US20220081901A1 - Equipment support system and method of supporting equipment - Google Patents
Equipment support system and method of supporting equipment Download PDFInfo
- Publication number
- US20220081901A1 US20220081901A1 US17/532,251 US202117532251A US2022081901A1 US 20220081901 A1 US20220081901 A1 US 20220081901A1 US 202117532251 A US202117532251 A US 202117532251A US 2022081901 A1 US2022081901 A1 US 2022081901A1
- Authority
- US
- United States
- Prior art keywords
- mounting
- mounting system
- truss structure
- locations
- operating room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000000356 contaminant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/006—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation with means for hanging lighting fixtures or other appliances to the framework of the ceiling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/10—Parts, details or accessories
- A61G13/107—Supply appliances
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/003—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation with movable parts, e.g. pivoting panels, access doors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/02—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation having means for ventilation or vapour discharge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M13/00—Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
- F16M13/02—Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
- F16M13/027—Ceiling supports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G12/00—Accommodation for nursing, e.g. in hospitals, not covered by groups A61G1/00 - A61G11/00, e.g. trolleys for transport of medicaments or food; Prescription lists
- A61G12/002—Supply appliances, e.g. columns for gas, fluid, electricity supply
- A61G12/004—Supply appliances, e.g. columns for gas, fluid, electricity supply mounted on the ceiling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/10—Parts, details or accessories
- A61G13/108—Means providing sterile air at a surgical operation table or area
Definitions
- Hospital operating rooms typically include surgical equipment located over and around a surgical site.
- the surgical equipment is mounted to the ceiling and may be movable in relation to a surgical site target zone, such as on a boom arm.
- the mounting arrangement for the surgical equipment is customized with a fixed arrangement for the mounting locations. Accordingly, if new equipment is to be installed or equipment is to be moved to different locations in the operating room, a new mounting arrangement is required, which may result in having to replace the entire existing mounting arrangement. Alternatively, costly changes may have to be made to accommodate the new equipment or the new equipment position.
- the mount for the surgical equipment in that location may block airflow generated by an air supply arrangement and create a low pressure zone underneath the mount location.
- the low pressure zone causes air turbulence thereunder. Due to turbulent airflow, various contaminants generated through a surgical procedure may be circulated within the surgical environment. For example, surgical staff may carry particulate and bacterial contaminants that may be dispersed directly above a surgical site in the absence of filtered, downward, unidirectional flow. Further, bone fragments, biological fluids, and blood may be projected upward toward the surgical equipment, which is cleaned and sterilized between surgical procedures.
- a need exists for a system and method of providing adaptable equipment mounting in a surgical environment that allows for easily mounting new equipment or changing the location of existing equipment.
- a need also exists for a system and method of providing uninterrupted, reduced turbulence airflow underneath the mounts for surgical equipment, as well that reduces the possibility of contaminants being dispersed over and within a surgical site.
- Certain embodiments of the present disclosure provide a mounting system that includes a frame that defines a truss structure and a plurality of mounting locations within the truss structure.
- the plurality of mounting locations are configured to interchangeably couple to one or more members, including one or more of an access panel, a light troffer or a boom mount.
- Certain embodiments of the present disclosure provide an operating room that includes a floor connected to walls and a ceiling connected to the walls, wherein a surgical site is disposed at an area between the floor, the walls, the and ceiling.
- the operating room further includes a mounting system coupled to the ceiling, the mounting system defines a truss structure and a plurality of mounting locations within the truss structure.
- the plurality of mounting locations are configured to interchangeably couple to one or more of an access panel, a light troffer or a boom mount.
- Certain embodiments of the present disclosure provide a mounting system that includes a frame that defines a truss structure having a plurality of cross member defining openings therethrough, and a plurality of mounting locations within the truss structure at the openings.
- the plurality of mounting locations are configured to interchangeably couple to one or more components for use in a sterile environment.
- FIG. 1 illustrates a lateral view of an operating room, according to an embodiment of the present disclosure.
- FIG. 2 illustrates a perspective bottom view of a mounting system, according to an embodiment of the present disclosure.
- FIG. 3 illustrates a side lateral view of a mounting system, according to an embodiment of the present disclosure.
- FIG. 4 illustrates a top plan view of a mounting system, according to an embodiment of the present disclosure.
- FIGS. 5-10 illustrate perspective views of a mounting system, according to embodiments of the present disclosure.
- FIG. 11 is a plan view of one configuration of a mounting system, according to embodiments of the present disclosure.
- FIG. 12 is a side elevation view of one configuration of a mounting system, according to embodiments of the present disclosure.
- FIG. 13 is a diagram of another configuration of a mounting system, according to embodiments of the present disclosure.
- FIG. 14 is a side view of a mounting arrangement, according to embodiments of the present disclosure.
- FIG. 15 illustrates a perspective bottom view of a mounting system, according to an embodiment of the present disclosure.
- Certain embodiments of the present disclosure provide a mounting system or arrangement for mounting equipment, such as surgical equipment within an operating room.
- a truss arrangement is provided that allows for interchangeable coupling of surgical equipment (and other devices or members) to different locations within the operating room, as well as flexibility to couple different components using the mounting system.
- the mounting arrangement allows for interchangeable mounting of access panels, light troffers and boom mounts for surgical equipment.
- one or more embodiments provide a mounting system that allows for the modular design and redesign of the operating room without a change in the mounting structure.
- FIG. 1 illustrates a lateral view of an operating room 10 , according to an embodiment of the present disclosure.
- the operating room 10 may be defined by walls 12 , a ceiling 14 , and a floor 16 .
- An operating table 18 may be supported on the floor 16 .
- the operating table 18 may include a support bed 20 that is configured to support a patient 22 .
- a surgical site 19 may be located on the patient 22 .
- Surgical equipment which in the illustrated embodiment is a surgical light system 100 is suspended from the ceiling 14 above the operating table 18 , which may define a sterile field 30 .
- a support beam 102 extends downwardly from the ceiling 14 and is coupled to a mounting arrangement 40 as described in more detail herein.
- the mounting system 40 which in various embodiments includes a truss arrangement, for example, a perimeter truss arrangement that extends around a perimeter of the sterile field 30 . Accordingly, mounting plates 42 are easily positionable at different locations outside of the sterile field 30 such that one or more boom arms 104 may extend from the support beam 102 into the sterile field 30 . As shown in FIG.
- two surgical light assemblies 100 may be coupled to two separate and distinct boom arms 104 mounted to different locations on the mounting system 40 .
- more or less surgical light assemblies 100 than shown may be used. It should be appreciated that the surgical light system 100 is shown only for illustrative purpose and different or additional surgical equipment may be suspended from the ceiling 14 .
- a supply air array 106 (also referred to as an air frame system) may be secured to the ceiling 104 within the mounting system 40 .
- the supply air array 106 may be provided as described in co-pending application having Attorney Docket No. 168007. By positioning the mounting plates 42 outside of (along the perimeter) of the supply air array 106 , laminar airflow is created directly to the surgical target zone without turbulence that could otherwise be caused by having the mounting plates 42 within the supply air array 106 or within the sterile field 30 .
- FIG. 2 illustrates the mounting system 40 and shows the mounting plates 42 mounted to different mounting locations 44 defined within the truss structure of the mounting system 40 .
- the truss structure of the mounting system 40 allows for interchangeable mounting of the mounting plates 42 to any of the plural mounting locations 44 of the mounting system 40 .
- the mounting locations 44 are located along a perimeter of supply air array 106 . Accordingly, for example, the mounting system 40 may be coupled to the walls 12 and/or ceiling 14 , with the supply air array 106 coupled within the mounting system 40 . Additionally, the mounting system 40 allows for easy access for medgas connections 46 .
- the different mounting locations 44 allow for mounting the mounting plates 42 thereon. However, the mounting locations 44 also provide interchangeable mounting of different components thereto, such as access panels or light troffers, among other components.
- the mounting system 40 may be located on two sides of the supply air array 106 (as viewed in FIG. 4 ) and includes five different mounting locations 44 on each of the sides of the supply air array 106 .
- the mounting locations 44 may be configured differently, such as to define different mounting types, such as different configurations of mounting plates 42 that include different mounting patterns of bore locations for securing thereto different components (e.g., bolt connection).
- FIGS. 5-10 illustrate a mounting system 40 , according to an embodiment of the disclosure.
- the mounting system 40 includes a frame 60 that extends around a portion of the perimeter of the supply air array 106 .
- the frame 60 is formed from a top support structure 62 and a bottom support structure that include openings 66 that define the different mounting locations 44 .
- a box-type truss structure is formed by the top and bottom support structures 62 and 64 .
- the openings 66 are sized and shaped to accommodate mounting thereto different interchangeable components, such as the mounting plate 42 .
- the mounting system 40 is illustrated as extending along only two sides of the supply air array 106 (the left and right sides as viewing in FIG.
- the mounting system 40 may extend around additional or fewer sides of the supply air array 106 .
- the mounting system 40 may be provided along all four sides of the supply air array 106 .
- the mounting system may be configured with a single flex truss cell 80 and may be fixed in multiple locations as shown in FIG. 15 .
- the frame 60 and the components thereof may be formed of any suitable materials, such as one or more metals or metal composites.
- the frame 60 may have mounted thereto, or support therefrom, one or more modules 70 , which may be positioned at different locations of the frames (in the FIGS. 5-10 the modules are positioned along a middle of one axis of the frame 60 , but do not entirely extend from end to end. However, other configurations are contemplated that extend from end to end or beyond the middle portion or along different axes.
