, the present invention provides a stationary exercise equipment resistance regulation device that comprises a stator holder, an axle, a circuit board, a magnetism detection element, a rotary knob, and a magnet. When the rotary knob is operated and rotated, the axle rotates, with a threaded member of the stator holder serving as a fulcrum point, to thereby generate a displacement distance to drive a resistance device to move downward. Simultaneously, a distance between a magnet and the magnetism detection element is changed so that a magnitude of an induced voltage or a rotation turn signal is changed due to variation of a magnetic force detected by the magnetism detection element. The induced voltage or the rotation turn signal is transmitted through a signal transmission wire or a wireless transmission module to a signal processing device, and based on the induced voltage or the rotation turn signal, the signal processing device identifies a resisting force level and calculates data of one of a resisting force magnitude and wattage that the resistance device applies to the stationary exercise equipment.
- In another embodiment of the present invention, a plurality of magnets are circularly arranged on the stator holder about a center defined by the axle. The plurality of magnets have tops each of which is combined with an extension bar that extends upwards. The circuit board is arranged on the rotary knob, and the circuit board is located in a space between the axle and the magnets. A pair of magnetism detection elements are provided on the circuit board, and the magnetism detection elements are spaced from the extension bars by a distance in a horizontal direction. When the rotary knob is operated to rotate, the magnetism detection elements of the circuit board detect a magnetic force of the magnets, and in an entire range of the stroke distance, the magnetism detection elements are effective in detecting the magnetic force of the magnets so as to generate an induced voltage corresponding to a magnitude of the magnetic force or to generate a rotation turn signal corresponding to the rotation of the axle.
- In a further embodiment of the present invention, a pair of magnets are mounted in the circular seat and circularly arranged about a center defined by an axle. A sensor mounted circuit board is arranged in a rotary knob in a horizontal direction. A plurality of magnetism detection elements are circularly spaced from each other and arranged on the sensor mounted circuit board at a location corresponding to the pair of magnets. When the rotary knob is operated to rotate, the plurality of magnetism detection elements detect magnetic forces of the magnets, so as to generate an induced voltage corresponding to magnitude of the magnetic forces or to generate a rotation turn signal corresponding to the rotation of the rotary knob.
- In respect of efficacy, the present invention utilizes an arrangement of a stationary exercise equipment resistance regulation structure to allow an exerciser to operate, through a simple operation of rotation, so as to drive the resistance device to apply a corresponding resisting force to the flywheel of the stationary exercise equipment, and also to implement accurate identification of a resisting force level according to the variation of the stroke distance to thereby calculate data of one of a resisting force magnitude and wattage that the resistance device applies to the stationary exercise equipment.
- A technical measure adopted in the present invention will be further described with reference to embodiments provided below and the attached drawings.
-
FIG. 1 is a schematic view showing a stationary exercise equipment resistance regulation device according to the present invention mounted to an exercise bicycle; -
FIG. 2 is a side elevational view showing a spatial relationship between the stationary exercise equipment resistance regulation device according to the present invention and the exercise bicycle; -
FIG. 3 is a schematic view showing a stationary exercise equipment resistance regulation device according to the present invention mounted to an alternative exercise bicycle; -
FIG. 4 is an enlarged view showing a wire is wound around a reel mounted to a bottom end of the axle of the stationary exercise equipment resistance regulation device as shown inFIG. 3 ; -
FIG. 5 is a perspective view showing the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 6 is a side elevational view showing the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 7 is an exploded view showing the stationary exercise equipment resistance regulation device according to the present invention in a condition where components are separated; -
FIG. 8 is a cross-sectional view taken along line A-A ofFIG. 6 ; -
FIG. 9 is a schematic view showing a first embodiment of the stationary exercise equipment resistance regulation device according to the present invention in electrical connection with a signal processing device; -
FIG. 10 is a cross-sectional view showing a second embodiment of the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 11 is a schematic view showing the second embodiment of the stationary exercise equipment resistance regulation device according to the present invention in electrical connection with a signal processing device; -
FIG. 12 is a perspective view showing a third embodiment of the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 13 is a side elevational view showing the third embodiment of the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 14 is an exploded view showing the third embodiment of the stationary exercise equipment resistance regulation device according to the present invention in a condition where components are separated; -
FIG. 15 is a cross-sectional view taken along line B-B ofFIG. 13 , showing the third embodiment of the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 16 is a cross-sectional view showing the third implement example of the stationary exercise equipment resistance regulation device according to the present invention in an operation of a rotary knob being depressed down; -
FIG. 17 is a side elevational view showing a fourth embodiment of the stationary exercise equipment resistance regulation device according to the present invention; -
FIG. 18 is a cross-sectional view taken along line C-C ofFIG. 17 ; and -
FIG. 19 is an exploded view showing the fourth embodiment of the stationary exercise equipment resistance regulation device according to the present invention in a condition where components are separated. - Referring to
FIG. 1 , which is a schematic view showing a stationary exercise equipmentresistance regulation device 100 according to the present invention mounted to anexercise bicycle 1, as shown in the drawing, anexercise bicycle 1 comprises aflywheel 11 and apedal 12. When a user treads down thepedal 12, theflywheel 11 is driven to rotate. The stationary exercise equipmentresistance regulation device 100 according to the present invention is positioned on and mounted to aframe 13 of theexercise bicycle 1 and is combinable with aresistance device 2 at a location corresponding to and adjacent to theflywheel 11. - The user may operate the stationary exercise equipment
resistance regulation device 100 to control theresistance device 2 in order to adjust or regulate a resisting force applied to theflywheel 11 of theexercise bicycle 1 for generating an effect of exercise that resembles cycling outdoors. - Referring to
FIG. 2 , which is a side elevational view showing the stationary exercise equipmentresistance regulation device 100 according to the present invention mounted on theframe 13 of theexercise bicycle 1, as shown in the drawing, in the instant embodiment, theresistance device 2 comprises at least onepermanent magnet 21. -
FIG. 3 is a schematic view showing a stationary exercise equipment resistance regulation device according to the present invention mounted to an alternative exercise bicycle. The instant implementing example has constituent components that are generally similar to those of the previous implementing example as shown inFIG. 1 , and for consistency, identical elements are designated with similar references. - In the instant implementing example, an alternative exercise bicycle la comprises a
flywheel 11 and apedal 12, in which theflywheel 11 is arranged behind thepedal 12. When a user treads down thepedal 12, theflywheel 11 is driven to rotate. The stationary exercise equipmentresistance regulation device 100 is positionable on and mounted to aframe 13 of the exercise bicycle 1 a. Further, areel 42 is mounted to the bottom end of theaxle 4 of the stationary exercise equipmentresistance regulation device 100. Aresistance device 2 is arranged at a location corresponding to and adjacent to theflywheel 11. A pullingwire 9 is connected between theresistance device 2 and thereel 42. -
FIG. 4 is an enlarged view showing an end of the pullingwire 9 is wound around thereel 42, and the other end thereof is connected to theresistance device 2. Thereel 42 is positioned at the bottom end of theaxle 4 of the stationary exercise equipmentresistance regulation device 100, and is rotatable about theaxle 4. Accordingly, a user may operate the stationary exercise equipmentresistance regulation device 100 to control theresistance device 2 through thereel 42 and the pullingwire 9 in order to adjust or regulate a resisting force applied to theflywheel 11 of the exercise bicycle 1 a. - Referring to
FIGS. 5-7 ,FIG. 5 is a perspective view showing the stationary exercise equipmentresistance regulation device 100 according to a first embodiment of the present invention.FIG. 6 is a side elevational view showing the stationary exercise equipmentresistance regulation device 100 according to the first embodiment of the present invention.FIG. 7 is an exploded view showing the stationary exercise equipmentresistance regulation device 100 according to the first embodiment of the present invention in a condition where components are separated. -
FIG. 8 is a cross-sectional view taken along line A-A ofFIG. 6 . The stationary exercise equipmentresistance regulation device 100 generally comprises astator holder 3, anaxle 4, acircuit board 5, and arotary knob 6. Thestator holder 3 comprises a threadedmember 31 inserted into a central through hole of thestator holder 3. Theaxle 4 comprises abolt section 41, and thebolt section 41 has an external thread that is screwable onto an internal thread of the threadedmember 31. Theaxle 4 has a top end projecting beyond thestator holder 3 by a distance to form a free top end and a bottom end combined with theresistance device 2. - The
circuit board 5 is provided with at least onemagnetism detection element 51 mounted thereon. Therotary knob 6 is connected, by means of anaxle connection portion 61, to the free top end of theaxle 4. A stroke distance “d” is set between a bottom end of therotary knob 6 and a top of thestator holder 3. - At least one
magnet 62 is mounted to the bottom end of therotary knob 6 to correspond to and face themagnetism detection element 51. In other words, themagnet 62 is arranged at a position that corresponds to themagnetism detection element 51 mounted on thecircuit board 5, and is spaced from themagnetism detection element 51 by the stroke distance “d”. - When the
rotary knob 6 is operated and rotated, due to the external thread of thebolt section 41 of theaxle 4 being in screwing engagement with the internal thread of the threadedmember 31 of thestator holder 3, theaxle 4 is caused to rotate about a rotation center defined by the threadedmember 31 of thestator holder 3 so as to generate a downward displacement in a longitudinal direction to drive theresistance device 2 to move downward. - Simultaneously, the stroke distance “d” between the bottom end of the
rotary knob 6 and the top of thestator holder 3 is changed, so that a distance between themagnet 62 and themagnetism detection element 51 varies so that themagnetism detection element 51 detects a different magnetic force magnitude and generates, in response thereto, an induced voltage corresponding to the magnetic force magnitude or a rotation turn signal that is sent to thecircuit board 5. - When the user forcibly presses down the
rotary knob 6, by means of the guide of the threadedmember 31 slidable along a vertical inner through hole formed in thestator holder 3, theaxle 4 is caused to generate a downward displacement distance in a longitudinal direction to drive theresistance device 2 to move downward and apply a pressing force to theflywheel 11 to make emergency stop of theflywheel 11. This provides the present invention with a function of emergency braking. - Referring to
FIG. 9 , it is a schematic view showing the stationary exercise equipmentresistance regulation device 100 is set in electrical connection with asignal processing device 7. The induced voltage or rotation turn signal generated by themagnetism detection element 51 is sent to thecircuit board 5, and is then transmitted through asignal transmission wire 8 to thesignal processing device 7. Based on the induced voltage or the rotation turn signal, thesignal processing device 7 identifies, through conversion, a level of resisting force and determines, through calculation, data of one of resisting force magnitude and wattage that theresistance device 2 applies to theflywheel 11 of thestationary exercise equipment 1. Thesignal processing device 7 may be further provided with adisplay device 71, which displays the data of resisting force level, resisting force magnitude, and wattage. - The
magnet 62 can be of a known structure of magnet, such as north and south poles are respectively on two opposite surfaces of the magnet to measure an intensity of a magnetic field for conversion into an electrical voltage and calculation of a distance and a level. In a different form of magnet, two opposite surfaces are magnetized to form multiple poles and two Hall elements are adopted to count the number of turns, and multiple signals and multiple levels may be acquired or identified in each of the turns. Adopting multiple magnets may enable calculation of rotation turns. - The
signal processing device 7 can be for example electronic instrument mounted on thestationary exercise equipment 1, a personal intelligent mobile device, a computer workstation, a gateway, or cloud device. The stationary exercise equipment can be for example one of an indoor stationary bicycle, a rowing machine, an indoor bicycle trainer, an elliptical trainer, a treadmill machine, a climbing trainer, a jogging machine, and a spinner bike. - Referring to
FIGS. 10 and 11 ,FIG. 10 is a cross-sectional view showing a second embodiment of the stationary exercise equipmentresistance regulation device 100 a according to the present invention, andFIG. 11 is a schematic view showing the second embodiment of the stationary exercise equipmentresistance regulation device 100 a according to the second embodiment of the present invention in electrical connection with the signal processing device. The instant embodiment has constituent components that are generally similar to those of the first implementing example, and for consistency, identical elements are designated with similar references. - In the instant embodiment, an opposite arrangement is provided, in which at least one
magnet 62 is arranged on thestator holder 3, while thecircuit board 5 is mounted to the bottom end of therotary knob 6 and at least onemagnetism detection element 51 is mounted on thecircuit board 5 at a location corresponding to themagnet 62. In addition, awireless transmission module 81 that is in electrical connection with thecircuit board 5 is mounted on therotary knob 6 at a predetermined location. - In respect of operation, in a similar way, when the
rotary knob 6 is operated and rotated, themagnetism detection element 51 of thecircuit board 5 mounted to the bottom end of therotary knob 6 detects a variation of the magnetic force of themagnet 62 arranged on thestator holder 3, and generates, in response thereto, an induced voltage or a rotation turn signal fed to thecircuit board 5. - The induced voltage or the rotation turn signal is transmitted, in a wireless manner, through the
wireless transmission module 81 to thesignal processing device 7, and thesignal processing device 7, based on the displacement distance to determine a resisting force level and calculate the data of one of resisting force magnitude and wattage that theresistance device 2 applied to thestationary exercise equipment 1. Such data of resisting force level, resisting force magnitude, and wattage may be then displayed on thedisplay device 71. - Referring to
FIGS. 12-14 , which are respectively a perspective view, a side elevational view, and an exploded view showing a third embodiment of the stationary exercise equipmentresistance regulation device 100 b according to the present invention, the instant embodiment has constituent components that are generally similar to those of the second implementing example, and for consistency, identical elements are designated with similar references. - In the instant embodiment, a
circular seat 64 is secured on the top end of thestator holder 3. A plurality ofmagnets 62 are mounted in thecircular seat 64 and circularly arranged about a center defined by theaxle 4. Each of themagnets 62 is connected, at a top thereof, with anextension bar 63 that extends upwards. Theextension bar 63 is made of a magnetic permeability material, so that theextension bar 63 functions to extend an effective magnetic force of themagnet 62 further upwards. - The
rotary knob 6 has an interior space in which acircuit board 5 is arranged in a vertical direction, and a pair ofmagnetism detection elements 51 are arranged on thecircuit board 5 and adjacent to a bottom edge thereof. Awireless transmission module 81 that is in electrical connection with thecircuit board 5 is mounted on therotary knob 6 at a predetermined location. - As shown in
FIG. 15 , it is a cross-sectional view taken along line B-B ofFIG. 13 . Therotary knob 6 is coupled to the top of theaxle 4 by means of arotatable ring member 65 which is rotatable about theaxle 4, and a stroke distance “d” is arranged between the bottom end of therotary knob 6 and the top of thestator holder 3. Thecircuit board 5 is arranged in a space between theaxle 4 and themagnets 62, so that themagnetism detection elements 51 have a spacing distance from each of theextension bar 63 in a horizontal direction. - When the
rotary knob 6 is rotated by the user, therotary knob 6 is rotatable about theaxle 4 through therotatable ring member 65, so that themagnetism detection elements 51 on thecircuit board 5 detect the magnetic force of each of themagnets 62. Since each of themagnets 62 is provided with anextension bar 63 mounted thereto, in the entire range of the stroke distance “d”, themagnetism detection elements 51 may effectively detect the magnetic force of each of themagnets 62 to thereby generate an induced voltage or a rotation turn signal fed to thecircuit board 5. - As shown in
FIG. 16 , the induced voltage or the rotation turn signal is transmitted, in a wireless manner, through thewireless transmission module 81 to thesignal processing device 7, and thesignal processing device 7 determine a resisting force level and calculate the data of one of resisting force magnitude and wattage that theresistance device 2 applied to thestationary exercise equipment 1, based on the rotary numbers of therotary knob 6. Such data of resisting force level, resisting force magnitude, and wattage may be then displayed on thedisplay device 71. - When the user forcibly presses down the
rotary knob 6, theaxle 4 is caused to generate a downward displacement distance in a longitudinal direction to drive theresistance device 2 to move downward and apply a pressing force to theflywheel 11 to make emergency stop of theflywheel 11. - Referring to
FIGS. 17-19 , which are respectively a side elevational view, a cross-sectional view taken along line C-C ofFIG. 17 and an exploded view showing a fourth embodiment of the stationary exercise equipmentresistance regulation device 100 c according to the present invention. - The instant embodiment has constituent components that are generally similar to those of the third embodiment as shown in
FIGS. 12-16 , and for consistency, identical elements are designated with similar references. In the instant embodiment, a pair ofadjacent magnets circular seat 64 and circularly arranged about a center defined by theaxle 4. - The
rotary knob 6 has an interior space in which acircuit board 5 is arranged in a vertical direction and further a sensor mountedcircuit board 5 a is arranged in a horizontal direction with respect to thecircuit board 5. A plurality ofmagnetism detection elements 51 are mounted on the sensor mountedcircuit board 5 a and circularly arranged about the center defined by theaxle 4 at a location corresponding to themagnets - When the
rotary knob 6 is operated and rotated, themagnetism detection elements 51 on the sensor mountedcircuit board 5 a detect the magnetic force of themagnets - The embodiments described above are provide for illustrating the present invention only and are not intended to limit the scope of the present invention that is defined in the claims. Equivalent modifications or substitutes that come in the inventive spirit disclosed in the present invention are considered falling within the scope defined by the claims.
Claims (20)
1. A resistance regulation device adapted to control a resisting force that is applied by a resistance device to a flywheel of a stationary exercise equipment, comprising:
a stator holder fixed to a frame of the stationary exercise equipment, the stator holder being provided with a threaded member inserted into a central through hole formed in the stator holder;
an axle provided with a bolt section in screwing engagement with the threaded member of the stator holder, the axle having a top end extending beyond the stator holder by a height to form a free top end and a bottom end connected to the resistance device;
a rotary knob mounted to the free top end of the axle, the rotary knob having a bottom end that forms a stroke distance relative to a top of the stator holder;
at least one magnet mounted to the bottom end of the rotary knob;
a circuit board arranged on the stator holder;
at least one magnetism detection element arranged on the circuit board and corresponding to the at least one magnet; and
wherein the rotary knob, when being operated to rotate, drives the axle to rotate about a rotation center defined by the threaded member so as to cause the axle to generate a downward displacement distance in a longitudinal; and
simultaneously, a change is caused on the stroke distance between the bottom end of the rotary knob and the top of the stator holder, and a relative distance between the at least one magnet and the at least one magnetism detection element varies so that the at least one magnetism detection element detects a different magnetic force magnitude and generates, in response thereto, an induced voltage corresponding to the magnetic force magnitude or a rotation turn signal.
2. The resistance regulation device according to claim 1 , wherein the induced voltage or the rotation turn signal generated through detection by the at least one magnetism detection element is transmitted to a signal processing device, and the signal processing device identifies a resisting force level and calculates data of one of a resisting force magnitude and wattage that the resistance device applied to the stationary exercise equipment.
3. The resistance regulation device according to claim 2 , wherein the signal processing device comprises an electronic instrument mounted on the stationary exercise equipment or one of a personal intelligent mobile device, a computer workstation, a gateway, and cloud device.
4. The resistance regulation device according to claim 2 , wherein the signal processing device further comprises a display device, which displays the resisting force level, the resisting force magnitude, and the wattage.
5. The resistance regulation device according to claim 1 , wherein the stationary exercise equipment comprises one of an indoor stationary bicycle, a rowing machine, an indoor bicycle trainer, an elliptical trainer, a treadmill machine, a climbing trainer, a jogging machine, and a spinner bike.
6. The resistance regulation device according to claim 1 , further comprising:
a reel mounted to the bottom end of the axil; and
a pulling wire having a first end wound around the reel and a second end connected to the resistance device.
7. A resistance regulation device adapted to control a resisting force that is applied by a resistance device to a flywheel of a stationary exercise equipment, comprising:
a stator holder fixed to a frame of the stationary exercise equipment;
an axle having a top end extending beyond the stator holder by a height to form a free top end and a bottom end connected to the resistance device;
a rotary knob mounted to the free top end of the axle, the rotary knob having a bottom end that forms a stroke distance relative to a top of the stator holder;
a circular seat secured on the top end of the stator holder;
a plurality of magnets mounted circularly in the circular seat about a center defined by the axle, each of the magnets having a top that is combined with an extension bar extending upwards;
a circuit board arranged in the rotary knob, the circuit board being arranged at a location in a space between the axle and the plurality of magnets;
a pair of magnetism detection elements spaced from each other and arranged on the circuit board at a location corresponding to the extension bars;
wherein the rotary knob, when being operated to rotate, drives the circuit board to rotate about the axle, and simultaneously, the pair of magnetism detection elements detect magnetic forces of the plurality of magnets through the extension bar, so as to generate an induced voltage corresponding to magnitude of the magnetic forces or to generate a rotation turn signal corresponding to the rotation of the rotary knob.
8. The resistance regulation device according to claim 7 , wherein the induced voltage and the rotation turn signal are transmitted through a wireless transmission module to a signal processing device, and the signal processing device identifies a resisting force level and calculates data of one of a resisting force magnitude and wattage that the resistance device applied to the stationary exercise equipment.
9. The resistance regulation device according to claim 8 , wherein the signal processing device comprises an electronic instrument mounted on the stationary exercise equipment or one of a personal intelligent mobile device, a computer workstation, a gateway, and cloud device.
10. The resistance regulation device according to claim 8 , wherein the signal processing device further comprises a display device, which displays the resisting force level, the resisting force magnitude, and the wattage.
11. The resistance regulation device according to claim 7 , wherein the stationary exercise equipment comprises one of an indoor stationary bicycle, a rowing machine, an indoor bicycle trainer, an elliptical trainer, a treadmill machine, a climbing trainer, a jogging machine, and a spinner bike.
12. The resistance regulation device according to claim 7 , further comprising:
a reel mounted to the bottom end of the axil; and
a pulling wire having a first end wound around the reel and a second end connected to the resistance device.
13. A resistance regulation device adapted to control a resisting force that is applied by a resistance device to a flywheel of a stationary exercise equipment, comprising:
a stator holder fixed to a frame of the stationary exercise equipment;
an axle having a top end extending beyond the stator holder by a height to form a free top end and a bottom end connected to the resistance device;
a rotary knob mounted to the free top end of the axle, the rotary knob having a bottom end that forms a stroke distance relative to a top of the stator holder;
a circular seat secured on the top end of the stator holder;
a pair of magnets mounted in the circular seat and circularly arranged about a center defined by the axle;
a sensor mounted circuit board arranged in the rotary knob in a horizontal direction;
a plurality of magnetism detection elements circularly spaced from each other and arranged on the sensor mounted circuit board at a location corresponding to the pair of magnets;
wherein the rotary knob, when being operated to rotate, drives the sensor mounted circuit board to rotate about the axle, and simultaneously, the plurality of magnetism detection elements detect magnetic forces of the magnets, so as to generate an induced voltage corresponding to magnitude of the magnetic forces or to generate a rotation turn signal corresponding to the rotation of the rotary knob.
14. The resistance regulation device according to claim 13 , wherein the induced voltage and the rotation turn signal are transmitted through a wireless transmission module to a signal processing device, and the signal processing device identifies a resisting force level and calculates data of one of a resisting force magnitude and wattage that the resistance device applied to the stationary exercise equipment.
15. The resistance regulation device according to claim 14 , wherein the signal processing device comprises an electronic instrument mounted on the stationary exercise equipment or one of a personal intelligent mobile device, a computer workstation, a gateway, and cloud device.
16. The resistance regulation device according to claim 14 , wherein the signal processing device further comprises a display device, which displays the resisting force level, the resisting force magnitude, and the wattage.
17. The resistance regulation device according to claim 13 , wherein the stationary exercise equipment comprises one of an indoor stationary bicycle, a rowing machine, an indoor bicycle trainer, an elliptical trainer, a treadmill machine, a climbing trainer, a jogging machine, and a spinner bike.
18. The resistance regulation device according to claim 13 , wherein the rotary knob has a bottom end that forms a stroke distance relative to a top of the stator holder.
19. The resistance regulation device according to claim 13 , further comprises a circuit board arranged in a vertical direction with respect to the sensor mounted circuit board.
20. The resistance regulation device according to claim 13 , further comprising:
a reel mounted to the bottom end of the axil; and
a pulling wire having a first end wound around the reel and a second end connected to the resistance device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110214846U TWM628503U (en) | 2021-12-14 | 2021-12-14 | Fitness equipment resistance adjustment device |
TW110214846 | 2021-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230181957A1 true US20230181957A1 (en) | 2023-06-15 |
Family
ID=83063707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/049,108 Abandoned US20230181957A1 (en) | 2021-12-14 | 2022-10-24 | Resistance regulation device for stationary exercise equipment |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230181957A1 (en) |
TW (1) | TWM628503U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118500758A (en) * | 2024-07-17 | 2024-08-16 | 厦门康百福体育用品股份有限公司 | A dynamic bicycle equipment operation and maintenance detection system based on data analysis |
US20250108252A1 (en) * | 2023-10-02 | 2025-04-03 | Daniel Ifekwe | Lock device for a stationary bicycle |
-
2021
- 2021-12-14 TW TW110214846U patent/TWM628503U/en unknown
-
2022
- 2022-10-24 US US18/049,108 patent/US20230181957A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20250108252A1 (en) * | 2023-10-02 | 2025-04-03 | Daniel Ifekwe | Lock device for a stationary bicycle |
CN118500758A (en) * | 2024-07-17 | 2024-08-16 | 厦门康百福体育用品股份有限公司 | A dynamic bicycle equipment operation and maintenance detection system based on data analysis |
Also Published As
Publication number | Publication date |
---|---|
TWM628503U (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230181957A1 (en) | Resistance regulation device for stationary exercise equipment | |
US12029955B2 (en) | Bicycle trainer | |
US9604102B2 (en) | Exercising apparatus | |
US7874957B2 (en) | Apparatus for measuring exercise performance | |
US8197389B2 (en) | Exercising apparatus | |
US8265900B2 (en) | Motion analysis device for sports | |
US20150251055A1 (en) | Wireless Sensor to Provide Parameters to a Fitness Tracking Device | |
CN104368972B (en) | Bicycle assembly system | |
US20080032870A1 (en) | Method and apparatus of counting steps for treadmill | |
US8162803B2 (en) | Magnetic resistance trainer power measurement | |
US20100240493A1 (en) | Exercise apparatus | |
KR20170044002A (en) | Position changeable sensor | |
US20140296034A1 (en) | Detection apparatus of a traning machine | |
US6090017A (en) | One-way travel computation detect device for exerciser | |
US11298583B2 (en) | Exercise machine friction brake calibration | |
KR20160045247A (en) | spinning bike | |
US20110009239A1 (en) | Control Pod For Controlling The Resistance Level And Electricity Output Level Of An Exercise Bike | |
EP4218957A1 (en) | Smart exercise handle | |
KR20220097846A (en) | Smart exercise device capable of real-time muscle strength measurement | |
US11517791B2 (en) | Torque detection device of fitness equipment | |
US8721501B2 (en) | Detection device and monitoring system for detecting an exercising state | |
KR102436607B1 (en) | Attached internet of thing fitness exercise information collection apparatus and method thereof | |
US20200353305A1 (en) | Operating handle of exerciser | |
KR200462463Y1 (en) | Potable Counter for exercises | |
KR100869012B1 (en) | Load measuring device with improved accuracy and exercise device with load measuring function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |