+

US20200299967A1 - Method of reroofing - Google Patents

Method of reroofing Download PDF

Info

Publication number
US20200299967A1
US20200299967A1 US16/088,176 US201716088176A US2020299967A1 US 20200299967 A1 US20200299967 A1 US 20200299967A1 US 201716088176 A US201716088176 A US 201716088176A US 2020299967 A1 US2020299967 A1 US 2020299967A1
Authority
US
United States
Prior art keywords
membrane
composite
adhesive
existing
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/088,176
Inventor
Jiansheng Tang
Michael J. Hubbard
Joseph Kalwara
Carl E. Watkins, JR.
Brian Alexander
Todd D. TAYKOWSKI
Joseph R. CARR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holcim Technology Ltd
Original Assignee
Firestone Building Products Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firestone Building Products Co LLC filed Critical Firestone Building Products Co LLC
Priority to US16/088,176 priority Critical patent/US20200299967A1/en
Assigned to FIRESTONE BUILDING PRODUCTS COMPANY, LLC reassignment FIRESTONE BUILDING PRODUCTS COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANG, JIANSHENG, TAYKOWSKI, TODD D., HUBBARD, MICHAEL J., CARR, Joseph R., KALWARA, JOSEPH, ALEXANDER, BRIAN, WATKINS, CARL E., JR.
Publication of US20200299967A1 publication Critical patent/US20200299967A1/en
Assigned to HOLCIM TECHNOLOGY LTD reassignment HOLCIM TECHNOLOGY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FIRESTONE BUILDING PRODUCTS COMPANY, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/14Fastening means therefor
    • E04D5/148Fastening means therefor fastening by gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D5/00Roof covering by making use of flexible material, e.g. supplied in roll form
    • E04D5/06Roof covering by making use of flexible material, e.g. supplied in roll form by making use of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes

Definitions

  • Embodiments of the invention are directed toward methods of reroofing wherein a membrane carrying a factory-applied adhesive is applied directly to an existing membrane and/or additional substrates that are installed on the roof as part of the roofing event such as coverboards.
  • thermoset membranes such as those including cured EPDM (i.e., ethylene-propylene-diene terpolymer rubber) or thermoplastics such as TPO (i.e., thermoplastic olefins).
  • the membranes are typically delivered to a construction site in a bundled roll, transferred to the roof, and then unrolled and positioned.
  • the sheets are then affixed to the building structure by employing varying techniques such as mechanical fastening, ballasting, and/or adhesively adhering the membrane to the roof.
  • the roof substrate to which the membrane is secured may be one of a variety of materials depending on the installation site and structural concerns.
  • the surface may be a concrete, metal, or wood deck, it may include insulation or recover board, and/or it may include an existing membrane.
  • the individual membrane panels, together with flashing and other accessories are positioned and adjoined to achieve a waterproof barrier on the roof.
  • the edges of adjoining panels are overlapped, and these overlapping portions are adjoined to one another through a number of methods depending upon the membrane materials and exterior conditions.
  • One approach involves providing adhesives or adhesive tapes between the overlapping portions, thereby creating a water resistant seal.
  • the use of adhesives allow for the formation of a fully-adhered roofing system.
  • a majority, if not all, of the membrane panel is secured to the roof substrate, as opposed to mechanical attachment methods that can only achieve direct attachment in those locations where a mechanical fastener actually affixes the membrane.
  • the first is known as contact bonding whereby technicians coat both the membrane and the substrate with an adhesive, and then mate the membrane to the substrate while the adhesive is only partially set. Because the volatile components (e.g. solvent) of the adhesives are flashed off prior to mating, good early (green) bond strength is developed.
  • contact bonding whereby technicians coat both the membrane and the substrate with an adhesive, and then mate the membrane to the substrate while the adhesive is only partially set. Because the volatile components (e.g. solvent) of the adhesives are flashed off prior to mating, good early (green) bond strength is developed.
  • Another mode of attachment is through the use of a pre-applied adhesive to the bottom surface of the membrane.
  • an adhesive is applied to the bottom surface of the membrane.
  • a release film or member is applied to the surface of the adhesive. During installation of the membrane, the release member is removed, thereby exposing the pressure-sensitive adhesive, and the membrane can then be secured to the roofing surface without the need for the application of additional adhesives.
  • the pre-applied adhesive can be applied to the surface of the membrane in the form of a hot-melt adhesive.
  • a hot-melt adhesive For example, U.S. Publication No. 2004/0191508, which teaches peel and stick thermoplastic membranes, employs pressure-sensitive adhesive compositions comprising styrene-ethylene-butylene-styrene (SEGS), tackifying endblock resins such as cumarone-indene resin and tackifying midblock resins such as terpene resins.
  • SEGS styrene-ethylene-butylene-styrene
  • tackifying endblock resins such as cumarone-indene resin
  • tackifying midblock resins such as terpene resins.
  • hot-melt adhesives such as butyl-based adhesives, EPDM-based adhesives, acrylic adhesives, styrene-butadiene adhesives, polyisobutylene adhesives, and ethylene vinyl acetate adhesives.
  • peel and stick membranes have inherent limitations. For example, there are temperature windows that limit the minimum temperature at which the membranes can be installed on a roof surface. Also, there are maximum temperature limits on the roof surface that the adhesive can withstand while maintaining wind-uplift integrity. With respect to the latter, where the surface temperature on the roof nears the glass transition temperature of the adhesive, the adhesive strength offered by the pressure-sensitive adhesive is not maintained. As a result, peel-and-stick membranes have not gained wide acceptance in the industry. Moreover, the use of peel-and-stick membranes has been limited to use in conjunction with white membranes (e.g., white thermoplastic membranes) because the surface temperature of these membranes remains cooler when exposed to solar energy.
  • white membranes e.g., white thermoplastic membranes
  • Reroofing an existing roof generally includes the application of a newly fabricated membrane over the existing membrane. Reroofing presents challenges, especially where there is a desire to fully adhere the new membrane to an existing membrane, because the existing roof surface can provide an undesirable substrate for adhesive attachment. For example, the roof surface can be environmentally damaged, covered with debris, and/or can be relatively uneven.
  • Embodiments of the present invention provide a method of reroofing, the method comprising of applying to an existing roof surface a membrane composite including a pre-applied adhesive layer by mating the adhesive layer to the existing membrane.
  • FIG. 1 is a cross-section perspective view of a membrane composite according to embodiments of the invention.
  • FIG. 2 is a flow chart describing a process for making membrane composite according to embodiments of the present invention.
  • FIG. 3 is a schematic of a continuous process for making membrane composite according to the present invention.
  • Embodiments of the invention are based, at least in part, on the discovery of reroofing technique that includes the application of membrane having a pre-applied (e.g. factory-applied) pressure-sensitive adhesive that is at least partially cured directly to an existing membrane secured to the roof being reroofed.
  • the pre-applied adhesive is applied as a hot-melt adhesive and subsequently cured. It has unexpectedly been discovered that the nature of the pre-applied adhesive, including its initial tack and high-temperature strength, allows the membrane composite to be directly attached to the existing membrane.
  • a membrane 11 which may be referred to as a membrane composite 11 , is shown in FIG. 1 .
  • Membrane composite 11 includes polymeric panel 13 , pressure-sensitive adhesive layer 15 , and release member 17 removably attached to layer 15 .
  • the membrane may be a thermoset material. In other embodiments the membrane may be a thermoformable material. In one or more embodiments, the membrane may be EPDM based. In other embodiments, the membrane may be TPO based. In these or other embodiments, the membrane may be flexible and capable of being rolled up for shipment. In these or other embodiments, the membrane may include fiber reinforcement, such as a scrim. In one or more embodiments, the membrane includes EPDM membranes including those that meet the specifications of the ASTM D-4637. In other embodiments, the membrane includes thermoplastic membranes including those that meet the specifications of ASTM D-6878-03. Still other membranes may include PVC, TPV, CSPE, and asphalt-based membranes.
  • the roofing membrane panels are characterized by conventional dimensions.
  • the membrane panels may have a thickness of from about 500 ⁇ m to about 3 mm, in other embodiments from about 1,000 ⁇ m to about 2.5 mm, and in other embodiments from about 1,500 ⁇ m to about 2 mm.
  • the membrane panels of the present invention are characterized by a width of about 1 m to about 20 m, in other embodiments from about 2 m to about 18 m, and in other embodiments from about 3 m to about 15 m.
  • the pressure-sensitive adhesive layer (e.g. layer 23 ) is a cured pressure-sensitive adhesive.
  • this cured pressure-sensitive adhesive layer is formed from a curable hot-melt adhesive.
  • an uncured adhesive composition is applied to the membrane as a hot-melt composition (i.e. the composition is heated and applied as a flowable composition in the absence or appreciable absence of solvent), and then the composition is subsequently crosslinked (i.e. cured) to form the cured pressure-sensitive layer.
  • the cured pressure-sensitive adhesive layer may be an acrylic-based hot-melt adhesive.
  • the adhesive is a polyacrylate such as a polyacrylate elastomer.
  • useful polyacrylates include one or more units defined by the formula:
  • each R 1 is individually hydrogen or a hydrocarbyl group and each R 2 is individually a hydrocarbyl group.
  • each R 1 and R 2 are same in each unit.
  • at least two different R 1 and/or two different R 2 are present in the polymer chain.
  • hydrocarbyl groups include, for example, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, aralkyl, alkaryl, allyl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms.
  • These hydrocarbyl groups may contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
  • each R 2 is an alkyl group having at least 4 carbon atoms.
  • R 1 is hydrogen and R 2 is selected from the group consisting of butyl, 2-ethylhexyl, and mixtures thereof.
  • the polyacrylate elastomers that are useful as adhesives in the practice of this invention may be characterized by a glass transition temperature (Tg) of less than 0° C., in other embodiments less than ⁇ 20° C., in other embodiments less than ⁇ 30° C.
  • useful polyacrylates may be characterized by a Tg of from about ⁇ 70 to about 0° C., in other embodiments from about ⁇ 50 to about ⁇ 10° C., and in other embodiments from about ⁇ 40 to about ⁇ 20° C.
  • the polyacrylate elastomers that are useful as adhesives in the practice of this invention may be characterized by a number average molecular weight of from about 90 to about 800 kg/mole, in other embodiments from about 100 to about 350 kg/mole, in other embodiments from about 100 to about 700 kg/mole, in other embodiments from about 150 to about 270 kg/mole, in other embodiments from about 120 to about 600 kg/mole, and in other embodiments from about 180 to about 250 kg/mole.
  • the polyacrylate elastomers that are useful as adhesives in the practice of this invention may be characterized by a Brookfield viscosity at 150° C. of from about 10,000 to about 200,000 cps, in other embodiments from about 30,000 to about 60,000 cps, in other embodiments from about 30,000 to about 170,000 cps, in other embodiments from about 25,000 to about 150,000 cps, in other embodiments from about 30,000 to about 60,000 cps, and in other embodiments from about 40,000 to about 50,000 cps.
  • the polyacrylate elastomers may include polymerized units that serve as photoinitiators. These units may derive from copolymerizable photoinitiators including acetophenone or benzophenone derivatives. These polyacrylate elastomers and the adhesive compositions formed therefrom are known as disclosed in U.S. Pat. Nos. 7,304,119 and 7,358,319, which are incorporated herein by reference.
  • useful adhesive compositions are commercially available in the art.
  • useful adhesives include those available under the tradename acResin (BASF), those available under the tradename AroCure (Ashland Chemical), and NovaMeltRC (NovaMelt).
  • these hot-melt adhesives may be cured (i.e., crosslinked) by UV light.
  • the hot-melt adhesive is at least partially cured after being applied to the membrane, as will be discussed in greater detail below.
  • the adhesive is cured to an extent that it is not thermally processable in the form it was prior to cure.
  • the cured adhesive is characterized by a cross-linked infinite polymer network. While at least partially cured, the adhesive layer of one or more embodiments is essentially free of curative residue such as sulfur or sulfur crosslinks and/or phenolic compounds or phenolic-residue crosslinks.
  • the pressure-sensitive adhesive in its cured stated, provides sufficient tack to allow the membrane composites of this invention to be used in roofing systems that meet industry standards for wind uplift resistance.
  • this tack may be quantified based upon the peel strength when adhered to another membrane in accordance with ASTM D-1876-08.
  • the cured pressure-sensitive adhesive of the present invention is characterized by a peel strength, according to ASTM D-1876-08, of at least 1.8 lbf/in, in other embodiments at least 3.6 lbf/in, in other embodiments at least 8.0 lbf/in, in other embodiments at least 15 lbf/in, and in other embodiments at least 20 lbf/in.
  • the tack of the pressure-sensitive adhesive, in its cured state may be quantified based upon the peel strength when adhered to a construction board (e.g. insulation board) having a kraft paper facer in accordance with ASTM D-903-98 (2010).
  • the cured pressure-sensitive adhesive of the present invention is characterized by a peel strength, according to ASTM D-903-98 (2010) using an insulation board with kraft paper facer, of at least 1.5 lbf/in, in other embodiments at least 2.0 lbf/in, in other embodiments at least 2.5 lbf/in, in other embodiments at least 3.0 lbf/in, and in other embodiments at least 3.5 lbf/in.
  • release member 17 may include a polymeric film or extrudate, or in other embodiments it may include a cellulosic substrate. Where the polymeric film and/or cellulosic substrate cannot be readily removed after being attached to the asphaltic component, the polymeric film and/or cellulosic substrate can carry a coating or layer that allows the polymeric film and/or cellulosic substrate to be readily removed from the asphaltic component after attachment.
  • This polymeric film or extrudate may include a single polymeric layer or may include two or more polymeric layers laminated or coextruded to one another.
  • Suitable materials for forming a release member that is a polymeric film or extrudate include polypropylene, polyester, high-density polyethylene, medium-density polyethylene, low-density polyethylene, polystyrene or high-impact polystyrene.
  • the coating or layer applied to the film and/or cellulosic substrate may include a silicon-containing or fluorine-containing coating.
  • a silicone oil or polysiloxane may be applied as a coating.
  • hydrocarbon waxes may be applied as a coating.
  • the coating which may be referred to as a release coating, can be applied to both planar surfaces of the film and/or cellulosic substrate.
  • the release coating need only be applied to the planar surface of the film and/or cellulosic substrate that is ultimately removably mated with the asphaltic component.
  • the release member is characterized by a thickness of from about 15 to about 80, in other embodiments from about 18 to about 75, and in other embodiments from about 20 to about 50 ⁇ m.
  • the membrane panels employed in the membrane composites of the present invention may be prepared by conventional techniques.
  • thermoplastic membrane panels may be formed by the extrusion of thermoplastic compositions into one or more layers that can be laminated into a membrane panel.
  • Thermoset membranes can be formed using known calendering and curing techniques.
  • thermoset membranes can be made by continuous process such as those disclosed in WO 2013/142562, which is incorporated herein by reference.
  • the curable hot-melt adhesive can be extruded onto the membrane by using known apparatus such as adhesive coaters.
  • the adhesive can then subsequently be cured by using, for example, UV radiation.
  • the release film can be applied to the adhesive layer, and the membrane can then be subsequently rolled for storage and/or shipment.
  • the process can be supplemented with continuous techniques for applying and curing the adhesive coatings according to embodiments of the present invention to thereby prepare usable membrane composites within a single continuous process.
  • process 30 for preparing a composite membrane according to the present invention generally begins with a step of heating 32 , wherein a pressure-sensitive adhesive is heated to a sufficient temperature to allow the adhesive to be applied as a coating within a coating step 34 .
  • the adhesive is applied to the membrane to form a coating layer.
  • the coating is subjected to a UV-curing step 36 where sufficient UV energy is applied to the coating to thereby effect a desirable curing or crosslinking of the adhesive.
  • a release member can be applied to the cured coating in a member application step 38 .
  • the composite is wound into a roll at winding step 40 .
  • heating step 32 heats the adhesive to a temperature of from about 120 to about 160° C., in other embodiments from about 125 to about 155° C., and in other embodiments from about 130 to about 150° C.
  • coating step 34 applies an adhesive to the surface of a membrane to form a coating layer of adhesive that has a thickness of at least 51 ⁇ m (2 mil), in other embodiments at least 102 ⁇ m (4 mil), in other embodiments at least 127 ⁇ m (5 mil), and in other embodiments at least 152 ⁇ m (6 mil). In one or more embodiments, coating step 34 applies an adhesive to the surface of a membrane to form a coating layer of adhesive that has a thickness of from about 51 to about 381 ⁇ m (about 2 to about 15 mil), in other embodiments from about 102 to about 305 ⁇ m (about 4 to about 12 mil), and in other embodiments from about 127 to about 254 ⁇ m (about 5 to about 10 mil).
  • the coating has a uniform thickness such that the thickness of the coating at any given point on the surface of the membrane does not vary by more than 51 ⁇ m (2 mil), in other embodiments by more than 38 ⁇ m (1.5 mil), and in other embodiments by more than 25 ⁇ m (1 mil).
  • UV curing step 36 subjects the adhesive coating to a UV dosage of from about 30 to about 380 millijoule/cm 2 , in other embodiments from about 35 to about 300 millijoule/cm 2 , in other embodiments from about 40 to about 280 millijoule/cm 2 , in other embodiments from about 45 to about 240 millijoule/cm 2 , and in other embodiments from about 48 to about 235 millijoule/cm 2 .
  • the required dosage of energy can be exceeded without having a deleterious impact on the adhesives of the present invention. For example, up to ten times, in other embodiments up to five times, and in other embodiments up to three times the required dosage can be applied to the coating composition without having a deleterious impact on the coating composition and/or its use in the present invention.
  • UV curing step 36 subjects the adhesive coating to a UV intensity, which may also be referred to as UV irradiance, of at least 150, in other embodiments at least 200, and in other embodiments at least 250 milliWatts/cm 2 .
  • UV curing step 36 subjects the adhesive coating to a UV intensity of from about 150 to about 500 milliWatts/cm 2 , in other embodiments from about 200 to about 400 milliWatts/cm 2 , and in other embodiments from about 250 to about 350 milliWatts/cm 2 .
  • the energy supplied to the coating layer within UV radiation step 36 is in the form of UV-C electromagnetic radiation, which can be characterized by a wave length of from about 250 to about 260 nm.
  • the UV dosage applied during UV curing step 36 is regulated based upon a UV measuring and control system that operates in conjunction with UV curing step 36 . According to this system, UV measurements are taken proximate to the surface of the adhesive coating layer using known equipment such as a UV radiometer. The data from these measurements can be automatically inputted into a central processing system that can process the information relative to desired dosage and/or cure states and automatically send signal to various variable-control systems that can manipulate one or more process parameters.
  • the power supplied to the UV lamps and/or the height at which the UV lamps are positioned above the coating layer can be manipulated automatically based upon electronic signal from the central processing unit.
  • the UV intensity, and therefore the UV dosage can be adjusted in real time during the manufacturing process.
  • Continuous process 50 includes a heating step 52 where UV curable hot-melt adhesive 51 is heated to a desired temperature within a heated tank 53 .
  • Adhesive 51 is fed into an extrusion device, such as a coater 55 , which may include a pump, such as a gear pump 57 , and a slot die 59 .
  • coater 55 extrudes adhesive 51 , which is in its molten, liquid or flowable state, and deposits a coating layer 61 of adhesive 51 onto a planar surface 63 of membrane 65 .
  • coating step 54 can include a roll-coating operation, where adhesive 51 is applied to membrane 65 while membrane 65 is at least partially wound around a coating mandrel 67 .
  • Membrane 65 carrying coating layer 61 is fed to a crosslinking step 56 , where coating layer 61 of adhesive 51 is subjected to a desired dosage of UV radiation 69 , which may be supplied by one or more UV lamps 71 .
  • UV lamps 71 may include, for example, mercury-type UV lamps or LED UV lamps. As the skilled person appreciates, the desired dosage of UV energy can be supplied to coating 61 by adjusting the UV intensity and exposure time.
  • the intensity can be manipulated by the power supplied to the respective lamps and the height (H) that the lamps are placed above the surface of coating 61 of adhesive 51 .
  • Exposure time can be manipulated based upon the line speed (i.e., the speed at which membrane 65 carrying coating layer 61 is passed through UV curing step 56 ).
  • release paper 73 may be applied to upper surface 75 of coating layer 61 within release paper application step 58 .
  • release paper 73 may be supplied from a mandrel 77 and removably mated to upper surface 75 through pressure supplied by nip rolls 79 .
  • the composite product may be wound within winding step 60 to provide wound rolls 81 of composite products 83 .
  • the bond between the layer of crosslinked pressure-sensitive adhesive disposed on a surface of the membrane and the membrane of an existing membrane surface according to the present invention may be characterized by an advantageous peel strength.
  • the peel strength of the bond between the layer of crosslinked pressure-sensitive adhesive disposed on the membranes and the existing membrane may be characterized by a peel strength, as determined according to Pressure Sensitive Tape Council (PSTC) 101, of at least 3.0, in other embodiments at least 3.5, and in other embodiments at least 4.0 pounds per linear inch (pli).
  • PSTC Pressure Sensitive Tape Council
  • the peel strength may be from about 3.0 to about 25 in other embodiments from about 3.5 to about 20, and in other embodiments from about 4.0 to about 18 pli.
  • the bond between the layer of crosslinked pressure-sensitive adhesive disposed on a surface of the membrane and the existing membrane may be characterized by an advantageous dead load shear.
  • the dead load shear of the bond between the layer of crosslinked pressure-sensitive adhesive disposed on the membranes of the present invention and the existing membrane may be characterized by a dead load shear, as determined according to PSTC 107, of at least 0.5 hour (time of failure), in other embodiments at least 1.0 hour, and in other embodiments at least 1.5. In these or other embodiments, the dead load shear may be from about 2.0 to about 2.5 hours.
  • the method of reroofing includes providing the membrane composite, optionally preparing the roof surface, positioning the membrane composite over the roof surface, removing the release member, and mating the adhesive layer to the existing membrane.
  • the roof surface may be prepared by removing debris from the surface of the existing membrane. This may include using conventional means such as sweeping or blowing (e.g. with the use of power blower) to remove debris from the membrane surface. In addition thereto or in lieu thereof, water may be employed to assist in the removal of debris. This may include the use of a high-pressured water spray (e.g. power washer).
  • the existing membranes can be washed using cleaning products such as those available from Firestone Building Products, LLC under the tradename Membrane PreWash.
  • the membrane composites of the present invention can be secured to the existing roof membrane by using standard peel-and-stick techniques, which include positioning the membrane, removing the release member, and mating the adhesive layer to the roof surface (i.e. to the existing membrane).
  • practice of the present invention provides roof surface that includes an existing membrane secured to the roof deck, and a second membrane secured to the first membrane through the factory-applied adhesive layer described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A method of reroofing, the method comprising of applying to an existing roof surface a membrane composite including a pre-applied adhesive layer by mating the adhesive layer to the existing membrane.

Description

  • This application claims the benefit of U.S. Provisional Application Ser. No. 62/313,239, filed on Mar. 25, 2016, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • Embodiments of the invention are directed toward methods of reroofing wherein a membrane carrying a factory-applied adhesive is applied directly to an existing membrane and/or additional substrates that are installed on the roof as part of the roofing event such as coverboards.
  • BACKGROUND OF THE INVENTION
  • Large, flexible polymeric sheets, which are often referred to as membranes or panels, are used in the construction industry to cover flat or low-sloped roofs. These membranes provide protection to the roof from the environment, particularly in the form of a waterproof barrier. As is known in the art, commercially popular membranes include thermoset membranes such as those including cured EPDM (i.e., ethylene-propylene-diene terpolymer rubber) or thermoplastics such as TPO (i.e., thermoplastic olefins).
  • These membranes are typically delivered to a construction site in a bundled roll, transferred to the roof, and then unrolled and positioned. The sheets are then affixed to the building structure by employing varying techniques such as mechanical fastening, ballasting, and/or adhesively adhering the membrane to the roof. The roof substrate to which the membrane is secured may be one of a variety of materials depending on the installation site and structural concerns. For example, the surface may be a concrete, metal, or wood deck, it may include insulation or recover board, and/or it may include an existing membrane.
  • In addition to securing the membrane to the roof—which mode of attachment primarily seeks to prevent wind uplift—the individual membrane panels, together with flashing and other accessories, are positioned and adjoined to achieve a waterproof barrier on the roof. Typically, the edges of adjoining panels are overlapped, and these overlapping portions are adjoined to one another through a number of methods depending upon the membrane materials and exterior conditions. One approach involves providing adhesives or adhesive tapes between the overlapping portions, thereby creating a water resistant seal.
  • With respect to the former mode of attachment, which involves securing the membrane to the roof, the use of adhesives allow for the formation of a fully-adhered roofing system. In other words, a majority, if not all, of the membrane panel is secured to the roof substrate, as opposed to mechanical attachment methods that can only achieve direct attachment in those locations where a mechanical fastener actually affixes the membrane.
  • When adhesively securing a membrane to a roof, such as in the formation of a fully-adhered system, there are a few common methods employed. The first is known as contact bonding whereby technicians coat both the membrane and the substrate with an adhesive, and then mate the membrane to the substrate while the adhesive is only partially set. Because the volatile components (e.g. solvent) of the adhesives are flashed off prior to mating, good early (green) bond strength is developed.
  • Another mode of attachment is through the use of a pre-applied adhesive to the bottom surface of the membrane. In other words, prior to delivery of the membrane to the job site, an adhesive is applied to the bottom surface of the membrane. In order to allow the membrane to be rolled and shipped, a release film or member is applied to the surface of the adhesive. During installation of the membrane, the release member is removed, thereby exposing the pressure-sensitive adhesive, and the membrane can then be secured to the roofing surface without the need for the application of additional adhesives.
  • As is known in the art, the pre-applied adhesive can be applied to the surface of the membrane in the form of a hot-melt adhesive. For example, U.S. Publication No. 2004/0191508, which teaches peel and stick thermoplastic membranes, employs pressure-sensitive adhesive compositions comprising styrene-ethylene-butylene-styrene (SEGS), tackifying endblock resins such as cumarone-indene resin and tackifying midblock resins such as terpene resins. This publication also suggests other hot-melt adhesives such as butyl-based adhesives, EPDM-based adhesives, acrylic adhesives, styrene-butadiene adhesives, polyisobutylene adhesives, and ethylene vinyl acetate adhesives.
  • In view of the nature of the adhesives, peel and stick membranes have inherent limitations. For example, there are temperature windows that limit the minimum temperature at which the membranes can be installed on a roof surface. Also, there are maximum temperature limits on the roof surface that the adhesive can withstand while maintaining wind-uplift integrity. With respect to the latter, where the surface temperature on the roof nears the glass transition temperature of the adhesive, the adhesive strength offered by the pressure-sensitive adhesive is not maintained. As a result, peel-and-stick membranes have not gained wide acceptance in the industry. Moreover, the use of peel-and-stick membranes has been limited to use in conjunction with white membranes (e.g., white thermoplastic membranes) because the surface temperature of these membranes remains cooler when exposed to solar energy.
  • Reroofing an existing roof generally includes the application of a newly fabricated membrane over the existing membrane. Reroofing presents challenges, especially where there is a desire to fully adhere the new membrane to an existing membrane, because the existing roof surface can provide an undesirable substrate for adhesive attachment. For example, the roof surface can be environmentally damaged, covered with debris, and/or can be relatively uneven.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention provide a method of reroofing, the method comprising of applying to an existing roof surface a membrane composite including a pre-applied adhesive layer by mating the adhesive layer to the existing membrane.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-section perspective view of a membrane composite according to embodiments of the invention.
  • FIG. 2 is a flow chart describing a process for making membrane composite according to embodiments of the present invention.
  • FIG. 3 is a schematic of a continuous process for making membrane composite according to the present invention.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • Embodiments of the invention are based, at least in part, on the discovery of reroofing technique that includes the application of membrane having a pre-applied (e.g. factory-applied) pressure-sensitive adhesive that is at least partially cured directly to an existing membrane secured to the roof being reroofed. In one or more embodiments, the pre-applied adhesive is applied as a hot-melt adhesive and subsequently cured. It has unexpectedly been discovered that the nature of the pre-applied adhesive, including its initial tack and high-temperature strength, allows the membrane composite to be directly attached to the existing membrane.
  • Membrane Construction
  • Practice of the present invention does not necessarily change the overall construction of the membranes of the present invention. As the skilled person understands, membranes that carry an adhesive for application by peel-and-stick methods are generally known as disclosed in U.S. Publication No. 2004/0191508, which is incorporated herein by reference.
  • For example, a membrane 11, which may be referred to as a membrane composite 11, is shown in FIG. 1. Membrane composite 11 includes polymeric panel 13, pressure-sensitive adhesive layer 15, and release member 17 removably attached to layer 15.
  • Membrane Panel
  • In one or more embodiments, the membrane may be a thermoset material. In other embodiments the membrane may be a thermoformable material. In one or more embodiments, the membrane may be EPDM based. In other embodiments, the membrane may be TPO based. In these or other embodiments, the membrane may be flexible and capable of being rolled up for shipment. In these or other embodiments, the membrane may include fiber reinforcement, such as a scrim. In one or more embodiments, the membrane includes EPDM membranes including those that meet the specifications of the ASTM D-4637. In other embodiments, the membrane includes thermoplastic membranes including those that meet the specifications of ASTM D-6878-03. Still other membranes may include PVC, TPV, CSPE, and asphalt-based membranes.
  • In one or more embodiments, the roofing membrane panels are characterized by conventional dimensions. For example, in one or more embodiments, the membrane panels may have a thickness of from about 500 μm to about 3 mm, in other embodiments from about 1,000 μm to about 2.5 mm, and in other embodiments from about 1,500 μm to about 2 mm. In these or other embodiments, the membrane panels of the present invention are characterized by a width of about 1 m to about 20 m, in other embodiments from about 2 m to about 18 m, and in other embodiments from about 3 m to about 15 m.
  • Hot-Melt Curable Adhesives
  • In one or more embodiments, the pressure-sensitive adhesive layer (e.g. layer 23) is a cured pressure-sensitive adhesive. In sub-embodiments thereof, this cured pressure-sensitive adhesive layer is formed from a curable hot-melt adhesive. In other words, and as will be described in greater detail below, an uncured adhesive composition is applied to the membrane as a hot-melt composition (i.e. the composition is heated and applied as a flowable composition in the absence or appreciable absence of solvent), and then the composition is subsequently crosslinked (i.e. cured) to form the cured pressure-sensitive layer.
  • In one or more embodiments, the cured pressure-sensitive adhesive layer may be an acrylic-based hot-melt adhesive. In one or more embodiments, the adhesive is a polyacrylate such as a polyacrylate elastomer. In one or more embodiments, useful polyacrylates include one or more units defined by the formula:
  • Figure US20200299967A1-20200924-C00001
  • where each R1 is individually hydrogen or a hydrocarbyl group and each R2 is individually a hydrocarbyl group. In the case of a homopolymer, each R1 and R2, respectively, throughout the polymer are same in each unit. In the case of a copolymer, at least two different R1 and/or two different R2 are present in the polymer chain.
  • In one or more embodiments, hydrocarbyl groups include, for example, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, aralkyl, alkaryl, allyl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms. These hydrocarbyl groups may contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms. In particular embodiments, each R2 is an alkyl group having at least 4 carbon atoms. In particular embodiments, R1 is hydrogen and R2 is selected from the group consisting of butyl, 2-ethylhexyl, and mixtures thereof.
  • In one or more embodiments, the polyacrylate elastomers that are useful as adhesives in the practice of this invention may be characterized by a glass transition temperature (Tg) of less than 0° C., in other embodiments less than −20° C., in other embodiments less than −30° C. In these or other embodiments, useful polyacrylates may be characterized by a Tg of from about −70 to about 0° C., in other embodiments from about −50 to about −10° C., and in other embodiments from about −40 to about −20° C.
  • In one or more embodiments, the polyacrylate elastomers that are useful as adhesives in the practice of this invention may be characterized by a number average molecular weight of from about 90 to about 800 kg/mole, in other embodiments from about 100 to about 350 kg/mole, in other embodiments from about 100 to about 700 kg/mole, in other embodiments from about 150 to about 270 kg/mole, in other embodiments from about 120 to about 600 kg/mole, and in other embodiments from about 180 to about 250 kg/mole.
  • In one or more embodiments, the polyacrylate elastomers that are useful as adhesives in the practice of this invention may be characterized by a Brookfield viscosity at 150° C. of from about 10,000 to about 200,000 cps, in other embodiments from about 30,000 to about 60,000 cps, in other embodiments from about 30,000 to about 170,000 cps, in other embodiments from about 25,000 to about 150,000 cps, in other embodiments from about 30,000 to about 60,000 cps, and in other embodiments from about 40,000 to about 50,000 cps.
  • Specific examples of polyacrylate elastomers that are useful as adhesives in the practice of the present invention include poly(butylacrylate), and poly(2-ethylhexylacrylate). These polyacrylate elastomers may be formulated with photoinitiators, solvents, plasticizers, and resins such as natural and hydrocarbon resins. The skilled person can readily formulate a desirable adhesive composition. Useful adhesive compositions are disclosed, for example, in U.S. Pat. Nos. 6,720,399, 6,753,079, 6,831,114, 6,881,442, and 6,887,917, which are incorporated herein by reference.
  • In other embodiments, the polyacrylate elastomers may include polymerized units that serve as photoinitiators. These units may derive from copolymerizable photoinitiators including acetophenone or benzophenone derivatives. These polyacrylate elastomers and the adhesive compositions formed therefrom are known as disclosed in U.S. Pat. Nos. 7,304,119 and 7,358,319, which are incorporated herein by reference.
  • Useful adhesive compositions are commercially available in the art. For example, useful adhesives include those available under the tradename acResin (BASF), those available under the tradename AroCure (Ashland Chemical), and NovaMeltRC (NovaMelt). In one or more embodiments, these hot-melt adhesives may be cured (i.e., crosslinked) by UV light.
  • In one or more embodiments, the hot-melt adhesive is at least partially cured after being applied to the membrane, as will be discussed in greater detail below. In one or more embodiments, the adhesive is cured to an extent that it is not thermally processable in the form it was prior to cure. In these or other embodiments, the cured adhesive is characterized by a cross-linked infinite polymer network. While at least partially cured, the adhesive layer of one or more embodiments is essentially free of curative residue such as sulfur or sulfur crosslinks and/or phenolic compounds or phenolic-residue crosslinks.