- the mounting system 40 includes plural truss types 80 (shown as Types 1, 2 and 3) as illustrated in FIGS. 11 and 12 that allows for creating different configurations.
- the mounting system 40 includes three different truss types, which are configured for supporting different components or modules.
- the mounting system 40 in various embodiments allows for adjustable mounting of equipment in both the horizontal and vertical directions. For example, horizontal adjustment is provided by moving from one opening 66 to the next opening 66 and vertical adjustment is provided my moving up or down into predefine d coupling positions (e.g., bolting positions), or any other fixing method.
- the truss types 80 in the figures define truss modules or truss member that are coupled together, such as with a bolted connection 82 or a welded connection 84 .
- FIG. 13 illustrates a configuration of the mounting system 40 that includes three truss types 80 coupled in a rectangular arrangement having a center open region 90 .
- the truss types 80 may be varied and place in different locations such that the number and position of each may be varied.
- adjacent truss elements may be of the same truss type 80 or of different truss types 80 , such as having a different configuration, different mounting arrangement, different mounting holes, different sizes, etc.
- supply air array 106 is shown mounted within the mounting system 40 , the supply air array 106 may be mounted below the mounting system 40 to the truss structure.
- Various embodiments include an adjustable mounting arrangement 140 that allows for varying the height of components, such as a boom arm mounted within the openings.
- the adjustable mounting arrangement 140 defines mounting locations within each opening 66 of the truss types 80 that define a frame.
- the adjustable mounting arrangement 140 in the illustrated embodiment includes a mounting plate 142 that may be mounted within the openings 66 at different locations, in particular, different vertical locations within the opening 66 .
- predefined mounting locations e.g., mounting bores
- the predefined mounting locations provide a coarse mounting arrangement within the opening 202 .
- the two mounting plates 142 are mounted at different vertical heights within respective openings 66 .
- the mounting plates 142 couple to a secondary plate 144 that allows for adjustable mounting thereto of a bottom plate 146 .
- plural bolts 148 may couple the secondary plate 144 (or intermediate plate) to the bottom plate 144 to allow finer height adjustment within the opening 66 .
- the bottom plate 144 in the different openings 66 extend a different distance from the secondary plate 144 such that the bottom plate 144 in each of the openings 66 is positioned at different vertical heights.
- components to be mounted within each of the openings 202 may be mounted at the same or different vertical heights.
- various embodiments provide a mounting system that provides the ability to mount different components, such as standard components thereto.
- various embodiments allow for mounting to the truss arrangement, LED light troffers, access panels, audio systems and smoke exhausts, among others. It should be appreciated that variations and modifications are contemplated. For example, the size, shape, location, configuration and orientation of the mounting positions may be changed.
- Embodiments may be used in relation to a hospital operating room environment.
- embodiments of the present disclosure may be used in various other settings in which pressurized airflow is to be directed in combination with ceiling mounted equipment.
- embodiments of the present disclosure may be used in dental offices, manufacturing clean rooms, residential spaces, and the like.
- a structure, limitation, or element that is “configured to” perform a task or operation is particularly structurally formed, constructed, or adapted in a manner corresponding to the task or operation.
- an object that is merely capable of being modified to perform the task or operation is not “configured to” perform the task or operation as used herein.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
- Pulmonology (AREA)
- Ventilation (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 15/288,168, which claims the benefit of and priority to U.S. Provisional Application No. 62/238,614, filed Oct. 7, 2015. The disclosures of the prior applications are hereby incorporated by reference herein in their entirety.
- Hospital operating rooms typically include surgical equipment located over and around a surgical site. The surgical equipment is mounted to the ceiling and may be movable in relation to a surgical site target zone, such as on a boom arm.
- The mounting arrangement for the surgical equipment is customized with a fixed arrangement for the mounting locations. Accordingly, if new equipment is to be installed or equipment is to be moved to different locations in the operating room, a new mounting arrangement is required, which may result in having to replace the entire existing mounting arrangement. Alternatively, costly changes may have to be made to accommodate the new equipment or the new equipment position.
- Moreover, because the surgical equipment (e.g., surgical light) may be positioned directly over or in proximity to the surgical target zone, the mount for the surgical equipment in that location may block airflow generated by an air supply arrangement and create a low pressure zone underneath the mount location. The low pressure zone causes air turbulence thereunder. Due to turbulent airflow, various contaminants generated through a surgical procedure may be circulated within the surgical environment. For example, surgical staff may carry particulate and bacterial contaminants that may be dispersed directly above a surgical site in the absence of filtered, downward, unidirectional flow. Further, bone fragments, biological fluids, and blood may be projected upward toward the surgical equipment, which is cleaned and sterilized between surgical procedures.
- Accordingly, a need exists for a system and method of providing adaptable equipment mounting in a surgical environment that allows for easily mounting new equipment or changing the location of existing equipment. A need also exists for a system and method of providing uninterrupted, reduced turbulence airflow underneath the mounts for surgical equipment, as well that reduces the possibility of contaminants being dispersed over and within a surgical site.
- Certain embodiments of the present disclosure provide a mounting system that includes a frame that defines a truss structure and a plurality of mounting locations within the truss structure. The plurality of mounting locations are configured to interchangeably couple to one or more members, including one or more of an access panel, a light troffer or a boom mount.
- Certain embodiments of the present disclosure provide an operating room that includes a floor connected to walls and a ceiling connected to the walls, wherein a surgical site is disposed at an area between the floor, the walls, the and ceiling. The operating room further includes a mounting system coupled to the ceiling, the mounting system defines a truss structure and a plurality of mounting locations within the truss structure. The plurality of mounting locations are configured to interchangeably couple to one or more of an access panel, a light troffer or a boom mount.
- Certain embodiments of the present disclosure provide a mounting system that includes a frame that defines a truss structure having a plurality of cross member defining openings therethrough, and a plurality of mounting locations within the truss structure at the openings. The plurality of mounting locations are configured to interchangeably couple to one or more components for use in a sterile environment.
-
FIG. 1 illustrates a lateral view of an operating room, according to an embodiment of the present disclosure. -
FIG. 2 illustrates a perspective bottom view of a mounting system, according to an embodiment of the present disclosure. -
FIG. 3 illustrates a side lateral view of a mounting system, according to an embodiment of the present disclosure. -
FIG. 4 illustrates a top plan view of a mounting system, according to an embodiment of the present disclosure. -
FIGS. 5-10 illustrate perspective views of a mounting system, according to embodiments of the present disclosure. -
FIG. 11 is a plan view of one configuration of a mounting system, according to embodiments of the present disclosure. -
FIG. 12 is a side elevation view of one configuration of a mounting system, according to embodiments of the present disclosure. -
FIG. 13 is a diagram of another configuration of a mounting system, according to embodiments of the present disclosure. -
FIG. 14 is a side view of a mounting arrangement, according to embodiments of the present disclosure. -
FIG. 15 illustrates a perspective bottom view of a mounting system, according to an embodiment of the present disclosure. - The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. As used herein, an element or step recited in the singular and preceded by the word “a” or “an” should be understood as not necessarily excluding the plural of the elements or steps. Further, references to “one embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional elements not having that property.
- Certain embodiments of the present disclosure provide a mounting system or arrangement for mounting equipment, such as surgical equipment within an operating room. For example, in various embodiments, a truss arrangement is provided that allows for interchangeable coupling of surgical equipment (and other devices or members) to different locations within the operating room, as well as flexibility to couple different components using the mounting system. For example, in some embodiments, the mounting arrangement allows for interchangeable mounting of access panels, light troffers and boom mounts for surgical equipment. Thus, one or more embodiments provide a mounting system that allows for the modular design and redesign of the operating room without a change in the mounting structure.
-
FIG. 1 illustrates a lateral view of anoperating room 10, according to an embodiment of the present disclosure. Theoperating room 10 may be defined bywalls 12, aceiling 14, and afloor 16. An operating table 18 may be supported on thefloor 16. The operating table 18 may include asupport bed 20 that is configured to support apatient 22. Asurgical site 19 may be located on thepatient 22. - Surgical equipment, which in the illustrated embodiment is a
surgical light system 100 is suspended from theceiling 14 above the operating table 18, which may define asterile field 30. Asupport beam 102 extends downwardly from theceiling 14 and is coupled to amounting arrangement 40 as described in more detail herein. Themounting system 40, which in various embodiments includes a truss arrangement, for example, a perimeter truss arrangement that extends around a perimeter of thesterile field 30. Accordingly,mounting plates 42 are easily positionable at different locations outside of thesterile field 30 such that one ormore boom arms 104 may extend from thesupport beam 102 into thesterile field 30. As shown inFIG. 1 , twosurgical light assemblies 100 may be coupled to two separate anddistinct boom arms 104 mounted to different locations on themounting system 40. Alternatively, more or lesssurgical light assemblies 100 than shown may be used. It should be appreciated that thesurgical light system 100 is shown only for illustrative purpose and different or additional surgical equipment may be suspended from theceiling 14. - A supply air array 106 (also referred to as an air frame system) may be secured to the
ceiling 104 within themounting system 40. Thesupply air array 106 may be provided as described in co-pending application having Attorney Docket No. 168007. By positioning themounting plates 42 outside of (along the perimeter) of thesupply air array 106, laminar airflow is created directly to the surgical target zone without turbulence that could otherwise be caused by having themounting plates 42 within thesupply air array 106 or within thesterile field 30. -
FIG. 2 illustrates themounting system 40 and shows themounting plates 42 mounted todifferent mounting locations 44 defined within the truss structure of themounting system 40. The truss structure of themounting system 40 allows for interchangeable mounting of themounting plates 42 to any of theplural mounting locations 44 of themounting system 40. As can been seen, themounting locations 44 are located along a perimeter ofsupply air array 106. Accordingly, for example, themounting system 40 may be coupled to thewalls 12 and/orceiling 14, with thesupply air array 106 coupled within themounting system 40. Additionally, themounting system 40 allows for easy access formedgas connections 46. - The
different mounting locations 44 allow for mounting the mountingplates 42 thereon. However, the mountinglocations 44 also provide interchangeable mounting of different components thereto, such as access panels or light troffers, among other components. For example, as shown inFIGS. 3 and 4 , the mountingsystem 40 may be located on two sides of the supply air array 106 (as viewed inFIG. 4 ) and includes fivedifferent mounting locations 44 on each of the sides of thesupply air array 106. As can be seen, the mountinglocations 44 may be configured differently, such as to define different mounting types, such as different configurations of mountingplates 42 that include different mounting patterns of bore locations for securing thereto different components (e.g., bolt connection). -
FIGS. 5-10 illustrate a mountingsystem 40, according to an embodiment of the disclosure. As can be seen, in the illustrated embodiment, the mountingsystem 40 includes aframe 60 that extends around a portion of the perimeter of thesupply air array 106. Theframe 60 is formed from atop support structure 62 and a bottom support structure that includeopenings 66 that define thedifferent mounting locations 44. Thus, a box-type truss structure is formed by the top andbottom support structures openings 66 are sized and shaped to accommodate mounting thereto different interchangeable components, such as the mountingplate 42. It should be appreciated that although the mountingsystem 40 is illustrated as extending along only two sides of the supply air array 106 (the left and right sides as viewing inFIG. 5 ), the mountingsystem 40 may extend around additional or fewer sides of thesupply air array 106. For example, the mountingsystem 40 may be provided along all four sides of thesupply air array 106. In addition, the mounting system may be configured with a singleflex truss cell 80 and may be fixed in multiple locations as shown inFIG. 15 . Theframe 60 and the components thereof may be formed of any suitable materials, such as one or more metals or metal composites. - The
frame 60 may have mounted thereto, or support therefrom, one ormore modules 70, which may be positioned at different locations of the frames (in theFIGS. 5-10 the modules are positioned along a middle of one axis of theframe 60, but do not entirely extend from end to end. However, other configurations are contemplated that extend from end to end or beyond the middle portion or along different axes. - In some embodiments, the mounting
system 40 includes plural truss types 80 (shown asTypes 1, 2 and 3) as illustrated inFIGS. 11 and 12 that allows for creating different configurations. For example, in one embodiment, the mountingsystem 40 includes three different truss types, which are configured for supporting different components or modules. The mountingsystem 40 in various embodiments allows for adjustable mounting of equipment in both the horizontal and vertical directions. For example, horizontal adjustment is provided by moving from oneopening 66 to thenext opening 66 and vertical adjustment is provided my moving up or down into predefine d coupling positions (e.g., bolting positions), or any other fixing method. It should be noted that the truss types 80 in the figures define truss modules or truss member that are coupled together, such as with a boltedconnection 82 or a weldedconnection 84. -
FIG. 13 illustrates a configuration of the mountingsystem 40 that includes threetruss types 80 coupled in a rectangular arrangement having a centeropen region 90. As can be seen, the truss types 80 may be varied and place in different locations such that the number and position of each may be varied. For example, adjacent truss elements may be of thesame truss type 80 or ofdifferent truss types 80, such as having a different configuration, different mounting arrangement, different mounting holes, different sizes, etc. - It should be noted that although the
supply air array 106 is shown mounted within the mountingsystem 40, thesupply air array 106 may be mounted below the mountingsystem 40 to the truss structure. - Various embodiments include an
adjustable mounting arrangement 140 that allows for varying the height of components, such as a boom arm mounted within the openings. In particular, theadjustable mounting arrangement 140 defines mounting locations within each opening 66 of the truss types 80 that define a frame. Theadjustable mounting arrangement 140 in the illustrated embodiment includes a mountingplate 142 that may be mounted within theopenings 66 at different locations, in particular, different vertical locations within theopening 66. For example, predefined mounting locations (e.g., mounting bores) may be located on opposing walls of the opening 6 for coupling thereto of the mounting plate 142 (e.g., bolt mounting of the mountingplate 142 to walls of the opening 66). The predefined mounting locations provide a coarse mounting arrangement within theopening 202. For example, as can be seen inFIG. 14 , the two mountingplates 142 are mounted at different vertical heights withinrespective openings 66. - The mounting
plates 142 couple to asecondary plate 144 that allows for adjustable mounting thereto of abottom plate 146. For example, plural bolts 148 may couple the secondary plate 144 (or intermediate plate) to thebottom plate 144 to allow finer height adjustment within theopening 66. As can be seen inFIG. 14 , thebottom plate 144 in thedifferent openings 66 extend a different distance from thesecondary plate 144 such that thebottom plate 144 in each of theopenings 66 is positioned at different vertical heights. As should be appreciated, components to be mounted within each of theopenings 202 may be mounted at the same or different vertical heights. - As shown and described, various embodiments provide a mounting system that provides the ability to mount different components, such as standard components thereto. For example, various embodiments allow for mounting to the truss arrangement, LED light troffers, access panels, audio systems and smoke exhausts, among others. It should be appreciated that variations and modifications are contemplated. For example, the size, shape, location, configuration and orientation of the mounting positions may be changed.
- Embodiments may be used in relation to a hospital operating room environment. Optionally, embodiments of the present disclosure may be used in various other settings in which pressurized airflow is to be directed in combination with ceiling mounted equipment. For example, embodiments of the present disclosure may be used in dental offices, manufacturing clean rooms, residential spaces, and the like.
- While various spatial and directional terms, such as top, bottom, lower, mid, lateral, horizontal, vertical, front and the like may be used to describe embodiments of the present disclosure, it is understood that such terms are merely used with respect to the orientations shown in the drawings. The orientations may be inverted, rotated, or otherwise changed, such that an upper portion is a lower portion, and vice versa, horizontal becomes vertical, and the like.
- As used herein, a structure, limitation, or element that is “configured to” perform a task or operation is particularly structurally formed, constructed, or adapted in a manner corresponding to the task or operation. For purposes of clarity and the avoidance of doubt, an object that is merely capable of being modified to perform the task or operation is not “configured to” perform the task or operation as used herein.
- It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments of the disclosure without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments of the disclosure, the embodiments are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the disclosure should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
- This written description uses examples to disclose the various embodiments of the disclosure, including the best mode, and also to enable any person skilled in the art to practice the various embodiments of the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or if the examples include equivalent structural elements with insubstantial differences from the literal language of the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/532,251 US20220081901A1 (en) | 2015-10-07 | 2021-11-22 | Equipment support system and method of supporting equipment |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562238614P | 2015-10-07 | 2015-10-07 | |
US15/288,168 US11186989B2 (en) | 2015-10-07 | 2016-10-07 | Equipment support system and method of supporting equipment |
US17/532,251 US20220081901A1 (en) | 2015-10-07 | 2021-11-22 | Equipment support system and method of supporting equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/288,168 Continuation US11186989B2 (en) | 2015-10-07 | 2016-10-07 | Equipment support system and method of supporting equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220081901A1 true US20220081901A1 (en) | 2022-03-17 |
Family
ID=58499714
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/288,168 Active US11186989B2 (en) | 2015-10-07 | 2016-10-07 | Equipment support system and method of supporting equipment |
US17/532,251 Pending US20220081901A1 (en) | 2015-10-07 | 2021-11-22 | Equipment support system and method of supporting equipment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/288,168 Active US11186989B2 (en) | 2015-10-07 | 2016-10-07 | Equipment support system and method of supporting equipment |
Country Status (1)
Country | Link |
---|---|
US (2) | US11186989B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11186989B2 (en) * | 2015-10-07 | 2021-11-30 | Sld Technology, Inc. | Equipment support system and method of supporting equipment |
US10405942B2 (en) | 2015-10-07 | 2019-09-10 | Sld Technology, Inc. | Airframe system and method of controlling airflow |
US9903115B2 (en) * | 2015-10-07 | 2018-02-27 | Sld Technology, Inc. | Airframe system and method of controlling airflow |
EP3501472A1 (en) * | 2017-12-20 | 2019-06-26 | Koninklijke Philips N.V. | Aerodynamic rail covers |
CN109972740B (en) * | 2019-03-25 | 2020-06-30 | 中国建筑科学研究院有限公司 | A portable air purification operating room |
US20230392374A1 (en) * | 2020-10-26 | 2023-12-07 | Murata Machinery, Ltd. | Suspender |
US12233014B2 (en) * | 2021-05-18 | 2025-02-25 | Sld Technology, Inc. | Modular patient lift system |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3782065A (en) * | 1972-02-25 | 1974-01-01 | W Griffing | Ceiling mounting arrangement |
US3931452A (en) * | 1972-09-26 | 1976-01-06 | Agne Lars Harry Nilsson | Device for attachment of ceiling-supended equipment |
US4250668A (en) * | 1979-09-20 | 1981-02-17 | Harrison Jr John E | Ceiling structure |
US4660799A (en) * | 1986-01-29 | 1987-04-28 | Butland Edward H | Load support structure |
US4711322A (en) * | 1986-05-15 | 1987-12-08 | Westinghouse Electric Corp. | Elevator cab |
US4883511A (en) * | 1988-03-25 | 1989-11-28 | Arnold Gustin | Laminar flow multiplane matrix ceiling system |
US5141473A (en) * | 1991-12-10 | 1992-08-25 | Swaney Russel P | Air diffuser assembly |
US6047509A (en) * | 1998-08-07 | 2000-04-11 | Media/Graphics, Inc. | Corner support for panel frames |
US6089518A (en) * | 1994-11-15 | 2000-07-18 | Johnson Medical Development Pte Ltd. | Mounting device for hospital equipment, medical support service unit therefor and service mobile |
US6314702B1 (en) * | 2000-05-05 | 2001-11-13 | Chien-Teh Huang | Assembled frame structure |
US20020134061A1 (en) * | 2001-01-03 | 2002-09-26 | Mcgill Joseph A. | Modular clean room filter system |
US6511522B1 (en) * | 2001-03-09 | 2003-01-28 | Hepa Corporation | Quick connect, stabilized clean room filter support system |
US20040128927A1 (en) * | 2002-10-09 | 2004-07-08 | The Wiremold Company | Integrated ceiling and wireway distribution system |
US20050210801A1 (en) * | 2004-02-13 | 2005-09-29 | Schoolcraft Michael Sr | Tray ceiling for drop ceilings and method of manufacture and installation therefor |
US7204714B2 (en) * | 2003-05-16 | 2007-04-17 | Modular Services Company | Modular in-wall medical services outlet system |
US20090188197A1 (en) * | 2007-12-07 | 2009-07-30 | Pedro Antonio Irizarry | Modular and adjustable structural support system |
US20090223131A1 (en) * | 2008-03-05 | 2009-09-10 | Wiese Paul A | Steel frame wood panel garage door |
US20100103654A1 (en) * | 2007-03-13 | 2010-04-29 | Showa Denko K.K. | Lighting fixture and ceiling system using the same |
US7795533B2 (en) * | 2008-07-03 | 2010-09-14 | Panduit Corp. | In-ceiling zone cabling enclosure |
US20110097986A1 (en) * | 2009-10-22 | 2011-04-28 | Huntair, Inc. | Ceiling system with integrated equipment support structure |
US8028481B2 (en) * | 2008-09-06 | 2011-10-04 | Herman Deschenes | Caisson ceiling system |
US8051610B2 (en) * | 2004-09-22 | 2011-11-08 | Hill-Rom Services, Inc. | Patient flatwall system |
US20120018610A1 (en) * | 2010-05-14 | 2012-01-26 | Production Resource Group L.L.C. | Lightlock winch |
US20130237139A1 (en) * | 2012-03-06 | 2013-09-12 | Rupert MACK | Method for testing the air quality in an operating room |
US20130344795A1 (en) * | 2012-06-25 | 2013-12-26 | Huntair, Inc. | System and method for delivering air through a boom assembly |
US20150308617A1 (en) * | 2014-04-25 | 2015-10-29 | Worthington Armstrong Venture | Hanging load support |
US20160060866A1 (en) * | 2014-09-01 | 2016-03-03 | David Arthur Holmgren | Sculpted Grid System |
US20160265224A1 (en) * | 2015-03-10 | 2016-09-15 | Cisco Technology, Inc. | Network-enabled ceiling support structure |
US11186989B2 (en) * | 2015-10-07 | 2021-11-30 | Sld Technology, Inc. | Equipment support system and method of supporting equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE532217C2 (en) * | 2007-05-03 | 2009-11-17 | Airsonett Ab | Ventilation device for an operating room |
HRP20150824A2 (en) * | 2015-07-28 | 2017-02-10 | Josip BARUŠIĆ | Ceiling and method for their execution |
-
2016
- 2016-10-07 US US15/288,168 patent/US11186989B2/en active Active
-
2021
- 2021-11-22 US US17/532,251 patent/US20220081901A1/en active Pending
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3782065A (en) * | 1972-02-25 | 1974-01-01 | W Griffing | Ceiling mounting arrangement |
US3931452A (en) * | 1972-09-26 | 1976-01-06 | Agne Lars Harry Nilsson | Device for attachment of ceiling-supended equipment |
US4250668A (en) * | 1979-09-20 | 1981-02-17 | Harrison Jr John E | Ceiling structure |
US4660799A (en) * | 1986-01-29 | 1987-04-28 | Butland Edward H | Load support structure |
US4711322A (en) * | 1986-05-15 | 1987-12-08 | Westinghouse Electric Corp. | Elevator cab |
US4883511A (en) * | 1988-03-25 | 1989-11-28 | Arnold Gustin | Laminar flow multiplane matrix ceiling system |
US5141473A (en) * | 1991-12-10 | 1992-08-25 | Swaney Russel P | Air diffuser assembly |
US6089518A (en) * | 1994-11-15 | 2000-07-18 | Johnson Medical Development Pte Ltd. | Mounting device for hospital equipment, medical support service unit therefor and service mobile |
US6047509A (en) * | 1998-08-07 | 2000-04-11 | Media/Graphics, Inc. | Corner support for panel frames |
US6314702B1 (en) * | 2000-05-05 | 2001-11-13 | Chien-Teh Huang | Assembled frame structure |
US20020134061A1 (en) * | 2001-01-03 | 2002-09-26 | Mcgill Joseph A. | Modular clean room filter system |
US6511522B1 (en) * | 2001-03-09 | 2003-01-28 | Hepa Corporation | Quick connect, stabilized clean room filter support system |
US20040128927A1 (en) * | 2002-10-09 | 2004-07-08 | The Wiremold Company | Integrated ceiling and wireway distribution system |
US7204714B2 (en) * | 2003-05-16 | 2007-04-17 | Modular Services Company | Modular in-wall medical services outlet system |
US20050210801A1 (en) * | 2004-02-13 | 2005-09-29 | Schoolcraft Michael Sr | Tray ceiling for drop ceilings and method of manufacture and installation therefor |
US8051610B2 (en) * | 2004-09-22 | 2011-11-08 | Hill-Rom Services, Inc. | Patient flatwall system |
US20100103654A1 (en) * | 2007-03-13 | 2010-04-29 | Showa Denko K.K. | Lighting fixture and ceiling system using the same |
US20090188197A1 (en) * | 2007-12-07 | 2009-07-30 | Pedro Antonio Irizarry | Modular and adjustable structural support system |
US20090223131A1 (en) * | 2008-03-05 | 2009-09-10 | Wiese Paul A | Steel frame wood panel garage door |
US7795533B2 (en) * | 2008-07-03 | 2010-09-14 | Panduit Corp. | In-ceiling zone cabling enclosure |
US8028481B2 (en) * | 2008-09-06 | 2011-10-04 | Herman Deschenes | Caisson ceiling system |
US20110097986A1 (en) * | 2009-10-22 | 2011-04-28 | Huntair, Inc. | Ceiling system with integrated equipment support structure |
US20120018610A1 (en) * | 2010-05-14 | 2012-01-26 | Production Resource Group L.L.C. | Lightlock winch |
US20130237139A1 (en) * | 2012-03-06 | 2013-09-12 | Rupert MACK | Method for testing the air quality in an operating room |
US20130344795A1 (en) * | 2012-06-25 | 2013-12-26 | Huntair, Inc. | System and method for delivering air through a boom assembly |
US20150308617A1 (en) * | 2014-04-25 | 2015-10-29 | Worthington Armstrong Venture | Hanging load support |
US20160060866A1 (en) * | 2014-09-01 | 2016-03-03 | David Arthur Holmgren | Sculpted Grid System |
US20160265224A1 (en) * | 2015-03-10 | 2016-09-15 | Cisco Technology, Inc. | Network-enabled ceiling support structure |
US11186989B2 (en) * | 2015-10-07 | 2021-11-30 | Sld Technology, Inc. | Equipment support system and method of supporting equipment |
Also Published As
Publication number | Publication date |
---|---|
US11186989B2 (en) | 2021-11-30 |
US20170101779A1 (en) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220081901A1 (en) | Equipment support system and method of supporting equipment | |
US11259893B2 (en) | Airframe system and method of controlling airflow | |
US9903115B2 (en) | Airframe system and method of controlling airflow | |
CN102667023B (en) | Ceiling system with integrated equipment support structure | |
US6497739B2 (en) | Modular clean room filter system | |
EP2976970B1 (en) | Furniture system and method for arranging same | |
US5865674A (en) | Flush lighting system for cleanroom | |
US8079192B2 (en) | Suspended ceiling grid system | |
US9938724B2 (en) | Adaptable operating room ceiling systems | |
CA2897532C (en) | Adjustable equipment mount assembly for an overhead support module | |
CA2895473C (en) | Air filter assembly | |
US8474200B2 (en) | Suspended ceiling grid system | |
EP3075368A1 (en) | Improved system and method for ventilation and illumination of an operating room | |
AU2017202673A1 (en) | Unit attaching device and indoor unit | |
MX2012003866A (en) | Medical device mounting system. | |
AU2001229259B2 (en) | Modular clean room filter system | |
US20240390101A1 (en) | Medical equipment mounting system | |
AU2024216532A1 (en) | Airframe system and method of controlling airflow | |
JP4302688B2 (en) | Clean room ceiling structure | |
US20240384888A1 (en) | Ceiling Diffuser System with a Common Plenum Array of Laminar Airflow Diffusers and a Grid Support Structure | |
JP2020045672A (en) | Support device | |
JPH11230607A (en) | Connecting structure for ventilating duct for unit type building | |
CN102042531A (en) | Aluminum frame combined lamps for clean room | |
KR20050070407A (en) | Access floor for controlling aperture ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SLD TECHNOLOGY, INC., OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHREIBER, KEVIN JOSEPH;REEL/FRAME:058181/0623 Effective date: 20171222 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |