US20230013745A1 - Refrigerator and control method thereof - Google Patents
Refrigerator and control method thereof Download PDFInfo
- Publication number
- US20230013745A1 US20230013745A1 US17/949,588 US202217949588A US2023013745A1 US 20230013745 A1 US20230013745 A1 US 20230013745A1 US 202217949588 A US202217949588 A US 202217949588A US 2023013745 A1 US2023013745 A1 US 2023013745A1
- Authority
- US
- United States
- Prior art keywords
- condenser
- evaporator
- temperature
- excessive condensation
- evaporators
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000005494 condensation Effects 0.000 claims abstract description 153
- 238000009833 condensation Methods 0.000 claims abstract description 153
- 239000003507 refrigerant Substances 0.000 claims abstract description 121
- 230000017525 heat dissipation Effects 0.000 claims abstract description 59
- 230000004044 response Effects 0.000 claims description 89
- 238000007710 freezing Methods 0.000 claims description 17
- 230000008014 freezing Effects 0.000 claims description 17
- 239000007788 liquid Substances 0.000 description 21
- 238000001816 cooling Methods 0.000 description 20
- 230000009467 reduction Effects 0.000 description 9
- 238000005057 refrigeration Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/027—Condenser control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
- F25D11/022—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
- F25D29/005—Mounting of control devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/11—Fan speed control
- F25B2600/111—Fan speed control of condenser fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2600/00—Control issues
- F25D2600/06—Controlling according to a predetermined profile
Definitions
- the disclosure relates to a refrigerator including a condenser and a control method thereof.
- a refrigerator is a device for storing products such as food and beverages for a long time without spoiling.
- the refrigerator is generally provided with a refrigerating compartment for storing products in a refrigeration manner and a freezing compartment for storing products in a freezing manner.
- the refrigerator maintains a temperature of the storage compartment at a set target temperature by repeatedly performing a refrigeration cycle of compression-condensation-expansion-evaporation of the refrigerant. That is, based on the target temperature of each storage compartment, the refrigerator supplies air cooled by an evaporator, which is provided to correspond to each storage compartment, into each storage compartment so that the temperature of the storage compartment is maintained at the target temperature.
- an aspect of the disclosure is to provide a refrigerator capable of detecting excessive condensation in a condenser based on a temperature difference between evaporators provided in each storage compartment, and capable of controlling an operating time of a heat dissipation fan configured to cool the condenser, and a control method thereof.
- a refrigerator in accordance with an aspect of the disclosure, includes a plurality of storage compartments, a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments, a compressor configured to compress a refrigerant evaporated by the plurality of evaporators, a condenser configured to condense the compressed refrigerant, a heat dissipation fan configured to cool the condenser, a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators, and a controller configured to determine whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators, and control an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
- the controller may be further configured to adjust an off-time of the heat dissipation fan to be increased.
- the controller may be further configured to determine that the excessive condensation occurs in the condenser.
- the plurality of storage compartments may include a refrigerating compartment, and a freezing compartment.
- the plurality of evaporators may include a first evaporator configured to receive a refrigerant from the condenser and provided to correspond to the refrigerating compartment, and a second evaporator configured to receive a refrigerant from the first evaporator and provided to correspond to the freezing compartment.
- the controller may be further configured to determine whether the excessive condensation occurs in the condenser based on a temperature difference between the first evaporator and the second evaporator.
- the controller may be further configured to determine that the excessive condensation occurs in the condenser.
- the controller may be further configured to determine whether the excessive condensation occurs in the condenser at a predetermined time interval.
- the refrigerator may further include an external temperature sensor configured to detect an external temperature of outside air.
- the controller may be further configured to determine whether the excessive condensation occurs in the condenser.
- the refrigerator may further include a plurality of internal temperature sensors configured to detect an internal temperature of each of the plurality of storage compartments.
- the controller may be further configured to determine to start an operation for determining whether the excessive condensation occurs in the condenser based on an internal temperature of a reference storage compartment corresponding to a reference evaporator located at an end with respect to a refrigerant flow, between the plurality of evaporators.
- the controller may be further configured to determine whether the excessive condensation occurs in the condenser.
- the controller may be further configured to identify whether the internal temperature of the reference storage compartment is greater than or equal to a reference temperature.
- a control method of a refrigerator includes a plurality of storage compartments, a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments, a compressor configured to compress a refrigerant evaporated by the plurality of evaporators, a condenser configured to condense the compressed refrigerant, a heat dissipation fan configured to cool the condenser, and a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators, the control method including determining whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators, and controlling an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
- the controlling of the operating time of the heat dissipation fan may include, in response to the determination that the excessive condensation occurs in the condenser, adjusting an off-time of the heat dissipation fan to be increased.
- the determining of whether excessive condensation occurs in the condenser may include, in response to a temperature difference between the plurality of evaporators being greater than or equal to a predetermined value, determining that the excessive condensation occurs in the condenser.
- the plurality of storage compartments may include a refrigerating compartment and a freezing compartment.
- the plurality of evaporators may include a first evaporator configured to receive a refrigerant from the condenser and provided to correspond to the refrigerating compartment and a second evaporator configured to receive a refrigerant from the first evaporator and provided to correspond to the freezing compartment.
- the determining of whether excessive condensation occurs in the condenser may include determining whether the excessive condensation occurs in the condenser based on a temperature difference between the first evaporator and the second evaporator.
- the determining of whether excessive condensation occurs in the condenser may include, in response to the temperature difference between the plurality of evaporators being greater than or equal to the predetermined value for a predetermined time, determining that the excessive condensation occurs in the condenser.
- a refrigerator and a control method thereof may detect excessive condensation in a condenser based on a temperature difference between evaporators provided in each storage compartment, and may control an operating time of a heat dissipation fan configured to cool the condenser, thereby prevent a reduction in a cooling performance of each storage compartment.
- FIG. 1 is a view illustrating an exterior of a refrigerator according to an embodiment of the disclosure
- FIG. 2 is a view illustrating a cooler forming the refrigerator according to an embodiment of the disclosure
- FIG. 3 is a control block diagram illustrating the refrigerator according to an embodiment of the disclosure.
- FIG. 4 is a graph illustrating an example of an output of an evaporator temperature sensor according to an embodiment of the disclosure
- FIG. 5 is a table illustrating an operation of a heat dissipation fan according to an embodiment of the disclosure
- FIG. 6 is a table illustrating a state in which the refrigerator determines whether excessive condensation occurs according to an embodiment of the disclosure
- FIG. 7 is a flowchart illustrating a state of reducing the excessive condensation in a condenser in a control method of the refrigerator according to an embodiment of the disclosure.
- FIG. 8 is a flowchart illustrating a state of determining the excessive condensation in the condenser in the control method of the refrigerator according to an embodiment of the disclosure.
- first, second, third, etc. may be used herein to describe various elements, but elements are not limited by these terms. These terms are only used to distinguish one element from another element. For example, without departing from the scope of the disclosure, a first element may be termed as a second element, and a second element may be termed as a first element.
- ⁇ unit, “part”, “block”, “member”, and “module” indicate a unit for processing at least one function or operation.
- those terms may refer to at least one process processed by at least one hardware such as Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), at least one software stored in a memory or a processor.
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- FIG. 1 is a view illustrating an exterior of a refrigerator according to an embodiment of the disclosure.
- FIG. 2 is a view illustrating a cooler forming the refrigerator according to an embodiment of the disclosure.
- a refrigerator 1 includes a main body 10 forming an exterior of the refrigerator 1 , a storage compartment 11 storing stored items, and a cooler 100 configured to cool the storage compartment 11 .
- a duct (not shown), through which air cooled by the cooler 100 flows, may be arranged in an inner space of the main body 10 , and a machine room (not shown) in which a portion of the cooler 100 may be installed and may be arranged below the main body 10 .
- a plurality of storage compartments 11 in which stored items are stored may be arranged in the main body 10 .
- the storage compartment 11 may be partitioned left and right with an intermediate partition wall interposed therebetween and thus the storage compartment 11 may be divided into a first storage compartment 11 a configured to store items in a refrigeration manner and a second storage compartment 11 b configured to store items in a freezing manner.
- a front surface of the first storage compartment 11 a and the second storage compartment 11 b may be opened.
- the number of storage compartments 11 may be not limited thereto, and two or more storage compartments 11 may be separated by a partition wall and provided in the main body 10 , and a target temperature of each storage compartment 11 may be set differently.
- two storage compartments 11 a and 11 b provided in the main body 10 will be described as an example.
- a blower fan 13 may be arranged in each of the plurality of storage compartments 11 .
- the blower fan 13 circulates air between the duct inside the main body 10 and the storage compartment 11 .
- the blower fan 13 may supply air cooled by an evaporator 180 provided in the duct to the storage compartment 11 and suck air to the duct, in which the evaporator 180 may be arranged, to cool the air in the storage compartment 11 .
- the blower fan 13 may include a first blower fan 13 a provided to correspond to the first storage compartment 11 a and configured to circulate air between the duct, which may be provided in the first storage compartment 11 a , and the first storage compartment 11 a , and a second blower fan 13 b provided to correspond to the second storage compartment 11 b and configured to circulate between the duct, which may be provided in the second storage compartment 11 b , and the second storage compartment 11 b.
- each storage compartment 11 may be provided with an internal temperature sensor 130 configured to detect a temperature of the storage compartment 11 .
- the internal temperature sensor 130 may include a first internal temperature sensor 130 a arranged in the first storage compartment 11 a to detect a temperature of the first storage compartment 11 a and transmit the temperature of the first storage compartment 11 a to a controller described later, and a second internal temperature sensor 130 b provided in the second storage compartment 11 b to detect a temperature of the second storage compartment 11 b and transmit the temperature of the second storage compartment 11 b to the controller.
- the internal temperature sensor 130 may employ a thermistor in which an electrical resistance changes according to temperature.
- the main body 10 may be provided with a door 12 configured to shield the storage compartment 11 , in which the front surface may be opened, from outside air.
- the main body 10 may include a first door 12 a configured to shield the first storage compartment 11 a from outside air and a second door 12 b configured to shield the second storage compartment 11 b from outside air.
- the door 12 may be provided with a display configured to display operation information of the refrigerator 1 and an inputter configured to receive an operation command from a user.
- the cooler 100 may include a compressor 150 , a condenser 160 , a heat dissipation fan 170 , the evaporator 180 , and an expansion valve 190 .
- the motor of the compressor 150 may employ an induction AC servo motor, a synchronous AC servo motor, or a brushless direct current (BLDC) motor.
- BLDC brushless direct current
- the refrigerant may circulate through the condenser 160 , the expansion valve 190 and the evaporator 180 through the pressure of the compressor 150 .
- the compressor 150 may play the most important role in the cooler 100 for cooling the storage compartment 11 , and that the cooler 100 may be driven may mean that the compressor 150 may be driven.
- the condenser 160 may be installed in the machine room 14 arranged below the main body 10 or may be installed in the outside of the main body 10 , particularly, at the rear of the refrigerator 1 .
- a temperature of the condenser 160 may be increased due to the latent heat radiated by the refrigerant as described above, and thus a separate heat dissipation fan 170 configured to cool the condenser 160 may be provided.
- the heat dissipation fan 170 may be arranged on one side of the condenser 160 .
- the refrigerant condensed by the condenser 160 may be transferred to the evaporator 180 .
- the refrigerant condensed by the condenser 160 may pass through both the first evaporator 180 a configured to cool the first storage compartment 11 a and the second evaporator 180 b configured to cool the second storage compartment 11 b.
- the pressure of the refrigerant condensed by the condenser 160 may be reduced by the expansion valve 190 .
- the expansion valve 190 reduces the pressure of the refrigerant to a certain pressure capable of causing evaporation.
- the throttling means that when the fluid passes through a narrow passage such as a nozzle or an orifice, the pressure decreases without heat exchange with the outside air.
- the expansion valve 190 may be positioned at the front end of the evaporator 180 with respect to a refrigerant flow.
- the expansion valve 190 may include a first expansion valve 190 a positioned at the front end of the first evaporator 180 a and a second expansion valve 190 b positioned at the front end of the second evaporator 180 b.
- the evaporator 180 may be provided in the duct provided in the inner space of the body 10 as described above, so as to evaporate the low-pressure liquid refrigerant decompressed by the expansion valve 190 .
- the liquid refrigerant absorbs latent heat from the evaporator 180 while being evaporated.
- the evaporator 180 may be deprived of heat energy by the refrigerant and then cooled. Accordingly, air around the evaporator 180 may be cooled by the cooled evaporator 180 .
- the evaporator 180 may be provided with a plurality of evaporators 180 a and 180 b corresponding to each of the plurality of storage compartments 11 , and the plurality of evaporators 180 a and 180 b may be connected in series with each other.
- the evaporator 180 may be provided in a number corresponding to the number of the storage compartments 11 , and may be arranged in series with each other.
- the evaporator 180 may include a first evaporator 180 a arranged in the first storage compartment 11 a to cool the first storage compartment 11 a , and a second evaporator 180 b arranged in the second storage compartment 11 b to cool the second storage compartment 11 b .
- the first evaporator 180 a and the second evaporator 180 b may be arranged in series with each other.
- the refrigerant condensed by the condenser 160 may pass through the first evaporator 180 a and be transferred to the second evaporator 180 b.
- the low-pressure gaseous refrigerant evaporated by the evaporator 180 may be supplied to the above-described compressor 150 , again and the refrigeration cycle may be repeated.
- the refrigerant may circulate sequentially through the compressor 150 , the condenser 160 , and the evaporator 180 and accordingly, the storage compartment 11 may be cooled.
- the liquid refrigerant which may be evaporated in the evaporator 180 to perform heat exchange with air, becomes insufficient, and as a result, cooling of the storage compartment 11 may be delayed or a cooling performance thereof may be reduced.
- the condenser 160 may condense the gaseous refrigerant more than that of a normal state.
- the temperature difference between the refrigerant and a heat exchange target may be increased, and then excessive condensation, in which the refrigerant may be condensed more than that of the normal state, may occur.
- the liquid refrigerant at the condenser 160 side may be increased in comparison with a normal condition.
- the amount of liquid refrigerant between an inlet ⁇ circle around (a) ⁇ of the condenser 160 and a point ⁇ circle around (b) ⁇ before entering the plurality of evaporators 180 may be greater than that of the normal condition, as shown in FIG. 2 .
- the liquid refrigerant at the evaporator 180 side may be reduced in comparison with the normal condition.
- the amount of liquid refrigerant between a point ⁇ circle around (c) ⁇ entering the plurality of evaporators 180 and a point ⁇ circle around (d) ⁇ discharged from the plurality of evaporators 180 may be less than that of the normal condition, as shown in FIG. 2 .
- the liquid refrigerant to be evaporated for the heat exchange may be insufficient in the evaporator (for example, 180 b ) that may be located at the end of the plurality of evaporators 180 , which may be connected in series, with respect to the flow of the refrigerant. Accordingly, the cooling performance in the storage compartment (for example, 11 b ) may be reduced.
- the refrigerator 1 may determine whether the excessive condensation occurs in the condenser 160 based on the temperature difference between the plurality of evaporators 180 , and the refrigerator 1 may control the heat dissipation fan 170 to cool the condenser 160 so as to eliminate the excessive condensation.
- the evaporator temperature sensor 110 may employ a thermistor in which an electrical resistance changes according to temperature.
- an external temperature sensor (not shown) configured to detect an external temperature of the refrigerator 1 may be provided on an outer wall of the main body 10 .
- the external temperature sensor may be installed to be spaced apart from the ground by a predetermined distance, and may be installed on an upper outer wall of the refrigerator 1 .
- FIG. 3 is a control block diagram illustrating the refrigerator 1 according to an embodiment of the disclosure.
- the refrigerator 1 may include the evaporator temperature sensor 110 configured to detect the temperature of the evaporator 180 , the external temperature sensor 120 configured to detect a temperature of the outside of the refrigerator 1 , the internal temperature sensor 130 configured to detect the inside of the storage compartment 11 , the controller 140 configured to determine the excessive condensation in the condenser 160 and configured to control the heat dissipation fan 170 so as to reduce the excessive condensation, the compressor 150 , the condenser 160 , the heat dissipation fan 170 , and the evaporator 180 .
- the evaporator temperature sensor 110 , the external temperature sensor 120 , the internal temperature sensor 130 , the compressor 150 , the condenser 160 , the heat dissipation fan 170 , and the evaporator 180 have been described and thus the description thereof will be omitted.
- the controller 140 may be configured to manage operation of the refrigerator 1 , and the controller 140 may be configured to control each configuration of the refrigerator 1 to allow the refrigerator 1 to efficiently performs its functions.
- An operation of the controller 140 may be roughly classified into a cooling operation for cooling the storage compartment 11 and an excessive condensation response operation for reducing the excessive condensation by determining the excessive condensation of the condenser 160 .
- the controller 140 may drive the compressor 150 , the condenser 160 , the evaporator 180 , and the blower fan 13 based on the detection result of the internal temperature sensor 130 , thereby cooling the storage compartment 11 at a target temperature.
- the controller 140 may compare an internal temperature of the storage compartment 11 with the target temperature based on the detection result of the internal temperature sensor 130 , and in response to the internal temperature of the storage compartment 11 being greater than the target temperature, the controller 140 may drive the compressor 150 , the condenser 160 and the evaporator 180 , thereby performing the refrigeration cycle.
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 based on a temperature difference between the plurality of evaporators 180 .
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 .
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to a value, which may be obtained by subtracting a temperate of the evaporator, which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow, from a temperate of the evaporator, which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, being greater than or equal to the predetermined value.
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to a value, which may be obtained by subtracting the temperate of the first evaporator 180 a from the temperature of the second evaporator 180 b , being greater than or equal to the predetermined value (for example, 15° C.).
- the supply of liquid refrigerant to the plurality of evaporators 180 may become insufficient, and accordingly, the cooling performance in the evaporator 180 may be reduced.
- the plurality of evaporators 180 may be connected in series with each other, and thus as the evaporator may be located at the end position with respect to the refrigerant flow, the cooling performance may be further reduced, in comparison with the normal condition.
- the temperature of the evaporator (for example, the evaporator on the freezing compartment), which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, may be greater than the temperature of the evaporator (for example, the evaporator on the refrigerating compartment), which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow.
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 in response to the temperature difference between the plurality of evaporators 180 being greater than or equal to the predetermined value for a predetermined time.
- the controller 140 may control an operating time of the heat dissipation fan 170 based on whether or not the excessive condensation occurs in the condenser 160 .
- the controller 140 may adjust an off-time of the heat dissipation fan 170 to be increased.
- the heat dissipation fan 170 may be driven to cool the condenser 160 in which the temperature may be increased due to the latent heat radiated by the refrigerant.
- the temperature difference between the refrigerant and the heat exchange target for example, outside air
- the temperature difference between the refrigerant and the heat exchange target may be more increased, which causes the excessive condensation in the condenser 160 .
- the controller 140 may start to determine whether or not the excessive condensation occurs in the condenser 160 based on at least one of a reference time, an external temperature, and an internal temperature.
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 again in response to elapse of the reference time after the determination of whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 at a predetermined time interval. In other words, the controller 140 may periodically determine whether the excessive condensation occurs in the condenser 160 , and for this, the controller 140 may periodically identify the temperature difference between the plurality of evaporators 180 .
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 in response to the external temperature of the refrigerator 1 being less than or equal to a reference external temperature (for example, 27° C.) based on the output of the external temperature sensor 120 .
- a reference external temperature for example, 27° C.
- the condenser 160 may be installed in the machine room 14 or the outside of the main body 10 , particularly at the rear side of the refrigerator 1 , and thus the condenser 160 may be affected by the external temperature. In response to a reduction in the external temperature, the temperature difference between the refrigerant and the heat dissipation target (for example outside air) may be increased and thus the refrigerant may be more condensed in the condenser 160 in comparison with the normal condition.
- the heat dissipation target for example outside air
- the refrigerator 1 may use the external temperature as a trigger for determining the excessive condensation, and the controller 140 may periodically determine whether the excessive condensation occurs in response to the external temperature being less than or equal to the predetermined temperature, or the controller 140 may determine whether the excessive condensation occurs in further consideration of the internal temperature of the refrigerator, which will be described later.
- the controller 140 may determine to start an operation for determining whether the excessive condensation occurs in the condenser 160 , based on the internal temperature of the reference storage compartment corresponding to the reference evaporator located on the end of the plurality of evaporators 180 with respect to the refrigerant flow.
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may select the second storage compartment 11 b as the reference storage compartment, and start the operation for determining whether the excessive condensation occurs, in response to an internal temperature of the second storage compartment 11 b being greater than or equal to a predetermined internal temperature (for example, —10° C.).
- a predetermined internal temperature for example, —10° C.
- the cooling performance may be reduced in the second evaporator 180 b located at the end position between first evaporator 180 a and the second evaporator 180 b with respect to the refrigerant flow.
- the refrigerator 1 may estimate that the excessive condensation occurs in the condenser 160 in response to an internal temperature of the second storage compartment 11 b , which corresponds to the second evaporator 180 b located at the end position with respect to the refrigerant flow, being greater than or equal to a predetermined temperature.
- the refrigerator 1 may start a series of operations for determining whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may identify whether an internal temperature of the reference storage compartment may be greater than or equal to a reference temperature.
- the refrigerator 1 may determine that the internal temperature of the storage compartment 11 does not reach the target temperature, and the refrigerator 1 may compare the internal temperature of the reference storage compartment with the reference internal temperature so as to determine whether to perform the determination of the occurrence of the excessive condensation in the condenser 160 .
- the controller 140 may determine whether to start the operation for determining of the excessive condensation in consideration of the internal temperature.
- the controller 140 may include at least one memory in which a program for performing the above-described operation or an operation to be described later and various data necessary for executing the program are stored, and at least processor configured to execute the store program.
- FIG. 4 is a graph illustrating an example of an output of the evaporator temperature sensor 110 according to an embodiment of the disclosure.
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 based on the temperature difference between the plurality of evaporators 180 .
- the controller 140 may determine that excessive condensation occurs in the condenser 160 .
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to a value, which may be obtained by subtracting a temperate of the evaporator, which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow, from a temperate of the evaporator, which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, being greater than or equal to the predetermined value.
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to a value ⁇ T, which may be obtained by subtracting the temperate of the first evaporator 180 a from the temperature of the second evaporator 180 b , being greater than or equal to the predetermined value (for example, 15° C.).
- a value ⁇ T which may be obtained by subtracting the temperate of the first evaporator 180 a from the temperature of the second evaporator 180 b , being greater than or equal to the predetermined value (for example, 15° C.).
- the supply of liquid refrigerant to the plurality of evaporators 180 may become insufficient, and accordingly, the cooling performance in the evaporator 180 may be reduced.
- the plurality of evaporators 180 may be connected in series with each other, and thus as the evaporator may be located at the end position with respect to the refrigerant flow, the cooling performance may be further reduced, in comparison with the normal condition.
- the temperature of the evaporator (for example, the evaporator on the freezing compartment), which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, may be greater than the temperature of the evaporator (for example, the evaporator on the refrigerating compartment), which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow.
- the value which may be obtained by subtracting the temperate of the evaporator, which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow, from the temperate of the evaporator, which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, may be greater than or equal to the predetermined value, and accordingly, the refrigerator 1 may determine whether the excessive condensation occurs in the condenser 160 .
- the temperature of the first evaporator 180 a corresponding to the first storage compartment 11 a corresponding to the refrigerating compartment and the temperature of the second evaporator 180 b corresponding to the second storage compartment 11 b corresponding to the freezing compartment may be maintained at ⁇ 15° C. and ⁇ 30° C., respectively, under normal conditions in which the excessive condensation does not occur in the condenser 160 , and the temperature difference ⁇ T between the first evaporator 180 a and the second evaporator 180 b may be maintained at a predetermined value.
- a value obtained by subtracting the temperature of the first evaporator 180 a from the temperature of the second evaporator 180 b may be a positive number, and the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to the value, which may be obtained by subtracting the temperature of the first evaporator 180 a from the temperature of the second evaporator 180 b , being greater than or equal to the predetermined value (for example, 15° C.).
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 in response to the temperature difference between the plurality of evaporators 180 being greater than or equal to the predetermined value for a predetermined time.
- FIG. 5 is a table illustrating an operation of the heat dissipation fan 170 according to an embodiment of the disclosure.
- the controller 140 may control the operating time of the heat dissipation fan 170 based on whether or not the excessive condensation occurs in the condenser 160 .
- the controller 140 may adjust the off-time of the heat dissipation fan 170 to be increased.
- the off-time of the heat dissipation fan 170 in the excessive condensation condition may be increased in comparison with the normal operation in which the condenser 160 may be in the normal condition, and as a result, the period in which the heat dissipation fan 170 may be turned on may become longer.
- the heat dissipation fan 170 may be driven to cool the condenser 160 in which the temperature may be increased due to latent heat radiated by the refrigerant.
- the temperature difference between the refrigerant and the heat exchange target for example, outside air
- the temperature difference between the refrigerant and the heat exchange target may be more increased, which causes the excessive condensation in the condenser 160 .
- the refrigerator 1 may intermittently drive the heat dissipation fan 170 in response to the occurrence of the excessive condensation in the condenser 160 , so as to prevent the continuous operation of the heat dissipation fan 170 . Accordingly, the refrigerator 1 may reduce the excessive condensation in the condenser 160 .
- FIG. 6 is a table illustrating a state in which the refrigerator 1 determines whether the excessive condensation occurs according to an embodiment of the disclosure.
- the controller 140 may start to determine whether or not the excessive condensation occurs in the condenser 160 based on at least one of a reference time, an external temperature, and an internal temperature.
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 again in response to elapse of the reference time after the determination of whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 at a predetermined time interval. In other words, the controller 140 may periodically determine whether the excessive condensation occurs in the condenser 160 , and for this, the controller 140 may periodically identify the temperature difference between the plurality of evaporators 180 .
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 in response to the external temperature of the refrigerator 1 being less than or equal to the reference external temperature (for example, 27° C.) based on the output of the external temperature sensor 120 .
- the condenser 160 may be installed in the machine room 14 or the outside of the main body 10 , particularly at the rear side of the refrigerator 1 , and thus the condenser 160 may be affected by the external temperature. In response to a reduction in the external temperature, the temperature difference between the refrigerant and the heat dissipation target (for example outside air) may be increased and thus the refrigerant may be more condensed in the condenser 160 in comparison with the normal condition.
- the heat dissipation target for example outside air
- the refrigerator 1 may use the external temperature as a trigger for determining the excessive condensation, and the controller 140 may periodically determine whether the excessive condensation occurs in response to the external temperature being less than or equal to the predetermined temperature, or the controller 140 may determine whether the excessive condensation occurs in further consideration of the internal temperature of the refrigerator.
- the controller 140 may determine to start the operation for determining whether the excessive condensation occurs in the condenser 160 , based on the internal temperature of the reference storage compartment corresponding to the reference evaporator located on the end of the plurality of evaporators 180 with respect to the refrigerant flow.
- the controller 140 may determine whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may select the second storage compartment 11 b as the reference storage compartment, and start the operation for determining whether the excessive condensation occurs, in response to an internal temperature of the second storage compartment 11 b being greater than or equal to a predetermined internal temperature (for example, —10° C.).
- a predetermined internal temperature for example, —10° C.
- the cooling performance may be reduced in the second evaporator 180 b located at the end position between first evaporator 180 a and the second evaporator 180 b with respect to the refrigerant flow.
- the refrigerator 1 may estimate that the excessive condensation occurs in the condenser 160 in response to an internal temperature of the second storage compartment 11 b , which corresponds to the second evaporator 180 b located at the end position with respect to the refrigerant flow, being greater than or equal to the predetermined temperature.
- the refrigerator 1 may start a series of operations for determining whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may identify whether an internal temperature of the reference storage compartment may be greater than or equal to the reference temperature.
- the refrigerator 1 may determine that the internal temperature of the storage compartment 11 does not reach the target temperature, and the refrigerator 1 may compare the internal temperature of the reference storage compartment with the reference internal temperature so as to determine whether to perform the determination of the occurrence of the excessive condensation in the condenser 160 .
- the controller 140 may determine whether to start the operation for determining of the excessive condensation based on the internal temperature.
- the controller 140 may start to determine whether the excessive condensation occurs in the condenser 160 based on both the external temperature and the internal temperature.
- the controller 160 may start to determine whether the excessive condensation occurs in the condenser 160 .
- the refrigerator 1 according to the above-described embodiment may be used for the control method of the refrigerator 1 . Accordingly, the contents described above with reference to FIGS. 1 to 6 may be equally applied to the control method of the refrigerator 1 .
- FIG. 7 is a flowchart illustrating a state of reducing the excessive condensation in the condenser in a control method of the refrigerator 1 according to an embodiment of the disclosure.
- the refrigerator 1 in response to the temperature difference between the plurality of evaporators 180 being greater than or equal to the predetermined value (yes at operation 710 ), the refrigerator 1 according to one embodiment may adjust the off-time of the heat dissipation fan 170 to be increased at operation 720 .
- the controller 140 may determine that excessive condensation occurs in the condenser 160 .
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to a value, which may be obtained by subtracting a temperate of the evaporator, which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow, from a temperate of the evaporator, which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, being greater than or equal to the predetermined value.
- the controller 140 may determine that the excessive condensation occurs in the condenser 160 , in response to a value, which may be obtained by subtracting the temperate of the first evaporator 180 a from the temperature of the second evaporator 180 b , being greater than or equal to the predetermined value (for example, 15° C.).
- the supply of liquid refrigerant to the plurality of evaporators 180 may become insufficient, and accordingly, the cooling performance in the evaporator 180 may be reduced.
- the plurality of evaporators 180 may be connected in series with each other, and thus as the evaporator may be located at the end position with respect to the refrigerant flow, the cooling performance may be further reduced, in comparison with the normal condition.
- the temperature of the evaporator (for example, the evaporator on the freezing compartment), which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, may be greater than the temperature of the evaporator (for example, the evaporator on the refrigerating compartment), which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow.
- the value which may be obtained by subtracting the temperate of the evaporator, which may be located at the front end of the plurality of evaporators 180 with respect to the refrigerant flow, from the temperate of the evaporator, which may be located at the rear end of the plurality of evaporators 180 with respect to the refrigerant flow, may be greater than or equal to the predetermined value, and accordingly, the refrigerator 1 may determine whether the excessive condensation occurs in the condenser 160 .
- the controller 140 may adjust the off-time of the heat dissipation fan 170 to be increased.
- the heat dissipation fan 170 may be driven to cool the condenser 160 in which the temperature may be increased due to latent heat radiated by the refrigerant.
- the temperature difference between the refrigerant and the heat exchange target for example, outside air
- the temperature difference between the refrigerant and the heat exchange target may be more increased, which causes the excessive condensation in the condenser 160 .
- the refrigerator 1 may intermittently drive the heat dissipation fan 170 in response to the occurrence of the excessive condensation in the condenser 160 , so as to prevent the continuous operation of the heat dissipation fan 170 . Accordingly, the refrigerator 1 may reduce the excessive condensation in the condenser 160 .
- FIG. 8 is a flowchart illustrating a state of determining the excessive condensation in the condenser 160 in the control method of the refrigerator 1 according to an embodiment of the disclosure.
- the refrigerator 1 in response to the external temperature being less than or equal to the reference external temperature (yes at operation 810 ), in response to the continuous operation of the compressor 150 for the predetermined time (yes at operation 820 ), and in response to the internal temperature of the reference storage compartment being greater than or equal to the reference internal temperature (yes at operation 830 ), the refrigerator 1 according to one embodiment may identify the temperature difference between the plurality of evaporators 180 at operation 840 and the refrigerator 1 may determine whether the excessive condensation occurs in the condenser 160 based on the identified temperature difference at operation 850 .
- the refrigerator 1 may start to determine whether the excessive condensation occurs in the condenser 160 in consideration of both the external temperature and the internal temperature.
- the refrigerator 1 may start to determine whether the excessive condensation occurs in the condenser 160 in consideration of both the external temperature and the internal temperature.
- the refrigerator 1 may determine that the internal temperature of the storage compartment 11 does not reach the target temperature, and the refrigerator 1 may compare the internal temperature of the reference storage compartment with the reference internal temperature so as to determine whether to perform the determination of the occurrence of the excessive condensation in the condenser 160 .
- the refrigerator 1 may start to periodically determine whether the excessive condensation occurs in the condenser 160 , irrespective of the external temperature and the internal temperature, or the refrigerator 1 may start to determine whether the excessive condensation occurs in the condenser 160 in consideration of the external temperature or the internal temperature.
- the disclosed embodiments may be embodied in the form of a recording medium storing instructions executable by a computer.
- the instructions may be stored in the form of program code and, when executed by a processor, may generate a program module to perform the operations of the disclosed embodiments.
- the recording medium may be embodied as a computer-readable recording medium.
- the computer-readable recording medium includes all kinds of recording media in which instructions which can be decoded by a computer are stored.
- ROM Read Only Memory
- RAM Random Access Memory
- magnetic tape a magnetic tape
- magnetic disk a magnetic disk
- flash memory a flash memory
- optical data storage device an optical data storage device
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
A refrigerator configured to detect excessive condensation in a condenser based on a temperature difference between evaporators provided in each storage compartment, and configured to control an operating time of a heat dissipation fan configured to cool the condenser, and a control method thereof are provided. The refrigerator includes a plurality of storage compartments, a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments, a compressor configured to compress a refrigerant evaporated by the plurality of evaporators, a condenser configured to condense the compressed refrigerant, a heat dissipation fan configured to cool the condenser, a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators, and a controller configured to determine whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators, and configured to control an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
Description
- This application is a continuation application, claiming priority under § 365(c), of an International application No. PCT/KR2021/001651, filed on Feb. 8, 2021, which is based on and claims the benefit of a Korean patent application number 10-2020-0036863, filed on Mar. 26, 2020, in the Korean Intellectual Property Office, the disclosure of which is incorporated by reference herein in its entirety.