  • As indicated above, the pressure-sensitive adhesive, in its cured stated, provides sufficient tack to allow the membrane composites of this invention to be used in roofing systems that meet industry standards for wind uplift resistance. In one or more embodiments, this tack may be quantified based upon the peel strength when adhered to another membrane in accordance with ASTM D-1876-08. In one or more embodiments, the cured pressure-sensitive adhesive of the present invention is characterized by a peel strength, according to ASTM D-1876-08, of at least 1.8 lbf/in, in other embodiments at least 3.6 lbf/in, in other embodiments at least 8.0 lbf/in, in other embodiments at least 15 lbf/in, and in other embodiments at least 20 lbf/in.
  • Similarly, the tack of the pressure-sensitive adhesive, in its cured state, may be quantified based upon the peel strength when adhered to a construction board (e.g. insulation board) having a kraft paper facer in accordance with ASTM D-903-98 (2010). In one or more embodiments, the cured pressure-sensitive adhesive of the present invention is characterized by a peel strength, according to ASTM D-903-98 (2010) using an insulation board with kraft paper facer, of at least 1.5 lbf/in, in other embodiments at least 2.0 lbf/in, in other embodiments at least 2.5 lbf/in, in other embodiments at least 3.0 lbf/in, and in other embodiments at least 3.5 lbf/in.
  • Release Member
  • In one or more embodiments, release member 17 may include a polymeric film or extrudate, or in other embodiments it may include a cellulosic substrate. Where the polymeric film and/or cellulosic substrate cannot be readily removed after being attached to the asphaltic component, the polymeric film and/or cellulosic substrate can carry a coating or layer that allows the polymeric film and/or cellulosic substrate to be readily removed from the asphaltic component after attachment. This polymeric film or extrudate may include a single polymeric layer or may include two or more polymeric layers laminated or coextruded to one another.
  • Suitable materials for forming a release member that is a polymeric film or extrudate include polypropylene, polyester, high-density polyethylene, medium-density polyethylene, low-density polyethylene, polystyrene or high-impact polystyrene. The coating or layer applied to the film and/or cellulosic substrate may include a silicon-containing or fluorine-containing coating. For example, a silicone oil or polysiloxane may be applied as a coating. In other embodiments, hydrocarbon waxes may be applied as a coating. As the skilled person will appreciate, the coating, which may be referred to as a release coating, can be applied to both planar surfaces of the film and/or cellulosic substrate. In other embodiments, the release coating need only be applied to the planar surface of the film and/or cellulosic substrate that is ultimately removably mated with the asphaltic component.
  • In one or more embodiments, the release member is characterized by a thickness of from about 15 to about 80, in other embodiments from about 18 to about 75, and in other embodiments from about 20 to about 50 μm.
  • Preparation of Membrane Composite
  • The membrane panels employed in the membrane composites of the present invention may be prepared by conventional techniques. For example, thermoplastic membrane panels may be formed by the extrusion of thermoplastic compositions into one or more layers that can be laminated into a membrane panel. Thermoset membranes can be formed using known calendering and curing techniques. Alternatively, thermoset membranes can be made by continuous process such as those disclosed in WO 2013/142562, which is incorporated herein by reference. Once the membrane is formed, the curable hot-melt adhesive can be extruded onto the membrane by using known apparatus such as adhesive coaters. The adhesive can then subsequently be cured by using, for example, UV radiation. The release film can be applied to the adhesive layer, and the membrane can then be subsequently rolled for storage and/or shipment. Advantageously, where the membrane panel is made by using continuous techniques, the process can be supplemented with continuous techniques for applying and curing the adhesive coatings according to embodiments of the present invention to thereby prepare usable membrane composites within a single continuous process.
  • As generally shown in FIG. 2, process 30 for preparing a composite membrane according to the present invention generally begins with a step of heating 32, wherein a pressure-sensitive adhesive is heated to a sufficient temperature to allow the adhesive to be applied as a coating within a coating step 34. Within coating step 34, the adhesive is applied to the membrane to form a coating layer. Following formation of the coating, the coating is subjected to a UV-curing step 36 where sufficient UV energy is applied to the coating to thereby effect a desirable curing or crosslinking of the adhesive. Once the adhesive has been sufficiently cured by exposure to UV curing step 36, a release member can be applied to the cured coating in a member application step 38. Following application of a member, the composite is wound into a roll at winding step 40.
  • In one or more embodiments, heating step 32 heats the adhesive to a temperature of from about 120 to about 160° C., in other embodiments from about 125 to about 155° C., and in other embodiments from about 130 to about 150° C.
  • In one or more embodiments, coating step 34 applies an adhesive to the surface of a membrane to form a coating layer of adhesive that has a thickness of at least 51 μm (2 mil), in other embodiments at least 102 μm (4 mil), in other embodiments at least 127 μm (5 mil), and in other embodiments at least 152 μm (6 mil). In one or more embodiments, coating step 34 applies an adhesive to the surface of a membrane to form a coating layer of adhesive that has a thickness of from about 51 to about 381 μm (about 2 to about 15 mil), in other embodiments from about 102 to about 305 μm (about 4 to about 12 mil), and in other embodiments from about 127 to about 254 μm (about 5 to about 10 mil). In one or more embodiments, the coating has a uniform thickness such that the thickness of the coating at any given point on the surface of the membrane does not vary by more than 51 μm (2 mil), in other embodiments by more than 38 μm (1.5 mil), and in other embodiments by more than 25 μm (1 mil).
  • In one or more embodiments, UV curing step 36 subjects the adhesive coating to a UV dosage of from about 30 to about 380 millijoule/cm2, in other embodiments from about 35 to about 300 millijoule/cm2, in other embodiments from about 40 to about 280 millijoule/cm2, in other embodiments from about 45 to about 240 millijoule/cm2, and in other embodiments from about 48 to about 235 millijoule/cm2. It has advantageously been discovered that the required dosage of energy can be exceeded without having a deleterious impact on the adhesives of the present invention. For example, up to ten times, in other embodiments up to five times, and in other embodiments up to three times the required dosage can be applied to the coating composition without having a deleterious impact on the coating composition and/or its use in the present invention.
  • In one or more embodiments, UV curing step 36 subjects the adhesive coating to a UV intensity, which may also be referred to as UV irradiance, of at least 150, in other embodiments at least 200, and in other embodiments at least 250 milliWatts/cm2. In these or other embodiments, UV curing step 36 subjects the adhesive coating to a UV intensity of from about 150 to about 500 milliWatts/cm2, in other embodiments from about 200 to about 400 milliWatts/cm2, and in other embodiments from about 250 to about 350 milliWatts/cm2. It has advantageously been discovered that the ability to appropriately cure the coating compositions of the present invention, and thereby provide a useful pressure-sensitive adhesive for the roofing applications disclosed herein, critically relies on the UV intensity applied to the coating. It is believed that the thickness of the coatings (and therefore the thickness of the pressure-sensitive adhesive layer) employed in the present invention necessitates the application of greater UV intensity.
  • In one or more embodiments, the energy supplied to the coating layer within UV radiation step 36 is in the form of UV-C electromagnetic radiation, which can be characterized by a wave length of from about 250 to about 260 nm. In one or more embodiments, the UV dosage applied during UV curing step 36 is regulated based upon a UV measuring and control system that operates in conjunction with UV curing step 36. According to this system, UV measurements are taken proximate to the surface of the adhesive coating layer using known equipment such as a UV radiometer. The data from these measurements can be automatically inputted into a central processing system that can process the information relative to desired dosage and/or cure states and automatically send signal to various variable-control systems that can manipulate one or more process parameters. For example, the power supplied to the UV lamps and/or the height at which the UV lamps are positioned above the coating layer can be manipulated automatically based upon electronic signal from the central processing unit. In other words, the UV intensity, and therefore the UV dosage, can be adjusted in real time during the manufacturing process.
  • In one or more embodiments, an exemplary process for preparing the membrane composites of the present invention can be described with reference to FIG. 3. Continuous process 50 includes a heating step 52 where UV curable hot-melt adhesive 51 is heated to a desired temperature within a heated tank 53. Adhesive 51 is fed into an extrusion device, such as a coater 55, which may include a pump, such as a gear pump 57, and a slot die 59. Within coating step 54, coater 55 extrudes adhesive 51, which is in its molten, liquid or flowable state, and deposits a coating layer 61 of adhesive 51 onto a planar surface 63 of membrane 65.
  • As shown in FIG. 3, coating step 54 can include a roll-coating operation, where adhesive 51 is applied to membrane 65 while membrane 65 is at least partially wound around a coating mandrel 67. Membrane 65 carrying coating layer 61 is fed to a crosslinking step 56, where coating layer 61 of adhesive 51 is subjected to a desired dosage of UV radiation 69, which may be supplied by one or more UV lamps 71. UV lamps 71 may include, for example, mercury-type UV lamps or LED UV lamps. As the skilled person appreciates, the desired dosage of UV energy can be supplied to coating 61 by adjusting the UV intensity and exposure time. The intensity can be manipulated by the power supplied to the respective lamps and the height (H) that the lamps are placed above the surface of coating 61 of adhesive 51. Exposure time can be manipulated based upon the line speed (i.e., the speed at which membrane 65 carrying coating layer 61 is passed through UV curing step 56).
  • Following UV curing step 56, release paper 73 may be applied to upper surface 75 of coating layer 61 within release paper application step 58. As shown in FIG. 3, release paper 73 may be supplied from a mandrel 77 and removably mated to upper surface 75 through pressure supplied by nip rolls 79. After application of release paper 73, the composite product may be wound within winding step 60 to provide wound rolls 81 of composite products 83.
  • Characteristics of Composite Membrane
  • In one or more embodiments, the bond between the layer of crosslinked pressure-sensitive adhesive disposed on a surface of the membrane and the membrane of an existing membrane surface according to the present invention may be characterized by an advantageous peel strength. In one or more embodiments, the peel strength of the bond between the layer of crosslinked pressure-sensitive adhesive disposed on the membranes and the existing membrane may be characterized by a peel strength, as determined according to Pressure Sensitive Tape Council (PSTC) 101, of at least 3.0, in other embodiments at least 3.5, and in other embodiments at least 4.0 pounds per linear inch (pli). In these or other embodiments, the peel strength may be from about 3.0 to about 25 in other embodiments from about 3.5 to about 20, and in other embodiments from about 4.0 to about 18 pli.
  • In one or more embodiments, the bond between the layer of crosslinked pressure-sensitive adhesive disposed on a surface of the membrane and the existing membrane may be characterized by an advantageous dead load shear. In one or more embodiments, the dead load shear of the bond between the layer of crosslinked pressure-sensitive adhesive disposed on the membranes of the present invention and the existing membrane may be characterized by a dead load shear, as determined according to PSTC 107, of at least 0.5 hour (time of failure), in other embodiments at least 1.0 hour, and in other embodiments at least 1.5. In these or other embodiments, the dead load shear may be from about 2.0 to about 2.5 hours.
  • Method of Reroofing
  • In one or more embodiments, the method of reroofing includes providing the membrane composite, optionally preparing the roof surface, positioning the membrane composite over the roof surface, removing the release member, and mating the adhesive layer to the existing membrane.
  • In one or more embodiments, the roof surface may be prepared by removing debris from the surface of the existing membrane. This may include using conventional means such as sweeping or blowing (e.g. with the use of power blower) to remove debris from the membrane surface. In addition thereto or in lieu thereof, water may be employed to assist in the removal of debris. This may include the use of a high-pressured water spray (e.g. power washer). In particular embodiments, the existing membranes can be washed using cleaning products such as those available from Firestone Building Products, LLC under the tradename Membrane PreWash.
  • Once the roof surface has been optionally prepared, the membrane composites of the present invention can be secured to the existing roof membrane by using standard peel-and-stick techniques, which include positioning the membrane, removing the release member, and mating the adhesive layer to the roof surface (i.e. to the existing membrane).
  • Roof System
  • In one or more embodiments, practice of the present invention provides roof surface that includes an existing membrane secured to the roof deck, and a second membrane secured to the first membrane through the factory-applied adhesive layer described herein.
  • Various modifications and alterations that do not depart from the scope and spirit of this invention will become apparent to those skilled in the art. This invention is not to be duly limited to the illustrative embodiments set forth herein.

Claims (13)

1-6. (canceled)
7. A method of reroofing an existing roof system including an existing membrane, the method comprising:
(i) providing a membrane composite, where the composite includes a polymeric membrane and an adhesive layer disposed on a planar surface of the membrane, the adhesive layer being applied to the membrane as a hot-melt adhesive and being at least partially cured by UV radiation, the composite further comprising a release member removably attached to the adhesive layer;
(ii) removing debris from the existing membrane;
(iii) after said step of removing debris, washing the existing membrane;
(iv) removing the release member from said composite; and
(v) adhering the composite to the existing membrane by mating the adhesive layer to the membrane.
8. The method of claim 7, where the adhesive layer includes a polyacrylate adhesive.
9. The method of claim 8, where said step of removing debris includes blowing the debris with a power blower.
10. The method of claim 9, where said step of washing includes applying water and a cleaning solution.
11. The method of claim 7, where said step of adhering the composite to the existing membrane creates a bond having a peel strength, as determined by PSTC 101, of at least 3.0 pli.
12. The method of claim 7, where said step of adhering the composite to the existing membrane creates a bond having a peel strength, as determined by PSTC 101, of at least 3.5 pli.
13. The method of claim 7, where said step of adhering the composite to the existing membrane creates a bond having a dead load shear, as determined by PSTC 107, of at least 0.5 hour.
14. The method of claim 7, where said step of adhering the composite to the existing membrane creates a bond having a dead load shear, as determined by PSTC 107, of at least 1.0 hour.
15. The method of claim 7, where said membrane of said composite is an EPDM membrane.
16. The method of claim 7, where said membrane of said composite is a TPO membrane.
17. The method of claim 7, where said existing membrane is an EPDM membrane.
18. The method of claim 7, where said existing membrane is a TPO membrane.
US16/088,176 2016-03-25 2017-03-25 Method of reroofing Abandoned US20200299967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/088,176 US20200299967A1 (en) 2016-03-25 2017-03-25 Method of reroofing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662313239P 2016-03-25 2016-03-25
US16/088,176 US20200299967A1 (en) 2016-03-25 2017-03-25 Method of reroofing
PCT/US2017/024192 WO2017165871A1 (en) 2016-03-25 2017-03-25 Method of reroofing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/024192 A-371-Of-International WO2017165871A1 (en) 2016-03-25 2017-03-25 Method of reroofing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/311,040 Continuation US12173509B2 (en) 2016-03-25 2023-05-02 Method of reroofing

Publications (1)

Publication Number Publication Date
US20200299967A1 true US20200299967A1 (en) 2020-09-24

Family

ID=58530649

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/088,176 Abandoned US20200299967A1 (en) 2016-03-25 2017-03-25 Method of reroofing
US18/311,040 Active US12173509B2 (en) 2016-03-25 2023-05-02 Method of reroofing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/311,040 Active US12173509B2 (en) 2016-03-25 2023-05-02 Method of reroofing

Country Status (2)

Country Link
US (2) US20200299967A1 (en)
WO (1) WO2017165871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12091862B2 (en) 2021-11-04 2024-09-17 Carlisle Construction Materials, LLC Adhesive strip attachment of roof boards to a corrugated roof deck

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2920778A1 (en) 2013-09-18 2015-03-26 Firestone Building Products Company, Llc Peel and stick roofing membranes with cured pressure-sensitive adhesives
CA2941239C (en) 2014-03-07 2022-12-06 Firestone Building Products Co., LLC Roofing membranes with pre-applied, cured, pressure-sensitive seam adhesives
WO2017165868A1 (en) 2016-03-25 2017-09-28 Firestone Building Products Co., LLC Fully-adhered roof system adhered and seamed with a common adhesive
US20200299967A1 (en) 2016-03-25 2020-09-24 Firestone Building Products Company, Llc Method of reroofing
US12006692B2 (en) 2016-03-25 2024-06-11 Holcim Technology Ltd Fully-adhered roof system adhered and seamed with a common adhesive
WO2020117523A1 (en) * 2018-12-04 2020-06-11 Carlisle Constructions Materials, Llc Weldable, fully adhered waterproofing membrane system for blindside waterproofing applications
WO2024200428A1 (en) 2023-03-31 2024-10-03 Holcim Technology Ltd Roof system with adhered construction boards

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935353A (en) 1970-05-22 1976-01-27 Detroit Gasket & Manufacturing Co. Heat shrinkable decorative covering material for vehicle panels
US4032491A (en) * 1973-10-19 1977-06-28 Butler-Schoenke Roofing Specialties, Inc. Roofing composition and resulting product
US4404243A (en) 1982-08-03 1983-09-13 Reeves Bros., Inc. Latent pressure-sensitive sheet material and method of making same using solvent-based pressure-sensitive adhesive
US4585682A (en) 1983-05-23 1986-04-29 W. R. Grace & Co. Roofing membranes
US4572865A (en) 1983-12-05 1986-02-25 The Celotex Corporation Faced foam insulation board and froth-foaming method for making same
US4657958A (en) 1985-03-05 1987-04-14 The Firestone Tire & Rubber Company Contact adhesive and adhesive system for EPDM elastomers
US4908229A (en) 1986-03-11 1990-03-13 Union Oil Of California Method for producing an article containing a radiation cross-linked polymer and the article produced thereby
US4806400A (en) 1986-05-23 1989-02-21 The Kendall Company Tapered adhesive tape
US4732925A (en) 1986-07-10 1988-03-22 The Firestone Tire & Rubber Company Vulcanizable elastomeric roof sheeting and flashing composition
US4778852A (en) 1987-04-06 1988-10-18 The Firestone Tire & Rubber Company Roofing composition
US4810565A (en) 1987-07-29 1989-03-07 The Firestone Tire & Rubber Company Fire retardant elastomeric EPDM roof sheeting and flashing composites
US4946742A (en) 1988-05-20 1990-08-07 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive having improved adhesion to plasticized vinyl substrates
US5264533A (en) 1988-06-16 1993-11-23 Basf Aktiengesellschaft Benzophenone derivatives and their preparation
DE3844445A1 (en) 1988-12-31 1990-07-19 Basf Ag UV-CROSSLINKABLE MASSES BASED ON (METH) -ACRYLESTER POLYMERISATS
US4943461A (en) 1989-02-01 1990-07-24 Minnesota Mining And Manufacturing Company Radiation-curable pressure-sensitive adhesive having improved adhesion to plasticized vinyl substrates
US5086088A (en) 1989-03-09 1992-02-04 Minnesota Mining And Manufacturing Company Epoxy-acrylate blend pressure-sensitive thermosetting adhesives
DE3914374A1 (en) 1989-04-29 1990-10-31 Basf Ag THROUGH ULTRAVIOLET RADIATION UNDER AIR OXYGEN ATMOSPHERIC CROSSLINKABLE COPOLYMERS
US5665822A (en) 1991-10-07 1997-09-09 Landec Corporation Thermoplastic Elastomers
US5176953A (en) 1990-12-21 1993-01-05 Amoco Corporation Oriented polymeric microporous films
US5253461A (en) 1990-12-21 1993-10-19 Tremco, Inc. Fastener-free roofing system and method
US5242727A (en) 1991-01-04 1993-09-07 Adco Products, Inc. Adhesive composition and method for providing water-tight joints in single-ply roofing membranes
USRE37683E1 (en) 1991-01-04 2002-04-30 Adco Products, Inc. Adhesive composition and method for providing water-tight joints in single-ply roofing membranes
US5496615A (en) 1991-03-01 1996-03-05 W. R. Grace & Co.-Conn. Waterproofing membrane
EP0593859B1 (en) 1992-07-27 1997-06-25 Bridgestone Corporation Polymer blends for rooftop curable heat seamable roof sheeting and method for covering roofs
US5374477A (en) 1993-02-09 1994-12-20 Minnesota Mining And Manufacturing Company Barrier laminate and method for sealing gaps in building construction
US7575653B2 (en) 1993-04-15 2009-08-18 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
ES2110332B1 (en) 1994-02-07 1998-08-01 Coop Goizper S IMPROVEMENTS IN HYDRAULIC BRAKES-CLUTCH.
US5456785A (en) 1994-05-17 1995-10-10 Venable; Jesse S. Composite roofing product and method and apparatus for making a composite roofing product
US5686179A (en) 1994-11-09 1997-11-11 Cotsakis; Daniel John Pressure sensitive tape for forming water-tight field joints in rubber membranes
CA2167243C (en) 1995-01-24 2009-12-22 Ronald Lynn Senderling Low voc cleaner/primer for epdm and butyl roofing and waterproofing membranes
US5880241A (en) 1995-01-24 1999-03-09 E. I. Du Pont De Nemours And Company Olefin polymers
US6297324B1 (en) 1995-03-31 2001-10-02 Adco Products, Inc. Adhesive composition for providing water-tight joints in single-ply roofing membranes
DE19514266A1 (en) 1995-04-15 1996-10-17 Basf Ag Process for the preservation of a mineral shaped body
US5733824A (en) 1995-06-07 1998-03-31 Bay Mills Ltd Hand-tearable moisture barrier laminate
GB2305667A (en) 1995-09-27 1997-04-16 Lawrence Lester Bitumen-polymer compositions
US6192650B1 (en) * 1996-06-24 2001-02-27 Bay Mills Ltd. Water-resistant mastic membrane
ES2170418T3 (en) 1996-09-09 2002-08-01 Basf Ag PROCEDURE FOR OBTAINING WATERPROOF POLYMER DISPERSIONS.
EP0831185A3 (en) 1996-09-23 1999-03-03 Bridgestone/Firestone, Inc. Roofing members without auxiliary facers and related methods
US6044604A (en) 1996-09-23 2000-04-04 Bridgestone/Firestone, Inc. Composite roofing members having improved dimensional stability and related methods
US5891563A (en) 1996-10-08 1999-04-06 Bridgestone/Firestone, Inc. Polyisocyanurate boards with reduced moisture absorbency and lower air permeability and related methods
US6080818A (en) 1997-03-24 2000-06-27 Huntsman Polymers Corporation Polyolefin blends used for non-woven applications
CA2293498A1 (en) 1997-06-13 1998-12-17 Tacc International Corporation Pressure sensitive adhesive structures for construction
DE19729161A1 (en) 1997-07-08 1999-01-14 Basf Ag Thermally curable, aqueous compositions
BR9810784A (en) 1997-07-25 2000-07-25 Huntsman Ici Chem Llc Foaming composition, and rigid polyurethane foam
DE19735959A1 (en) 1997-08-19 1999-02-25 Basf Ag Thermally curable, aqueous binding agent composition
US6284360B1 (en) 1997-09-30 2001-09-04 3M Innovative Properties Company Sealant composition, article including same, and method of using same
JP2001521840A (en) 1997-11-03 2001-11-13 ラファエル ヘイフェツ Sealing sheet assembly for structure surface and method of manufacturing and applying the same
CA2309983A1 (en) 1997-11-12 1999-05-20 Robert S. Boyd Vibration dampening laminate
DE19853813A1 (en) 1997-12-10 1999-06-17 Henkel Kgaa Two-component adhesive for preparation of composite(s)
US6140383A (en) 1998-04-23 2000-10-31 Johns Manville International, Inc. Process for manufacturing rigid polyisocyanurate foam products
US6184496B1 (en) 1998-08-06 2001-02-06 Clearpath, Inc. Driveway, walkway and roof snow and ice melting mat
US6774071B2 (en) 1998-09-08 2004-08-10 Building Materials Investment Corporation Foamed facer and insulation boards made therefrom
US6764733B1 (en) 1999-01-26 2004-07-20 Carlisle Management Company Hot bitumen compatible EPDM roofing sheet
DE19945732A1 (en) 1999-09-23 2001-04-05 Hirler Gmbh Roof covering for flat roofs, comprises a polymeric sealing layer and a self-adhesive layer, separated by a soft elastomeric intermediate layer
DE19949592A1 (en) 1999-10-14 2001-04-19 Basf Ag Thermally curable polymer dispersion
JP2001240842A (en) 2000-02-28 2001-09-04 Nitto Denko Corp Uv-curing type adhesive composition and its adhesive sheets
DE10022246A1 (en) 2000-05-08 2001-11-15 Basf Ag Coating agent for the production of difficult to wet surfaces
US6641896B2 (en) 2000-12-21 2003-11-04 The Garland Company, Inc. Water resistant fire retardant roof underlayment sheet material
US20020125294A1 (en) 2001-01-09 2002-09-12 Building Materials Investment Corporation Nail gun spacer
US6502360B2 (en) 2001-03-27 2003-01-07 Thantex Specialties, Inc. Single-ply roofing membrane with laminated, skinned nonwoven
US7744998B2 (en) 2001-04-25 2010-06-29 3M Innovative Properties Company Plasticizer-resistant pressure-sensitive adhesive composition and adhesive article
DE10145229A1 (en) 2001-09-13 2004-08-12 Tesa Ag Processing of acrylic hotmelts using reactive extrusion
DE10149077A1 (en) 2001-10-05 2003-04-24 Tesa Ag Process for the preparation of UV-crosslinkable acrylic PSAs
DE10149084A1 (en) 2001-10-05 2003-06-18 Tesa Ag UV crosslinkable acrylic hot melt pressure sensitive adhesive with narrow molecular weight distribution
DE10150486A1 (en) 2001-10-16 2003-04-24 Basf Ag Radically-copolymerizable photoinitiators for UV-curable materials, e.g. hot melt adhesives, are prepared by reacting polyisocyanate with isocyanate-reactive acrylic compound and aceto- or benzo-phenone derivative
DE10151569A1 (en) 2001-10-23 2003-04-30 Basf Ag Thermally curable binders
US20030082365A1 (en) 2001-10-30 2003-05-01 Geary John R. Tough and durable insulation boards produced in-part with scrap rubber materials and related methods
US20040242763A1 (en) 2001-11-28 2004-12-02 Michel Tielemans Radiation-curable polyurethane dispersion
US20030153656A1 (en) 2002-01-11 2003-08-14 Rinus Sjerps Flame retardant polyurethanes and polyisocyanurates, and additives therefor
US20060100408A1 (en) 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
US6794449B2 (en) 2002-04-11 2004-09-21 Adco Products, Inc. Hot melt pressure sensitive adhesive composition for attaching roofing membranes
US6813866B2 (en) 2002-04-17 2004-11-09 Building Materials Investment Corporation Laminated hip and ridge asphalt shingle
US7132143B2 (en) 2002-04-25 2006-11-07 Polyglass U.S.A. Inc. Self-adhering modified bitumen underlayment for tile roofs
US7115313B2 (en) 2002-04-25 2006-10-03 Polyglass U.S.A., Inc. Self-adhering modified bitumen underlayment for metal roofs
DE10221402A1 (en) 2002-05-14 2003-11-27 Tesa Ag Production of solvent-free polyacrylate melt adhesives is effected continuously, with polymerization followed by extrusion to remove and recycle the solvent
US7459180B2 (en) 2002-05-15 2008-12-02 W. R. Grace & Co.-Conn. Process for making skid resistant moisture barriers
US7101598B2 (en) 2002-05-22 2006-09-05 Om Nova Solutions Inc. Self adhering membrane for roofing applications
JP2004003225A (en) 2002-06-03 2004-01-08 Nitto Denko Corp Vapor-permeable waterproof adhesive tape for building material
JP2004002577A (en) 2002-06-03 2004-01-08 Nitto Denko Corp Moisture-permeable waterproof pressure-sensitive adhesive tape for building material
CA2436547C (en) 2002-08-02 2012-04-03 Bfs Diversified Products, Llc Insulation boards and methods for their manufacture
US7612120B2 (en) 2002-08-13 2009-11-03 Bfs Diversified Products, Llc Insulation boards and methods for their manufacture
US6828020B2 (en) 2002-08-14 2004-12-07 Adco Products, Inc. Self-adhesive vibration damping tape and composition
US6858315B2 (en) 2002-09-26 2005-02-22 Building Materials Investment Corporation Low VOC asphalt primer
CA2413550C (en) 2002-12-03 2009-01-20 Bakor Inc. Self-adhering vapor permeable air and moisture barrier membrane
AU2003291865A1 (en) 2002-12-03 2004-06-23 Bakor Inc. Self-adhering vapor permeable air and moisture barrier membrane
WO2004052641A1 (en) 2002-12-10 2004-06-24 Saint Gobain Technical Fabrics Breathable, waterproofing, tear-resistant fabric
WO2004053251A2 (en) 2002-12-10 2004-06-24 Bp Corporation North America Inc. Foamed roofing materials and methods of use
US6887917B2 (en) 2002-12-30 2005-05-03 3M Innovative Properties Company Curable pressure sensitive adhesive compositions
US6863944B2 (en) 2003-01-27 2005-03-08 Building Materials Investment Corporation Thermoplastic single ply protective covering
US7175732B2 (en) 2003-02-06 2007-02-13 Carlisle Management Company Method of applying seam tape to the edge of a membrane
US20040191508A1 (en) 2003-02-11 2004-09-30 Hubbard Michael J. Peel-and-stick installation method for thermoplastic-type covering systems
EP1469036B1 (en) 2003-03-19 2005-10-19 Collano AG UV-curing hot melt adhesive
US7517934B2 (en) 2003-07-31 2009-04-14 Basf Corporation Modified anionically polymerized polymers
US20060216523A1 (en) 2003-08-19 2006-09-28 Shunsuke Takaki Pressure-sensitive adhesive tape and pressure-sensitive adhesive composition for medical adhesive tape
DE602004018156D1 (en) 2003-08-25 2009-01-15 Bfs Diversified Products Llc METHOD AND DEVICE FOR MONITORING THE PRESSURE STRENGTH OF INSULATING PLATES
US8309211B2 (en) 2003-11-06 2012-11-13 Building Materials Investment Corporation Breathable non-asphaltic roofing underlayment
DE10359630A1 (en) 2003-12-18 2005-07-21 Coroplast Fritz Müller Gmbh & Co. Kg Technical adhesive tape and process for its production
US7238732B2 (en) 2004-02-18 2007-07-03 Eastman Chemical Company Radiation-curable adhesive compositions
WO2005086837A2 (en) 2004-03-09 2005-09-22 Polyglass Usa, Inc. Self-adhesive ventilating waterproofing membrane
US7645829B2 (en) 2004-04-15 2010-01-12 Exxonmobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
US7589145B2 (en) 2004-04-15 2009-09-15 Exxonmobil Chemical Patents Inc. Syndiotactic rich polyolefins
US7684076B2 (en) 2004-07-23 2010-03-23 Kabushiki Kaisha Toshiba Method and apparatus for raster image processing
US7368155B2 (en) 2004-12-15 2008-05-06 Building Materials Investmentcorp. Non-asphaltic peel and stick roofing product for faster installation
US7972688B2 (en) 2005-02-01 2011-07-05 Letts John B High density polyurethane and polyisocyanurate construction boards and composite boards
US8153220B2 (en) 2005-02-10 2012-04-10 Building Materials Investment Corporation Metallic T-joint patch
DE202005005669U1 (en) 2005-04-09 2007-05-31 Meinecke, Bernd Flat adhesive element for the construction sector
US7473734B2 (en) 2005-05-02 2009-01-06 Rohm And Haas Company Michael addition compositions
US7614194B2 (en) 2005-06-17 2009-11-10 Building Materials Investment Corporation Water-tight double-sided roof patch
US20070207284A1 (en) 2006-03-02 2007-09-06 Mcclintic Shawn A Barrier article and method
US8389103B2 (en) 2006-03-16 2013-03-05 Elk Premium Building Products, Inc. Roofing material
US20070281119A1 (en) 2006-05-31 2007-12-06 Building Materials Investment Corporation Roofing underlayment
US20080088056A1 (en) 2006-06-02 2008-04-17 Maxam Industries Inc. Flexible release agent-free, multiple-use materials employed for concrete pouring forms and methods of making and using the same
CA2623972C (en) 2007-03-05 2015-02-03 Alpha Systems, Inc. Recreational vehicle roofing system
DE102007015801A1 (en) 2007-03-30 2008-10-02 Henkel Ag & Co. Kgaa Radiation-crosslinking hotmelt adhesive
WO2008128246A1 (en) 2007-04-16 2008-10-23 Adco Product, Inc. Radiation curable pressure senstitive adhesive roofing system
US8262833B2 (en) 2007-07-12 2012-09-11 Building Materials Investment Corporation Use of infrared technology to install and/or repair construction membranes
US8653191B2 (en) 2007-07-27 2014-02-18 Dow Global Technologies Llc Polyolefin compositions and articles prepared therefrom, and methods for making the same
EP2285570A4 (en) 2008-04-02 2011-12-14 Adco Products Inc Adhesive composition and method for attaching a component to a substrate
DE102008041279A1 (en) 2008-08-15 2010-02-18 Evonik Degussa Gmbh Silane-modified polyolefins with a high degree of functionalization
CN102325797B (en) 2008-12-22 2014-02-12 巴斯夫欧洲公司 Binder compositions comprising boric acid or boric acid salt
US20100200148A1 (en) 2009-02-12 2010-08-12 Douglas Bruce F Membrane having a cured coating layer
US8206817B2 (en) 2009-06-10 2012-06-26 Amcol International Corp. Window and door flashing, roofing underlayment, protection course, root block and sound control underlayment material products
DE102009027446A1 (en) 2009-07-03 2011-01-05 Evonik Degussa Gmbh Modified polyolefins with a particular property profile, process for their preparation and their use
JP5431053B2 (en) 2009-07-27 2014-03-05 日東電工株式会社 Adhesive tape application method and adhesive tape application device
EP2305746A1 (en) 2009-10-02 2011-04-06 Sika Technology AG Solar cell including membrane
US8492472B2 (en) 2009-12-18 2013-07-23 Basf Se Polymer dispersions for corrosion control
US8381450B2 (en) 2009-12-31 2013-02-26 Building Materials Investment Corporation Standing seam profile field welding device and method
US8202596B2 (en) 2009-12-31 2012-06-19 Building Materials Investment Corporation Standing seam profile for thermoplastic roof ornamentation
DE102010002622A1 (en) 2010-03-05 2011-09-08 Henkel Ag & Co. Kgaa Ionic group-containing hot melt adhesive
US9695343B2 (en) 2010-09-30 2017-07-04 3M Innovative Properties Company Hot melt processable pressure sensitive adhesives containing fibrous materials
EP2700688B1 (en) 2010-10-11 2016-05-11 Coroplast Fritz Müller GmbH & Co. KG Technical adhesive strip and use of same to stick films or non-woven fabrics in construction
US20130012287A1 (en) 2011-07-06 2013-01-10 Al Ani Manar Method and system to assign a lottery-awarded good
US20130225020A1 (en) 2012-02-24 2013-08-29 Kraton Polymers Us Llc High flow, hydrogenated styrene-butadiene-styrene block copolymer and applications
US20130243991A1 (en) 2012-03-19 2013-09-19 Luc McGUIRE Intermediate composite panel for roofing and walls
US10112334B2 (en) 2012-03-20 2018-10-30 Firestone Building Products Co., LLC System and method for continuously manufacturing cured membranes
CA2920778A1 (en) 2013-09-18 2015-03-26 Firestone Building Products Company, Llc Peel and stick roofing membranes with cured pressure-sensitive adhesives
CA2941239C (en) * 2014-03-07 2022-12-06 Firestone Building Products Co., LLC Roofing membranes with pre-applied, cured, pressure-sensitive seam adhesives
BR112016024875A2 (en) 2014-04-25 2017-08-15 Firestone Building Prod Co Llc building materials including a non-woven layer of pressure sensitive adhesive
EP2960258B1 (en) 2014-06-24 2018-08-22 Henkel AG & Co. KGaA UV-curable acrylic copolymers
EP3169516A1 (en) * 2014-07-18 2017-05-24 Firestone Building Products Co., LLC Construction boards having a pressure-sensitive adhesive layer
EP3350273B1 (en) 2015-09-18 2022-06-15 Firestone Building Products Company, LLC Process for preparing construction articles with cured pressure-sensitive adhesives
US20200299967A1 (en) 2016-03-25 2020-09-24 Firestone Building Products Company, Llc Method of reroofing
WO2017165868A1 (en) 2016-03-25 2017-09-28 Firestone Building Products Co., LLC Fully-adhered roof system adhered and seamed with a common adhesive
US20200299966A1 (en) 2016-03-25 2020-09-24 Firestone Building Products Company, Llc Fabric-Backed Roofing Membrane Composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12091862B2 (en) 2021-11-04 2024-09-17 Carlisle Construction Materials, LLC Adhesive strip attachment of roof boards to a corrugated roof deck

Also Published As

Publication number Publication date
US20230272619A1 (en) 2023-08-31
US12173509B2 (en) 2024-12-24
WO2017165871A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US10519663B2 (en) Peel and stick roofing membranes with cured pressure-sensitive adhesives
US12173509B2 (en) Method of reroofing
US11624189B2 (en) Fully-adhered roof system adhered and seamed with a common adhesive
US20240060306A1 (en) Fabric-backed roofing membrane composite
US11787124B2 (en) Process for preparing construction articles with cured pressure-sensitive adhesives
US10065394B2 (en) Roofing membranes with pre-applied, cured, pressure-sensitive seam adhesives
WO2016130636A1 (en) Peel and stick roofing membranes with cured pressure-sensitive adhesives and expandable graphite
US12006692B2 (en) Fully-adhered roof system adhered and seamed with a common adhesive
US11821210B1 (en) Peel-and-stick roofing membranes and methods for forming fully-adhered roofing systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRESTONE BUILDING PRODUCTS COMPANY, LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANG, JIANSHENG;HUBBARD, MICHAEL J.;KALWARA, JOSEPH;AND OTHERS;SIGNING DATES FROM 20180914 TO 20180921;REEL/FRAME:046961/0001

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: HOLCIM TECHNOLOGY LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIRESTONE BUILDING PRODUCTS COMPANY, LLC;REEL/FRAME:061141/0683

Effective date: 20220404

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载