+

US20230068784A1 - Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies - Google Patents

Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies Download PDF

Info

Publication number
US20230068784A1
US20230068784A1 US17/894,143 US202217894143A US2023068784A1 US 20230068784 A1 US20230068784 A1 US 20230068784A1 US 202217894143 A US202217894143 A US 202217894143A US 2023068784 A1 US2023068784 A1 US 2023068784A1
Authority
US
United States
Prior art keywords
bottom frame
core
circuit board
carrier assembly
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/894,143
Inventor
Zohair Mehkri
Anwar Mohammed
Jesus Tan
David Geiger
Murad Kurwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flex Ltd
Original Assignee
Flex Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flex Ltd filed Critical Flex Ltd
Priority to US17/894,143 priority Critical patent/US20230068784A1/en
Assigned to FLEX LTD reassignment FLEX LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KURWA, MURAD, MEHKRI, ZOHAIR, GEIGER, DAVID, MOHAMMED, ANWAR, TAN, JESUS
Publication of US20230068784A1 publication Critical patent/US20230068784A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • H05K13/0069Holders for printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1424Card cages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1435Expandable constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53265Means to assemble electrical device with work-holder for assembly

Definitions

  • PCBAs Printed Circuit Board Assemblies
  • SMT Surface Mount Technology
  • the process flow for manufacturing PCBAs including SMT components includes, among other steps, circuit board loading, screen printing of solder paste onto the circuit board, solder paste inspection, component pick and place, automatic optical inspection, and reflow. Throughout and/or between some of all of these process flow steps, the circuit board being manufactured is disposed on a carrier to facilitate the transport thereof.
  • Carriers currently in use are manufactured specifically for a particular circuit board and/or for a limited number of stations along the process flow.
  • the carriers currently in use are not versatile but, rather, a different carrier is needed for each type of circuit board to be manufactured and/or for different stations along the process flow.
  • Providing a specific carrier for each type of circuit board to be manufactured inhibits reuse of the carriers and increases costs.
  • the need to remove the circuit board being manufactured and swap out carriers along the process flow may lead to loss of coplanarity of the circuit board throughout the manufacturing process, which may lead to manufacturing issues.
  • the present disclosure provides adjustable carriers, carriers with changeable cores, and methods that enable carrier reconfiguration for use with different types of circuit boards and/or at different stations along the process flow for manufacturing PCBAs, e.g., PCBAs including SMT components.
  • the adjustable carriers, carriers with changeable cores, and methods ensure coplanarity of the circuit board throughout the manufacturing process or portions thereof.
  • the carrier assembly configured to facilitate manufacture of a printed circuit board assembly.
  • the carrier assembly includes a bottom frame and a core.
  • the bottom frame defines a generally rectangular configuration and has a length and a width.
  • the bottom frame is adjustable to vary at least one of the length or the width thereof.
  • the core is releasably positionable on the bottom frame and configured to support a circuit board thereon.
  • the carrier assembly further includes a top frame defining a generally rectangular configuration and having a length and a width.
  • the top frame is adjustable to vary at least one of the length or the width thereof and is releasably engagable with the bottom frame to retain the core therebetween.
  • at least one clamp may be provided to releasably engage the top and bottom frames with one another.
  • the core is customized to the circuit board configured to be supported thereon.
  • the core may be formed from a high temperature grade plastic via 3D printing.
  • the bottom frame is formed from a metal.
  • the bottom frame is reusable and the carrier is disposable.
  • the bottom frame is adjustable to vary each of the length and the width thereof.
  • the bottom frame is configured to retain the core in two axial directions and the core is configured to retain the circuit board in two axial dimensions.
  • a carrier assembly system configured to facilitate manufacture of a printed circuit board assembly provided in accordance with the present disclosure includes a bottom frame according to any of the aspects above or otherwise provided herein, and a plurality of cores. Each core defines a different configuration and is configured for releasable positioning on the bottom frame. Each core is configured to support a different circuit board thereon.
  • the carrier assembly system further includes a top frame, similarly as detailed above.
  • At least one clamp as also detailed above, may likewise be provided.
  • each core is formed from a high temperature grade plastic via 3D printing.
  • a method of manufacturing a printed circuit board assembly includes selecting a core based upon a configuration of a printed circuit board to be manufactured, adjusting a bottom frame based upon the core selected, seating the core on the bottom frame, seating a circuit board of the printed circuit board to be manufactured on the core, and moving the bottom frame through at least one assembly station.
  • adjusting the bottom frame includes varying at least one of a length or a width of the bottom frame.
  • the method further includes engaging a top frame on the bottom frame to retain the circuit board and the core therebetween.
  • FIG. 1 A is a perspective view of a carrier assembly provided in accordance with aspects of the present disclosure, with a cover thereof removed;
  • FIG. 1 B is a perspective view of the carrier assembly of FIG. 1 A supporting a circuit board and including the cover disposed thereon;
  • FIG. 2 is an exploded, perspective view of the carrier assembly of FIG. 1 A , including a circuit board to be supported thereon;
  • FIG. 3 A is a longitudinal, cross-sectional view of one end portion of the carrier assembly of FIG. 1 A , including a circuit board supported thereon and the cover removed;
  • FIG. 3 B is a longitudinal, cross-sectional view of the other end portion of the carrier assembly of FIG. 1 A , including a circuit board supported thereon and the cover disposed thereon; and
  • FIG. 4 is a schematic drawing of a portion of an assembly line illustrating a portion of a PCBA manufacturing process flow.
  • Carrier assembly 100 includes a bottom frame 110 , a top frame 120 , and a core 130 , as detailed below.
  • carrier assembly 100 is described hereinbelow as configured for use during the Surface Mount Technology (SMT) phase of PCBA manufacturing, it is contemplated that carrier assembly 100 may additionally or alternatively be utilized during other phases of PCBA manufacturing.
  • SMT Surface Mount Technology
  • bottom frame 110 of carrier assembly 100 defines a generally-rectangular configuration and is adjustable in the length and/or width directions thereof to enable adjustment of bottom frame 110 to suitable dimensions for a particular use. More specifically, bottom frame 110 includes a pair of side rails 112 , a pair of end rails 114 , and four corner brackets 116 . Each corner bracket 116 includes a side rail portion 118 a and an end rail portion 118 b . The side-rail and end-rail portions 118 a , 118 b of each corner bracket 116 extend in generally perpendicular orientation relative to one another.
  • the side rail portions 118 a of corner brackets 116 at one end of bottom frame 110 are fixedly engaged to the side rails 112 in overlapping relation thereof, while the side rail portions 118 a of corner brackets 116 at the other end of bottom frame 110 are slidably coupled to the side rails 112 in overlapping relation therewith.
  • the side rail portions 118 a of corner brackets 116 at both ends of bottom frame 110 may be slidably coupled to the side rails 112 in overlapping relation thereof, or, in embodiments where length adjustment is not desired, the side rail portions 118 a of corner brackets 116 at both ends of bottom frame 110 may be fixed relative to the side rails 112 .
  • the pairs of corner brackets 116 at opposing ends of bottom frame 110 may be moved towards one another, such that the corner brackets 116 further overlap the side rails 112 slidably coupled thereto to decrease the overall length of bottom frame 110 .
  • the pairs of corner brackets 116 at opposing ends of bottom frame 110 may also be moved apart from one another, such that the corner brackets 116 expose more of the side rails 112 slidably coupled thereto to increase the overall length of bottom frame 110 .
  • the end rail portions 118 b of corner brackets 116 on one side of bottom frame 110 are fixedly engaged to the end rails 114 in overlapping relation thereof, while the end rail portions 118 b of corner brackets 116 on the other side of bottom frame 110 are slidably coupled to the end rails 114 in overlapping relation therewith.
  • the end rail portions 118 b of corner brackets 116 on both sides of bottom frame 110 may be slidably coupled to the end rails 114 in overlapping relation thereof, or, in embodiments where width adjustment is not desired, the end rail portions 118 b of corner brackets 116 on both sides of bottom frame 110 may be fixed relative to the end rails 114 .
  • the pairs of corner brackets 116 at opposing sides of bottom frame 110 may be moved towards one another, such that the corner brackets 116 further overlap the end rails 114 slidably coupled thereto to decrease the overall width of bottom frame 110 .
  • the pairs of corner brackets 116 on opposing sides of bottom frame 110 may also be moved apart from one another, such that the corner brackets 116 expose more of the end rails 114 slidably coupled thereto to increase the overall width of bottom frame 110 .
  • bottom frame 110 may be configured such that bottom frame 110 is continuously movable to any suitable position wherein, for example, friction-fit engagement between the corner brackets 116 and the side or end rails 112 , 114 , respectively, maintains the desired length or width of bottom frame 110 .
  • bottom frame 110 may be incrementally movable to any one of a plurality of discrete positions wherein, for example, complementary engaging features, e.g., protrusions and detents, spring pins and aperture, snap-fit components, etc., on the corner brackets 116 and the side or end rails 112 , 114 , respectively, maintain the length or width of bottom frame 110 at each of the discrete positions.
  • complementary engaging features e.g., protrusions and detents, spring pins and aperture, snap-fit components, etc.
  • corner brackets 116 each include shelves 117 extending inwardly into bottom frame 110 from either or both of the side-rail and end-rail portions 118 a , 118 b , respectively, thereof.
  • side rails 112 and/or end rails 114 may include shelves 117 .
  • Shelves 117 are configured to support core 130 thereon with side rails 112 , end rails 114 , and corner bracket 116 surrounding core 130 . As such, with bottom frame 110 adjusted to the appropriate dimensions based upon the core 130 utilized, and having the core 130 seated therein as noted above, side-to-side or end-to-end motion of core 130 relative to bottom frame 110 is inhibited.
  • bottom frame 110 of carrier assembly 100 is configured as a reusable component and, as can be appreciated, provides versatility for use in various different applications due to the above-described length and/or width adjustability thereof.
  • Bottom frame 110 may be formed from 3D printing or other suitable manufacturing process, e.g., traditional manufacturing process such as molding, stamping, etc.
  • Bottom frame 110 may be formed from any suitable material(s) such as, for example, plastic, metal, etc., and may be formed from a single material or may include different portions formed from different materials and/or via different manufacturing processes.
  • Top frame 120 of carrier assembly 100 is best illustrated in FIGS. 1 B and 2 .
  • Top frame 120 in some embodiments, is not provided. In other embodiments, top frame 120 is provided but is utilized for only a portion of the manufacturing phase(s) that carrier assembly 100 is utilized. Thus, in such embodiments, top frame 120 is removed for other portions of the manufacturing phase(s).
  • Top frame 120 is similar to bottom frame 110 , defines a generally-rectangular configuration, and is adjustable in the length and/or width directions thereof, similarly as detailed above with respect to bottom frame 110 and, thus, is not described again here.
  • Top frame 120 thus includes a pair of side rails 122 , a pair of end rails 124 , and four corner brackets 126 .
  • Top frame 120 of carrier assembly 100 is configured as a reusable component and, like bottom frame 110 , provides versatility for use in various different applications due to the above-described length and/or width adjustability thereof.
  • Top frame 120 may be formed from 3D printing or other suitable manufacturing process, e.g., traditional manufacturing process such as molding, stamping, etc., may be formed from any suitable material(s) such as, for example, plastic, metal, etc., and may be formed from a single material or may include different portions formed from different materials and/or via different manufacturing processes.
  • Top frame 120 may additionally include shelves 127 , similarly as detailed above with respect to shelves 117 of bottom frame 110 .
  • Shelves 127 may be configured to overlap edge portions of core 130 and/or may be configured to overlap edge portions of circuit board 12 of PCBA 10 in order to retain core 130 and/or circuit board 12 in the vertical direction. More specifically, top frame 120 is configured for positioning on bottom frame 110 in alignment therewith with suitable clearance defined between shelves 117 of bottom frame 110 and shelves 127 of top frame for retention of circuit board 12 and core 130 therebetween, thereby inhibiting movement of core 130 and/or circuit board 12 in the vertical direction, e.g., up or down.
  • bottom and top frames 110 , 120 may be utilized to inhibit movement of circuit board 12 and core 130 in all three coordinate axial directions.
  • top frame 120 may be removed and bottom frame 110 may be utilized to provide the above-detailed side-to-side and end-to-end retention.
  • bottom and top frames 110 , 120 may be releasably engagable with one another in any suitable manner.
  • clamps 140 may be provided to engage bottom and top frames 110 , 120 , respectively, with one another.
  • Clamps 140 may be engaged with bottom frame 110 , top frame 120 , may include portions on both bottom and top frames 110 , 120 , respectively, that are engagement with one another, or may be separate from both bottom and top frames 110 , 120 , respectively.
  • Other suitable engagement structures other than clamps 140 are also contemplated such as, for example, mechanical interlocks, straps, snap-fit connections, threaded connections, etc.
  • core 130 is configured to be seated on bottom frame 110 and, more specifically, on shelves 117 of bottom frame 110 with side rails 112 , end rails 114 , and corner bracket 116 of bottom frame 110 surrounding core 130 .
  • Core 130 is configured to support circuit board 12 of PCBA 10 thereon. More specifically, core 130 is a customized component that is specific to a particular configuration of PCBA(s) 10 to be manufactured. That is, while bottom and top frames 110 , 120 , respectively, are length and/or width adjustable to accommodate different configurations of PCBAs 10 , a customized core 130 is utilized for each PCBA configuration or group of PCBA configurations to be manufactured.
  • Core 130 is manufactured via 3D printing, which enables various different cores 130 to be customized to the particular configuration of PCBA 10 without the need for tooling or other dedicated manufacturing equipment.
  • Each core 130 more specifically, may be 3D printed from a digital model file (e.g., created on a general purpose computer with suitable CAD software) designed based upon the configuration of the PCBA 10 to be manufactured therewith.
  • CAD software CAD software designed based upon the configuration of the PCBA 10 to be manufactured therewith.
  • 3D printing enables customization of core 130 to almost any configuration, including complex geometries.
  • Core 130 may be formed from a high-temperature grade 3D printing material or materials. In other embodiments, various different materials may be utilized for 3D printing core 130 or may otherwise be incorporated into the resultant core 130 protective heat shield to achieve a desired property throughout or on certain portions of core 130 .
  • conductive material may be incorporated into core 130 to make core 130 at least partially conductive; reinforcing material may be incorporated into core 130 to make core 130 stronger in certain areas; higher heat-resistant material may be incorporated into core 130 to increase the thermal protection of the core 130 in certain areas; etc.
  • core 130 is configured to be seated on bottom frame 110 .
  • Core 130 is removable from bottom frame 110 and may be replaced with another core 130 , depending upon the configuration of the PCBA 10 to be manufactured. In this manner, core 130 is interchangeable.
  • core 130 when seated on bottom frame 110 , core 130 is restrained from side-to-side or end-to-end motion relative to bottom frame 110 .
  • Core 130 in turn, is configured to support circuit board 12 thereon and restrain side-to-side or end-to-end motion of circuit board 12 relative to core 130 (due to the customization of core 130 for the circuit board 12 ) and, thus, bottom frame 110 .
  • Top frame 120 when engaged with bottom frame 110 , is configured to retain core 130 and circuit board from vertical motion relative to bottom and top frames 110 , 120 , respectively.
  • an SMT portion of an assembly line 200 for the manufacture of PCBAs e.g., PCBA 10
  • the SMT portion of assembly line 200 includes a board loading station 210 , a solder screen printing station 220 , a solder paste inspection station 230 , a pick and place station 240 , an automatic optical inspection station 250 , a reflow station 260 , and a plurality of additional stations (not shown) disposed before, after, or interdisposed between stations 210 - 260 .
  • carrier assembly 100 be utilized in different portions of assembly line 200 or for any other suitable manufacturing assembly line or other process, for all or portions thereof.
  • the circuit board 12 is loaded onto the carrier assembly 100 . More specifically, bottom frame 110 is adjusted to the appropriate dimensions, core 130 is seated on bottom frame 110 , and circuit board 12 is seated on core 130 , as detailed above.
  • Top frame 120 may be disposed on and engaged to bottom frame 110 at this point, or may be omitted at this point.
  • the assembly line 200 proceeds to the solder screen printing station 220 , solder paste is applied, and at the solder paste inspection station 230 , the solder paste is inspected.
  • the components that are SMT components are positioned on the circuit board 12 via an SMT machine.
  • the PCBA 10 is scanned for failures and defects.
  • the PCBA 10 enters a reflow oven (or other suitable heating device) and is exposed to high temperatures in order to melt the solder paste and permanently connect the components that are SMT components to the circuit board 12 .
  • Core 130 due to its customization for circuit board 12 , may be configured to facilitate any or all of the above manufacturing steps, or the manufacturing steps associated with any other portions of assembly line 200 .
  • top frame 120 may be engaged to bottom frame 110 prior to the reflow station 260 , to provide vertical retention of circuit board 12 as it passes through the reflow machine.
  • Carrier assembly 100 may be removed following reflow, may be removed at any point along assembly line 200 thereafter, or may be removed at the completion of manufacturing.
  • core 130 may be replaced with a different core 130 during manufacturing to facilitate completion of various different manufacturing steps and/or bottom frame 110 (and top frame 120 , if utilized) may be adjusted in the length and/or width dimensions during manufacturing to facilitate completion of various different manufacturing steps.
  • core 130 and bottom and top frames 110 , 120 may be maintained throughout manufacture of PCBA 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A carrier assembly configured to facilitate manufacture of a printed circuit board assembly includes a bottom frame defining a generally rectangular configuration and having a length and a width. The bottom frame is adjustable to vary at least one of the length or the width thereof. The assembly further includes a core releasably positionable on the bottom frame and configured to support a circuit board thereon. A carrier assembly system includes the bottom frame and a plurality of cores. Methods of manufacturing printed circuit board assemblies utilizing carrier assemblies are also provided.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/807,154 filed Nov. 8, 2017, now U.S. Pat. No. 11,425,848, which claims the benefit of, and priority to, U.S. Provisional Patent Application No. 62/418,895, entitled “3D PRINTED CHANGEABLE CORE WITH ADJUSTABLE COMMON SMT CARRIER” and filed on Nov. 8, 2016, the entire contents of which are hereby incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates to Printed Circuit Board Assemblies (PCBAs) and, more specifically, to carriers and methods facilitating the manufacture of PCBAs that utilized, for example, Surface Mount Technology (SMT).
  • BACKGROUND
  • The process flow for manufacturing PCBAs including SMT components includes, among other steps, circuit board loading, screen printing of solder paste onto the circuit board, solder paste inspection, component pick and place, automatic optical inspection, and reflow. Throughout and/or between some of all of these process flow steps, the circuit board being manufactured is disposed on a carrier to facilitate the transport thereof.
  • Carriers currently in use are manufactured specifically for a particular circuit board and/or for a limited number of stations along the process flow. Thus, the carriers currently in use are not versatile but, rather, a different carrier is needed for each type of circuit board to be manufactured and/or for different stations along the process flow. Providing a specific carrier for each type of circuit board to be manufactured inhibits reuse of the carriers and increases costs. The need to remove the circuit board being manufactured and swap out carriers along the process flow may lead to loss of coplanarity of the circuit board throughout the manufacturing process, which may lead to manufacturing issues.
  • It would therefore be desirable to provide a carrier that is capable of being reconfigured for use with different types of circuit boards and/or at different stations along the process flow.
  • SUMMARY
  • The present disclosure provides adjustable carriers, carriers with changeable cores, and methods that enable carrier reconfiguration for use with different types of circuit boards and/or at different stations along the process flow for manufacturing PCBAs, e.g., PCBAs including SMT components. The adjustable carriers, carriers with changeable cores, and methods ensure coplanarity of the circuit board throughout the manufacturing process or portions thereof. These and other aspects and features of the present disclosure are detailed below. To the extent consistent, any of the aspects and features described herein may be used in conjunction with any or all of the other aspects and features described herein.
  • Provided in accordance with the present disclosure is a carrier assembly configured to facilitate manufacture of a printed circuit board assembly. The carrier assembly includes a bottom frame and a core. The bottom frame defines a generally rectangular configuration and has a length and a width. The bottom frame is adjustable to vary at least one of the length or the width thereof. The core is releasably positionable on the bottom frame and configured to support a circuit board thereon.
  • In an aspect of the present disclosure, the carrier assembly further includes a top frame defining a generally rectangular configuration and having a length and a width. The top frame is adjustable to vary at least one of the length or the width thereof and is releasably engagable with the bottom frame to retain the core therebetween. In such aspects, at least one clamp may be provided to releasably engage the top and bottom frames with one another.
  • In another aspect of the present disclosure, the core is customized to the circuit board configured to be supported thereon. Further, the core may be formed from a high temperature grade plastic via 3D printing.
  • In another aspect of the present disclosure, the bottom frame is formed from a metal.
  • In still another aspect of the present disclosure, the bottom frame is reusable and the carrier is disposable.
  • In yet another aspect of the present disclosure, the bottom frame is adjustable to vary each of the length and the width thereof.
  • In still yet another aspect of the present disclosure, the bottom frame is configured to retain the core in two axial directions and the core is configured to retain the circuit board in two axial dimensions.
  • A carrier assembly system configured to facilitate manufacture of a printed circuit board assembly provided in accordance with the present disclosure includes a bottom frame according to any of the aspects above or otherwise provided herein, and a plurality of cores. Each core defines a different configuration and is configured for releasable positioning on the bottom frame. Each core is configured to support a different circuit board thereon.
  • In an aspect of the present disclosure, the carrier assembly system further includes a top frame, similarly as detailed above. At least one clamp, as also detailed above, may likewise be provided.
  • In another of the present disclosure, each core is formed from a high temperature grade plastic via 3D printing.
  • A method of manufacturing a printed circuit board assembly provided in accordance with the present disclosure includes selecting a core based upon a configuration of a printed circuit board to be manufactured, adjusting a bottom frame based upon the core selected, seating the core on the bottom frame, seating a circuit board of the printed circuit board to be manufactured on the core, and moving the bottom frame through at least one assembly station.
  • In an aspect of the present disclosure, adjusting the bottom frame includes varying at least one of a length or a width of the bottom frame.
  • In another aspect of the present disclosure, the method further includes engaging a top frame on the bottom frame to retain the circuit board and the core therebetween.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views and:
  • FIG. 1A is a perspective view of a carrier assembly provided in accordance with aspects of the present disclosure, with a cover thereof removed;
  • FIG. 1B is a perspective view of the carrier assembly of FIG. 1A supporting a circuit board and including the cover disposed thereon;
  • FIG. 2 is an exploded, perspective view of the carrier assembly of FIG. 1A, including a circuit board to be supported thereon;
  • FIG. 3A is a longitudinal, cross-sectional view of one end portion of the carrier assembly of FIG. 1A, including a circuit board supported thereon and the cover removed;
  • FIG. 3B is a longitudinal, cross-sectional view of the other end portion of the carrier assembly of FIG. 1A, including a circuit board supported thereon and the cover disposed thereon; and
  • FIG. 4 is a schematic drawing of a portion of an assembly line illustrating a portion of a PCBA manufacturing process flow.
  • DETAILED DESCRIPTION
  • With reference to FIGS. 1A, 1B, and 2 , a carrier assembly provided in accordance with the present disclosure and configured for supporting a Printed Circuit Board Assembly (PCBA) 10 during at least a portion of the manufacture thereof is show generally identified by reference numeral 100. Carrier assembly 100 includes a bottom frame 110, a top frame 120, and a core 130, as detailed below. Although carrier assembly 100 is described hereinbelow as configured for use during the Surface Mount Technology (SMT) phase of PCBA manufacturing, it is contemplated that carrier assembly 100 may additionally or alternatively be utilized during other phases of PCBA manufacturing.
  • Referring to FIGS. 1A and 2 , bottom frame 110 of carrier assembly 100 defines a generally-rectangular configuration and is adjustable in the length and/or width directions thereof to enable adjustment of bottom frame 110 to suitable dimensions for a particular use. More specifically, bottom frame 110 includes a pair of side rails 112, a pair of end rails 114, and four corner brackets 116. Each corner bracket 116 includes a side rail portion 118 a and an end rail portion 118 b. The side-rail and end- rail portions 118 a, 118 b of each corner bracket 116 extend in generally perpendicular orientation relative to one another. The side rail portions 118 a of corner brackets 116 at one end of bottom frame 110 are fixedly engaged to the side rails 112 in overlapping relation thereof, while the side rail portions 118 a of corner brackets 116 at the other end of bottom frame 110 are slidably coupled to the side rails 112 in overlapping relation therewith. Alternatively, the side rail portions 118 a of corner brackets 116 at both ends of bottom frame 110 may be slidably coupled to the side rails 112 in overlapping relation thereof, or, in embodiments where length adjustment is not desired, the side rail portions 118 a of corner brackets 116 at both ends of bottom frame 110 may be fixed relative to the side rails 112.
  • In embodiments where the side rail portions 118 a of corner brackets 116 are slidably coupled to the side rails 112 at least one end of bottom frame 110, the pairs of corner brackets 116 at opposing ends of bottom frame 110 may be moved towards one another, such that the corner brackets 116 further overlap the side rails 112 slidably coupled thereto to decrease the overall length of bottom frame 110. The pairs of corner brackets 116 at opposing ends of bottom frame 110 may also be moved apart from one another, such that the corner brackets 116 expose more of the side rails 112 slidably coupled thereto to increase the overall length of bottom frame 110.
  • The end rail portions 118 b of corner brackets 116 on one side of bottom frame 110 are fixedly engaged to the end rails 114 in overlapping relation thereof, while the end rail portions 118 b of corner brackets 116 on the other side of bottom frame 110 are slidably coupled to the end rails 114 in overlapping relation therewith. Alternatively, the end rail portions 118 b of corner brackets 116 on both sides of bottom frame 110 may be slidably coupled to the end rails 114 in overlapping relation thereof, or, in embodiments where width adjustment is not desired, the end rail portions 118 b of corner brackets 116 on both sides of bottom frame 110 may be fixed relative to the end rails 114.
  • In embodiments where the end rail portions 118 b of corner brackets 116 are slidably coupled to the end rails 114 on at least one side of bottom frame 110, the pairs of corner brackets 116 at opposing sides of bottom frame 110 may be moved towards one another, such that the corner brackets 116 further overlap the end rails 114 slidably coupled thereto to decrease the overall width of bottom frame 110. The pairs of corner brackets 116 on opposing sides of bottom frame 110 may also be moved apart from one another, such that the corner brackets 116 expose more of the end rails 114 slidably coupled thereto to increase the overall width of bottom frame 110.
  • The above-detailed length and/or width adjustment of bottom frame 110 may be configured such that bottom frame 110 is continuously movable to any suitable position wherein, for example, friction-fit engagement between the corner brackets 116 and the side or end rails 112, 114, respectively, maintains the desired length or width of bottom frame 110. Alternatively, bottom frame 110 may be incrementally movable to any one of a plurality of discrete positions wherein, for example, complementary engaging features, e.g., protrusions and detents, spring pins and aperture, snap-fit components, etc., on the corner brackets 116 and the side or end rails 112, 114, respectively, maintain the length or width of bottom frame 110 at each of the discrete positions.
  • With momentary reference to FIGS. 3A and 3B, corner brackets 116 each include shelves 117 extending inwardly into bottom frame 110 from either or both of the side-rail and end- rail portions 118 a, 118 b, respectively, thereof. Alternatively or additionally, side rails 112 and/or end rails 114 may include shelves 117. Shelves 117, as detailed below, are configured to support core 130 thereon with side rails 112, end rails 114, and corner bracket 116 surrounding core 130. As such, with bottom frame 110 adjusted to the appropriate dimensions based upon the core 130 utilized, and having the core 130 seated therein as noted above, side-to-side or end-to-end motion of core 130 relative to bottom frame 110 is inhibited.
  • Referring again to FIGS. 1A and 2 , bottom frame 110 of carrier assembly 100 is configured as a reusable component and, as can be appreciated, provides versatility for use in various different applications due to the above-described length and/or width adjustability thereof. Bottom frame 110 may be formed from 3D printing or other suitable manufacturing process, e.g., traditional manufacturing process such as molding, stamping, etc. Bottom frame 110 may be formed from any suitable material(s) such as, for example, plastic, metal, etc., and may be formed from a single material or may include different portions formed from different materials and/or via different manufacturing processes.
  • Top frame 120 of carrier assembly 100 is best illustrated in FIGS. 1B and 2 . Top frame 120, in some embodiments, is not provided. In other embodiments, top frame 120 is provided but is utilized for only a portion of the manufacturing phase(s) that carrier assembly 100 is utilized. Thus, in such embodiments, top frame 120 is removed for other portions of the manufacturing phase(s). Top frame 120 is similar to bottom frame 110, defines a generally-rectangular configuration, and is adjustable in the length and/or width directions thereof, similarly as detailed above with respect to bottom frame 110 and, thus, is not described again here. Top frame 120 thus includes a pair of side rails 122, a pair of end rails 124, and four corner brackets 126.
  • Top frame 120 of carrier assembly 100 is configured as a reusable component and, like bottom frame 110, provides versatility for use in various different applications due to the above-described length and/or width adjustability thereof. Top frame 120 may be formed from 3D printing or other suitable manufacturing process, e.g., traditional manufacturing process such as molding, stamping, etc., may be formed from any suitable material(s) such as, for example, plastic, metal, etc., and may be formed from a single material or may include different portions formed from different materials and/or via different manufacturing processes.
  • Top frame 120 may additionally include shelves 127, similarly as detailed above with respect to shelves 117 of bottom frame 110. Shelves 127 may be configured to overlap edge portions of core 130 and/or may be configured to overlap edge portions of circuit board 12 of PCBA 10 in order to retain core 130 and/or circuit board 12 in the vertical direction. More specifically, top frame 120 is configured for positioning on bottom frame 110 in alignment therewith with suitable clearance defined between shelves 117 of bottom frame 110 and shelves 127 of top frame for retention of circuit board 12 and core 130 therebetween, thereby inhibiting movement of core 130 and/or circuit board 12 in the vertical direction, e.g., up or down. Together with the side-to-side and end-to-end retention provided by bottom frame 110, bottom and top frames 110, 120, respectively, thus may be utilized to inhibit movement of circuit board 12 and core 130 in all three coordinate axial directions. Of course, where vertical retention is not needed, top frame 120 may be removed and bottom frame 110 may be utilized to provide the above-detailed side-to-side and end-to-end retention.
  • Referring to FIG. 1B, bottom and top frames 110, 120, respectively, may be releasably engagable with one another in any suitable manner. For example, clamps 140 may be provided to engage bottom and top frames 110, 120, respectively, with one another. Clamps 140 may be engaged with bottom frame 110, top frame 120, may include portions on both bottom and top frames 110, 120, respectively, that are engagement with one another, or may be separate from both bottom and top frames 110, 120, respectively. Other suitable engagement structures other than clamps 140 are also contemplated such as, for example, mechanical interlocks, straps, snap-fit connections, threaded connections, etc.
  • With reference to FIGS. 1A and 2 , core 130, as noted above, is configured to be seated on bottom frame 110 and, more specifically, on shelves 117 of bottom frame 110 with side rails 112, end rails 114, and corner bracket 116 of bottom frame 110 surrounding core 130. Core 130 is configured to support circuit board 12 of PCBA 10 thereon. More specifically, core 130 is a customized component that is specific to a particular configuration of PCBA(s) 10 to be manufactured. That is, while bottom and top frames 110, 120, respectively, are length and/or width adjustable to accommodate different configurations of PCBAs 10, a customized core 130 is utilized for each PCBA configuration or group of PCBA configurations to be manufactured.
  • Core 130 is manufactured via 3D printing, which enables various different cores 130 to be customized to the particular configuration of PCBA 10 without the need for tooling or other dedicated manufacturing equipment. Each core 130, more specifically, may be 3D printed from a digital model file (e.g., created on a general purpose computer with suitable CAD software) designed based upon the configuration of the PCBA 10 to be manufactured therewith. As can be appreciated, 3D printing enables customization of core 130 to almost any configuration, including complex geometries.
  • Core 130 may be formed from a high-temperature grade 3D printing material or materials. In other embodiments, various different materials may be utilized for 3D printing core 130 or may otherwise be incorporated into the resultant core 130 protective heat shield to achieve a desired property throughout or on certain portions of core 130. For example, conductive material may be incorporated into core 130 to make core 130 at least partially conductive; reinforcing material may be incorporated into core 130 to make core 130 stronger in certain areas; higher heat-resistant material may be incorporated into core 130 to increase the thermal protection of the core 130 in certain areas; etc.
  • Referring also to FIGS. 3A and 3B, core 130, as noted above, is configured to be seated on bottom frame 110. Core 130 is removable from bottom frame 110 and may be replaced with another core 130, depending upon the configuration of the PCBA 10 to be manufactured. In this manner, core 130 is interchangeable. As noted above, when seated on bottom frame 110, core 130 is restrained from side-to-side or end-to-end motion relative to bottom frame 110. Core 130, in turn, is configured to support circuit board 12 thereon and restrain side-to-side or end-to-end motion of circuit board 12 relative to core 130 (due to the customization of core 130 for the circuit board 12) and, thus, bottom frame 110. Top frame 120, when engaged with bottom frame 110, is configured to retain core 130 and circuit board from vertical motion relative to bottom and top frames 110, 120, respectively.
  • With reference to FIG. 4 , in conjunction with FIGS. 1A and 1B, an SMT portion of an assembly line 200 for the manufacture of PCBAs, e.g., PCBA 10, is illustrated. The SMT portion of assembly line 200 includes a board loading station 210, a solder screen printing station 220, a solder paste inspection station 230, a pick and place station 240, an automatic optical inspection station 250, a reflow station 260, and a plurality of additional stations (not shown) disposed before, after, or interdisposed between stations 210-260. Although one particular portion of an assembly line is detailed below, e.g., SMT portion, it is also contemplated that carrier assembly 100 be utilized in different portions of assembly line 200 or for any other suitable manufacturing assembly line or other process, for all or portions thereof.
  • At the board loading station 210 of assembly line 200, or prior thereto, the circuit board 12 is loaded onto the carrier assembly 100. More specifically, bottom frame 110 is adjusted to the appropriate dimensions, core 130 is seated on bottom frame 110, and circuit board 12 is seated on core 130, as detailed above. Top frame 120 may be disposed on and engaged to bottom frame 110 at this point, or may be omitted at this point.
  • With the circuit board 12 loaded on the carrier assembly 100, the assembly line 200 proceeds to the solder screen printing station 220, solder paste is applied, and at the solder paste inspection station 230, the solder paste is inspected. At the pick and place station 240, the components that are SMT components are positioned on the circuit board 12 via an SMT machine. At the automatic optical inspection station 250, the PCBA 10 is scanned for failures and defects. At the reflow station 260, the PCBA 10 enters a reflow oven (or other suitable heating device) and is exposed to high temperatures in order to melt the solder paste and permanently connect the components that are SMT components to the circuit board 12.
  • Core 130, due to its customization for circuit board 12, may be configured to facilitate any or all of the above manufacturing steps, or the manufacturing steps associated with any other portions of assembly line 200. Additionally, top frame 120 may be engaged to bottom frame 110 prior to the reflow station 260, to provide vertical retention of circuit board 12 as it passes through the reflow machine. Carrier assembly 100 may be removed following reflow, may be removed at any point along assembly line 200 thereafter, or may be removed at the completion of manufacturing. Further, core 130 may be replaced with a different core 130 during manufacturing to facilitate completion of various different manufacturing steps and/or bottom frame 110 (and top frame 120, if utilized) may be adjusted in the length and/or width dimensions during manufacturing to facilitate completion of various different manufacturing steps. Alternatively, core 130 and bottom and top frames 110, 120, respectively, may be maintained throughout manufacture of PCBA 10.
  • Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.

Claims (20)

What is claimed is:
1. A carrier assembly configured to facilitate manufacture of a printed circuit board assembly, the carrier assembly comprising:
a bottom frame defining a generally rectangular configuration and having a length and a width, the bottom frame adjustable to vary at least one of the length or the width thereof; and
a core releasably positionable on the bottom frame, the core configured to support a circuit board thereon.
2. The carrier assembly according to claim 1, further comprising a top frame defining a generally rectangular configuration and having a length and a width, the top frame adjustable to vary at least one of the length or the width thereof, the top frame releasably engagable with the bottom frame to retain the core therebetween.
3. The carrier assembly according to claim 2, further comprising at least one clamp configured to releasably engage the top and bottom frames with one another.
4. The carrier assembly according to claim 1, wherein the core is customized to the circuit board configured to be supported thereon.
5. The carrier assembly according to claim 4, wherein the core is formed from a high temperature grade plastic via 3D printing.
6. The carrier assembly according to claim 1, wherein the bottom frame is formed from a metal.
7. The carrier assembly according to claim 1, wherein the bottom frame is reusable and wherein the carrier is disposable.
8. The carrier assembly according to claim 1, wherein the bottom frame is adjustable to vary each of the length and the width thereof.
9. The carrier assembly according to claim 1, wherein the bottom frame is configured to retain the core in two axial directions, and wherein the core is configured to retain the circuit board in two axial dimensions.
10. A carrier assembly system configured to facilitate manufacture of a printed circuit board assembly, the carrier assembly system comprising:
a bottom frame defining a generally rectangular configuration and having a length and a width, the bottom frame adjustable to vary at least one of the length or the width thereof; and
a plurality of cores, each core defining a different configuration and configured for releasable positioning on the bottom frame, each core configured to support a different circuit board thereon.
11. The carrier assembly system according to claim 10, wherein the at least one of the length or the width of the bottom frame is adjusted to accommodate at least two different cores of the plurality of cores.
12. The carrier assembly system according to claim 10, further comprising a top frame defining a generally rectangular configuration and having a length and a width, the top frame adjustable to vary at least one of the length or the width thereof, the top frame releasably engagable with the bottom frame to retain one of the cores of the plurality of cores therebetween.
13. The carrier assembly system according to claim 12, further comprising at least one clamp configured to releasably engage the top and bottom frames with one another.
14. The carrier assembly system according to claim 10, wherein each core is formed from a high temperature grade plastic via 3D printing.
15. The carrier assembly system according to claim 10, wherein the bottom frame is formed from a metal.
16. The carrier assembly system according to claim 10, wherein the bottom frame is reusable and wherein the carrier is disposable.
17. The carrier assembly system according to claim 10, wherein the bottom frame is adjustable to vary each of the length and the width thereof.
18. A method of manufacturing a printed circuit board assembly, the method comprising:
selecting a core based upon a configuration of a printed circuit board to be manufactured;
adjusting a bottom frame based upon the core selected;
seating the core on the bottom frame;
seating a circuit board of the printed circuit board to be manufactured on the core; and
moving the bottom frame through at least one assembly station.
19. The method according to claim 18, wherein adjusting the bottom frame includes varying at least one of a length or a width of the bottom frame.
20. The method according to claim 18, further comprising engaging a top frame on the bottom frame to retain the circuit board and the core therebetween.
US17/894,143 2016-11-08 2022-08-23 Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies Abandoned US20230068784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/894,143 US20230068784A1 (en) 2016-11-08 2022-08-23 Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662418895P 2016-11-08 2016-11-08
US15/807,154 US11425848B2 (en) 2016-11-08 2017-11-08 Adjustable carrier with changeable core
US17/894,143 US20230068784A1 (en) 2016-11-08 2022-08-23 Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/807,154 Continuation US11425848B2 (en) 2016-11-08 2017-11-08 Adjustable carrier with changeable core

Publications (1)

Publication Number Publication Date
US20230068784A1 true US20230068784A1 (en) 2023-03-02

Family

ID=62064254

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/807,154 Active 2038-09-13 US11425848B2 (en) 2016-11-08 2017-11-08 Adjustable carrier with changeable core
US17/894,143 Abandoned US20230068784A1 (en) 2016-11-08 2022-08-23 Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/807,154 Active 2038-09-13 US11425848B2 (en) 2016-11-08 2017-11-08 Adjustable carrier with changeable core

Country Status (1)

Country Link
US (2) US11425848B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113929B (en) * 2019-05-14 2020-10-02 南阳理工学院 Quick release electronic information board holder
CN115996846A (en) 2020-09-09 2023-04-21 捷普有限公司 Design enhancement type 3D printing supporting block

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948108A (en) * 1988-05-23 1990-08-14 Mcdonnell Douglas Corporation Circuit board support device
US20080084675A1 (en) * 2006-10-05 2008-04-10 Amirali Muhammad H Structure for holding a printed circuit board assembly
JP2014053613A (en) * 2012-09-07 2014-03-20 Samsung Electro-Mechanics Co Ltd Carrier jig for substrate transfer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155447A (en) * 1978-02-27 1979-05-22 Multi-Tool & Manufacturing Inc. Integrated circuit board carrier
US4614385A (en) * 1984-12-10 1986-09-30 Gendernalik Robert A Circuit board storage apparatus
US6166916A (en) * 1997-11-14 2000-12-26 Unitrend, Inc. Adjustable circuit board support frame
US6619472B2 (en) * 1998-06-15 2003-09-16 Rehm Anlagenbau Gmbh Adjusting unit
DE10047955C2 (en) * 2000-06-12 2003-05-28 Nix Inc Structure for receiving slide-in plates
JP4128115B2 (en) * 2003-07-24 2008-07-30 荏原ユージライト株式会社 Printed circuit board plating jig
TWI228955B (en) * 2003-09-30 2005-03-01 Asustek Comp Inc An adjustable fixture of frame shape
DE102011111488A1 (en) * 2011-08-30 2013-02-28 Schoeller-Electronics Gmbh PCB System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948108A (en) * 1988-05-23 1990-08-14 Mcdonnell Douglas Corporation Circuit board support device
US20080084675A1 (en) * 2006-10-05 2008-04-10 Amirali Muhammad H Structure for holding a printed circuit board assembly
JP2014053613A (en) * 2012-09-07 2014-03-20 Samsung Electro-Mechanics Co Ltd Carrier jig for substrate transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. Clot, "Low cost multi-chip modules based on single and double sided chip-on-board modules following Jedec standard specifications," Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium, Santa Clara, CA, USA, 1993, pp. 477-480. (Year: 1993) *

Also Published As

Publication number Publication date
US20180132392A1 (en) 2018-05-10
US11425848B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
US20230068784A1 (en) Adjustable carrier with changeable core and methods for manufacturing printed circuit board assemblies
CN202185661U (en) Clamp plate device of printed circuit board
US20130082042A1 (en) Welding jig and welding process for planar magnetic components
JP2011233760A (en) Solar cell assembling apparatus
JP6262867B2 (en) Electronic component mounting system
CN103645616A (en) Automatic film alignment machine
US20200180059A1 (en) Wave solder pallets for optimal solder flow and methods of manufacturing
US11516924B2 (en) Protective heat shields for thermally sensitive components and methods for protecting thermally sensitive components
KR20150021442A (en) Palette guide device of assembling apparatus
CN204094281U (en) The fixture of optic module PCB plate contact pin welding
CN112157330A (en) Circuit board welding table
JP6832675B2 (en) Pre-soldering system and method
US6493928B1 (en) Electronic unit manufacturing apparatus
JPWO2017017802A1 (en) Component mounter
EP2983458B1 (en) Method for fixing a smd semiconductor light source on a circuit board of a headlight of a vehicle
CN211128460U (en) No technology limit PCBA reflow soldering carrier
CN212095991U (en) PCB fixing frame
CN210959020U (en) A DIP tray
CN104801895A (en) Special welding machine and production line comprising same and welding method
WO1997026497A1 (en) Multiple width boat carrier for vertical ovens
CN106967944B (en) Nitriding furnace part placement frame and manufacturing method thereof
CN203658731U (en) CCD (charge coupled device) visual aligning device for film aligning machine
CN203579470U (en) Test fixture loading and unloading mechanism
CN212995206U (en) Campus television station teaching equipment
CN105819248A (en) PCB plate feeding arm control system and control method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: FLEX LTD, SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEHKRI, ZOHAIR;MOHAMMED, ANWAR;TAN, JESUS;AND OTHERS;SIGNING DATES FROM 20171103 TO 20171110;REEL/FRAME:061271/0385

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载