- The disclosure relates to a refrigerator including a condenser and a control method thereof.
- A refrigerator is a device for storing products such as food and beverages for a long time without spoiling. The refrigerator is generally provided with a refrigerating compartment for storing products in a refrigeration manner and a freezing compartment for storing products in a freezing manner.
- The refrigerator maintains a temperature of the storage compartment at a set target temperature by repeatedly performing a refrigeration cycle of compression-condensation-expansion-evaporation of the refrigerant. That is, based on the target temperature of each storage compartment, the refrigerator supplies air cooled by an evaporator, which is provided to correspond to each storage compartment, into each storage compartment so that the temperature of the storage compartment is maintained at the target temperature.
- However, if excessive condensation occurs in a condenser, an amount of circulating refrigerant may be reduced because a relatively large amount of liquid refrigerant flows toward the condenser. Accordingly, the supply of liquid refrigerant to the evaporator is delayed, which causes a reduction in a cooling performance or which causes the delay in a cooling operation, and thus it is difficult to maintain the storage compartment at the target temperature.
- The above information is presented as background information only to assist with an understanding of the disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the disclosure.
- Aspects of the disclosure are to address at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the disclosure is to provide a refrigerator capable of detecting excessive condensation in a condenser based on a temperature difference between evaporators provided in each storage compartment, and capable of controlling an operating time of a heat dissipation fan configured to cool the condenser, and a control method thereof.
- Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
- In accordance with an aspect of the disclosure, a refrigerator is provided. The refrigerator includes a plurality of storage compartments, a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments, a compressor configured to compress a refrigerant evaporated by the plurality of evaporators, a condenser configured to condense the compressed refrigerant, a heat dissipation fan configured to cool the condenser, a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators, and a controller configured to determine whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators, and control an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
- In response to the determination that the excessive condensation occurs in the condenser, the controller may be further configured to adjust an off-time of the heat dissipation fan to be increased.
- In response to a temperature difference between the plurality of evaporators being greater than or equal to a predetermined value, the controller may be further configured to determine that the excessive condensation occurs in the condenser.
- The plurality of storage compartments may include a refrigerating compartment, and a freezing compartment. The plurality of evaporators may include a first evaporator configured to receive a refrigerant from the condenser and provided to correspond to the refrigerating compartment, and a second evaporator configured to receive a refrigerant from the first evaporator and provided to correspond to the freezing compartment. The controller may be further configured to determine whether the excessive condensation occurs in the condenser based on a temperature difference between the first evaporator and the second evaporator.
- In response to the temperature difference between the plurality of evaporators being greater than or equal to the predetermined value for a predetermined time, the controller may be further configured to determine that the excessive condensation occurs in the condenser.
- The controller may be further configured to determine whether the excessive condensation occurs in the condenser at a predetermined time interval.
- The refrigerator may further include an external temperature sensor configured to detect an external temperature of outside air. In response to the external temperature being less than or equal to a reference temperature, the controller may be further configured to determine whether the excessive condensation occurs in the condenser.
- The refrigerator may further include a plurality of internal temperature sensors configured to detect an internal temperature of each of the plurality of storage compartments. The controller may be further configured to determine to start an operation for determining whether the excessive condensation occurs in the condenser based on an internal temperature of a reference storage compartment corresponding to a reference evaporator located at an end with respect to a refrigerant flow, between the plurality of evaporators.
- In response to the internal temperature of the reference storage compartment being greater than or equal to a reference temperature, the controller may be further configured to determine whether the excessive condensation occurs in the condenser.
- In response to a continuous operation of the compressor for a predetermined time, the controller may be further configured to identify whether the internal temperature of the reference storage compartment is greater than or equal to a reference temperature.
- In accordance with another aspect of the disclosure, a control method of a refrigerator is provided. The control method includes a plurality of storage compartments, a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments, a compressor configured to compress a refrigerant evaporated by the plurality of evaporators, a condenser configured to condense the compressed refrigerant, a heat dissipation fan configured to cool the condenser, and a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators, the control method including determining whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators, and controlling an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
- The controlling of the operating time of the heat dissipation fan may include, in response to the determination that the excessive condensation occurs in the condenser, adjusting an off-time of the heat dissipation fan to be increased.
- The determining of whether excessive condensation occurs in the condenser may include, in response to a temperature difference between the plurality of evaporators being greater than or equal to a predetermined value, determining that the excessive condensation occurs in the condenser.
- The plurality of storage compartments may include a refrigerating compartment and a freezing compartment. The plurality of evaporators may include a first evaporator configured to receive a refrigerant from the condenser and provided to correspond to the refrigerating compartment and a second evaporator configured to receive a refrigerant from the first evaporator and provided to correspond to the freezing compartment. The determining of whether excessive condensation occurs in the condenser may include determining whether the excessive condensation occurs in the condenser based on a temperature difference between the first evaporator and the second evaporator.
- The determining of whether excessive condensation occurs in the condenser may include, in response to the temperature difference between the plurality of evaporators being greater than or equal to the predetermined value for a predetermined time, determining that the excessive condensation occurs in the condenser.
- A refrigerator and a control method thereof may detect excessive condensation in a condenser based on a temperature difference between evaporators provided in each storage compartment, and may control an operating time of a heat dissipation fan configured to cool the condenser, thereby prevent a reduction in a cooling performance of each storage compartment.
- Other aspects, advantages, and salient features of the disclosure will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses various embodiments of the disclosure.
- The above and other aspects, features, and advantages of certain embodiments of the disclosure will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 is a view illustrating an exterior of a refrigerator according to an embodiment of the disclosure; -
FIG. 2 is a view illustrating a cooler forming the refrigerator according to an embodiment of the disclosure; -
FIG. 3 is a control block diagram illustrating the refrigerator according to an embodiment of the disclosure; -
FIG. 4 is a graph illustrating an example of an output of an evaporator temperature sensor according to an embodiment of the disclosure; -
FIG. 5 is a table illustrating an operation of a heat dissipation fan according to an embodiment of the disclosure; -
FIG. 6 is a table illustrating a state in which the refrigerator determines whether excessive condensation occurs according to an embodiment of the disclosure; -
FIG. 7 is a flowchart illustrating a state of reducing the excessive condensation in a condenser in a control method of the refrigerator according to an embodiment of the disclosure; and -
FIG. 8 is a flowchart illustrating a state of determining the excessive condensation in the condenser in the control method of the refrigerator according to an embodiment of the disclosure. - Throughout the drawings, it should be noted that like reference numbers are used to depict the same or similar elements, features, and structures.
- The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of various embodiments of the disclosure as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the various embodiments described herein can be made without departing from the scope and spirit of the disclosure. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
- The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the disclosure. Accordingly, it should be apparent to those skilled in the art that the following description of various embodiments of the disclosure is provided for illustration purpose only and not for the purpose of limiting the disclosure as defined by the appended claims and their equivalents.
- It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces.
- It will be understood that when an element is referred to as being “connected” another element, it can be directly or indirectly connected to the other element, wherein the indirect connection includes “connection via a wireless communication network”.
- Also, the terms used herein are used to describe the embodiments and are not intended to limit and/or restrict the disclosure. The singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. In this disclosure, the terms “including”, “having”, and the like are used to specify features, numbers, steps, operations, elements, components, or combinations thereof, but do not preclude the presence or addition of one or more of the features, elements, steps, operations, elements, components, or combinations thereof.
- It will be understood that, although the terms first, second, third, etc., may be used herein to describe various elements, but elements are not limited by these terms. These terms are only used to distinguish one element from another element. For example, without departing from the scope of the disclosure, a first element may be termed as a second element, and a second element may be termed as a first element.
- In the following description, terms such as “unit”, “part”, “block”, “member”, and “module” indicate a unit for processing at least one function or operation. For example, those terms may refer to at least one process processed by at least one hardware such as Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), at least one software stored in a memory or a processor.
- An identification code is used for the convenience of the description but is not intended to illustrate the order of each step. Each step may be implemented in the order different from the illustrated order unless the context clearly indicates otherwise.
- Reference will now be made in detail to embodiments of the disclosure, examples of which are illustrated in the accompanying drawings.
-
FIG. 1 is a view illustrating an exterior of a refrigerator according to an embodiment of the disclosure. -
FIG. 2 is a view illustrating a cooler forming the refrigerator according to an embodiment of the disclosure. - Referring to
FIGS. 1 and 2 , arefrigerator 1 according to one embodiment includes amain body 10 forming an exterior of therefrigerator 1, astorage compartment 11 storing stored items, and a cooler 100 configured to cool thestorage compartment 11. - A duct (not shown), through which air cooled by the cooler 100 flows, may be arranged in an inner space of the
main body 10, and a machine room (not shown) in which a portion of the cooler 100 may be installed and may be arranged below themain body 10. - A plurality of
storage compartments 11 in which stored items are stored may be arranged in themain body 10. - In an embodiment, as shown in
FIG. 1 , thestorage compartment 11 may be partitioned left and right with an intermediate partition wall interposed therebetween and thus thestorage compartment 11 may be divided into afirst storage compartment 11 a configured to store items in a refrigeration manner and asecond storage compartment 11 b configured to store items in a freezing manner. A front surface of thefirst storage compartment 11 a and thesecond storage compartment 11 b may be opened. - The number of storage compartments 11 may be not limited thereto, and two or more storage compartments 11 may be separated by a partition wall and provided in the
main body 10, and a target temperature of eachstorage compartment 11 may be set differently. Hereinafter, for convenience of description, twostorage compartments main body 10 will be described as an example. - A
blower fan 13 may be arranged in each of the plurality of storage compartments 11. Theblower fan 13 circulates air between the duct inside themain body 10 and thestorage compartment 11. Theblower fan 13 may supply air cooled by anevaporator 180 provided in the duct to thestorage compartment 11 and suck air to the duct, in which theevaporator 180 may be arranged, to cool the air in thestorage compartment 11. - The
blower fan 13 may include afirst blower fan 13 a provided to correspond to thefirst storage compartment 11 a and configured to circulate air between the duct, which may be provided in thefirst storage compartment 11 a, and thefirst storage compartment 11 a, and asecond blower fan 13 b provided to correspond to thesecond storage compartment 11 b and configured to circulate between the duct, which may be provided in thesecond storage compartment 11 b, and thesecond storage compartment 11 b. - In addition, each
storage compartment 11 may be provided with aninternal temperature sensor 130 configured to detect a temperature of thestorage compartment 11. - In an embodiment, as shown in
FIG. 1 , theinternal temperature sensor 130 may include a firstinternal temperature sensor 130 a arranged in thefirst storage compartment 11 a to detect a temperature of thefirst storage compartment 11 a and transmit the temperature of thefirst storage compartment 11 a to a controller described later, and a secondinternal temperature sensor 130 b provided in thesecond storage compartment 11 b to detect a temperature of thesecond storage compartment 11 b and transmit the temperature of thesecond storage compartment 11 b to the controller. - The
internal temperature sensor 130 may employ a thermistor in which an electrical resistance changes according to temperature. - In addition, the
main body 10 may be provided with adoor 12 configured to shield thestorage compartment 11, in which the front surface may be opened, from outside air. - The
main body 10 may include afirst door 12 a configured to shield thefirst storage compartment 11 a from outside air and asecond door 12 b configured to shield thesecond storage compartment 11 b from outside air. - The
door 12 may be provided with a display configured to display operation information of therefrigerator 1 and an inputter configured to receive an operation command from a user. - The cooler 100 may include a
compressor 150, acondenser 160, aheat dissipation fan 170, theevaporator 180, and anexpansion valve 190. - The
compressor 150 may be installed in themachine room 14 arranged below themain body 10. By using a rotational force of a motor that rotates by receiving electric energy from an external power source, thecompressor 150 converts a low-pressure gaseous refrigerant, which may be evaporated by theevaporator 180, into a high-pressure gaseous refrigerant and transfer the high-pressure gaseous refrigerant to thecondenser 160. - A motor (not shown) of the
compressor 150 receives a driving current under the control of the controller to be described later and rotates a rotating shaft through magnetic interaction between a rotor and a stator. A rotational force generated by the motor may be converted into a linear motion by a piston (not shown) of thecompressor 150, and a gaseous refrigerant may be compressed to a high pressure through the linear motion of the piston. In addition, the rotational force generated by the motor of thecompressor 150 may be transferred to a rotary blade connected to the rotating shaft of the motor, and the stick-slip phenomenon between the rotary blade and a container (not shown) of thecompressor 150 may compress the gaseous refrigerant into a high pressure. - The motor of the
compressor 150 may employ an induction AC servo motor, a synchronous AC servo motor, or a brushless direct current (BLDC) motor. - The refrigerant may circulate through the
condenser 160, theexpansion valve 190 and theevaporator 180 through the pressure of thecompressor 150. Thecompressor 150 may play the most important role in the cooler 100 for cooling thestorage compartment 11, and that the cooler 100 may be driven may mean that thecompressor 150 may be driven. - The
condenser 160 may be installed in themachine room 14 arranged below themain body 10 or may be installed in the outside of themain body 10, particularly, at the rear of therefrigerator 1. - The gaseous refrigerant compressed by the
compressor 150 may be condensed while passing through thecondenser 160, and then the gaseous refrigerant may be changed into a liquid phase. While the refrigerant may be condensed, the refrigerant radiates latent heat to thecondenser 160. The latent heat of the refrigerant refers to heat energy that may be radiated to the outside air while a gaseous refrigerant, which may be cooled to the boiling point, may be changed into a liquid refrigerant at the same temperature. In addition, heat energy absorbed from the outside air while the liquid refrigerant heated to the boiling point may be changed into a gaseous refrigerant at the same temperature, may refers to the latent heat. - A temperature of the
condenser 160 may be increased due to the latent heat radiated by the refrigerant as described above, and thus a separateheat dissipation fan 170 configured to cool thecondenser 160 may be provided. In therefrigerator 1, theheat dissipation fan 170 may be arranged on one side of thecondenser 160. - The refrigerant condensed by the
condenser 160 may be transferred to theevaporator 180. For example, the refrigerant condensed by thecondenser 160 may pass through both thefirst evaporator 180 a configured to cool thefirst storage compartment 11 a and thesecond evaporator 180 b configured to cool thesecond storage compartment 11 b. - The pressure of the refrigerant condensed by the
condenser 160 may be reduced by theexpansion valve 190. By throttling the high-pressure liquid refrigerant, theexpansion valve 190 reduces the pressure of the refrigerant to a certain pressure capable of causing evaporation. The throttling means that when the fluid passes through a narrow passage such as a nozzle or an orifice, the pressure decreases without heat exchange with the outside air. - In addition, the
expansion valve 190 may adjust an amount of refrigerant provided to theevaporator 180 to allow the refrigerant to absorb sufficient heat in theevaporator 180. In addition, an opening and closing degree of theexpansion valve 190 may be controlled by the controller to be described later. - The
expansion valve 190 may be positioned at the front end of theevaporator 180 with respect to a refrigerant flow. For example, theexpansion valve 190 may include afirst expansion valve 190 a positioned at the front end of thefirst evaporator 180 a and asecond expansion valve 190 b positioned at the front end of thesecond evaporator 180 b. - The
evaporator 180 may be provided in the duct provided in the inner space of thebody 10 as described above, so as to evaporate the low-pressure liquid refrigerant decompressed by theexpansion valve 190. The liquid refrigerant absorbs latent heat from theevaporator 180 while being evaporated. Theevaporator 180 may be deprived of heat energy by the refrigerant and then cooled. Accordingly, air around theevaporator 180 may be cooled by the cooledevaporator 180. - The
evaporator 180 may be provided with a plurality ofevaporators evaporators evaporator 180 may be provided in a number corresponding to the number of the storage compartments 11, and may be arranged in series with each other. - For example, the
evaporator 180 may include afirst evaporator 180 a arranged in thefirst storage compartment 11 a to cool thefirst storage compartment 11 a, and asecond evaporator 180 b arranged in thesecond storage compartment 11 b to cool thesecond storage compartment 11 b. Thefirst evaporator 180 a and thesecond evaporator 180 b may be arranged in series with each other. The refrigerant condensed by thecondenser 160 may pass through thefirst evaporator 180 a and be transferred to thesecond evaporator 180 b. - The low-pressure gaseous refrigerant evaporated by the
evaporator 180 may be supplied to the above-describedcompressor 150, again and the refrigeration cycle may be repeated. The refrigerant may circulate sequentially through thecompressor 150, thecondenser 160, and theevaporator 180 and accordingly, thestorage compartment 11 may be cooled. - As an amount of the refrigerant circulating in the refrigeration cycle may be reduced, the liquid refrigerant, which may be evaporated in the
evaporator 180 to perform heat exchange with air, becomes insufficient, and as a result, cooling of thestorage compartment 11 may be delayed or a cooling performance thereof may be reduced. - Particularly, in response to a reduction in the temperature of the
machine room 14 or in response to an increase in an amount of heat exchange in theevaporator 180 caused by frequent opening and closing of thedoor 12, thecondenser 160 may condense the gaseous refrigerant more than that of a normal state. In response to the reduction in the temperature of themachine room 14 or in response to the increase in the amount of heat exchange in theevaporator 180 caused by frequent opening and closing of thedoor 12, the temperature difference between the refrigerant and a heat exchange target may be increased, and then excessive condensation, in which the refrigerant may be condensed more than that of the normal state, may occur. - In other words, in response to the occurrence of the excessive condensation in the
condenser 160, the amount of refrigerant circulating in the refrigeration cycle may be reduced and the liquid refrigerant supplied to theevaporator 180 may become insufficient. Accordingly, the heat exchange in theevaporator 180 may be delayed and thus the supply of cold air to thestorage compartment 11 may be delayed. - In response to the occurrence of the excessive condensation in the
condenser 160, the liquid refrigerant at thecondenser 160 side may be increased in comparison with a normal condition. In an excessive condensation condition in which in the excessive condensation occurs in thecondenser 160, the amount of liquid refrigerant between an inlet {circle around (a)} of thecondenser 160 and a point {circle around (b)} before entering the plurality ofevaporators 180 may be greater than that of the normal condition, as shown inFIG. 2 . - In contrast, in response to the occurrence of the excessive condensation in the
condenser 160, the liquid refrigerant at theevaporator 180 side may be reduced in comparison with the normal condition. In the excessive condensation condition, in which the excessive condensation occurs in thecondenser 160, the amount of liquid refrigerant between a point {circle around (c)} entering the plurality ofevaporators 180 and a point {circle around (d)} discharged from the plurality ofevaporators 180 may be less than that of the normal condition, as shown inFIG. 2 . - That is, because the amount of refrigerant charged in the
refrigerator 1 may be constant, the liquid refrigerant on thecondenser 160 side may be increased in response to the occurrence of the excessive condensation in thecondenser 160, and thus the liquid refrigerant on theevaporator 180 side may become relatively insufficient. - The liquid refrigerant to be evaporated for the heat exchange may be insufficient in the evaporator (for example, 180 b) that may be located at the end of the plurality of
evaporators 180, which may be connected in series, with respect to the flow of the refrigerant. Accordingly, the cooling performance in the storage compartment (for example, 11 b) may be reduced. - The
refrigerator 1 according to one embodiment may determine whether the excessive condensation occurs in thecondenser 160 based on the temperature difference between the plurality ofevaporators 180, and therefrigerator 1 may control theheat dissipation fan 170 to cool thecondenser 160 so as to eliminate the excessive condensation. - To this, an
evaporator temperature sensor 110 configured to detect the temperature of each of the plurality ofevaporators 180 may be provided on one side of each of the plurality ofevaporators 180. Theevaporator temperature sensor 110 may be a defrost sensor configured to defrost. - The
evaporator temperature sensor 110 may include a firstevaporator temperature sensor 110 a configured to detect the temperature of thefirst evaporator 180 a and a secondevaporator temperature sensor 110 b configured to detect the temperature of thesecond evaporator 180 b. - The
evaporator temperature sensor 110 may employ a thermistor in which an electrical resistance changes according to temperature. - In addition, an external temperature sensor (not shown) configured to detect an external temperature of the
refrigerator 1 may be provided on an outer wall of themain body 10. The external temperature sensor may be installed to be spaced apart from the ground by a predetermined distance, and may be installed on an upper outer wall of therefrigerator 1. - The external temperature sensor may employ a thermistor in which an electrical resistance changes according to temperature.
- Hereinafter the control of the
refrigerator 1 will be described in detail, and particularly, the determination of the excessive condensation in thecondenser 160 and the control of theheat dissipation fan 170 to reduce the excessive condensation will be described in detail. -
FIG. 3 is a control block diagram illustrating therefrigerator 1 according to an embodiment of the disclosure. - Referring to
FIG. 3 , therefrigerator 1 according to one embodiment may include theevaporator temperature sensor 110 configured to detect the temperature of theevaporator 180, theexternal temperature sensor 120 configured to detect a temperature of the outside of therefrigerator 1, theinternal temperature sensor 130 configured to detect the inside of thestorage compartment 11, thecontroller 140 configured to determine the excessive condensation in thecondenser 160 and configured to control theheat dissipation fan 170 so as to reduce the excessive condensation, thecompressor 150, thecondenser 160, theheat dissipation fan 170, and theevaporator 180. - The
evaporator temperature sensor 110, theexternal temperature sensor 120, theinternal temperature sensor 130, thecompressor 150, thecondenser 160, theheat dissipation fan 170, and theevaporator 180 have been described and thus the description thereof will be omitted. - The
controller 140 may be configured to manage operation of therefrigerator 1, and thecontroller 140 may be configured to control each configuration of therefrigerator 1 to allow therefrigerator 1 to efficiently performs its functions. - An operation of the
controller 140 may be roughly classified into a cooling operation for cooling thestorage compartment 11 and an excessive condensation response operation for reducing the excessive condensation by determining the excessive condensation of thecondenser 160. - The
controller 140 according to one embodiment may drive thecompressor 150, thecondenser 160, theevaporator 180, and theblower fan 13 based on the detection result of theinternal temperature sensor 130, thereby cooling thestorage compartment 11 at a target temperature. - The
controller 140 may compare an internal temperature of thestorage compartment 11 with the target temperature based on the detection result of theinternal temperature sensor 130, and in response to the internal temperature of thestorage compartment 11 being greater than the target temperature, thecontroller 140 may drive thecompressor 150, thecondenser 160 and theevaporator 180, thereby performing the refrigeration cycle. - The
controller 140 according to one embodiment may determine whether the excessive condensation occurs in thecondenser 160 based on a temperature difference between the plurality ofevaporators 180. - In response to the temperature difference between the plurality of
evaporators 180 being greater than or equal to a predetermined value, thecontroller 140 may determine that the excessive condensation occurs in thecondenser 160. - Particularly, the
controller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to a value, which may be obtained by subtracting a temperate of the evaporator, which may be located at the front end of the plurality ofevaporators 180 with respect to the refrigerant flow, from a temperate of the evaporator, which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, being greater than or equal to the predetermined value. - The
controller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to a value, which may be obtained by subtracting the temperate of thefirst evaporator 180 a from the temperature of thesecond evaporator 180 b, being greater than or equal to the predetermined value (for example, 15° C.). - As described above, in response to the occurrence of the excessive condensation in the
condenser 160, the supply of liquid refrigerant to the plurality ofevaporators 180 may become insufficient, and accordingly, the cooling performance in theevaporator 180 may be reduced. At this time, the plurality ofevaporators 180 may be connected in series with each other, and thus as the evaporator may be located at the end position with respect to the refrigerant flow, the cooling performance may be further reduced, in comparison with the normal condition. - As mentioned, in response to the occurrence of the excessive condensation in the
condenser 160, the temperature of the evaporator (for example, the evaporator on the freezing compartment), which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, may be greater than the temperature of the evaporator (for example, the evaporator on the refrigerating compartment), which may be located at the front end of the plurality ofevaporators 180 with respect to the refrigerant flow. - The value, which may be obtained by subtracting the temperate of the evaporator, which may be located at the front end of the plurality of
evaporators 180 with respect to the refrigerant flow, from the temperate of the evaporator, which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, may be greater than or equal to the predetermined value, and accordingly, therefrigerator 1 may determine whether the excessive condensation occurs in thecondenser 160. - According to an embodiment, the
controller 140 may determine that the excessive condensation occurs in thecondenser 160 in response to the temperature difference between the plurality ofevaporators 180 being greater than or equal to the predetermined value for a predetermined time. - The
controller 140 according to one embodiment may control an operating time of theheat dissipation fan 170 based on whether or not the excessive condensation occurs in thecondenser 160. - Particularly, in response to the determination that the excessive condensation occurs in the
condenser 160, thecontroller 140 may adjust an off-time of theheat dissipation fan 170 to be increased. - As a time, in which the
heat dissipation fan 170 may be turned off, becomes longer than that of the normal condition, a period in which theheat dissipation fan 170 may be turned on may become longer. - The
heat dissipation fan 170 may be driven to cool thecondenser 160 in which the temperature may be increased due to the latent heat radiated by the refrigerant. However, in response to the continuous operation of theheat dissipation fan 170, in a state in which the temperature difference between the refrigerant and the heat exchange target (for example, outside air) may be increased caused by the decrease of the temperature of the machine room 14 (external temperature drop) and the increase of the amount of heat exchange in the evaporator 180 (refrigerant temperature rise) due to frequent opening and closing of thedoor 12, the temperature difference between the refrigerant and the heat exchange target may be more increased, which causes the excessive condensation in thecondenser 160. - Accordingly, the
refrigerator 1 according to one embodiment may intermittently drive theheat dissipation fan 170 in response to the occurrence of the excessive condensation in thecondenser 160, so as to prevent the continuous operation of theheat dissipation fan 170. Accordingly, therefrigerator 1 may reduce the excessive condensation in thecondenser 160. - The
controller 140 according to one embodiment may start to determine whether or not the excessive condensation occurs in thecondenser 160 based on at least one of a reference time, an external temperature, and an internal temperature. - Particularly, according to embodiments, the
controller 140 may determine whether the excessive condensation occurs in thecondenser 160 again in response to elapse of the reference time after the determination of whether the excessive condensation occurs in thecondenser 160. Thecontroller 140 may determine whether the excessive condensation occurs in thecondenser 160 at a predetermined time interval. In other words, thecontroller 140 may periodically determine whether the excessive condensation occurs in thecondenser 160, and for this, thecontroller 140 may periodically identify the temperature difference between the plurality ofevaporators 180. - Further, according to embodiments, the
controller 140 may determine whether the excessive condensation occurs in thecondenser 160 in response to the external temperature of therefrigerator 1 being less than or equal to a reference external temperature (for example, 27° C.) based on the output of theexternal temperature sensor 120. - The
condenser 160 may be installed in themachine room 14 or the outside of themain body 10, particularly at the rear side of therefrigerator 1, and thus thecondenser 160 may be affected by the external temperature. In response to a reduction in the external temperature, the temperature difference between the refrigerant and the heat dissipation target (for example outside air) may be increased and thus the refrigerant may be more condensed in thecondenser 160 in comparison with the normal condition. - The
refrigerator 1 according to the disclosure may use the external temperature as a trigger for determining the excessive condensation, and thecontroller 140 may periodically determine whether the excessive condensation occurs in response to the external temperature being less than or equal to the predetermined temperature, or thecontroller 140 may determine whether the excessive condensation occurs in further consideration of the internal temperature of the refrigerator, which will be described later. - In addition, according to embodiments, the
controller 140 may determine to start an operation for determining whether the excessive condensation occurs in thecondenser 160, based on the internal temperature of the reference storage compartment corresponding to the reference evaporator located on the end of the plurality ofevaporators 180 with respect to the refrigerant flow. - Particularly, in response to the internal temperature of the reference storage compartment being greater than or equal to the predetermined temperature, the
controller 140 may determine whether the excessive condensation occurs in thecondenser 160. - In the state in which the plurality of storage compartments 11 may be provided with the
first storage compartment 11 a corresponding to the refrigerating compartment and thesecond storage compartment 11 b corresponding to the freezing compartment, thecontroller 140 may select thesecond storage compartment 11 b as the reference storage compartment, and start the operation for determining whether the excessive condensation occurs, in response to an internal temperature of thesecond storage compartment 11 b being greater than or equal to a predetermined internal temperature (for example, —10° C.). - In response to the occurrence of the excessive condensation in the
condenser 160, the cooling performance may be reduced in thesecond evaporator 180 b located at the end position betweenfirst evaporator 180 a and thesecond evaporator 180 b with respect to the refrigerant flow. - Accordingly, the
refrigerator 1 according to the disclosure, may estimate that the excessive condensation occurs in thecondenser 160 in response to an internal temperature of thesecond storage compartment 11 b, which corresponds to thesecond evaporator 180 b located at the end position with respect to the refrigerant flow, being greater than or equal to a predetermined temperature. Therefrigerator 1 may start a series of operations for determining whether the excessive condensation occurs in thecondenser 160. - According to an embodiment, in response to the continuous operation of the
compressor 150 for a predetermined time (for example, 2 hours), thecontroller 140 may identify whether an internal temperature of the reference storage compartment may be greater than or equal to a reference temperature. - In response to the continuous operation of the
compressor 150, therefrigerator 1 according to the disclosure may determine that the internal temperature of thestorage compartment 11 does not reach the target temperature, and therefrigerator 1 may compare the internal temperature of the reference storage compartment with the reference internal temperature so as to determine whether to perform the determination of the occurrence of the excessive condensation in thecondenser 160. - According to another embodiment, in response to the external temperature being less than or equal to a predetermined temperature, the
controller 140 may determine whether to start the operation for determining of the excessive condensation in consideration of the internal temperature. - The
controller 140 may include at least one memory in which a program for performing the above-described operation or an operation to be described later and various data necessary for executing the program are stored, and at least processor configured to execute the store program. -
FIG. 4 is a graph illustrating an example of an output of theevaporator temperature sensor 110 according to an embodiment of the disclosure. - The
controller 140 according to one embodiment may determine whether the excessive condensation occurs in thecondenser 160 based on the temperature difference between the plurality ofevaporators 180. - In response to the temperature difference between the plurality of
evaporators 180 being greater than or equal to a predetermined value, thecontroller 140 may determine that excessive condensation occurs in thecondenser 160. - Particularly, the
controller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to a value, which may be obtained by subtracting a temperate of the evaporator, which may be located at the front end of the plurality ofevaporators 180 with respect to the refrigerant flow, from a temperate of the evaporator, which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, being greater than or equal to the predetermined value. - The
controller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to a value ΔT, which may be obtained by subtracting the temperate of thefirst evaporator 180 a from the temperature of thesecond evaporator 180 b, being greater than or equal to the predetermined value (for example, 15° C.). - As described above, in response to the occurrence of the excessive condensation in the
condenser 160, the supply of liquid refrigerant to the plurality ofevaporators 180 may become insufficient, and accordingly, the cooling performance in theevaporator 180 may be reduced. At this time, the plurality ofevaporators 180 may be connected in series with each other, and thus as the evaporator may be located at the end position with respect to the refrigerant flow, the cooling performance may be further reduced, in comparison with the normal condition. - As mentioned, in response to the occurrence of the excessive condensation in the
condenser 160, the temperature of the evaporator (for example, the evaporator on the freezing compartment), which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, may be greater than the temperature of the evaporator (for example, the evaporator on the refrigerating compartment), which may be located at the front end of the plurality ofevaporators 180 with respect to the refrigerant flow. - The value, which may be obtained by subtracting the temperate of the evaporator, which may be located at the front end of the plurality of
evaporators 180 with respect to the refrigerant flow, from the temperate of the evaporator, which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, may be greater than or equal to the predetermined value, and accordingly, therefrigerator 1 may determine whether the excessive condensation occurs in thecondenser 160. - The temperature of the
first evaporator 180 a corresponding to thefirst storage compartment 11 a corresponding to the refrigerating compartment and the temperature of thesecond evaporator 180 b corresponding to thesecond storage compartment 11 b corresponding to the freezing compartment may be maintained at −15° C. and −30° C., respectively, under normal conditions in which the excessive condensation does not occur in thecondenser 160, and the temperature difference ΔT between thefirst evaporator 180 a and thesecond evaporator 180 b may be maintained at a predetermined value. - At this time, in response to the occurrence of the excessive condensation in the
condenser 160, the temperature of thesecond evaporator 180 b may be increased, in comparison with the normal condition, due to a reduction in the cooling performance. Because thesecond evaporator 180 b may be located at the end in the serial arrangement of the plurality ofevaporators 180, the shortage of the liquid refrigerant may be the most severe, and thus the temperature of thesecond evaporator 180 b may be greater than the temperature of thefirst evaporator 180 a. - Accordingly, in response to the occurrence of the excessive condensation in the
condenser 160, a value obtained by subtracting the temperature of thefirst evaporator 180 a from the temperature of thesecond evaporator 180 b may be a positive number, and thecontroller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to the value, which may be obtained by subtracting the temperature of thefirst evaporator 180 a from the temperature of thesecond evaporator 180 b, being greater than or equal to the predetermined value (for example, 15° C.). - According to an embodiment, the
controller 140 may determine that the excessive condensation occurs in thecondenser 160 in response to the temperature difference between the plurality ofevaporators 180 being greater than or equal to the predetermined value for a predetermined time. -
FIG. 5 is a table illustrating an operation of theheat dissipation fan 170 according to an embodiment of the disclosure. - Referring to
FIG. 5 , thecontroller 140 according to one embodiment may control the operating time of theheat dissipation fan 170 based on whether or not the excessive condensation occurs in thecondenser 160. - Particularly, in response to the determination that the excessive condensation occurs in the
condenser 160, thecontroller 140 may adjust the off-time of theheat dissipation fan 170 to be increased. - As a time, in which the
heat dissipation fan 170 may be turned off, becomes longer than that of the normal condition, a period in which theheat dissipation fan 170 may be turned on may become longer. - The off-time of the
heat dissipation fan 170 in the excessive condensation condition may be increased in comparison with the normal operation in which thecondenser 160 may be in the normal condition, and as a result, the period in which theheat dissipation fan 170 may be turned on may become longer. - The
heat dissipation fan 170 may be driven to cool thecondenser 160 in which the temperature may be increased due to latent heat radiated by the refrigerant. However, in response to the continuous operation of theheat dissipation fan 170, in a state in which the temperature difference between the refrigerant and the heat exchange target (for example, outside air) may be increased caused by the decrease of the temperature of the machine room 14 (external temperature drop) and the increase of the amount of heat exchange in the evaporator 180 (refrigerant temperature rise) due to frequent opening and closing of thedoor 12, the temperature difference between the refrigerant and the heat exchange target may be more increased, which causes the excessive condensation in thecondenser 160. - Accordingly, the
refrigerator 1 according to the disclosure may intermittently drive theheat dissipation fan 170 in response to the occurrence of the excessive condensation in thecondenser 160, so as to prevent the continuous operation of theheat dissipation fan 170. Accordingly, therefrigerator 1 may reduce the excessive condensation in thecondenser 160. -
FIG. 6 is a table illustrating a state in which therefrigerator 1 determines whether the excessive condensation occurs according to an embodiment of the disclosure. - Referring to
FIG. 6 , thecontroller 140 according to one embodiment may start to determine whether or not the excessive condensation occurs in thecondenser 160 based on at least one of a reference time, an external temperature, and an internal temperature. - Particularly, according to embodiments, the
controller 140 may determine whether the excessive condensation occurs in thecondenser 160 again in response to elapse of the reference time after the determination of whether the excessive condensation occurs in thecondenser 160. Thecontroller 140 may determine whether the excessive condensation occurs in thecondenser 160 at a predetermined time interval. In other words, thecontroller 140 may periodically determine whether the excessive condensation occurs in thecondenser 160, and for this, thecontroller 140 may periodically identify the temperature difference between the plurality ofevaporators 180. - Further, according to embodiments, the
controller 140 may determine whether the excessive condensation occurs in thecondenser 160 in response to the external temperature of therefrigerator 1 being less than or equal to the reference external temperature (for example, 27° C.) based on the output of theexternal temperature sensor 120. - The
condenser 160 may be installed in themachine room 14 or the outside of themain body 10, particularly at the rear side of therefrigerator 1, and thus thecondenser 160 may be affected by the external temperature. In response to a reduction in the external temperature, the temperature difference between the refrigerant and the heat dissipation target (for example outside air) may be increased and thus the refrigerant may be more condensed in thecondenser 160 in comparison with the normal condition. - The
refrigerator 1 according to the disclosure may use the external temperature as a trigger for determining the excessive condensation, and thecontroller 140 may periodically determine whether the excessive condensation occurs in response to the external temperature being less than or equal to the predetermined temperature, or thecontroller 140 may determine whether the excessive condensation occurs in further consideration of the internal temperature of the refrigerator. - In addition, according to embodiments, the
controller 140 may determine to start the operation for determining whether the excessive condensation occurs in thecondenser 160, based on the internal temperature of the reference storage compartment corresponding to the reference evaporator located on the end of the plurality ofevaporators 180 with respect to the refrigerant flow. - Particularly, in response to the internal temperature of the reference storage compartment being greater than or equal to the predetermined temperature, the
controller 140 may determine whether the excessive condensation occurs in thecondenser 160. - In the state in which the plurality of storage compartments 11 may be provided with the
first storage compartment 11 a corresponding to the refrigerating compartment and thesecond storage compartment 11 b corresponding to the freezing compartment, thecontroller 140 may select thesecond storage compartment 11 b as the reference storage compartment, and start the operation for determining whether the excessive condensation occurs, in response to an internal temperature of thesecond storage compartment 11 b being greater than or equal to a predetermined internal temperature (for example, —10° C.). - In response to the occurrence of the excessive condensation in the
condenser 160, the cooling performance may be reduced in thesecond evaporator 180 b located at the end position betweenfirst evaporator 180 a and thesecond evaporator 180 b with respect to the refrigerant flow. - Accordingly, the
refrigerator 1 according to the disclosure, may estimate that the excessive condensation occurs in thecondenser 160 in response to an internal temperature of thesecond storage compartment 11 b, which corresponds to thesecond evaporator 180 b located at the end position with respect to the refrigerant flow, being greater than or equal to the predetermined temperature. Therefrigerator 1 may start a series of operations for determining whether the excessive condensation occurs in thecondenser 160. - According to an embodiment, in response to the continuous operation of the
compressor 150 for a predetermined time (for example, 2 hours), thecontroller 140 may identify whether an internal temperature of the reference storage compartment may be greater than or equal to the reference temperature. - In response to the continuous operation of the
compressor 150, therefrigerator 1 according to the disclosure may determine that the internal temperature of thestorage compartment 11 does not reach the target temperature, and therefrigerator 1 may compare the internal temperature of the reference storage compartment with the reference internal temperature so as to determine whether to perform the determination of the occurrence of the excessive condensation in thecondenser 160. - According to another embodiment, in response to the external temperature being less than or equal to the predetermined temperature, the
controller 140 may determine whether to start the operation for determining of the excessive condensation based on the internal temperature. Thecontroller 140 may start to determine whether the excessive condensation occurs in thecondenser 160 based on both the external temperature and the internal temperature. In other words, in response to the external temperature being less than or equal to the reference external temperature (for example, 27° C.) and in response to the internal temperature of the reference storage compartment being greater than or equal to the reference internal temperature (for example, −10° C.), thecontroller 160 may start to determine whether the excessive condensation occurs in thecondenser 160. - Hereinafter an embodiment of a control method of the
refrigerator 1 according to an aspect will be described. Therefrigerator 1 according to the above-described embodiment may be used for the control method of therefrigerator 1. Accordingly, the contents described above with reference toFIGS. 1 to 6 may be equally applied to the control method of therefrigerator 1. -
FIG. 7 is a flowchart illustrating a state of reducing the excessive condensation in the condenser in a control method of therefrigerator 1 according to an embodiment of the disclosure. - Referring to
FIG. 7 , in response to the temperature difference between the plurality ofevaporators 180 being greater than or equal to the predetermined value (yes at operation 710), therefrigerator 1 according to one embodiment may adjust the off-time of theheat dissipation fan 170 to be increased atoperation 720. - In response to the temperature difference between the plurality of
evaporators 180 being greater than or equal to the predetermined value, thecontroller 140 may determine that excessive condensation occurs in thecondenser 160. - Particularly, the
controller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to a value, which may be obtained by subtracting a temperate of the evaporator, which may be located at the front end of the plurality ofevaporators 180 with respect to the refrigerant flow, from a temperate of the evaporator, which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, being greater than or equal to the predetermined value. - The
controller 140 may determine that the excessive condensation occurs in thecondenser 160, in response to a value, which may be obtained by subtracting the temperate of thefirst evaporator 180 a from the temperature of thesecond evaporator 180 b, being greater than or equal to the predetermined value (for example, 15° C.). - As described above, in response to the occurrence of the excessive condensation in the
condenser 160, the supply of liquid refrigerant to the plurality ofevaporators 180 may become insufficient, and accordingly, the cooling performance in theevaporator 180 may be reduced. At this time, the plurality ofevaporators 180 may be connected in series with each other, and thus as the evaporator may be located at the end position with respect to the refrigerant flow, the cooling performance may be further reduced, in comparison with the normal condition. - As mentioned, in response to the occurrence of the excessive condensation in the
condenser 160, the temperature of the evaporator (for example, the evaporator on the freezing compartment), which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, may be greater than the temperature of the evaporator (for example, the evaporator on the refrigerating compartment), which may be located at the front end of the plurality ofevaporators 180 with respect to the refrigerant flow. - The value, which may be obtained by subtracting the temperate of the evaporator, which may be located at the front end of the plurality of
evaporators 180 with respect to the refrigerant flow, from the temperate of the evaporator, which may be located at the rear end of the plurality ofevaporators 180 with respect to the refrigerant flow, may be greater than or equal to the predetermined value, and accordingly, therefrigerator 1 may determine whether the excessive condensation occurs in thecondenser 160. - In response to the determination that the excessive condensation occurs in the
condenser 160, thecontroller 140 may adjust the off-time of theheat dissipation fan 170 to be increased. - As a time, in which the
heat dissipation fan 170 may be turned off, becomes longer than that of the normal condition, a period in which theheat dissipation fan 170 may be turned on may become longer. - The
heat dissipation fan 170 may be driven to cool thecondenser 160 in which the temperature may be increased due to latent heat radiated by the refrigerant. However, in response to the continuous operation of theheat dissipation fan 170, in a state in which the temperature difference between the refrigerant and the heat exchange target (for example, outside air) may be increased caused by the decrease of the temperature of the machine room 14 (external temperature drop) and the increase of the amount of heat exchange in the evaporator 180 (refrigerant temperature rise) due to frequent opening and closing of thedoor 12, the temperature difference between the refrigerant and the heat exchange target may be more increased, which causes the excessive condensation in thecondenser 160. - Accordingly, the
refrigerator 1 according to the disclosure may intermittently drive theheat dissipation fan 170 in response to the occurrence of the excessive condensation in thecondenser 160, so as to prevent the continuous operation of theheat dissipation fan 170. Accordingly, therefrigerator 1 may reduce the excessive condensation in thecondenser 160. -
FIG. 8 is a flowchart illustrating a state of determining the excessive condensation in thecondenser 160 in the control method of therefrigerator 1 according to an embodiment of the disclosure. - Referring to
FIG. 8 , in response to the external temperature being less than or equal to the reference external temperature (yes at operation 810), in response to the continuous operation of thecompressor 150 for the predetermined time (yes at operation 820), and in response to the internal temperature of the reference storage compartment being greater than or equal to the reference internal temperature (yes at operation 830), therefrigerator 1 according to one embodiment may identify the temperature difference between the plurality ofevaporators 180 atoperation 840 and therefrigerator 1 may determine whether the excessive condensation occurs in thecondenser 160 based on the identified temperature difference atoperation 850. - The
refrigerator 1 may start to determine whether the excessive condensation occurs in thecondenser 160 in consideration of both the external temperature and the internal temperature. - The
condenser 160 may be installed in themachine room 14 or the outside of themain body 10, particularly at the rear side of therefrigerator 1, and thus thecondenser 160 may be affected by the external temperature. In response to a reduction in the external temperature, the temperature difference between the refrigerant and the heat dissipation target (for example, outside air) may be increased and thus the refrigerant may be more condensed in thecondenser 160 in comparison with the normal condition. - Further, the internal temperature of the reference storage compartment, which corresponds to the reference evaporator located at the end of the plurality of
evaporators 180 with respect to the refrigerant flow, may be increased due to the reduction of the cooling performance caused by the shortage of the liquid refrigerant in response to the occurrence of the excessive condensation in thecondenser 160. - Accordingly, the
refrigerator 1 may start to determine whether the excessive condensation occurs in thecondenser 160 in consideration of both the external temperature and the internal temperature. - In response to the continuous operation of the
compressor 150 for the predetermined time (for example, 2 hours), therefrigerator 1 may identify whether the internal temperature of the reference storage compartment may be greater than or equal to the reference temperature. - In response to the continuous operation of the
compressor 150, therefrigerator 1 may determine that the internal temperature of thestorage compartment 11 does not reach the target temperature, and therefrigerator 1 may compare the internal temperature of the reference storage compartment with the reference internal temperature so as to determine whether to perform the determination of the occurrence of the excessive condensation in thecondenser 160. - Alternatively, according embodiments, the
refrigerator 1 may start to periodically determine whether the excessive condensation occurs in thecondenser 160, irrespective of the external temperature and the internal temperature, or therefrigerator 1 may start to determine whether the excessive condensation occurs in thecondenser 160 in consideration of the external temperature or the internal temperature. - Meanwhile, the disclosed embodiments may be embodied in the form of a recording medium storing instructions executable by a computer. The instructions may be stored in the form of program code and, when executed by a processor, may generate a program module to perform the operations of the disclosed embodiments. The recording medium may be embodied as a computer-readable recording medium.
- The computer-readable recording medium includes all kinds of recording media in which instructions which can be decoded by a computer are stored. For example, there may be a Read Only Memory (ROM), a Random Access Memory (RAM), a magnetic tape, a magnetic disk, a flash memory, and an optical data storage device.
- While the disclosure has been shown and described with reference to various embodiments thereof, it will be understood by those of skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the disclosure as defined by the appended claims and their equivalents.
Claims (17)
1. A refrigerator comprising:
a plurality of storage compartments;
a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments;
a compressor configured to compress a refrigerant evaporated by the plurality of evaporators;
a condenser configured to condense the compressed refrigerant;
a heat dissipation fan configured to cool the condenser;
a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators; and
a controller configured to:
determine whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators, and
control an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
2. The refrigerator of claim 1 , wherein, in response to the determination that the excessive condensation occurs in the condenser, the controller is further configured to adjust an off-time of the heat dissipation fan to be increased.
3. The refrigerator of claim 1 , wherein, in response to a temperature difference between the plurality of evaporators being greater than or equal to a predetermined value, the controller is further configured to determine that the excessive condensation occurs in the condenser.
4. The refrigerator of claim 3 ,
wherein the plurality of storage compartments comprises:
a refrigerating compartment, and
a freezing compartment,
wherein the plurality of evaporators comprises:
a first evaporator configured to receive a refrigerant from the condenser and provided to correspond to the refrigerating compartment, and
a second evaporator configured to receive a refrigerant from the first evaporator and provided to correspond to the freezing compartment, and
wherein the controller is further configured to determine whether the excessive condensation occurs in the condenser based on a temperature difference between the first evaporator and the second evaporator.
5. The refrigerator of claim 3 , wherein, in response to the temperature difference between the plurality of evaporators being greater than or equal to the predetermined value for a predetermined time, the controller is further configured to determine that the excessive condensation occurs in the condenser.
6. The refrigerator of claim 1 , wherein the controller is further configured to determine whether the excessive condensation occurs in the condenser at a predetermined time interval.
7. The refrigerator of claim 1 , further comprising:
an external temperature sensor configured to detect an external temperature of outside air,
wherein in response to the external temperature being less than or equal to a reference temperature, the controller is further configured to determine whether the excessive condensation occurs in the condenser.
8. The refrigerator of claim 1 , further comprising:
a plurality of internal temperature sensors configured to detect an internal temperature of each of the plurality of storage compartments,
wherein the controller is further configured to determine to start an operation for determining whether the excessive condensation occurs in the condenser based on an internal temperature of a reference storage compartment corresponding to a reference evaporator located at an end with respect to a refrigerant flow, between the plurality of evaporators.
9. The refrigerator of claim 8 , wherein, in response to the internal temperature of the reference storage compartment being greater than or equal to a reference temperature, the controller is further configured to determine whether the excessive condensation occurs in the condenser.
10. The refrigerator of claim 9 , wherein, in response to a continuous operation of the compressor for a predetermined time, the controller is further configured to identify whether the internal temperature of the reference storage compartment is greater than or equal to a reference temperature.
11. A control method of a refrigerator that includes a plurality of storage compartments, a plurality of evaporators arranged in series with each other and provided to correspond to each of the plurality of storage compartments, a compressor configured to compress a refrigerant evaporated by the plurality of evaporators, a condenser configured to condense the compressed refrigerant, a heat dissipation fan configured to cool the condenser, and a plurality of evaporator temperature sensors configured to detect a temperature of each of the plurality of evaporators, the control method comprising:
determining whether excessive condensation occurs in the condenser based on a temperature difference between the plurality of evaporators; and
controlling an operating time of the heat dissipation fan based on whether the excessive condensation occurs or not.
12. The control method of claim 11 , wherein the controlling of the operating time of the heat dissipation fan comprises, in response to the determination that the excessive condensation occurs in the condenser, adjusting an off-time of the heat dissipation fan to be increased.
13. The control method of claim 11 , wherein the determining of whether excessive condensation occurs in the condenser comprises, in response to a temperature difference between the plurality of evaporators being greater than or equal to a predetermined value, determining that the excessive condensation occurs in the condenser.
14. The control method of claim 13 ,
wherein the plurality of storage compartments comprises:
a refrigerating compartment, and
a freezing compartment,
wherein the plurality of evaporators comprises:
a first evaporator configured to receive a refrigerant from the condenser and provided to correspond to the refrigerating compartment, and
a second evaporator configured to receive a refrigerant from the first evaporator and provided to correspond to the freezing compartment, and
wherein the determining of whether excessive condensation occurs in the condenser comprises determining whether the excessive condensation occurs in the condenser based on a temperature difference between the first evaporator and the second evaporator.
15. The control method of claim 13 , wherein the determining of whether excessive condensation occurs in the condenser comprises, in response to the temperature difference between the plurality of evaporators being greater than or equal to the predetermined value for a predetermined time, determining that the excessive condensation occurs in the condenser.
16. The control method of claim 11 , further comprising:
starting the determining of whether the excessive condensation occurs based on an internal temperature of a reference storage compartment reaching a target temperature.
17. The control method of claim 11 , wherein the operating time of the heat dissipation fan is intermittent.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200036863A KR20210120310A (en) | 2020-03-26 | 2020-03-26 | Refrigerator and control method thereof |
KR10-2020-0036863 | 2020-03-26 | ||
PCT/KR2021/001651 WO2021194085A1 (en) | 2020-03-26 | 2021-02-08 | Refrigerator and control method therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/001651 Continuation WO2021194085A1 (en) | 2020-03-26 | 2021-02-08 | Refrigerator and control method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230013745A1 true US20230013745A1 (en) | 2023-01-19 |
Family
ID=77892321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/949,588 Pending US20230013745A1 (en) | 2020-03-26 | 2022-09-21 | Refrigerator and control method thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230013745A1 (en) |
KR (1) | KR20210120310A (en) |
WO (1) | WO2021194085A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115727626A (en) * | 2022-11-09 | 2023-03-03 | 青岛海尔电冰箱有限公司 | Refrigerator control method and refrigerator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6266968B1 (en) * | 2000-07-14 | 2001-07-31 | Robert Walter Redlich | Multiple evaporator refrigerator with expansion valve |
US20040050083A1 (en) * | 2000-11-10 | 2004-03-18 | Masashi Yuasa | Freezer and refrigerator provided with freezer |
JP2006010278A (en) * | 2004-06-29 | 2006-01-12 | Toshiba Corp | Refrigerator |
JP2010101569A (en) * | 2008-10-24 | 2010-05-06 | Panasonic Corp | Multi-chamber type air conditioner |
JP5194742B2 (en) * | 2007-11-26 | 2013-05-08 | パナソニック株式会社 | vending machine |
US20150059373A1 (en) * | 2013-09-05 | 2015-03-05 | Beckett Performance Products, Llc | Superheat and sub-cooling control of refrigeration system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10267504A (en) * | 1997-03-25 | 1998-10-09 | Toshiba Corp | Refrigerator |
JP2007064597A (en) * | 2005-09-02 | 2007-03-15 | Matsushita Electric Ind Co Ltd | Refrigerator |
US20080178621A1 (en) * | 2007-01-26 | 2008-07-31 | Samsung Electronics Co., Ltd. | Refrigerator and operation control method thereof |
KR102144486B1 (en) * | 2013-11-04 | 2020-08-13 | 엘지전자 주식회사 | A refrigerator and a control method the same |
-
2020
- 2020-03-26 KR KR1020200036863A patent/KR20210120310A/en active Pending
-
2021
- 2021-02-08 WO PCT/KR2021/001651 patent/WO2021194085A1/en active Application Filing
-
2022
- 2022-09-21 US US17/949,588 patent/US20230013745A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6266968B1 (en) * | 2000-07-14 | 2001-07-31 | Robert Walter Redlich | Multiple evaporator refrigerator with expansion valve |
US20040050083A1 (en) * | 2000-11-10 | 2004-03-18 | Masashi Yuasa | Freezer and refrigerator provided with freezer |
JP2006010278A (en) * | 2004-06-29 | 2006-01-12 | Toshiba Corp | Refrigerator |
JP5194742B2 (en) * | 2007-11-26 | 2013-05-08 | パナソニック株式会社 | vending machine |
JP2010101569A (en) * | 2008-10-24 | 2010-05-06 | Panasonic Corp | Multi-chamber type air conditioner |
US20150059373A1 (en) * | 2013-09-05 | 2015-03-05 | Beckett Performance Products, Llc | Superheat and sub-cooling control of refrigeration system |
Non-Patent Citations (3)
Title |
---|
Translated_Jun (Year: 2006) * |
Translated_Sakai (Year: 2013) * |
Translated_Tagami (Year: 210) * |
Also Published As
Publication number | Publication date |
---|---|
WO2021194085A1 (en) | 2021-09-30 |
KR20210120310A (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10234189B2 (en) | Refrigerator and control method for the same | |
US10753675B2 (en) | Refrigerator and method of controlling the same | |
EP2711654A1 (en) | Refrigerator | |
US11293678B2 (en) | Control method for refrigerator | |
KR20130024210A (en) | Refrigerator and method for controlling the same | |
US11662135B2 (en) | Refrigerator and method of controlling the same | |
US11371768B2 (en) | Refrigerator and method for controlling the same | |
US11906243B2 (en) | Refrigerator and method of controlling the same | |
US20220170678A1 (en) | Method of controlling refrigerator | |
US20230013745A1 (en) | Refrigerator and control method thereof | |
JP5105276B2 (en) | refrigerator | |
KR20180061753A (en) | Refrigerator and method for controlling the same | |
KR102151817B1 (en) | Refrigerator and method for controlling the same | |
US20170067683A1 (en) | Mechanical refrigerator | |
CN113776268A (en) | Refrigerator condensing fan control method and system and refrigerator | |
US20230266047A1 (en) | Method for operating a domestic refrigerator, and domestic refrigerator | |
US10001307B2 (en) | Refrigerator and method for controlling the same | |
EP3623730B1 (en) | Refrigerator and method for controlling the same | |
JP5927426B2 (en) | refrigerator | |
KR19990083639A (en) | Device and method for cooling compressor for refrigerator | |
KR20070051530A (en) | How to control the fan of the refrigerator | |
JP2013242059A (en) | Refrigerator | |
CN112629118A (en) | Refrigeration appliance and control method thereof | |
KR20200041198A (en) | Refrigerator and method for controlling the same | |
JP2016057024A (en) | Vehicular refrigeration device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHA, SANGYOUL;NAM, JOOWAN;LEE, INSUB;AND OTHERS;REEL/FRAME:061169/0013 Effective date: 20220920 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |