US20200260767A1 - Readily dissolvable steviol glycoside compositions - Google Patents
Readily dissolvable steviol glycoside compositions Download PDFInfo
- Publication number
- US20200260767A1 US20200260767A1 US16/753,869 US201816753869A US2020260767A1 US 20200260767 A1 US20200260767 A1 US 20200260767A1 US 201816753869 A US201816753869 A US 201816753869A US 2020260767 A1 US2020260767 A1 US 2020260767A1
- Authority
- US
- United States
- Prior art keywords
- acid
- ppm
- steviol glycoside
- composition
- dissolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- YDDGKXBLOXEEMN-QFZCZCNSSA-N O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@H](C(=O)O)[C@H](OC(=O)/C=C/C1=CC(O)=C(O)C=C1)C(=O)O Chemical compound O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@H](C(=O)O)[C@H](OC(=O)/C=C/C1=CC(O)=C(O)C=C1)C(=O)O YDDGKXBLOXEEMN-QFZCZCNSSA-N 0.000 description 2
- WQUUXIMJTLCTBA-NSCUHMNNSA-N CC(=O)/C=C/C1=CC(CO)=C(O)C=C1 Chemical compound CC(=O)/C=C/C1=CC(CO)=C(O)C=C1 WQUUXIMJTLCTBA-NSCUHMNNSA-N 0.000 description 1
- OCNIKEFATSKIBE-NSCUHMNNSA-N CC(=O)/C=C/C1=CC=C(O)C=C1 Chemical compound CC(=O)/C=C/C1=CC=C(O)C=C1 OCNIKEFATSKIBE-NSCUHMNNSA-N 0.000 description 1
- HDGNQJMIIPXNJZ-UHFFFAOYSA-N CC(=O)C(O)C(O)C(=O)O Chemical compound CC(=O)C(O)C(O)C(=O)O HDGNQJMIIPXNJZ-UHFFFAOYSA-N 0.000 description 1
- XGRFLRTVFYDOKG-QQOXCAACSA-N CC1=C(O)C=C(C[C@@H](OC(=O)/C=C/C2=CC(O)=C(O)C=C2)C(=O)O)C=C1 Chemical compound CC1=C(O)C=C(C[C@@H](OC(=O)/C=C/C2=CC(O)=C(O)C=C2)C(=O)O)C=C1 XGRFLRTVFYDOKG-QQOXCAACSA-N 0.000 description 1
- AGXCRKZHIGECTB-SNAWJCMRSA-N CC1=CC=C(/C=C/C(=O)O)C=C1O Chemical compound CC1=CC=C(/C=C/C(=O)O)C=C1O AGXCRKZHIGECTB-SNAWJCMRSA-N 0.000 description 1
- ZHPWADSVERJCDM-UHFFFAOYSA-N CC1=CC=C(CC(O)C(=O)O)C=C1O Chemical compound CC1=CC=C(CC(O)C(=O)O)C=C1O ZHPWADSVERJCDM-UHFFFAOYSA-N 0.000 description 1
- AEUQXQATRAOCEZ-ONEGZZNKSA-N COC1=CC(/C=C/C(C)=O)=CC(CO)=C1O Chemical compound COC1=CC(/C=C/C(C)=O)=CC(CO)=C1O AEUQXQATRAOCEZ-ONEGZZNKSA-N 0.000 description 1
- NMVUNDOHFYILSF-MNCSTQPFSA-N C[C@@H]1C[C@](O)(C(=O)O)C[C@@H](O)[C@H]1O Chemical compound C[C@@H]1C[C@](O)(C(=O)O)C[C@@H](O)[C@H]1O NMVUNDOHFYILSF-MNCSTQPFSA-N 0.000 description 1
- RUAHMOURIWRMME-LRQQEIJESA-N O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@@H]1C[C@@](OC(=O)/C=C/C2=CC=C(O)C(O)=C2)(C(=O)O)C[C@@H](O)[C@@H]1O.O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@@H]1C[C@](O)(C(=O)O)C[C@@H](O)[C@H]1OC(=O)/C=C/C1=CC=C(O)C(O)=C1.O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@H]1[C@H](O)C[C@](OC(=O)/C=C/C2=CC=C(O)C(O)=C2)(C(=O)O)C[C@H]1O Chemical compound O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@@H]1C[C@@](OC(=O)/C=C/C2=CC=C(O)C(O)=C2)(C(=O)O)C[C@@H](O)[C@@H]1O.O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@@H]1C[C@](O)(C(=O)O)C[C@@H](O)[C@H]1OC(=O)/C=C/C1=CC=C(O)C(O)=C1.O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@H]1[C@H](O)C[C@](OC(=O)/C=C/C2=CC=C(O)C(O)=C2)(C(=O)O)C[C@H]1O RUAHMOURIWRMME-LRQQEIJESA-N 0.000 description 1
- NGLOQOQIZPGXDV-VPEQGPFYSA-N O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@@H]1C[C@](OC(=O)/C=C/C2=CC=C(O)C(O)=C2)(C(=O)O)C[C@@H](O)[C@H]1O.O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H]1C[C@@](O)(C(=O)O)C[C@@H](O)[C@@H]1O.O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H]1C[C@](O)(C(=O)O)C[C@@H](O)[C@H]1O.O=C(C=CC1=CC(O)=C(O)C=C1)O[C@H]1[C@H](O)C[C@](O)(C(=O)O)C[C@H]1O Chemical compound O=C(/C=C/C1=CC(O)=C(O)C=C1)O[C@@H]1C[C@](OC(=O)/C=C/C2=CC=C(O)C(O)=C2)(C(=O)O)C[C@@H](O)[C@H]1O.O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H]1C[C@@](O)(C(=O)O)C[C@@H](O)[C@@H]1O.O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H]1C[C@](O)(C(=O)O)C[C@@H](O)[C@H]1O.O=C(C=CC1=CC(O)=C(O)C=C1)O[C@H]1[C@H](O)C[C@](O)(C(=O)O)C[C@H]1O NGLOQOQIZPGXDV-VPEQGPFYSA-N 0.000 description 1
- SWGKAHCIOQPKFW-JTNORFRNSA-N O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H](C(=O)O)[C@@H](O)C(=O)O Chemical compound O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H](C(=O)O)[C@@H](O)C(=O)O SWGKAHCIOQPKFW-JTNORFRNSA-N 0.000 description 1
- IZQBCYMZXPBNPR-HXTBPEMUSA-N O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H]1C[C@](O)(C(=O)O)C[C@@H](OC(=O)/C=C/C2=CC(O)=C(O)C=C2)[C@H]1O.O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@H]1[C@H](O)C[C@](O)(C(=O)O)C[C@H]1OC(=O)/C=C/C1=CC(O)=C(O)C=C1 Chemical compound O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@@H]1C[C@](O)(C(=O)O)C[C@@H](OC(=O)/C=C/C2=CC(O)=C(O)C=C2)[C@H]1O.O=C(/C=C/C1=CC=C(O)C(O)=C1)O[C@H]1[C@H](O)C[C@](O)(C(=O)O)C[C@H]1OC(=O)/C=C/C1=CC(O)=C(O)C=C1 IZQBCYMZXPBNPR-HXTBPEMUSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
- A23L27/36—Terpene glycosides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/34—Tea substitutes, e.g. matè; Extracts or infusions thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/56—Flavouring or bittering agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/60—Sweeteners
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/68—Acidifying substances
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/39—Addition of sweetness inhibitors
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/88—Taste or flavour enhancing agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/40—Colouring or decolouring of foods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/28—Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/36—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
- B01D15/361—Ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
- C07H15/24—Condensed ring systems having three or more rings
- C07H15/256—Polyterpene radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
- C07K1/18—Ion-exchange chromatography
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2200/00—Function of food ingredients
- A23V2200/15—Flavour affecting agent
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2250/00—Food ingredients
- A23V2250/24—Non-sugar sweeteners
- A23V2250/258—Rebaudioside
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
- A61K2236/30—Extraction of the material
- A61K2236/31—Extraction of the material involving untreated material, e.g. fruit juice or sap obtained from fresh plants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2236/00—Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
- A61K2236/30—Extraction of the material
- A61K2236/39—Complex extraction schemes, e.g. fractionation or repeated extraction steps
Definitions
- Steviol glycosides are glycosides of steviol, a diterpene compound and are about 150 to 450 times sweeter than sugar. Examples of steviol glycosides are described in WO 2013/096420 (see, e.g., listing in FIG. 1); and in Ohta et. al., “Characterization of Novel Steviol Glycosides from Leaves of Stevia rebaudiana Morita,” J. Appl. Glycosi., 57, 199-209 (2010) (See, e.g., Table 4 at p. 204).
- the diterpene glycosides are characterized by a single base, steviol, and differ by the presence of carbohydrate residues at positions C13 and C19, as presented in FIGS. 2a-2k. See also PCT Patent Publication WO 20013/096420.
- Steviol glycosides can include one or more of dulcoside A, stevioside, and one or more of rebaudioside A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, steviolbioside and rubusoside.
- Steviol glycosides have found use as non-caloric high intensity sweetener in foods and beverages.
- the present disclosure generally relates to readily dissolvable steviol glycoside solutions comprising a steviol glycoside and a steviol glycoside dissolution enhancer compound (SG dissolution enhancer).
- SG dissolution enhancer a readily dissolvable steviol glycoside composition
- the dissolution enhancer compound comprises at least one compound selected from the group consisting of a quinic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, an ester of quinic acid, an ester of caffeic acid, an ester of ferulic acid, an ester of sinapic acid, an ester of p-coumaric acid, an ester of caffeic acid and quinic acid, an ester of caffeic acid and quinic acid comprising a single caffeic acid moiety, an ester of caffeic acid and quinic acid comprising more than one caffeic acid moiety, an ester of steviol glycoside dissolution enhancer compound (SG dissolution enhancer).
- the dissolution enhancer compound
- the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:0.3 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. In other aspects, the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:1 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound.
- the dissolution enhancer compound comprises one or more compounds selected from the group consisting of chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 3-O-feruloylquinic acid, 4-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3,4-diferuloylquinic acid, 3,5-diferuloylquinic acid, 4,5-diferuloylquinic acid, rosmarinic acid, cichoric acid, caftaric acid, monocaffeoyltartaric acids, dica
- the dissolution enhancer compound comprises one or more compounds selected from the group consisting of chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid.
- the dissolution enhancer compound comprises one or more compounds selected from the group consisting of 3-O-coumaroylquinic acid, 4-O-coumaroylquinic acid, 5-O-coumaroylquinic acid, 3,4-dicoumaroylquinic acid, 3,5-dicoumaroylquinic acid, and 4,5-dicoumaroylquinic acid.
- the steviol glycoside is crystalline. In other aspects, the steviol glycoside comprises rebaudioside M. In some aspects, the steviol glycoside comprises rebaudioside D. In other aspects, the steviol glycoside comprises rebaudioside A.
- the composition is a dry mixture. In other aspects, the composition is an admixture of steviol glycoside and dissolution enhancer compound. In some aspects, the composition is prepared by co-drying steviol glycoside and dissolution enhancer compound.
- the dissolution enhancer compound is prepared from a botanical source.
- the botanical source is selected from the group consisting of eucommoia ulmoides, honeysuckle, Nicotiana benthamiana , globe artichoke, cardoon, stevia, Stevia rebaudiana , monkfruit, coffee, coffee beans, green coffee beans, tea, white tea, yellow tea, green tea, oolong tea, black tea, red tea, post-fermented tea, bamboo, heather, sunflower, blueberries, cranberries, bilberries, grouseberries, whortleberry, lingonberry, cowberry, huckleberry, grapes, chicory, eastern purple coneflower, echinacea, Eastern pellitory-of-the-wall, Upright pellitory, Lichwort, Greater celandine, Tetterwort, Nipplewort, Swallowwort, Bloodroot, Common nettle, Stinging nettle, Potato, Potato leaves, Eggplant, Aubergine, Tomato,
- the botanical source is yerba mate. In other aspects, the botanical source is rosemary. In some aspects, the botanical source is chicory. In other aspects, the botanical source is stevia. In other aspects, the botanical source is globe artichoke. In some aspects, the botanical source is green coffee bean.
- One aspect provides a readily dissolvable dry steviol glycoside composition
- a readily dissolvable dry steviol glycoside composition comprising a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside, wherein the dissolution enhancer compound comprises at least one caffeic ester of quinic acid, caffeic ester of 3-(3,4-dihydroxyphenyl)lactic acid, caffeic acid ester of tartaric acid, ferulic ester of quinic acid, and/or isomers thereof, and wherein the composition is a dry mixture.
- the dissolution enhancer compound comprises at least 15% dicaffeoylquinic acid.
- the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:0.3 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. In some aspects, the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer comprises a 1:1 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer.
- the composition comprises less than 0.3% (wt) of malonate, malonic acid, oxalate, oxalic acid, lactate, lactic acid, succinate, succinic acid, malate, or malic acid; or less than 0.05% (wt) of pyruvate, pyruvic acid, fumarate, fumaric acid, tartrate, tartaric acid, sorbate, sorbic acid, acetate, or acetic acid; or less than about 0.05% (wt) of chlorophyll.
- the caffeic ester of quinic acid comprises at least one of chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, or 4,5-dicaffeoylquinic acid.
- the ferulic ester of quinic acid comprises at least one of 3-O-feruloylquinic acid, 4-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3,4-diferuloylquinic acid, 3,5-diferuloylquinic acid, or 4,5-diferuloylquinic acid.
- the caffeic ester of 3-(3,4-dihydroxyphenyl)lactic acid comprises rosmarinic acid.
- the caffeic acid ester of tartaric acid comprises cichoric acid.
- the caffeic acid ester of tartaric acid comprises caftaric acid.
- the steviol glycoside is crystalline. In other aspects, the steviol glycoside comprises rebaudioside M. In some aspects, the steviol glycoside comprises rebaudioside D. In other aspects, the steviol glycoside comprises rebaudioside A. In some aspects, the dry composition is an admixture of steviol glycoside and dissolution enhancer compound. In other aspects, the dry composition is prepared by co-drying steviol glycoside and dissolution enhancer compound.
- the dissolution enhancer compound is prepared from a botanical source.
- the botanical source is selected from the group consisting of eucommoia ulmoides, honeysuckle, Nicotiana benthamiana , globe artichoke, cardoon, stevia, Stevia rebaudiana , monkfruit, coffee, coffee beans, green coffee beans, tea, white tea, yellow tea, green tea, oolong tea, black tea, red tea, post-fermented tea, bamboo, heather, sunflower, blueberries, cranberries, bilberries, grouseberries, whortleberry, lingonberry, cowberry, huckleberry, grapes, chicory, eastern purple coneflower, echinacea, Eastern pellitory-of-the-wall, Upright pellitory, Lichwort, Greater celandine, Tetterwort, Nipplewort, Swallowwort, Bloodroot, Common nettle, Stinging nettle, Potato, Potato leaves, Eggplant, Aubergine, Tomato,
- This disclosure relates generally to readily dissolvable steviol glycoside compositions comprising a steviol glycoside and a steviol glycoside dissolution enhancer compound (SG dissolution enhancer) in an amount effective to increase dissolution of the steviol glycoside.
- SG dissolution enhancer steviol glycoside dissolution enhancer compound
- An example of a readily dissolvable steviol glycoside composition is a composition comprising a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside.
- dissolution refers to the process of dissolving a solute (e.g., a steviol glycoside composition) into a solvent (e.g., a primarily aqueous solution) to make a solution (e.g., a steviol glycoside solution).
- a solute e.g., a steviol glycoside composition
- a solvent e.g., a primarily aqueous solution
- Dissolution can also be thought of in terms of rate at which a solute dissolves into a solvent to make a solution.
- the rate of dissolution or dissolution rate refers to a rate at which a solute dissolves into a solvent to make a solution (e.g., the rate at which a steviol glycoside composition dissolves into a primarily aqueous solution to make a steviol glycoside solution).
- the rate of solution can also be used to refer to a rate at which a solute interacts with a solvent to form a solution.
- rate of dissolution and rate of solution can be used interchangeably.
- the term instantaneous solubility can refer to having a high rate of dissolution and/or a high rate of solution.
- instantaneous solubility can refer to having a high initial dissolution of a steviol glycoside compound into a primarily aqueous solution upon mixing.
- the term readily dissolvable composition refers to a composition with a high rate of dissolution into certain solvents.
- a readily dissolvable composition can exhibit a high rate of dissolution or a high rate of solution into certain solvents.
- a readily dissolvable composition can also comprise instantaneous solubility into certain solvents.
- a readily dissolvable steviol glycoside composition can comprise a high rate of dissolution into a primarily aqueous solution to yield a steviol glycoside solution.
- a readily dissolvable steviol glycoside composition can also have a high instantaneous solubility into a primarily aqueous solution to yield a steviol glycoside solution.
- the steviol glycoside composition can include one or more steviol glycosides.
- Exemplary steviol glycosides include rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, reaudioside O, and rebaudioside N.
- the one or more of the steviol glycosides are produced by fermentation by an engineered organism.
- rebaudioside D and M can be produced by an engineered organism and then isolated to produce a steviol glycoside composition of primarily rebaudioside D and rebaudioside M as the predominant steviol glycoside species.
- the steviol glycoside composition can comprise rebaudioside D and rebaudioside M in an amount greater than other steviol glycosides.
- one or more of the steviol glycosides are isolated from Stevia rebaudiana.
- the steviol glycoside composition can include one or more steviol glycosides.
- the term steviol glycoside refers to Rebaudioside A (Reb A) (CAS #58543-16-1), Rebaudioside B (Reb B) (CAS #58543-17-2), Rebaudioside C (Reb C) (CAS #63550-99-2), Rebaudioside D (Reb D) (CAS #63279-13-0), Rebaudioside E (Reb E) (CAS #63279-14-1), Rebaudioside F (Reb F) (CAS #438045-89-7), Rebaudioside M (Reb M) (CAS #1220616-44-3), Rubusoside (CAS #63849-39-4), Dulcoside A (CAS #64432-06-0), Rebaudioside I (Reb I) (MassBank Record: FU000332), Rebaudioside Q (Reb Q), Rebaudioside 0 (Reb 0), Rebaudioside N (Reb N) (CAS #1220616-46-5), 1,2-Stevioside (CAS #
- the steviol glycoside composition can optionally be described in terms of amounts of rebaudioside M and rebaudioside D.
- rebaudioside M and rebaudioside D can be present in the composition in a total amount of about 80% (wt) or greater, 90% (wt) or greater, 95% (wt), 99% (wt) or greater, of a total amount steviol glycosides in the composition.
- Rebaudioside M can be the predominant steviol glycoside in the composition, and can be present, for example, in an amount in the range of about 50% to about 95%, about 70% to about 90%, or about 75% to about 85% of the total amount steviol glycosides in the composition.
- Rebaudioside D can be in an amount less than Rebaudioside M, such as in an amount in the range of about 5% to about 25%, about 10% to about 20%, or about 10% to about 15% of the total amount steviol glycosides in the composition.
- a steviol glycoside composition comprising about 80% (wt) rebaudioside M can be referred to as RM80.
- the composition can also optionally be expressed in terms of amounts of other known steviol glycosides that are present in lower amounts.
- the composition can comprise mostly rebaudioside M and/or D and can include one or more of rebaudioside A, rebaudioside B, or stevioside in an amount of about 5% (wt) or less, about 2% (wt) or less, or about 1% (wt) or less, of a total amount steviol glycosides in the composition.
- the steviol glycoside composition can optionally be described in terms of amounts of rebaudioside A.
- rebaudioside A can be present in the composition in a total amount of about 80% (wt) or greater, 85% (wt) or greater, 90% (wt) or greater, 95% (wt) or greater, 98% (wt) or greater of a total amount of steviol glycosides in the composition.
- Rebaudioside A can be the predominant steviol glycoside in the composition, and can be present, for example, in an amount in the range of about 50% to about 98%, about 70% to about 98%, or about 90% to about 98% of the total amount steviol glycosides in the composition.
- rebaudiosides can be present in an amount less than Rebaudioside A, such as in an amount in the range of about 1% to about 40%, about 1% to about 20%, or about 10% to about 15% of the total amount steviol glycosides in the composition.
- a steviol glycoside composition comprising about 95% (wt) rebaudioside A can be referred to as RA95.
- the steviol glycoside is in a crystalline form.
- the term crystalline form can refer to steviol glycoside that comprises individual macroscopic crystals of steviol glycoside wherein the individual macroscopic crystals comprise steviol glycoside structured into a crystal lattice.
- the term crystalline form can also refer to steviol glycoside that comprises polycrystals of steviol glycoside wherein the polycrystals comprise many crystals of steviol glycoside.
- steviol glycoside in crystalline form can be produced by an organic solvent crystallization of a steviol glycoside solution.
- steviol glycoside in crystalline form can be produced by an aqueous crystallization of a steviol glycoside solution.
- purification of steviol glycoside from crude steviol glycoside extracts results in a purified steviol glycoside in a crystalline form.
- a crystalline form comprising crystals with an ordered lattice structure is contrasted with an amorphous form in which the solid has no periodic arrangement of the molecules.
- steviol glycoside in a crystalline form can have a reduced rate of dissolution in a primarily aqueous solution when compared to an amorphous form.
- Steviol glycoside in a crystalline form can have a reduced rate of solution in a primarily aqueous solution.
- Steviol glycoside in a crystalline form can also possess low instantaneous solubility in a primarily aqueous solution.
- Examples of steviol glycoside stabilizing compounds include: caffeic acid, an ester of caffeic acid, an ester of caffeic acid and quinic acid, an ester of caffeic acid and quinic acid comprising a single caffeic acid moiety (e.g., chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid; structures of each are provided herein), an ester of caffeic acid and quinic acid comprising more than one caffeic acid moiety (e.g., 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid; structures of each are provided herein); ferulic acid, an ester of ferulic acid, an ester of ferulic acid and quinic acid, an ester of ferulic acid and quinic acid comprising a single ferul
- caftaric acid or cichoric acid an ester of a tartaric acid derivative, 3-(3,4-dihydroxyphenyl)lactic acid, a 3-(3,4-dihydroxyphenyl)lactic acid derivative, an ester of 3-(3,4-dihydroxyphenyl)lactic acid (e.g.
- rosmarinic acid an ester of a 3-(3,4-dihydroxyphenyl)lactic acid derivative, p-coumaric acid, an ester of p-coumaric acid, an ester of p-coumaric acid and quinic acid, an ester of p-coumaric acid and quinic acid comprising a single p-coumaric acid moiety, an ester of p-coumaric acid and quinic acid comprising more than one p-coumaric acid moiety; sinapic acid, an ester of sinapic acid, an ester of sinapic acid and quinic acid, an ester of sinapic acid and quinic acid comprising a single sinapic acid moiety, an ester of sinapic acid and quinic acid comprising more than one sinapic acid moiety; and 3-O-feruloylquinic acid, 4-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3,4-diferuloylquinic acid, 3,5-difer
- Caffeic acid has the structure:
- Ferulic acid has the structure:
- p-Coumaric acid has the structure:
- Sinapic acid has the structure:
- 3-(3,4-dihydroxyphenyl)lactic acid has the structure:
- Tartaric acid has the structure:
- esters of the various acids contemplated herein include the ester of caffeic acid and quinic acid, which includes monocaffeoylquinic acids (e.g., chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g., 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid), and salts thereof:
- monocaffeoylquinic acids e.g., chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid
- dicaffeoylquinic acids e.g., 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-
- 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid being most prevalent in the compositions contemplated herein and most prevalent in abundant in stevia , yerba mate, globe artichoke, and green coffee bean.
- esters of the various acids contemplated herein include the ester of caffeic acid and tartaric acid, which includes cichoric acid having the structure:
- caffeic acid molecules linked to a tartaric acid core
- caftaric acid having the structure:
- esters of the various acids contemplated herein include the ester of caffeic acid and 3-(3,4-dihydroxyphenyl)lactic acid including, for example, rosmarinic acid, which has the structure:
- Each of the caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids and other dissolution enhancer compounds can be considered weak acids and can each exist in at least one of their conjugate acid form, conjugate base form (e.g., in their salt form), and mixed conjugate acid-conjugate base form, wherein a fraction (e.g., mole fraction) of the compounds exist in the conjugate acid form and another fraction exist in the conjugate base form.
- the fraction of conjugate acid form to conjugate base form for the caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids, and other dissolution enhancer compounds will depend on various factors, including the pKa of each compound and the pH of the composition.
- salts of caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids, and other dissolution enhancer compounds include, but are not limited to, quaternary ammonium, sodium, potassium, lithium, magnesium, and calcium salts of caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids, monoferuloylquinic acids, and diferuloylquinic acids, and other dissolution enhancer compounds and the like.
- the dissolution enhancer compound can be enriched for one or more of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids.
- the term “enriched” refers to an increase in an amount of one of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids relative to one or more other compounds that are present in the dissolution enhancer compound.
- a dissolution enhancer compound that is enriched for one or more of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids can increase dissolution of the steviol glycoside composition.
- a dissolution enhancer compound enriched for one or more dicaffeoylquinic acids can increase dissolution of the readily dissolvable steviol glycoside composition.
- a dissolution enhancer compound that is enriched for dicaffeoylquinic acids can comprise 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, 60% or more, 70% or more, or 80% or more, or 90% or more dicaffeoylquinic acids.
- a dissolution enhancer compound that is enriched for dicaffeoylquinic acids can comprise 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, 60% or more, 70% or more, or 80% or more, or 90% or more of a combination of one or more of 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid, and salts thereof.
- the dissolution enhancer compound comprises one or more compounds selected from the group consisting of 3-O-coumaroylquinic acid, 4-O-coumaroylquinic acid, 5-O-coumaroylquinic acid, 3,4-dicoumaroylquinic acid, 3,5-dicoumaroylquinic acid, 4,5-dicoumaroylquinic acid.
- the dissolution enhancer compound may be isolated from botanical sources.
- Various botanical sources comprise dissolution enhancer compound and may be used to isolate dissolution enhancer compounds.
- Some examples of botanical sources from which dissolution enhancer compound may be isolated include yerba mate plant ( Ilex paraguariensis ), stevia, coffee, tea, chicory, and globe artichoke.
- Some botanical sources may produce dissolution enhancer compound that is enriched for one or more of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids and can increase dissolution of steviol glycoside composition.
- dissolution enhancer compound isolated from yerba mate plant is enriched for dicaffeoylquinic acids and can increase dissolution of the readily dissolvable steviol glycoside composition.
- dissolution enhancer compound isolated from yerba mate plant that is enriched for dicaffeoylquinic acids can comprise 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, 60% or more, 70% or more, or 80% or more, or 90% or more of a combination of one or more of 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid, and salts thereof.
- an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:0.3 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. In other aspects, an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:1 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. An amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of 1:0.1 to 1:10.
- an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of about 1:0.1 to 1:5, about 1:0.5 to 1:4, about 1:0.3 to 1:3, or about 1:1 to 1:3.
- an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of about 1:0.1, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10 by weight.
- an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of about 1:0.3 to 1:3.
- the readily dissolvable steviol glycoside composition comprises an increased rate of dissolution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the dissolution rate can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the dissolution rate can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the rate of solution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the rate of solution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the readily dissolvable steviol glycoside composition comprises an instantaneous solubility in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the instantaneous solubility can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the instantaneous solubility can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the readily dissolvable steviol glycoside composition comprises an increased dissolution when dissolved in a primarily aqueous solution comprises primarily water.
- the primarily aqueous solution can also comprise less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.).
- the primarily aqueous solution can be substantially free of C1-C4 alcohols. In other aspects, the primarily aqueous solution is essentially free of C1-C4 alcohols.
- the primarily aqueous solution comprises less than 1% stevioside.
- the primarily aqueous solution can comprise less than 3% rebaudioside B.
- the primarily aqueous solution can comprise less than 1% steviolbioside.
- the primarily aqueous solution can comprise less than 1% 13-SMG.
- the primarily aqueous solution comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- the primarily aqueous solution has any suitable pH.
- the primarily aqueous solution can also comprise a pH of 0, 1, 2, 3, 4, 5, or 6.
- the primarily aqueous solution can comprise a pH of between 0 and 7.
- the primarily aqueous solution can comprise a pH of between 1 and 6.
- the primarily aqueous solution can comprise a pH of between 1.5 and 4.
- the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm.
- the final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when the dissolution is carried out at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C.
- the dissolution can be carried out at between 5° C. and 65° C.
- the dissolution can be carried out between 20° C. and 65° C.
- the dissolution can be carried out at between 10° C. and 40° C.
- the dissolution can be carried out at between 15° C. and 30° C.
- the dissolution can be carried out at between 20° C. and 25° C.
- the dissolution can be carried out at about room temperature.
- the dissolution can be carried out at essentially room temperature.
- the readily dissolvable steviol glycoside composition can dissolve completely.
- the readily dissolvable steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes.
- the readily dissolvable steviol glycoside composition can dissolve completely within 1, 2, or 3 hours.
- this disclosure also relates to readily dissolvable steviol glycoside compositions with a high rate of solution.
- An example of a readily dissolvable steviol glycoside composition with a high rate of solution is a composition comprising an admixture of a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside.
- the term a high rate of solution can refer to a readily dissolvable composition and/or a composition with a high rate of dissolution in certain solvents.
- a high rate of solution can also refer to a composition comprising instantaneous solubility in certain solvents.
- a steviol glycoside composition with a high rate of solution can comprise a high rate of dissolution and/or instantaneous solubility in a primarily aqueous solution.
- compositions comprising steviol glycoside and dissolution enhancer compound can comprise any suitable additives including but not limited to buffering agent, acidulants, such as citric acid, antimicrobial agents, such as benzoic acid and sorbic acid (and salts thereof), natural colors, natural flavors, artificial flavors, artificial colors, and artificial sweeteners.
- acidulants such as citric acid
- antimicrobial agents such as benzoic acid and sorbic acid (and salts thereof)
- natural colors natural flavors, artificial flavors, artificial colors, and artificial sweeteners.
- compositions comprising steviol glycoside and dissolution enhancer compound can comprise less than 0.3% (wt) of malonate, malonic acid, oxalate, oxalic acid, lactate, lactic acid, succinate, succinic acid, malate, or malic acid; or less than 0.05% (wt) of pyruvate, pyruvic acid, fumarate, fumaric acid, tartrate, tartaric acid, sorbate, sorbic acid, acetate, or acetic acid; or less than about 0.05% (wt) of chlorophyll.
- the admixture of a steviol glycoside and a dissolution enhancer compound can comprise any steviol glycoside described above.
- the admixed steviol glycoside can include rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside O, and/or rebaudioside N.
- the admixed steviol glycoside can be in a crystalline form.
- the admixed dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above.
- the admixed dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g.
- the admixed dissolution enhancer compound can be prepared from any suitable source, including yerba mate, stevia, globe artichoke, and/or green coffee bean.
- the admixture of the steviol glycoside and a dissolution enhancer compound can comprise any suitable ratio effective to increase dissolution of the steviol glycoside, as described above.
- the amount of admixed dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer of about 1:0.1, 1:0.3, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10 by weight.
- the admixture of the steviol glycoside and a dissolution enhancer compound can be prepared by any suitable means to result in a composition with a high rate of solution.
- dry steviol glycoside and dry dissolution enhancer compound can be combined to form a dry admixture.
- a solution of steviol glycoside and dissolution enhancer compound can prepared and then dried to prepare the admixture.
- the admixture can comprise any other suitable ingredients.
- the admixture can comprise a buffering system (e.g., a citrate/phosphate buffer).
- the buffering system can provide a pH of 0, 1, 2, 3, 4, 5, or 6.
- the pH can be between 1 and 6.
- the pH can be between 1.5 and 4.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of dissolution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the dissolution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the dissolution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the rate of solution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the rate of solution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises an instantaneous solubility in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the instantaneous solubility can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the instantaneous solubility can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises less than 1% stevioside.
- the admixture of the steviol glycoside and the dissolution enhancer compound can comprise less than 1% rebaudioside B.
- the admixture of the steviol glycoside and the dissolution enhancer compound can comprise less than 1% steviolbioside.
- the admixture of the steviol glycoside and the dissolution enhancer compound can comprise less than 1% 13-SMG.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm.
- the final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when the dissolution is carried out at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C.
- the dissolution can be carried out at between 5° C. and 65° C.
- the dissolution can be carried out between 20° C. and 65° C.
- the dissolution can be carried out at between 10° C. and 40° C.
- the dissolution can be carried out at between 15° C. and 30° C.
- the dissolution can be carried out at between 20° C. and 25° C.
- the dissolution can be carried out at about room temperature.
- the dissolution can be carried out at essentially room temperature.
- the admixture of the steviol glycoside and the dissolution enhancer compound can dissolve completely.
- the admixture of the steviol glycoside and the dissolution enhancer compound can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes.
- the admixture of the steviol glycoside and the dissolution enhancer compound can dissolve completely within 1, 2, or 3 hours.
- this disclosure also relates to methods of increasing dissolution of crystalline steviol glycoside.
- An example of a method for increasing dissolution of a crystalline steviol glycoside comprises contacting a crystalline steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside with a primarily aqueous solution.
- the crystalline steviol glycoside can comprise any steviol glycoside described above.
- the steviol glycoside can include crystalline forms of one or more of rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside O, rebaudioside N, and/or stevioside.
- the dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above.
- the dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g.
- the dissolution enhancer compound can be prepared from any suitable source, including yerba mate, stevia , globe artichoke, and/or green coffee.
- the crystalline steviol glycoside and dissolution enhancer compound can comprise any suitable ratio, as described above.
- the amount of admixed dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer comprises a ratio by weight of dissolution enhancer compound to steviol glycoside of about 1:0.1, 1:0.3, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10 by weight.
- the ratio of dissolution enhancer compound to steviol glycoside can be from about 0.1:1 to 10:1.
- the ratio of dissolution enhancer compound to steviol glycoside can be in the range of about 0.1:1 to 5:1, about 0.5:1 to 4:1, or about 1:1 to 3:1. In other aspects, the ratio of dissolution enhancer compound to steviol glycoside is about 0.1:1, 0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
- the rate of dissolution is increased in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the dissolution rate can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the dissolution rate can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the increased rate of dissolution corresponds to an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the rate of solution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the rate of solution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the increased rate of dissolution corresponds to an increase in instantaneous solubility in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound.
- the instantaneous solubility can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound.
- the instantaneous solubility can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises primarily water.
- the primarily aqueous solution can also comprise less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.).
- C1-C4 alcohol e.g., methanol, ethanol, propanol, butanol, etc.
- the primarily aqueous solution can be substantially free of C1-C4 alcohols. In other aspects, the primarily aqueous solution is essentially free of C1-C4 alcohols.
- the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises less than 1% stevioside.
- the primarily aqueous solution can comprise less than 1% rebaudioside B.
- the primarily aqueous solution can comprise less than 1% steviolbioside.
- the primarily aqueous solution can comprise less than 1% 13-SMG.
- the primarily aqueous solution comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- the primarily aqueous solution in which the crystalline steviol glycoside is dissolved has any suitable pH.
- the primarily aqueous solution can also comprise a pH of 0, 1, 2, 3, 4, 5, or 6.
- the primarily aqueous solution can comprise a pH of between 0 and 7.
- the primarily aqueous solution can comprise a pH of between 1 and 6.
- the primarily aqueous solution can comprise a pH of between 1.5 and 4.
- the method for increasing dissolution of a crystalline steviol glycoside comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm.
- the final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the method for increasing dissolution of a crystalline steviol glycoside comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the method for increasing dissolution of a crystalline steviol glycoside is carried out at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C.
- the method for increasing dissolution of a crystalline steviol glycoside can be carried out at between 5° C. and 65° C.
- the dissolution can be carried out between 20° C. and 65° C.
- the dissolution can be carried out at between 10° C. and 40° C.
- the method for increasing dissolution of a crystalline steviol glycoside can be carried out at between 15° C. and 30° C.
- the method for increasing dissolution of a crystalline steviol glycoside can be carried out at between 20° C. and 25° C.
- the method for increasing dissolution of a crystalline steviol glycoside can be carried out at about room temperature.
- the method for increasing dissolution of a crystalline steviol glycoside can be carried out at essentially room temperature.
- the crystalline steviol glycoside composition can dissolve completely.
- the crystalline steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes.
- the crystalline steviol glycoside composition can dissolve completely within 1, 2, or 3 hours.
- this disclosure also relates to methods of preparing concentrated steviol glycoside solutions from crystalline steviol glycoside.
- An example of a method of preparing a concentrated steviol glycoside solution comprises dissolving a crystalline steviol glycoside and a dissolution enhancer compound in water, wherein a final concentration of the concentrated steviol glycoside solution is greater than 0.15% (wt), 0.2% (wt), 0.25% (wt), 0.3% (wt), 0.4% (wt), 0.5% (wt), 1% (wt), 3% (wt), 5% (wt), 10% (wt), 20% (wt), or greater.
- the crystalline steviol glycoside can comprise any steviol glycoside described above.
- the steviol glycoside can include crystalline forms of one or more of rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside O, rebaudioside N, and/or stevioside.
- the dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above.
- the dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g.
- the dissolution enhancer compound can be prepared from any suitable source, including yerba mate, stevia, globe artichoke, and/or green coffee.
- the crystalline steviol glycoside and a dissolution enhancer compound can comprise any suitable ratio, as described above.
- the ratio of dissolution enhancer compound to steviol glycoside can be from about 0.1:1 to 10:1.
- the ratio of dissolution enhancer compound to steviol glycoside can be in the range of about 0.1:1 to 5:1, about 0.5:1 to 4:1, or about 1:1 to 3:1.
- the ratio of dissolution enhancer compound to steviol glycoside is about 0.1:1, 0.3:1, 0.5:1, 0.7:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
- the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises primarily water.
- the primarily aqueous solution can also comprise less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.).
- C1-C4 alcohol e.g., methanol, ethanol, propanol, butanol, etc.
- the primarily aqueous solution can be substantially free of C1-C4 alcohols. In other aspects, the primarily aqueous solution is essentially free of C1-C4 alcohols.
- the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises less than 1% stevioside.
- the primarily aqueous solution can comprise less than 1% rebaudioside B.
- the primarily aqueous solution can comprise less than 1% steviolbioside.
- the primarily aqueous solution can comprise less than 1% 13-SMG.
- the primarily aqueous solution comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- the primarily aqueous solution in which the crystalline steviol glycoside is dissolved has any suitable pH.
- the primarily aqueous solution can also comprise a pH of 0, 1, 2, 3, 4, 5, or 6.
- the primarily aqueous solution can comprise a pH of between 0 and 7.
- the primarily aqueous solution can comprise a pH of between 1 and 6.
- the primarily aqueous solution can comprise a pH of between 1.5 and 4.
- the concentrated steviol glycoside solution comprises a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm.
- the final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the concentrated steviol glycoside solution comprises a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the concentrated steviol glycoside solution is prepared at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C.
- the concentrated steviol glycoside solution is prepared at between 5° C. and 65° C.
- the dissolution can be carried out between 20° C. and 65° C.
- the concentrated steviol glycoside solution is prepared at between 10° C. and 40° C.
- the concentrated steviol glycoside solution is prepared at between 15° C. and 30° C.
- the concentrated steviol glycoside solution is prepared at between 20° C. and 25° C.
- the concentrated steviol glycoside solution can be prepared at about room temperature.
- the concentrated steviol glycoside solution can be prepared at essentially room temperature.
- the crystalline steviol glycoside composition can dissolve completely to make the concentrated steviol glycoside solution.
- the crystalline steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes.
- the crystalline steviol glycoside composition can dissolve completely within 1, 2, or 3 hours.
- this disclosure also relates to methods of preparing a beverage concentrate from crystalline steviol glycoside.
- An example of a method for preparing a beverage concentrate comprises contacting a crystalline steviol glycoside, a dissolution enhancer compound, and water.
- the crystalline steviol glycoside can comprise any steviol glycoside described above.
- the steviol glycoside can include crystalline forms of one or more of rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside N, and/or stevioside.
- the dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above.
- the dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g.
- the dissolution enhancer compound can be prepared from any suitable source, including stevia and/or yerba mate.
- the crystalline steviol glycoside and a dissolution enhancer compound can comprise any suitable ratio, as described above.
- the ratio of dissolution enhancer compound to steviol glycoside can be from about 0.1:1 to 10:1.
- the ratio of dissolution enhancer compound to steviol glycoside can be in the range of about 0.1:1 to 5:1, about 0.5:1 to 4:1, or about 1:1 to 3:1.
- the ratio of dissolution enhancer compound to steviol glycoside is about 0.1:1, 0.3:1, 0.5:1, 0.7:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
- the beverage concentrate comprises less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.).
- C1-C4 alcohol e.g., methanol, ethanol, propanol, butanol, etc.
- the beverage concentrate can be substantially free of C1-C4 alcohols.
- the beverage concentrate is essentially free of C1-C4 alcohols.
- the beverage concentrate in which the crystalline steviol glycoside is dissolved comprises less than 1% stevioside.
- the water can comprise less than 1% rebaudioside B.
- the beverage concentrate can comprise less than 1% rebaudioside F.
- the beverage concentrate can comprise less than 1% rebaudioside C.
- the beverage concentrate comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% rebaudioside F, 1% steviolbioside, 1% 13-SMG, and 1% rebaudioside C.
- the beverage concentrate comprises a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm.
- the final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the beverage concentrate comprises a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm.
- the final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm.
- the final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- the beverage concentrate is prepared at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C.
- the beverage concentrate is prepared at between 5° C. and 65° C.
- the dissolution can be carried out between 20° C. and 65° C.
- the beverage concentrate is prepared at between 10° C. and 40° C.
- the beverage concentrate is prepared at between 15° C. and 30° C.
- the beverage concentrate is prepared at between 20° C. and 25° C.
- the beverage concentrate can be prepared at about room temperature.
- the beverage concentrate can be prepared at essentially room temperature.
- the crystalline steviol glycoside composition can dissolve completely to make the beverage concentrate.
- the crystalline steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes.
- the crystalline steviol glycoside can dissolve completely within 1, 2, or 3 hours.
- the beverage concentrate can further comprise a buffer (e.g., a citrate/phosphate buffer).
- a buffer e.g., a citrate/phosphate buffer
- the buffer can provide a pH of 0, 1, 2, 3, 4, 5, or 6.
- the pH can be between 1 and 6.
- the pH can be between 1.5 and 4.
- the beverage concentrate can further comprise any suitable flavor and/or color.
- the beverage concentrate can further comprise any suitable ingredient including buffering agent, acidulants, such as citric acid, antimicrobial agents, such as benzoic acid and sorbic acid (and salts thereof), natural colors, natural flavors, artificial flavors, artificial colors, and artificial sweeteners.
- a series of dissolution assays were carried out on the dissolution of a steviol glycoside blend with and without dissolution enhancer compound.
- the dissolution assays were performed in an acidic citrate/phosphate buffer system similar to that of a carbonated soda beverage concentrate (or throw syrup).
- One steviol glycoside blend comprised primarily rebaudioside D and rebaudioside M (RM80, >80% (wt) rebaudioside M).
- Another steviol glycoside blend comprised a 95% rebaudioside A blend (RA95).
- the dissolution enhancer compounds were prepared from stevia leaf and also from yerba mate.
- aqueous solution of citrate/phosphate buffer (about 4 g/L) was prepared and adjusted to pH 2.5. Separate capped glass vials were prepared, 10 mL of the aqueous buffered solution was aliquoted into each vial, and a magnetic stir bar added to each vial. Dry powdered samples of steviol glycoside blends were added to some vials under magnetic stirring. Dry powdered samples of steviol glycoside blends along with dry powdered samples of dissolution enhancer compounds were added to other vials under magnetic stirring. Each vial was monitored over time for dissolution under magnetic stirring and the results recorded by video or still image.
- a control vial was prepared with 10 mL of the aqueous buffered solution as described above.
- a dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 3000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time.
- the initially clear aqueous buffered solution became cloudy upon addition of the RM80.
- the aqueous buffered solution remained cloudy.
- the aqueous buffered solution remained cloudy.
- At 45 minutes after addition of the RM80 the aqueous buffered solution remained cloudy.
- Table 1 tabulates the observations of the control vial at 0 minutes, 1 minute, 10 minutes, 45 minutes, 60 minutes, 120 minutes, 300 minutes, and 1440 minutes, respectively.
- Table 1 shows that the RM80 added to the aqueous buffered solution remained cloudy over the course of the monitoring. This control vial experiment showed that the RM80 at a final steviol glycoside concentration of 3000 ppm did not dissolve completely in the aqueous buffered solution.
- a vial was prepared with 10 mL of the aqueous buffered solution as described above.
- a dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 3000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature.
- a dry powdered sample of the dissolution enhancer compound prepared from stevia corresponding to a final concentration of 3000 ppm was also added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time. The initially clear aqueous buffered solution became cloudy upon addition of the RM80. At 1 minute after addition of the RM80 the aqueous buffered solution became slightly less cloudy.
- Table 2 shows that the RM80 added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely over the course of the monitoring. This experiment showed that the combination of the RM80 at a final steviol glycoside concentration of 3000 ppm and the dissolution enhancer compound from stevia at a final concentration of 3000 was able to readily dissolve in the aqueous buffered solution
- a vial was prepared with 10 mL of the aqueous buffered solution as described above.
- a dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 5000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature.
- a dry powdered sample of the dissolution enhancer compound prepared from stevia corresponding to a final concentration of 5000 ppm was also added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time.
- the initially clear aqueous buffered solution became cloudy upon addition of the RM80.
- 10 minutes after addition of the RM80 the aqueous buffered solution became less cloudy.
- the aqueous buffered solution was completely clear with no steviol glycoside crystals remaining.
- Table 3 lists observations of the test vial at 0 minutes, 10 minutes, 2 hours, and 24 hours, respectively.
- Table 3 shows that the RM80 added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely over the course of the monitoring. This experiment showed that the combination of the RM80 at a final steviol glycoside concentration of 5000 ppm and the dissolution enhancer compound from stevia at a final concentration of 5000 was able to dissolve completely in the aqueous buffered solution.
- a vial was prepared with 10 mL of the aqueous buffered solution as described above.
- a dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 3000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature.
- a dry powdered sample of the dissolution enhancer compound prepared from yerba mate corresponding to a final concentration of 3000 ppm was also added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time. The initially clear aqueous buffered solution became cloudy upon addition of the RM80. At 5 minutes after addition of the RM80 the aqueous buffered solution became less cloudy.
- the RM80 added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely over the course of the monitoring. This experiment showed that the combination of the RM80 at a final steviol glycoside concentration of 3000 ppm and the dissolution enhancer compound from yerba mate at a final concentration of 3000 ppm was able to dissolve completely in the aqueous buffered solution.
- a vial was prepared with 10 mL of the aqueous buffered solution at pH 4 (citrate buffer, about 4 g/L).
- a dry powdered sample of the dissolution enhancer compound prepared from stevia and corresponding to a final concentration of 60000 ppm (6%) was added to the aqueous buffered solution at room temperature and the vial was capped and vortexed until the solubility enhancer dissolved.
- a dry powdered sample of 95% Rebaudioside A blend (RA95) corresponding to a final concentration of 60000 ppm (6%) was then added to the vial and the vial was capped and vortexed for 4 seconds. After vortexing, the aqueous buffered solution was observed for dissolution of the RA95.
- the RA95 had dissolved into solution and the aqueous buffered solution was clear.
- the RA95 blend added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely after vortexing. This experiment showed that the RA95 blend at a final steviol glycoside concentration of 60000 ppm (6%) was able to dissolve completely in the aqueous buffered solution containing the dissolution enhancer compound from stevia at a final concentration of 60000 ppm (6%).
- a 1:1 (wt) solution of the RM80 and the dissolution enhancer compound was prepared and co-dried to produce a dry 1:1 (wt) mixture.
- RM80 was added to a control vial.
- the 1:1 (wt) mixture of the RM80 and the dissolution enhancer compound was added to a test vial.
- Room temperature water was added to each vial.
- the room temperature water was added to the control vial in an amount to yield a 5% (wt) solution of the RM80.
- the room temperature water was added to the test vial in an amount to yield a solution of 5% (wt) RM80 and 5% (wt) SG dissolution enhancer.
- the vials were capped immediately after the water was added and each vial shaken by hand for about 10 seconds and observed immediately after shaking.
- the control vial showed that the RM80 did not dissolve.
- the test vial showed that the 1:1 (wt) mixture of the RM80 and the dissolution enhancer compound dissolved.
- the solutions were monitored over time.
- the solution of the test vial remained dissolved after 2 weeks of time. This experiment showed that the RM80 with dissolution enhancer compound was able to dissolve.
- the experiment also showed a high rate of instantaneous solubility of the RM80 with dissolution enhancer compound.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Alternative & Traditional Medicine (AREA)
- Emergency Medicine (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Seasonings (AREA)
- Medicinal Preparation (AREA)
- Saccharide Compounds (AREA)
- Non-Alcoholic Beverages (AREA)
- Cosmetics (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Dairy Products (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 62/569,279, filed Oct. 6, 2017, and entitled “Steviol Glycoside Solubility Enhancers”, which application is hereby incorporated by reference herein in its entirety. This application claims the benefit of U.S. Provisional Application No. 62/676,722, filed May 25, 2018, and entitled “Methods for Making Yerba Mate Extract Composition”, which application is hereby incorporated by reference herein in its entirety.
- Steviol glycosides are glycosides of steviol, a diterpene compound and are about 150 to 450 times sweeter than sugar. Examples of steviol glycosides are described in WO 2013/096420 (see, e.g., listing in FIG. 1); and in Ohta et. al., “Characterization of Novel Steviol Glycosides from Leaves of Stevia rebaudiana Morita,” J. Appl. Glycosi., 57, 199-209 (2010) (See, e.g., Table 4 at p. 204). Structurally, the diterpene glycosides are characterized by a single base, steviol, and differ by the presence of carbohydrate residues at positions C13 and C19, as presented in FIGS. 2a-2k. See also PCT Patent Publication WO 20013/096420. Steviol glycosides can include one or more of dulcoside A, stevioside, and one or more of rebaudioside A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, steviolbioside and rubusoside. Steviol glycosides have found use as non-caloric high intensity sweetener in foods and beverages.
- The present disclosure generally relates to readily dissolvable steviol glycoside solutions comprising a steviol glycoside and a steviol glycoside dissolution enhancer compound (SG dissolution enhancer). One aspect provides a readily dissolvable steviol glycoside composition comprising a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside, wherein the dissolution enhancer compound comprises at least one compound selected from the group consisting of a quinic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, an ester of quinic acid, an ester of caffeic acid, an ester of ferulic acid, an ester of sinapic acid, an ester of p-coumaric acid, an ester of caffeic acid and quinic acid, an ester of caffeic acid and quinic acid comprising a single caffeic acid moiety, an ester of caffeic acid and quinic acid comprising more than one caffeic acid moiety, an ester of ferulic acid and quinic acid, an ester of ferulic acid and quinic acid comprising a single ferulic acid moiety, an ester of ferulic acid and quinic acid comprising more than one ferulic acid moiety, an ester of sinapic acid and quinic acid, an ester of sinapic acid and quinic acid comprising a single sinapic acid moiety, an ester of sinapic acid and quinic acid comprising more than one sinapic acid moiety, an ester of p-coumaric acid and quinic acid, an ester of p-coumaric acid and quinic acid comprising a single p-coumaric acid moiety, an ester of p-coumaric acid and quinic acid comprising more than one p-coumaric acid moiety, a caffeic ester of 3-(3,4-dihydroxyphenyl)lactic acid, an ester of caffeic acid and tartaric acid, an ester of caffeic acid and tartaric acid comprising a single caffeic acid moiety, an ester of caffeic acid and tartaric acid comprising more than one caffeic acid moiety, salts thereof, and/or isomers thereof. In some aspects, the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:0.3 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. In other aspects, the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:1 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound.
- In some aspects, the dissolution enhancer compound comprises one or more compounds selected from the group consisting of chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 3-O-feruloylquinic acid, 4-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3,4-diferuloylquinic acid, 3,5-diferuloylquinic acid, 4,5-diferuloylquinic acid, rosmarinic acid, cichoric acid, caftaric acid, monocaffeoyltartaric acids, dicaffeoyltartaric acids and salts and/or isomers thereof. In other aspects, the dissolution enhancer compound comprises one or more compounds selected from the group consisting of chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. In some aspects, the dissolution enhancer compound comprises one or more compounds selected from the group consisting of 3-O-coumaroylquinic acid, 4-O-coumaroylquinic acid, 5-O-coumaroylquinic acid, 3,4-dicoumaroylquinic acid, 3,5-dicoumaroylquinic acid, and 4,5-dicoumaroylquinic acid.
- In some aspects, the steviol glycoside is crystalline. In other aspects, the steviol glycoside comprises rebaudioside M. In some aspects, the steviol glycoside comprises rebaudioside D. In other aspects, the steviol glycoside comprises rebaudioside A.
- In some aspects, the composition is a dry mixture. In other aspects, the composition is an admixture of steviol glycoside and dissolution enhancer compound. In some aspects, the composition is prepared by co-drying steviol glycoside and dissolution enhancer compound.
- In some aspects, the dissolution enhancer compound is prepared from a botanical source. In other aspects, the botanical source is selected from the group consisting of eucommoia ulmoides, honeysuckle, Nicotiana benthamiana, globe artichoke, cardoon, stevia, Stevia rebaudiana, monkfruit, coffee, coffee beans, green coffee beans, tea, white tea, yellow tea, green tea, oolong tea, black tea, red tea, post-fermented tea, bamboo, heather, sunflower, blueberries, cranberries, bilberries, grouseberries, whortleberry, lingonberry, cowberry, huckleberry, grapes, chicory, eastern purple coneflower, echinacea, Eastern pellitory-of-the-wall, Upright pellitory, Lichwort, Greater celandine, Tetterwort, Nipplewort, Swallowwort, Bloodroot, Common nettle, Stinging nettle, Potato, Potato leaves, Eggplant, Aubergine, Tomato, Cherry tomato, Bitter apple, Thorn apple, Sweet potato, apple, Peach, Nectarine, Cherry, Sour cherry, Wild cherry, Apricot, Almond, Plum, Prune, Holly, Yerba mate, Mate, ilex paraguariensis, Guayusa, Yaupon Holly, Kuding, Guarana, Cocoa, Cocoa bean, Cacao, Cacao bean, Kola nut, Kola tree, Cola nut, Cola tree, Hornwort, Ostrich fern, Oriental ostrich fern, Fiddlehead fern, Shuttlecock fern, Oriental ostrich fern, Asian royal fern, Royal fern, Bracken, Brake, Common bracken, Eagle fern, Eastern brakenfern, dandelion, algae, seagrasses, Clove, Cinnamon, Indian bay leaf, Nutmeg, Bay laurel, Bay leaf, Basil, Great basil, Saint-Joseph's-wort, Thyme, Sage, Garden sage, Common sage, Culinary sage, Rosemary, Oregano, Wild marjoram, Marjoram, Sweet marjoram, Knotted marjoram, Pot marjoram, Dill, Anise, Star anise, Fennel, Florence fennel, Tarragon, Estragon, Mugwort, Licorice, Liquorice, Soy, Soybean, Soya bean, Wheat, Common wheat, Rice, Canola, Broccoli, Cauliflower, Cabbage, Bok choy, Kale, Collard greens, Brussels sprouts, Kohlrabi, Winter's bark, Elderflower, Assa-Peixe, Greater burdock, Valerian, and Chamomile. In some aspects, the botanical source is yerba mate. In other aspects, the botanical source is rosemary. In some aspects, the botanical source is chicory. In other aspects, the botanical source is stevia. In other aspects, the botanical source is globe artichoke. In some aspects, the botanical source is green coffee bean.
- One aspect provides a readily dissolvable dry steviol glycoside composition comprising a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside, wherein the dissolution enhancer compound comprises at least one caffeic ester of quinic acid, caffeic ester of 3-(3,4-dihydroxyphenyl)lactic acid, caffeic acid ester of tartaric acid, ferulic ester of quinic acid, and/or isomers thereof, and wherein the composition is a dry mixture. In some aspects, the dissolution enhancer compound comprises at least 15% dicaffeoylquinic acid. In other aspects, the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:0.3 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. In some aspects, the amount effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer comprises a 1:1 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer. In other aspects, the composition comprises less than 0.3% (wt) of malonate, malonic acid, oxalate, oxalic acid, lactate, lactic acid, succinate, succinic acid, malate, or malic acid; or less than 0.05% (wt) of pyruvate, pyruvic acid, fumarate, fumaric acid, tartrate, tartaric acid, sorbate, sorbic acid, acetate, or acetic acid; or less than about 0.05% (wt) of chlorophyll.
- In some aspects, the caffeic ester of quinic acid comprises at least one of chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, or 4,5-dicaffeoylquinic acid. In other aspects, the ferulic ester of quinic acid comprises at least one of 3-O-feruloylquinic acid, 4-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3,4-diferuloylquinic acid, 3,5-diferuloylquinic acid, or 4,5-diferuloylquinic acid. In some aspects, the caffeic ester of 3-(3,4-dihydroxyphenyl)lactic acid comprises rosmarinic acid. In other aspects, the caffeic acid ester of tartaric acid comprises cichoric acid. In other aspects, the caffeic acid ester of tartaric acid comprises caftaric acid.
- In some aspects, the steviol glycoside is crystalline. In other aspects, the steviol glycoside comprises rebaudioside M. In some aspects, the steviol glycoside comprises rebaudioside D. In other aspects, the steviol glycoside comprises rebaudioside A. In some aspects, the dry composition is an admixture of steviol glycoside and dissolution enhancer compound. In other aspects, the dry composition is prepared by co-drying steviol glycoside and dissolution enhancer compound.
- In some aspects, the dissolution enhancer compound is prepared from a botanical source. In other aspects, the botanical source is selected from the group consisting of eucommoia ulmoides, honeysuckle, Nicotiana benthamiana, globe artichoke, cardoon, stevia, Stevia rebaudiana, monkfruit, coffee, coffee beans, green coffee beans, tea, white tea, yellow tea, green tea, oolong tea, black tea, red tea, post-fermented tea, bamboo, heather, sunflower, blueberries, cranberries, bilberries, grouseberries, whortleberry, lingonberry, cowberry, huckleberry, grapes, chicory, eastern purple coneflower, echinacea, Eastern pellitory-of-the-wall, Upright pellitory, Lichwort, Greater celandine, Tetterwort, Nipplewort, Swallowwort, Bloodroot, Common nettle, Stinging nettle, Potato, Potato leaves, Eggplant, Aubergine, Tomato, Cherry tomato, Bitter apple, Thorn apple, Sweet potato, apple, Peach, Nectarine, Cherry, Sour cherry, Wild cherry, Apricot, Almond, Plum, Prune, Holly, Yerba mate, Mate, ilex paraguariensis, Guayusa, Yaupon Holly, Kuding, Guarana, Cocoa, Cocoa bean, Cacao, Cacao bean, Kola nut, Kola tree, Cola nut, Cola tree, Hornwort, Ostrich fern, Oriental ostrich fern, Fiddlehead fern, Shuttlecock fern, Oriental ostrich fern, Asian royal fern, Royal fern, Bracken, Brake, Common bracken, Eagle fern, Eastern brakenfern, dandelion, algae, seagrasses, Clove, Cinnamon, Indian bay leaf, Nutmeg, Bay laurel, Bay leaf, Basil, Great basil, Saint-Joseph's-wort, Thyme, Sage, Garden sage, Common sage, Culinary sage, Rosemary, Oregano, Wild marjoram, Marjoram, Sweet marjoram, Knotted marjoram, Pot marjoram, Dill, Anise, Star anise, Fennel, Florence fennel, Tarragon, Estragon, Mugwort, Licorice, Liquorice, Soy, Soybean, Soya bean, Wheat, Common wheat, Rice, Canola, Broccoli, Cauliflower, Cabbage, Bok choy, Kale, Collard greens, Brussels sprouts, Kohlrabi, Winter's bark, Elderflower, Assa-Peixe, Greater burdock, Valerian, and Chamomile. In some aspects, the botanical source is yerba mate, rosemary, chicory, globe artichoke, green coffee bean, and/or stevia.
- This disclosure relates generally to readily dissolvable steviol glycoside compositions comprising a steviol glycoside and a steviol glycoside dissolution enhancer compound (SG dissolution enhancer) in an amount effective to increase dissolution of the steviol glycoside.
- An example of a readily dissolvable steviol glycoside composition is a composition comprising a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside.
- In some aspects, the term dissolution refers to the process of dissolving a solute (e.g., a steviol glycoside composition) into a solvent (e.g., a primarily aqueous solution) to make a solution (e.g., a steviol glycoside solution). Dissolution can also be thought of in terms of rate at which a solute dissolves into a solvent to make a solution. For example, the rate of dissolution or dissolution rate refers to a rate at which a solute dissolves into a solvent to make a solution (e.g., the rate at which a steviol glycoside composition dissolves into a primarily aqueous solution to make a steviol glycoside solution). The rate of solution can also be used to refer to a rate at which a solute interacts with a solvent to form a solution. In some aspects, rate of dissolution and rate of solution can be used interchangeably. In other aspects, the term instantaneous solubility can refer to having a high rate of dissolution and/or a high rate of solution. For example, instantaneous solubility can refer to having a high initial dissolution of a steviol glycoside compound into a primarily aqueous solution upon mixing.
- In some aspects, the term readily dissolvable composition refers to a composition with a high rate of dissolution into certain solvents. A readily dissolvable composition can exhibit a high rate of dissolution or a high rate of solution into certain solvents. A readily dissolvable composition can also comprise instantaneous solubility into certain solvents. For example, a readily dissolvable steviol glycoside composition can comprise a high rate of dissolution into a primarily aqueous solution to yield a steviol glycoside solution. A readily dissolvable steviol glycoside composition can also have a high instantaneous solubility into a primarily aqueous solution to yield a steviol glycoside solution.
- The steviol glycoside composition can include one or more steviol glycosides. Exemplary steviol glycosides include rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, reaudioside O, and rebaudioside N. In some aspects, the one or more of the steviol glycosides are produced by fermentation by an engineered organism. For example, rebaudioside D and M can be produced by an engineered organism and then isolated to produce a steviol glycoside composition of primarily rebaudioside D and rebaudioside M as the predominant steviol glycoside species. In other aspects, the steviol glycoside composition can comprise rebaudioside D and rebaudioside M in an amount greater than other steviol glycosides. In some aspects, one or more of the steviol glycosides are isolated from Stevia rebaudiana.
- The steviol glycoside composition can include one or more steviol glycosides. In some aspects, the term steviol glycoside refers to Rebaudioside A (Reb A) (CAS #58543-16-1), Rebaudioside B (Reb B) (CAS #58543-17-2), Rebaudioside C (Reb C) (CAS #63550-99-2), Rebaudioside D (Reb D) (CAS #63279-13-0), Rebaudioside E (Reb E) (CAS #63279-14-1), Rebaudioside F (Reb F) (CAS #438045-89-7), Rebaudioside M (Reb M) (CAS #1220616-44-3), Rubusoside (CAS #63849-39-4), Dulcoside A (CAS #64432-06-0), Rebaudioside I (Reb I) (MassBank Record: FU000332), Rebaudioside Q (Reb Q), Rebaudioside 0 (Reb 0), Rebaudioside N (Reb N) (CAS #1220616-46-5), 1,2-Stevioside (CAS #57817-89-7), 1,3-Stevioside (Reb G), Steviol-1,2-Bioside (MassBank Record: FU000299), Steviol-1,3-Bioside, Steviol-13-O-glucoside (13-SMG), Steviol-19-O-glucoside (19-SMG), and steviol glycoside having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or sugar additions (e.g., glucose, rhamnose, and/or xylose), and isomers thereof. See FIG. 1; see also, Steviol Glycosides Chemical and Technical Assessment 69th JECFA, 2007, prepared by Harriet Wallin, Food Agric. Org.
- In some aspects, the steviol glycoside composition can optionally be described in terms of amounts of rebaudioside M and rebaudioside D. For example, rebaudioside M and rebaudioside D can be present in the composition in a total amount of about 80% (wt) or greater, 90% (wt) or greater, 95% (wt), 99% (wt) or greater, of a total amount steviol glycosides in the composition. Rebaudioside M can be the predominant steviol glycoside in the composition, and can be present, for example, in an amount in the range of about 50% to about 95%, about 70% to about 90%, or about 75% to about 85% of the total amount steviol glycosides in the composition. Rebaudioside D can be in an amount less than Rebaudioside M, such as in an amount in the range of about 5% to about 25%, about 10% to about 20%, or about 10% to about 15% of the total amount steviol glycosides in the composition. In other aspects, a steviol glycoside composition comprising about 80% (wt) rebaudioside M can be referred to as RM80. The composition can also optionally be expressed in terms of amounts of other known steviol glycosides that are present in lower amounts. For example, the composition can comprise mostly rebaudioside M and/or D and can include one or more of rebaudioside A, rebaudioside B, or stevioside in an amount of about 5% (wt) or less, about 2% (wt) or less, or about 1% (wt) or less, of a total amount steviol glycosides in the composition.
- In some aspects, the steviol glycoside composition can optionally be described in terms of amounts of rebaudioside A. For example, rebaudioside A can be present in the composition in a total amount of about 80% (wt) or greater, 85% (wt) or greater, 90% (wt) or greater, 95% (wt) or greater, 98% (wt) or greater of a total amount of steviol glycosides in the composition. Rebaudioside A can be the predominant steviol glycoside in the composition, and can be present, for example, in an amount in the range of about 50% to about 98%, about 70% to about 98%, or about 90% to about 98% of the total amount steviol glycosides in the composition. Other rebaudiosides can be present in an amount less than Rebaudioside A, such as in an amount in the range of about 1% to about 40%, about 1% to about 20%, or about 10% to about 15% of the total amount steviol glycosides in the composition. In other aspects, a steviol glycoside composition comprising about 95% (wt) rebaudioside A can be referred to as RA95.
- In some aspects, the steviol glycoside is in a crystalline form. The term crystalline form can refer to steviol glycoside that comprises individual macroscopic crystals of steviol glycoside wherein the individual macroscopic crystals comprise steviol glycoside structured into a crystal lattice. The term crystalline form can also refer to steviol glycoside that comprises polycrystals of steviol glycoside wherein the polycrystals comprise many crystals of steviol glycoside. In some aspects, steviol glycoside in crystalline form can be produced by an organic solvent crystallization of a steviol glycoside solution. In other aspects, steviol glycoside in crystalline form can be produced by an aqueous crystallization of a steviol glycoside solution. In other aspects, purification of steviol glycoside from crude steviol glycoside extracts results in a purified steviol glycoside in a crystalline form. A crystalline form comprising crystals with an ordered lattice structure is contrasted with an amorphous form in which the solid has no periodic arrangement of the molecules.
- In some aspects, steviol glycoside in a crystalline form can have a reduced rate of dissolution in a primarily aqueous solution when compared to an amorphous form. Steviol glycoside in a crystalline form can have a reduced rate of solution in a primarily aqueous solution. Steviol glycoside in a crystalline form can also possess low instantaneous solubility in a primarily aqueous solution.
- Examples of steviol glycoside stabilizing compounds include: caffeic acid, an ester of caffeic acid, an ester of caffeic acid and quinic acid, an ester of caffeic acid and quinic acid comprising a single caffeic acid moiety (e.g., chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid; structures of each are provided herein), an ester of caffeic acid and quinic acid comprising more than one caffeic acid moiety (e.g., 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid; structures of each are provided herein); ferulic acid, an ester of ferulic acid, an ester of ferulic acid and quinic acid, an ester of ferulic acid and quinic acid comprising a single ferulic acid moiety, an ester of ferulic acid and quinic acid comprising more than one ferulic acid moiety; quinic acid, an ester of quinic acid; tartaric acid, a tartaric acid derivative, an ester of tartaric acid (e.g. caftaric acid or cichoric acid), an ester of a tartaric acid derivative, 3-(3,4-dihydroxyphenyl)lactic acid, a 3-(3,4-dihydroxyphenyl)lactic acid derivative, an ester of 3-(3,4-dihydroxyphenyl)lactic acid (e.g. rosmarinic acid), an ester of a 3-(3,4-dihydroxyphenyl)lactic acid derivative, p-coumaric acid, an ester of p-coumaric acid, an ester of p-coumaric acid and quinic acid, an ester of p-coumaric acid and quinic acid comprising a single p-coumaric acid moiety, an ester of p-coumaric acid and quinic acid comprising more than one p-coumaric acid moiety; sinapic acid, an ester of sinapic acid, an ester of sinapic acid and quinic acid, an ester of sinapic acid and quinic acid comprising a single sinapic acid moiety, an ester of sinapic acid and quinic acid comprising more than one sinapic acid moiety; and 3-O-feruloylquinic acid, 4-O-feruloylquinic acid, 5-O-feruloylquinic acid, 3,4-diferuloylquinic acid, 3,5-diferuloylquinic acid, and 4,5-diferuloylquinic acid.
- Caffeic acid has the structure:
- Ferulic acid has the structure:
- p-Coumaric acid has the structure:
- Sinapic acid has the structure:
- Quinic acid has the structure:
- 3-(3,4-dihydroxyphenyl)lactic acid has the structure:
- Tartaric acid has the structure:
- and can be in the D and L forms.
- Examples of the esters of the various acids contemplated herein include the ester of caffeic acid and quinic acid, which includes monocaffeoylquinic acids (e.g., chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g., 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid), and salts thereof:
- with 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid being most prevalent in the compositions contemplated herein and most prevalent in abundant in stevia, yerba mate, globe artichoke, and green coffee bean.
- Examples of the esters of the various acids contemplated herein include the ester of caffeic acid and tartaric acid, which includes cichoric acid having the structure:
- which has two caffeic acid molecules linked to a tartaric acid core; and caftaric acid having the structure:
- which has one caffeic acid molecule linked to a tartaric acid core.
- Examples of the esters of the various acids contemplated herein include the ester of caffeic acid and 3-(3,4-dihydroxyphenyl)lactic acid including, for example, rosmarinic acid, which has the structure:
- Each of the caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids and other dissolution enhancer compounds can be considered weak acids and can each exist in at least one of their conjugate acid form, conjugate base form (e.g., in their salt form), and mixed conjugate acid-conjugate base form, wherein a fraction (e.g., mole fraction) of the compounds exist in the conjugate acid form and another fraction exist in the conjugate base form. The fraction of conjugate acid form to conjugate base form for the caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids, and other dissolution enhancer compounds will depend on various factors, including the pKa of each compound and the pH of the composition.
- Examples of salts of caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids, and other dissolution enhancer compounds include, but are not limited to, quaternary ammonium, sodium, potassium, lithium, magnesium, and calcium salts of caffeic acid, monocaffeoylquinic acids, dicaffeoylquinic acids, monoferuloylquinic acids, and diferuloylquinic acids, and other dissolution enhancer compounds and the like.
- In some aspects, the dissolution enhancer compound can be enriched for one or more of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids. The term “enriched” refers to an increase in an amount of one of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids relative to one or more other compounds that are present in the dissolution enhancer compound. A dissolution enhancer compound that is enriched for one or more of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids can increase dissolution of the steviol glycoside composition.
- In some aspects, a dissolution enhancer compound enriched for one or more dicaffeoylquinic acids can increase dissolution of the readily dissolvable steviol glycoside composition. A dissolution enhancer compound that is enriched for dicaffeoylquinic acids can comprise 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, 60% or more, 70% or more, or 80% or more, or 90% or more dicaffeoylquinic acids. In other aspects, a dissolution enhancer compound that is enriched for dicaffeoylquinic acids can comprise 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, 60% or more, 70% or more, or 80% or more, or 90% or more of a combination of one or more of 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid, and salts thereof.
- In some aspects, the dissolution enhancer compound comprises one or more compounds selected from the group consisting of 3-O-coumaroylquinic acid, 4-O-coumaroylquinic acid, 5-O-coumaroylquinic acid, 3,4-dicoumaroylquinic acid, 3,5-dicoumaroylquinic acid, 4,5-dicoumaroylquinic acid.
- In some aspects, the dissolution enhancer compound may be isolated from botanical sources. Various botanical sources comprise dissolution enhancer compound and may be used to isolate dissolution enhancer compounds. Some examples of botanical sources from which dissolution enhancer compound may be isolated include yerba mate plant (Ilex paraguariensis), stevia, coffee, tea, chicory, and globe artichoke. Some botanical sources may produce dissolution enhancer compound that is enriched for one or more of caffeic acid, monocaffeoylquinic acids, and dicaffeoylquinic acids and can increase dissolution of steviol glycoside composition. For example, dissolution enhancer compound isolated from yerba mate plant is enriched for dicaffeoylquinic acids and can increase dissolution of the readily dissolvable steviol glycoside composition. In other aspects, dissolution enhancer compound isolated from yerba mate plant that is enriched for dicaffeoylquinic acids can comprise 10% or more, 15% or more, 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more, 60% or more, 70% or more, or 80% or more, or 90% or more of a combination of one or more of 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid, and salts thereof.
- In some aspects, an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:0.3 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. In other aspects, an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside is an amount such that the dissolution enhancer compound comprises a 1:1 to 1:3 ratio by weight of steviol glycoside to dissolution enhancer compound. An amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of 1:0.1 to 1:10. In some aspects an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of about 1:0.1 to 1:5, about 1:0.5 to 1:4, about 1:0.3 to 1:3, or about 1:1 to 1:3. In other aspects an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of about 1:0.1, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10 by weight. In some aspects, an amount of dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer compound of about 1:0.3 to 1:3.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an increased rate of dissolution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The dissolution rate can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the dissolution rate can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The rate of solution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the rate of solution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an instantaneous solubility in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The instantaneous solubility can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a steviol glycoside composition without a dissolution enhancer compound. In other aspects, the instantaneous solubility can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a steviol glycoside composition without a dissolution enhancer compound.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an increased dissolution when dissolved in a primarily aqueous solution comprises primarily water. The primarily aqueous solution can also comprise less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.). The primarily aqueous solution can be substantially free of C1-C4 alcohols. In other aspects, the primarily aqueous solution is essentially free of C1-C4 alcohols. In some aspects, the primarily aqueous solution comprises less than 1% stevioside. The primarily aqueous solution can comprise less than 3% rebaudioside B. The primarily aqueous solution can comprise less than 1% steviolbioside. The primarily aqueous solution can comprise less than 1% 13-SMG. In other aspects, the primarily aqueous solution comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG. In some aspects, the primarily aqueous solution has any suitable pH. The primarily aqueous solution can also comprise a pH of 0, 1, 2, 3, 4, 5, or 6. The primarily aqueous solution can comprise a pH of between 0 and 7. The primarily aqueous solution can comprise a pH of between 1 and 6. The primarily aqueous solution can comprise a pH of between 1.5 and 4.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm. The final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm. The final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the readily dissolvable steviol glycoside composition comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when the dissolution is carried out at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C. The dissolution can be carried out at between 5° C. and 65° C. The dissolution can be carried out between 20° C. and 65° C. The dissolution can be carried out at between 10° C. and 40° C. The dissolution can be carried out at between 15° C. and 30° C. The dissolution can be carried out at between 20° C. and 25° C. The dissolution can be carried out at about room temperature. The dissolution can be carried out at essentially room temperature.
- In some aspects, the readily dissolvable steviol glycoside composition can dissolve completely. The readily dissolvable steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes. The readily dissolvable steviol glycoside composition can dissolve completely within 1, 2, or 3 hours.
- In some aspects, this disclosure also relates to readily dissolvable steviol glycoside compositions with a high rate of solution. An example of a readily dissolvable steviol glycoside composition with a high rate of solution is a composition comprising an admixture of a steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside. As described above, the term a high rate of solution can refer to a readily dissolvable composition and/or a composition with a high rate of dissolution in certain solvents. A high rate of solution can also refer to a composition comprising instantaneous solubility in certain solvents. For example, a steviol glycoside composition with a high rate of solution can comprise a high rate of dissolution and/or instantaneous solubility in a primarily aqueous solution.
- In some aspects, the compositions comprising steviol glycoside and dissolution enhancer compound can comprise any suitable additives including but not limited to buffering agent, acidulants, such as citric acid, antimicrobial agents, such as benzoic acid and sorbic acid (and salts thereof), natural colors, natural flavors, artificial flavors, artificial colors, and artificial sweeteners.
- In some aspects, the compositions comprising steviol glycoside and dissolution enhancer compound can comprise less than 0.3% (wt) of malonate, malonic acid, oxalate, oxalic acid, lactate, lactic acid, succinate, succinic acid, malate, or malic acid; or less than 0.05% (wt) of pyruvate, pyruvic acid, fumarate, fumaric acid, tartrate, tartaric acid, sorbate, sorbic acid, acetate, or acetic acid; or less than about 0.05% (wt) of chlorophyll.
- In some aspects, the admixture of a steviol glycoside and a dissolution enhancer compound can comprise any steviol glycoside described above. For example, the admixed steviol glycoside can include rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside O, and/or rebaudioside N. The admixed steviol glycoside can be in a crystalline form. Likewise, the admixed dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above. For example, the admixed dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g. 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid), and salts thereof. The admixed dissolution enhancer compound can be prepared from any suitable source, including yerba mate, stevia, globe artichoke, and/or green coffee bean.
- In some aspects, the admixture of the steviol glycoside and a dissolution enhancer compound can comprise any suitable ratio effective to increase dissolution of the steviol glycoside, as described above. For example, the amount of admixed dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer compound comprises a ratio by weight of steviol glycoside to dissolution enhancer of about 1:0.1, 1:0.3, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10 by weight.
- The admixture of the steviol glycoside and a dissolution enhancer compound can be prepared by any suitable means to result in a composition with a high rate of solution. For example, dry steviol glycoside and dry dissolution enhancer compound can be combined to form a dry admixture. Likewise, a solution of steviol glycoside and dissolution enhancer compound can prepared and then dried to prepare the admixture. The admixture can comprise any other suitable ingredients. For example, the admixture can comprise a buffering system (e.g., a citrate/phosphate buffer). In some aspects, the buffering system can provide a pH of 0, 1, 2, 3, 4, 5, or 6. The pH can be between 1 and 6. The pH can be between 1.5 and 4.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of dissolution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The dissolution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the dissolution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The rate of solution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the rate of solution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises an instantaneous solubility in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The instantaneous solubility can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the instantaneous solubility can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises less than 1% stevioside. The admixture of the steviol glycoside and the dissolution enhancer compound can comprise less than 1% rebaudioside B. The admixture of the steviol glycoside and the dissolution enhancer compound can comprise less than 1% steviolbioside. The admixture of the steviol glycoside and the dissolution enhancer compound can comprise less than 1% 13-SMG. In other aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm. The final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm. The final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when the dissolution is carried out at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C. The dissolution can be carried out at between 5° C. and 65° C. The dissolution can be carried out between 20° C. and 65° C. The dissolution can be carried out at between 10° C. and 40° C. The dissolution can be carried out at between 15° C. and 30° C. The dissolution can be carried out at between 20° C. and 25° C. The dissolution can be carried out at about room temperature. The dissolution can be carried out at essentially room temperature.
- In some aspects, the admixture of the steviol glycoside and the dissolution enhancer compound can dissolve completely. The admixture of the steviol glycoside and the dissolution enhancer compound can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes. The admixture of the steviol glycoside and the dissolution enhancer compound can dissolve completely within 1, 2, or 3 hours.
- In some aspects, this disclosure also relates to methods of increasing dissolution of crystalline steviol glycoside. An example of a method for increasing dissolution of a crystalline steviol glycoside, comprises contacting a crystalline steviol glycoside and a dissolution enhancer compound in an amount effective to increase dissolution of the steviol glycoside with a primarily aqueous solution.
- In some aspects, the crystalline steviol glycoside can comprise any steviol glycoside described above. For example, the steviol glycoside can include crystalline forms of one or more of rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside O, rebaudioside N, and/or stevioside. The dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above. For example, the dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g. 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid), and salts thereof. The dissolution enhancer compound can be prepared from any suitable source, including yerba mate, stevia, globe artichoke, and/or green coffee.
- In some aspects, the crystalline steviol glycoside and dissolution enhancer compound can comprise any suitable ratio, as described above. For example, the amount of admixed dissolution enhancer compound effective to increase dissolution of the steviol glycoside can be an amount such that the dissolution enhancer comprises a ratio by weight of dissolution enhancer compound to steviol glycoside of about 1:0.1, 1:0.3, 1:0.5, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, or 1:10 by weight. the ratio of dissolution enhancer compound to steviol glycoside can be from about 0.1:1 to 10:1. In some aspects, the ratio of dissolution enhancer compound to steviol glycoside can be in the range of about 0.1:1 to 5:1, about 0.5:1 to 4:1, or about 1:1 to 3:1. In other aspects, the ratio of dissolution enhancer compound to steviol glycoside is about 0.1:1, 0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
- In some aspects, the rate of dissolution is increased in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The dissolution rate can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the dissolution rate can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the increased rate of dissolution corresponds to an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The rate of solution can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the rate of solution can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound. In some aspects, the increased rate of dissolution corresponds to an increase in instantaneous solubility in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound. The instantaneous solubility can be increased by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% or more when compared to a composition without a dissolution enhancer compound. In other aspects, the instantaneous solubility can be increased by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 times or more when compared to a composition without a dissolution enhancer compound.
- In some aspects, the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises primarily water. The primarily aqueous solution can also comprise less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.). The primarily aqueous solution can be substantially free of C1-C4 alcohols. In other aspects, the primarily aqueous solution is essentially free of C1-C4 alcohols.
- In some aspects, the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises less than 1% stevioside. The primarily aqueous solution can comprise less than 1% rebaudioside B. The primarily aqueous solution can comprise less than 1% steviolbioside. The primarily aqueous solution can comprise less than 1% 13-SMG. In other aspects, the primarily aqueous solution comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- In some aspects, the primarily aqueous solution in which the crystalline steviol glycoside is dissolved has any suitable pH. The primarily aqueous solution can also comprise a pH of 0, 1, 2, 3, 4, 5, or 6. The primarily aqueous solution can comprise a pH of between 0 and 7. The primarily aqueous solution can comprise a pH of between 1 and 6. The primarily aqueous solution can comprise a pH of between 1.5 and 4.
- In some aspects, the method for increasing dissolution of a crystalline steviol glycoside comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm. The final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the method for increasing dissolution of a crystalline steviol glycoside comprises an increased rate of solution in a primarily aqueous solution when compared to a steviol glycoside composition without a dissolution enhancer compound when a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm. The final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the method for increasing dissolution of a crystalline steviol glycoside is carried out at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C. The method for increasing dissolution of a crystalline steviol glycoside can be carried out at between 5° C. and 65° C. The dissolution can be carried out between 20° C. and 65° C. The dissolution can be carried out at between 10° C. and 40° C. The method for increasing dissolution of a crystalline steviol glycoside can be carried out at between 15° C. and 30° C. The method for increasing dissolution of a crystalline steviol glycoside can be carried out at between 20° C. and 25° C. The method for increasing dissolution of a crystalline steviol glycoside can be carried out at about room temperature. The method for increasing dissolution of a crystalline steviol glycoside can be carried out at essentially room temperature.
- In some aspects, the crystalline steviol glycoside composition can dissolve completely. The crystalline steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes. The crystalline steviol glycoside composition can dissolve completely within 1, 2, or 3 hours.
- In some aspects, this disclosure also relates to methods of preparing concentrated steviol glycoside solutions from crystalline steviol glycoside. An example of a method of preparing a concentrated steviol glycoside solution comprises dissolving a crystalline steviol glycoside and a dissolution enhancer compound in water, wherein a final concentration of the concentrated steviol glycoside solution is greater than 0.15% (wt), 0.2% (wt), 0.25% (wt), 0.3% (wt), 0.4% (wt), 0.5% (wt), 1% (wt), 3% (wt), 5% (wt), 10% (wt), 20% (wt), or greater.
- In some aspects, the crystalline steviol glycoside can comprise any steviol glycoside described above. For example, the steviol glycoside can include crystalline forms of one or more of rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside O, rebaudioside N, and/or stevioside. The dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above. For example, the dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g. 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid), and salts thereof. The dissolution enhancer compound can be prepared from any suitable source, including yerba mate, stevia, globe artichoke, and/or green coffee.
- In some aspects, the crystalline steviol glycoside and a dissolution enhancer compound can comprise any suitable ratio, as described above. For example, the ratio of dissolution enhancer compound to steviol glycoside can be from about 0.1:1 to 10:1. In some aspects, the ratio of dissolution enhancer compound to steviol glycoside can be in the range of about 0.1:1 to 5:1, about 0.5:1 to 4:1, or about 1:1 to 3:1. In other aspects, the ratio of dissolution enhancer compound to steviol glycoside is about 0.1:1, 0.3:1, 0.5:1, 0.7:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
- In some aspects, the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises primarily water. The primarily aqueous solution can also comprise less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.). The primarily aqueous solution can be substantially free of C1-C4 alcohols. In other aspects, the primarily aqueous solution is essentially free of C1-C4 alcohols.
- In some aspects, the primarily aqueous solution in which the crystalline steviol glycoside is dissolved comprises less than 1% stevioside. The primarily aqueous solution can comprise less than 1% rebaudioside B. The primarily aqueous solution can comprise less than 1% steviolbioside. The primarily aqueous solution can comprise less than 1% 13-SMG. In other aspects, the primarily aqueous solution comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% steviolbioside, and 1% 13-SMG.
- In some aspects, the primarily aqueous solution in which the crystalline steviol glycoside is dissolved has any suitable pH. The primarily aqueous solution can also comprise a pH of 0, 1, 2, 3, 4, 5, or 6. The primarily aqueous solution can comprise a pH of between 0 and 7. The primarily aqueous solution can comprise a pH of between 1 and 6. The primarily aqueous solution can comprise a pH of between 1.5 and 4.
- In some aspects, the concentrated steviol glycoside solution comprises a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm. The final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the concentrated steviol glycoside solution comprises a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm. The final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the concentrated steviol glycoside solution is prepared at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C. The concentrated steviol glycoside solution is prepared at between 5° C. and 65° C. The dissolution can be carried out between 20° C. and 65° C. The concentrated steviol glycoside solution is prepared at between 10° C. and 40° C. The concentrated steviol glycoside solution is prepared at between 15° C. and 30° C. The concentrated steviol glycoside solution is prepared at between 20° C. and 25° C. The concentrated steviol glycoside solution can be prepared at about room temperature. The concentrated steviol glycoside solution can be prepared at essentially room temperature.
- In some aspects, the crystalline steviol glycoside composition can dissolve completely to make the concentrated steviol glycoside solution. The crystalline steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes. The crystalline steviol glycoside composition can dissolve completely within 1, 2, or 3 hours.
- In some aspects, this disclosure also relates to methods of preparing a beverage concentrate from crystalline steviol glycoside. An example of a method for preparing a beverage concentrate comprises contacting a crystalline steviol glycoside, a dissolution enhancer compound, and water.
- In some aspects, the crystalline steviol glycoside can comprise any steviol glycoside described above. For example, the steviol glycoside can include crystalline forms of one or more of rebaudioside M, rebaudioside D, rebaudioside A, rebaudioside B, rebaudioside N, and/or stevioside. The dissolution enhancer compound can comprise any suitable dissolution enhancer compound described above. For example, the dissolution enhancer compound can include caffeic acid, monocaffeoylquinic acids (e.g. chlorogenic acid, neochlorogenic acid, and cryptochlorogenic acid), and dicaffeoylquinic acids (e.g. 1,3-dicaffeoylquinic acid, 1,4-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid), and salts thereof. The dissolution enhancer compound can be prepared from any suitable source, including stevia and/or yerba mate.
- In some aspects, the crystalline steviol glycoside and a dissolution enhancer compound can comprise any suitable ratio, as described above. For example, the ratio of dissolution enhancer compound to steviol glycoside can be from about 0.1:1 to 10:1. In some aspects, the ratio of dissolution enhancer compound to steviol glycoside can be in the range of about 0.1:1 to 5:1, about 0.5:1 to 4:1, or about 1:1 to 3:1. In other aspects, the ratio of dissolution enhancer compound to steviol glycoside is about 0.1:1, 0.3:1, 0.5:1, 0.7:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, or 10:1.
- In some aspects, the beverage concentrate comprises less than 1%, 5%, 10%, 15%, 20%, 30%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, or 90%, or about 40% to 65%, or about 50% to 55%, or about 55% of C1-C4 alcohol (e.g., methanol, ethanol, propanol, butanol, etc.). The beverage concentrate can be substantially free of C1-C4 alcohols. In other aspects, the beverage concentrate is essentially free of C1-C4 alcohols. In other aspects, the beverage concentrate in which the crystalline steviol glycoside is dissolved comprises less than 1% stevioside. The water can comprise less than 1% rebaudioside B. The beverage concentrate can comprise less than 1% rebaudioside F. The beverage concentrate can comprise less than 1% rebaudioside C. In other aspects, the beverage concentrate comprises less than one or more of 1% stevioside, 1% rebaudioside B, 1% rebaudioside F, 1% steviolbioside, 1% 13-SMG, and 1% rebaudioside C.
- In some aspects, the beverage concentrate comprises a final concentration of steviol glycoside is between 3000 ppm and 60000 ppm. The final concentration of steviol glycoside can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of steviol glycoside can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of steviol glycoside can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of steviol glycoside can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of steviol glycoside can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of steviol glycoside can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the beverage concentrate comprises a final concentration of dissolution enhancer compound is between 3000 ppm and 60000 ppm. The final concentration of dissolution enhancer compound can be greater than 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm, 700 ppm, 800 ppm, 900 ppm, or 1000 ppm. The final concentration of dissolution enhancer compound can be greater than 1100 ppm, 1200 ppm, 1300 ppm, 1400 ppm, 1500 ppm, 1600 ppm, 1700 ppm, 1800 ppm, or 1900 ppm. The final concentration of dissolution enhancer compound can be greater than 2100 ppm, 2200 ppm, 2300 ppm, 2400 ppm, 2500 ppm, 2600 ppm, 2700 ppm, 2800 ppm, or 2900 ppm. The final concentration of dissolution enhancer compound can be greater than 3100 ppm, 3200 ppm, 3300 ppm, 3400 ppm, 3500 ppm, 3600 ppm, 3700 ppm, 3800 ppm, or 3900 ppm. The final concentration of dissolution enhancer compound can be greater than 3000 ppm, 4000 ppm, 5000 ppm, 6000 ppm, 7000 ppm, 8000 ppm, or 9000 ppm. The final concentration of dissolution enhancer compound can be greater than 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, or higher.
- In some aspects, the beverage concentrate is prepared at a temperature less than 5° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 65° C., 70° C., 75° C., 80° C., or 85° C. The beverage concentrate is prepared at between 5° C. and 65° C. The dissolution can be carried out between 20° C. and 65° C. The beverage concentrate is prepared at between 10° C. and 40° C. The beverage concentrate is prepared at between 15° C. and 30° C. The beverage concentrate is prepared at between 20° C. and 25° C. The beverage concentrate can be prepared at about room temperature. The beverage concentrate can be prepared at essentially room temperature.
- In some aspects, the crystalline steviol glycoside composition can dissolve completely to make the beverage concentrate. The crystalline steviol glycoside composition can dissolve completely within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 minutes. The crystalline steviol glycoside can dissolve completely within 1, 2, or 3 hours.
- The beverage concentrate can further comprise a buffer (e.g., a citrate/phosphate buffer). In some aspects, the buffer can provide a pH of 0, 1, 2, 3, 4, 5, or 6. The pH can be between 1 and 6. The pH can be between 1.5 and 4.
- In some aspects, the beverage concentrate can further comprise any suitable flavor and/or color. In some aspects, the beverage concentrate can further comprise any suitable ingredient including buffering agent, acidulants, such as citric acid, antimicrobial agents, such as benzoic acid and sorbic acid (and salts thereof), natural colors, natural flavors, artificial flavors, artificial colors, and artificial sweeteners.
- The following examples are provided to illustrate the disclosure, but are not intended to limit the scope thereof. All parts and percentages are by weight unless otherwise indicated.
- A series of dissolution assays were carried out on the dissolution of a steviol glycoside blend with and without dissolution enhancer compound. The dissolution assays were performed in an acidic citrate/phosphate buffer system similar to that of a carbonated soda beverage concentrate (or throw syrup). One steviol glycoside blend comprised primarily rebaudioside D and rebaudioside M (RM80, >80% (wt) rebaudioside M). Another steviol glycoside blend comprised a 95% rebaudioside A blend (RA95). The dissolution enhancer compounds were prepared from stevia leaf and also from yerba mate.
- An aqueous solution of citrate/phosphate buffer (about 4 g/L) was prepared and adjusted to pH 2.5. Separate capped glass vials were prepared, 10 mL of the aqueous buffered solution was aliquoted into each vial, and a magnetic stir bar added to each vial. Dry powdered samples of steviol glycoside blends were added to some vials under magnetic stirring. Dry powdered samples of steviol glycoside blends along with dry powdered samples of dissolution enhancer compounds were added to other vials under magnetic stirring. Each vial was monitored over time for dissolution under magnetic stirring and the results recorded by video or still image.
- A control vial was prepared with 10 mL of the aqueous buffered solution as described above. A dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 3000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time. The initially clear aqueous buffered solution became cloudy upon addition of the RM80. At 1 minute after addition of the RM80 the aqueous buffered solution remained cloudy. At 10 minutes after addition of the RM80 the aqueous buffered solution remained cloudy. At 45 minutes after addition of the RM80 the aqueous buffered solution remained cloudy. At 1440 minutes after addition of the RM80 the aqueous buffered solution remained cloudy. Table 1 tabulates the observations of the control vial at 0 minutes, 1 minute, 10 minutes, 45 minutes, 60 minutes, 120 minutes, 300 minutes, and 1440 minutes, respectively.
-
TABLE 1 Observations of control vial over time Time (min) Observation 0 Cloudy 1 Cloudy 10 Cloudy 45 Cloudy 60 Cloudy 120 Cloudy 300 Cloudy 1440 Cloudy - Table 1 shows that the RM80 added to the aqueous buffered solution remained cloudy over the course of the monitoring. This control vial experiment showed that the RM80 at a final steviol glycoside concentration of 3000 ppm did not dissolve completely in the aqueous buffered solution.
- A vial was prepared with 10 mL of the aqueous buffered solution as described above. A dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 3000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature. A dry powdered sample of the dissolution enhancer compound prepared from stevia corresponding to a final concentration of 3000 ppm was also added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time. The initially clear aqueous buffered solution became cloudy upon addition of the RM80. At 1 minute after addition of the RM80 the aqueous buffered solution became slightly less cloudy. At 3 minutes after addition of the RM80 the aqueous buffered solution became less cloudy. At 11 minutes after addition of the RM80 the aqueous buffered solution was clear with a few steviol glycoside crystals remaining. At 15 minutes after addition of the RM80 the aqueous buffered solution was completely clear with no steviol glycoside crystals remaining. Table 2 tabulates observations of the vial at 0 minutes, 1 minute, 3 minutes, 11 minutes, 15 minutes, 60 minutes, and 1440 minutes, respectively.
-
TABLE 2 Observations of test vial over time Time (min) Observation 0 Cloudy 1 Slightly less cloudy 3 Less cloudy 11 Clear with few remaining steviol glycoside crystals 15 Completely clear 60 Completely clear 1440 Completely clear - Table 2 shows that the RM80 added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely over the course of the monitoring. This experiment showed that the combination of the RM80 at a final steviol glycoside concentration of 3000 ppm and the dissolution enhancer compound from stevia at a final concentration of 3000 was able to readily dissolve in the aqueous buffered solution
- A vial was prepared with 10 mL of the aqueous buffered solution as described above. A dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 5000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature. A dry powdered sample of the dissolution enhancer compound prepared from stevia corresponding to a final concentration of 5000 ppm was also added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time. The initially clear aqueous buffered solution became cloudy upon addition of the RM80. At 10 minutes after addition of the RM80 the aqueous buffered solution became less cloudy. At 2 hours after addition of the RM80 the aqueous buffered solution was completely clear with no steviol glycoside crystals remaining. Table 3 lists observations of the test vial at 0 minutes, 10 minutes, 2 hours, and 24 hours, respectively.
-
TABLE 3 Time (min) Observation 0 Cloudy 10 Less cloudy 120 Completely clear 1440 Completely clear - Table 3 shows that the RM80 added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely over the course of the monitoring. This experiment showed that the combination of the RM80 at a final steviol glycoside concentration of 5000 ppm and the dissolution enhancer compound from stevia at a final concentration of 5000 was able to dissolve completely in the aqueous buffered solution.
- A vial was prepared with 10 mL of the aqueous buffered solution as described above. A dry powdered sample of the RM80 corresponding to a final steviol glycoside concentration of 3000 ppm was added to the aqueous buffered solution under magnetic stirring at room temperature. A dry powdered sample of the dissolution enhancer compound prepared from yerba mate corresponding to a final concentration of 3000 ppm was also added to the aqueous buffered solution under magnetic stirring at room temperature. Magnetic stirring was continued and dissolution monitored over time. The initially clear aqueous buffered solution became cloudy upon addition of the RM80. At 5 minutes after addition of the RM80 the aqueous buffered solution became less cloudy. At 15 minutes after addition of the RM80 the aqueous buffered solution was less cloudy with some steviol glycoside crystals remaining. At 2 hours after addition of the RM80 the aqueous buffered solution was completely clear with no steviol glycoside crystals remaining. Table 4 shows observations of the test vial at 0 minutes, 5 minutes, 15 minutes, 2 hours, and 24 hours respectively.
-
TABLE 4 Time (min) Observation 0 Cloudy 5 Less cloudy 15 Less cloudy with some steviol glycoside crystals remaining 120 Completely clear 1440 Completely clear - The RM80 added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely over the course of the monitoring. This experiment showed that the combination of the RM80 at a final steviol glycoside concentration of 3000 ppm and the dissolution enhancer compound from yerba mate at a final concentration of 3000 ppm was able to dissolve completely in the aqueous buffered solution.
- A vial was prepared with 10 mL of the aqueous buffered solution at pH 4 (citrate buffer, about 4 g/L). A dry powdered sample of the dissolution enhancer compound prepared from stevia and corresponding to a final concentration of 60000 ppm (6%) was added to the aqueous buffered solution at room temperature and the vial was capped and vortexed until the solubility enhancer dissolved. A dry powdered sample of 95% Rebaudioside A blend (RA95) corresponding to a final concentration of 60000 ppm (6%) was then added to the vial and the vial was capped and vortexed for 4 seconds. After vortexing, the aqueous buffered solution was observed for dissolution of the RA95. The RA95 had dissolved into solution and the aqueous buffered solution was clear. The RA95 blend added to the aqueous buffered solution with the dissolution enhancer compounds dissolved completely after vortexing. This experiment showed that the RA95 blend at a final steviol glycoside concentration of 60000 ppm (6%) was able to dissolve completely in the aqueous buffered solution containing the dissolution enhancer compound from stevia at a final concentration of 60000 ppm (6%).
-
TABLE 5 Time (min) Observation 0 Cloudy 0.10 Less cloudy 0.15 Less cloudy with some steviol glycoside crystals remaining 0.20 Completely clear - A 1:1 (wt) solution of the RM80 and the dissolution enhancer compound was prepared and co-dried to produce a dry 1:1 (wt) mixture. RM80 was added to a control vial. The 1:1 (wt) mixture of the RM80 and the dissolution enhancer compound was added to a test vial. Room temperature water was added to each vial. The room temperature water was added to the control vial in an amount to yield a 5% (wt) solution of the RM80. The room temperature water was added to the test vial in an amount to yield a solution of 5% (wt) RM80 and 5% (wt) SG dissolution enhancer. The vials were capped immediately after the water was added and each vial shaken by hand for about 10 seconds and observed immediately after shaking. The control vial showed that the RM80 did not dissolve. The test vial showed that the 1:1 (wt) mixture of the RM80 and the dissolution enhancer compound dissolved. The solutions were monitored over time. The solution of the test vial remained dissolved after 2 weeks of time. This experiment showed that the RM80 with dissolution enhancer compound was able to dissolve. The experiment also showed a high rate of instantaneous solubility of the RM80 with dissolution enhancer compound.
- Several vials were prepared to examine the effect of temperature on the dissolution of Reb M in water. For each experiment, a vial was prepared with an appropriate amount of steviol glycoside powder (RM80 or RM90). Dissolution enhancer was added to the vials as described in Table 6. Water was added to each vial to achieve the final concentrations described in Table 6. The vials were mixed by hand and placed in warm water baths at increasing temperatures. The minimum temperature required to dissolve the steviol glycosides is recorded in Table 6 as well as the time required at that temperature to reach complete dissolution.
-
TABLE 6 SG Dissolution Time for concen- enhancer Temperature complete Reb tration concentration SE:SG required dissolution M Lot (ppm) (ppm) Ratio (° C.) (minutes) Lot #2 270 0 — 65 2 Lot #2 270 270 1:1 20 2 Lot #2 450 0 — 65 2 Lot #2 450 300 2:3 20 2 Lot #1 500 0 — 65 6 Lot #1 500 250 1:2 20 4.5 Lot #1 500 375 3:4 20 4.5 Lot #2 600 0 — 65 2 Lot #2 600 400 2:3 20 2 Lot #2 700 0 — 65 2 Lot #2 700 475 2:3 20 2 Lot #1 2990 0 — 65 12 Lot #1 2990 1500 1:2 40 10 Lot #1 2990 2240 3:4 20 4
Claims (38)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/753,869 US20200260767A1 (en) | 2017-10-06 | 2018-10-05 | Readily dissolvable steviol glycoside compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762569279P | 2017-10-06 | 2017-10-06 | |
US201862676722P | 2018-05-25 | 2018-05-25 | |
US16/753,869 US20200260767A1 (en) | 2017-10-06 | 2018-10-05 | Readily dissolvable steviol glycoside compositions |
PCT/US2018/054698 WO2019071188A1 (en) | 2017-10-06 | 2018-10-05 | Readily dissolvable steviol glycoside compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/054698 A-371-Of-International WO2019071188A1 (en) | 2017-10-06 | 2018-10-05 | Readily dissolvable steviol glycoside compositions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/335,946 Continuation US20240082333A1 (en) | 2017-10-06 | 2023-06-15 | Readily dissolvable steviol glycoside compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200260767A1 true US20200260767A1 (en) | 2020-08-20 |
Family
ID=65994846
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/753,731 Abandoned US20200268027A1 (en) | 2017-10-06 | 2018-10-05 | Stabilized steviol glycoside compositions and uses thereof |
US16/753,869 Abandoned US20200260767A1 (en) | 2017-10-06 | 2018-10-05 | Readily dissolvable steviol glycoside compositions |
US16/373,206 Active US11717549B2 (en) | 2017-10-06 | 2019-04-02 | Steviol glycoside solubility enhancers |
US16/374,388 Active US11701400B2 (en) | 2017-10-06 | 2019-04-03 | Steviol glycoside compositions with reduced surface tension |
US16/374,422 Abandoned US20190223483A1 (en) | 2017-10-06 | 2019-04-03 | Sensory modifier compounds |
US16/374,894 Active US11351214B2 (en) | 2017-10-06 | 2019-04-04 | Methods for making yerba mate extract composition |
US17/807,798 Pending US20220323528A1 (en) | 2017-10-06 | 2022-06-20 | Steviol glycoside solubility enhancers |
US18/153,484 Abandoned US20230364171A1 (en) | 2017-10-06 | 2023-01-12 | Sensory modifier compounds |
US18/328,066 Active US12097231B2 (en) | 2017-10-06 | 2023-06-02 | Steviol glycoside compositions with reduced surface tension |
US18/335,946 Pending US20240082333A1 (en) | 2017-10-06 | 2023-06-15 | Readily dissolvable steviol glycoside compositions |
US18/335,968 Abandoned US20240082334A1 (en) | 2017-10-06 | 2023-06-15 | Stabilized steviol glycoside compositions and uses thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/753,731 Abandoned US20200268027A1 (en) | 2017-10-06 | 2018-10-05 | Stabilized steviol glycoside compositions and uses thereof |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/373,206 Active US11717549B2 (en) | 2017-10-06 | 2019-04-02 | Steviol glycoside solubility enhancers |
US16/374,388 Active US11701400B2 (en) | 2017-10-06 | 2019-04-03 | Steviol glycoside compositions with reduced surface tension |
US16/374,422 Abandoned US20190223483A1 (en) | 2017-10-06 | 2019-04-03 | Sensory modifier compounds |
US16/374,894 Active US11351214B2 (en) | 2017-10-06 | 2019-04-04 | Methods for making yerba mate extract composition |
US17/807,798 Pending US20220323528A1 (en) | 2017-10-06 | 2022-06-20 | Steviol glycoside solubility enhancers |
US18/153,484 Abandoned US20230364171A1 (en) | 2017-10-06 | 2023-01-12 | Sensory modifier compounds |
US18/328,066 Active US12097231B2 (en) | 2017-10-06 | 2023-06-02 | Steviol glycoside compositions with reduced surface tension |
US18/335,946 Pending US20240082333A1 (en) | 2017-10-06 | 2023-06-15 | Readily dissolvable steviol glycoside compositions |
US18/335,968 Abandoned US20240082334A1 (en) | 2017-10-06 | 2023-06-15 | Stabilized steviol glycoside compositions and uses thereof |
Country Status (8)
Country | Link |
---|---|
US (11) | US20200268027A1 (en) |
EP (6) | EP3691468A4 (en) |
JP (7) | JP2020536537A (en) |
CN (6) | CN111372468A (en) |
BR (2) | BR112020006822B1 (en) |
CA (6) | CA3078545A1 (en) |
MY (3) | MY205475A (en) |
WO (6) | WO2019071188A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11944112B2 (en) | 2020-04-20 | 2024-04-02 | Cargill, Incorporated | Stabilized steviol glycoside malonic acid esters |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11969001B2 (en) | 2016-11-29 | 2024-04-30 | Purecircle Usa Inc. | Food ingredients from Stevia rebaudiana |
JP7031121B2 (en) * | 2017-02-03 | 2022-03-08 | 株式会社三洋物産 | Pachinko machine |
JP7039834B2 (en) * | 2017-02-03 | 2022-03-23 | 株式会社三洋物産 | Pachinko machine |
JP2020536537A (en) | 2017-10-06 | 2020-12-17 | カーギル インコーポレイテッド | Readily Soluble Steviol Glycoside Composition |
EP3852542A4 (en) | 2018-09-18 | 2022-06-01 | Ohio State Innovation Foundation | Novel small molecules that enhance flavor qualities of coffee and related beverages |
AR118248A1 (en) * | 2019-03-06 | 2021-09-22 | Corn Products Dev Inc | STEVIOL GLYCOSIDE COMPOSITIONS WITH ENHANCED SOLUBILITY |
WO2020210118A1 (en) | 2019-04-06 | 2020-10-15 | Cargill, Incorporated | Sensory modifiers |
EP3953012A1 (en) * | 2019-04-06 | 2022-02-16 | Cargill, Incorporated | Methods for making botanical extract composition |
US20220162250A1 (en) * | 2019-04-06 | 2022-05-26 | Cargill, Incorporated | Steviol glycoside solubility enhancers |
GB2593412A (en) | 2019-06-19 | 2021-09-29 | Tate & Lyle Ingredients Americas Llc | Liquid concentrate composition |
US20220395007A1 (en) * | 2019-10-23 | 2022-12-15 | Ohio State Innovation Foundation | Taste modulating compounds and methods of improving the quality of foods and beverages |
CN110907604A (en) * | 2019-12-06 | 2020-03-24 | 浙江华康药业股份有限公司 | Method for improving sensory attributes of sugar alcohol substances and application thereof |
WO2021212025A1 (en) * | 2020-04-16 | 2021-10-21 | Purecircle Usa, Inc. | Natural flavor complex from stevia rebaudiana plants |
WO2021216549A1 (en) * | 2020-04-20 | 2021-10-28 | Cargill, Incorporated | Steviol glycoside malonic acid esters |
US20220047506A1 (en) * | 2020-08-12 | 2022-02-17 | Villya LLC | Praziquantel Formulations |
US10894812B1 (en) | 2020-09-30 | 2021-01-19 | Alpine Roads, Inc. | Recombinant milk proteins |
US10947552B1 (en) | 2020-09-30 | 2021-03-16 | Alpine Roads, Inc. | Recombinant fusion proteins for producing milk proteins in plants |
WO2022072718A1 (en) | 2020-09-30 | 2022-04-07 | Nobell Foods, Inc. | Recombinant milk proteins and food compositions comprising the same |
JP7610395B2 (en) | 2020-11-09 | 2025-01-08 | 花王株式会社 | Oral Compositions |
WO2022155406A1 (en) * | 2021-01-18 | 2022-07-21 | Sweegen, Inc. | Steviol glycoside and ferulic acid formulations for food and beverages |
WO2022192868A1 (en) | 2021-03-09 | 2022-09-15 | Cargill, Incorporated | Sensory modifiers for effervescent compositions |
WO2022266667A1 (en) | 2021-06-18 | 2022-12-22 | Cargill, Incorporated | Sensory modifiers for meat substitute compositions |
EP4355112A1 (en) | 2021-06-18 | 2024-04-24 | Cargill, Incorporated | Sensory modifiers for protein compositions |
WO2022266666A1 (en) | 2021-06-18 | 2022-12-22 | Cargill, Incorporated | Sensory modifiers for bitterant composition |
EP4355108A1 (en) | 2021-06-18 | 2024-04-24 | Cargill, Incorporated | Sensory modifiers for dairy substitute compositions |
EP4380379A1 (en) | 2021-08-06 | 2024-06-12 | Cargill, Incorporated | Sensory modifiers |
CN114317313B (en) * | 2021-08-24 | 2022-08-09 | 清枫链食苏打饮品(吉林)有限公司 | Application of sour cherry extract in preparation of product for reducing uric acid or inhibiting gout attack |
KR102431101B1 (en) * | 2021-08-25 | 2022-08-09 | 서울대학교산학협력단 | Beverage composition comprising a mixed sweetener with improved sweetness of glycosyl stevioside, sugar alcohol or sugar |
WO2023091819A1 (en) | 2021-11-16 | 2023-05-25 | Cargill, Incorporated | Sensory modifiers for immune support compositions |
CN118401118A (en) | 2021-12-17 | 2024-07-26 | 嘉吉公司 | Sensory modifier for sugar-reducing cocoa compositions |
WO2023177970A1 (en) | 2022-03-17 | 2023-09-21 | Cargill, Incorporated | Steviol glycoside concentrates and highly soluble steviol glycosides |
WO2024091895A1 (en) | 2022-10-24 | 2024-05-02 | Cargill, Incorporated | Sensory modifiers for whole grain compositions |
WO2024129641A1 (en) | 2022-12-13 | 2024-06-20 | Cargill, Incorporated | Sensory modifiers for sugar alcohol and/or rare sugar compositions |
WO2024158694A1 (en) | 2023-01-23 | 2024-08-02 | Villya LLC | Compositions and methods for improving the solubility of erectile dysfunction therapeutics |
WO2024233155A1 (en) | 2023-05-09 | 2024-11-14 | Cargill, Incorporated | Sweetener compositions |
WO2024233156A1 (en) | 2023-05-09 | 2024-11-14 | Cargill, Incorporated | Sweetener compositions |
WO2024233157A1 (en) | 2023-05-09 | 2024-11-14 | Cargill, Incorporated | Sweetener compositions |
WO2025024691A1 (en) | 2023-07-27 | 2025-01-30 | Cargill, Incorporated | Steviol glycoside compositions with improved solubility |
WO2025085207A2 (en) | 2023-10-20 | 2025-04-24 | Cargill, Incorporated | Sweetener compositions and method for making the same |
CN118949257B (en) * | 2024-10-12 | 2025-01-10 | 无锡市检验检测认证研究院(无锡市计量测试院、无锡市纤维检验中心) | NHDC/pyruvic acid binary liquid supermolecule self-assembly system and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110183056A1 (en) * | 2008-10-03 | 2011-07-28 | Toyoshige Morita | New steviol glycoside |
Family Cites Families (372)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU459273B2 (en) | 1971-05-17 | 1975-03-20 | Sankyo Company Limited | Process for making wines |
US3924017A (en) | 1972-07-28 | 1975-12-02 | Gen Foods Corp | Sweetness inducer |
US3916028A (en) | 1972-07-28 | 1975-10-28 | Gen Foods Corp | Sweetness inducer |
JPS51142570A (en) | 1975-06-04 | 1976-12-08 | Morita Kagaku Kogyo | Method of imparting sweetness to food or pharmaceutical agent |
JPS54147976A (en) | 1978-05-12 | 1979-11-19 | Morita Kagaku Kogyo | Improving of solubility of stevia extracted and refined substance |
SE427983B (en) | 1980-02-15 | 1983-05-30 | Pripps Bryggerier Ab | BEVERAGE PRODUCTS |
EP0064361B1 (en) | 1981-04-29 | 1986-07-02 | TATE & LYLE PUBLIC LIMITED COMPANY | Sweetening agents |
JPS591465B2 (en) | 1982-02-09 | 1984-01-12 | 日本理化学薬品株式会社 | Edible natural antioxidants and their production method |
US4774511A (en) | 1985-05-30 | 1988-09-27 | Nap Consumer Electronics Corp. | Universal remote control unit |
US4710583A (en) | 1985-10-21 | 1987-12-01 | W. R. Grace & Co. | Dipeptides and process |
EP0256104B1 (en) | 1986-02-06 | 1989-08-23 | CODE Kaffee-Handelsgesellschaft mbH | Coffee and process for its production |
DE3603574C1 (en) | 1986-02-06 | 1987-07-23 | Ergo Forschungsgmbh | Process for the production of chlorogenic acid |
JPS638723A (en) | 1986-06-30 | 1988-01-14 | Nikon Corp | Lens barrel of electronic still camera |
FI89761C (en) | 1986-10-16 | 1993-11-25 | Sinebrychoff Ab | Use of malic acid for the production of exercise drink powder |
ATE97910T1 (en) | 1987-07-21 | 1993-12-15 | Roger H Giovanetto | PROCESS FOR OBTAINING STEVIOIDES FROM VEGETABLE RAW MATERIAL. |
JPH0195739A (en) | 1987-10-09 | 1989-04-13 | Sanyo Kokusaku Pulp Co Ltd | Production of readily soluble granular stevia sweetener |
JP3111203B2 (en) | 1987-12-26 | 2000-11-20 | 中里 隆憲 | Plants belonging to new Stevia varieties |
US4906480A (en) | 1988-04-07 | 1990-03-06 | Forsyth Dental Infirmary For Children | Sweetness and flavor enhanced compositions and method of preparing such compositions |
JP2959020B2 (en) | 1990-02-05 | 1999-10-06 | 松下電器産業株式会社 | Exhaust system of combustor |
JP2704783B2 (en) | 1990-05-23 | 1998-01-26 | 長谷川香料株式会社 | Prevention method of flavor deterioration of food and drink |
JPH04145048A (en) | 1990-10-04 | 1992-05-19 | T Hasegawa Co Ltd | Production of purified chlorogenic acid |
US5336513A (en) | 1991-02-20 | 1994-08-09 | Kraft General Foods, Inc. | Bitterness inhibitors |
JP2983386B2 (en) | 1992-07-21 | 1999-11-29 | 長谷川香料株式会社 | Flavor deterioration inhibitor for food and drink and its use |
CN1085073A (en) | 1992-09-29 | 1994-04-13 | 辽宁省人民医院 | Tooth and mouth health liquid for baby |
WO2004073726A1 (en) | 1993-10-21 | 2004-09-02 | Keiichi Togasaki | Free active oxygen radical scavenger |
JPH07123921A (en) | 1993-11-02 | 1995-05-16 | Pokka Corp | Carbonated drink containing coffee |
JP3429040B2 (en) | 1993-11-19 | 2003-07-22 | 三栄源エフ・エフ・アイ株式会社 | Flavor deterioration inhibitor for beverages |
US5431940A (en) | 1994-02-24 | 1995-07-11 | The Procter & Gamble Company | Preparation of noncarbonated beverage products with improved microbial stability |
CN1100894A (en) | 1994-03-11 | 1995-04-05 | 广西壮族自治区梧州地区制药厂 | Chlorogenic acid health-care food |
US5464619A (en) | 1994-06-03 | 1995-11-07 | The Procter & Gamble Company | Beverage compositions containing green tea solids, electrolytes and carbohydrates to provide improved cellular hydration and drinkability |
JP3420339B2 (en) | 1994-07-14 | 2003-06-23 | 三栄源エフ・エフ・アイ株式会社 | Agent for preventing flavor deterioration of beverage and method for preventing flavor deterioration of beverage |
PT730830E (en) | 1995-03-06 | 2002-07-31 | Flachsmann Ag Emil | PROCESS FOR THE ELIMINATION OF LIPOFILAS IMPURITIES AND / OR UNDESEJAVED WASTE CONTAINED IN DRINKS OR PREPARED PLANT PRODUCTS |
JP2889847B2 (en) | 1995-10-02 | 1999-05-10 | 小川香料株式会社 | Taste improver consisting of coffee bean hydrolyzed extract |
JP3855293B2 (en) | 1996-02-14 | 2006-12-06 | 長谷川香料株式会社 | Antioxidant composition |
DE29603759U1 (en) | 1996-02-29 | 1996-05-02 | Eckes-Granini GmbH & Co. KG, 55268 Nieder-Olm | Fruit drink |
US6261565B1 (en) | 1996-03-13 | 2001-07-17 | Archer Daniels Midland Company | Method of preparing and using isoflavones |
JPH09266767A (en) | 1996-03-29 | 1997-10-14 | Meiji Seika Kaisha Ltd | Food and drink containing extract of crataegus cuneata and used for improving endurance |
JPH10179079A (en) | 1996-12-26 | 1998-07-07 | T Hasegawa Co Ltd | Additive for cooked rice |
JPH10183164A (en) | 1996-12-26 | 1998-07-14 | T Hasegawa Co Ltd | Flavor deterioration inhibitor for oil and fat-containing food |
JP3938968B2 (en) | 1997-03-17 | 2007-06-27 | 三栄源エフ・エフ・アイ株式会社 | Astringency masking method |
IT1290806B1 (en) | 1997-03-21 | 1998-12-11 | Universal Flavors S R L | DECAFFEINATED EXTRACTS FROM MATE ' |
JP3689533B2 (en) | 1997-06-26 | 2005-08-31 | 日本たばこ産業株式会社 | Milky coffee beverage and method for producing the same |
US5972120A (en) | 1997-07-19 | 1999-10-26 | National Research Council Of Canada | Extraction of sweet compounds from Stevia rebaudiana Bertoni |
US6022576A (en) | 1997-10-28 | 2000-02-08 | Lipton, Division Of Conopco, Inc. | Flavoring materials for use in tea containing beverages |
AR014129A1 (en) | 1997-12-17 | 2001-02-07 | Nutrasweet Co | DRINK THAT FUNDAMENTALLY INCLUDES AN ESTER N- [N- (3,3-DIMETHYLBUTY) -L- ALPHA-ASPARTILE] -L-PHENYLAMINE 1 - METHYLLIC, DRINK WITHOUT CARBONATED ALCOHOL, JUICE DRINK, HOT PACKED DRINK AND SPORTS DRINK DRINK CALORIES |
JPH11299473A (en) | 1998-04-21 | 1999-11-02 | Fukutokucho Sakerui Kk | Alcoholic drink containing carbon dioxide |
FI111513B (en) | 1998-05-06 | 2003-08-15 | Raisio Benecol Oy | New phytosterol and phytostanol fatty acid ester compositions, products containing the same and processes for preparing the same |
DE29808384U1 (en) | 1998-05-08 | 1998-08-06 | Eckes-Granini GmbH & Co. KG, 55268 Nieder-Olm | drink |
JP2000063827A (en) * | 1998-08-26 | 2000-02-29 | Dainippon Ink & Chem Inc | Method for producing antioxidant |
DE59907002D1 (en) | 1998-10-29 | 2003-10-23 | Orgapack Gmbh Dietikon | strapping tool |
DE29924090U1 (en) | 1998-11-25 | 2001-12-20 | Frey Irma H | extract |
GB2348104A (en) | 1999-03-22 | 2000-09-27 | Unilever Plc | Manufacture of black tea involving amino and phenolic acids |
EP1177728A4 (en) | 1999-04-16 | 2003-03-19 | San Ei Gen Ffi Inc | Sucralose-containing composition and eatable product comprising the same |
JP2000308477A (en) | 1999-04-28 | 2000-11-07 | T Hasegawa Co Ltd | Taste deterioration inhibitor for retort foods |
AU4994700A (en) | 1999-05-13 | 2000-12-05 | Nutrasweet Company, The | Modification of the taste and physicochemical properties of neotame using hydrophobic acid additives |
US6410758B2 (en) | 1999-05-24 | 2002-06-25 | Mcneil-Ppc, Inc. | Preparation of sterol and stanol-esters |
US6426112B1 (en) | 1999-07-23 | 2002-07-30 | University Of Kentucky Research Foundation | Soy products having improved odor and flavor and methods related thereto |
JP3523166B2 (en) | 1999-09-02 | 2004-04-26 | 高砂香料工業株式会社 | Food flavor deterioration inhibitor, food flavor deterioration prevention method, and food containing the food flavor deterioration inhibitor |
US20010051195A1 (en) * | 2000-03-08 | 2001-12-13 | Miljkovic Dusan A. | Methods and compositions for increasing fermentation of a microorganism |
US6337095B1 (en) * | 2000-03-30 | 2002-01-08 | Council Of Scientific And Industrial Research | Process for the isolation of compound scopoletin useful as nitric oxide synthesis inhibitor |
US6423376B1 (en) | 2000-04-06 | 2002-07-23 | Air Products And Chemicals, Inc. | Tartaric acid diesters as biodegradable surfactants |
JP4068788B2 (en) | 2000-05-10 | 2008-03-26 | 小川香料株式会社 | Sweetness improver for high-intensity sweeteners |
DE10027564A1 (en) | 2000-06-02 | 2001-12-06 | Alcatel Sa | Process for the production of twisted pairs |
US20020068123A1 (en) | 2000-06-06 | 2002-06-06 | Justis Verhagen | Method of inducing sweetness by gallic acid and its applications |
EP1293130B1 (en) | 2000-06-20 | 2006-10-25 | Calpis Co., Ltd. | Acidic milky drink |
JP2002021938A (en) | 2000-07-07 | 2002-01-23 | Jidosha Denki Kogyo Co Ltd | Cable device for actuator |
JP3548102B2 (en) | 2000-08-07 | 2004-07-28 | 花王株式会社 | Antihypertensive agent |
US6991812B2 (en) | 2000-09-05 | 2006-01-31 | Kao Corporation | Agent for preventing, improving or treating hypertension |
ATE540586T1 (en) | 2000-11-20 | 2012-01-15 | Applied Food Sciences Inc | METHOD FOR INCREASING THE CONTENT OF SUPPLEMENTARY COMPOUNDS AFTER PROCESSING IN BEVERAGES IN WHICH THESE COMPOUNDS OCCUR NATURALLY |
US20020187239A1 (en) | 2001-02-06 | 2002-12-12 | Dusan Miljkovic | Nutraceuticals and methods of obtaining nutraceuticals from tropical crops |
JP3837031B2 (en) | 2001-03-19 | 2006-10-25 | 高砂香料工業株式会社 | Perfume deterioration preventive |
US6989171B2 (en) | 2001-04-02 | 2006-01-24 | Pacifichealth Laboratories, Inc. | Sports drink composition for enhancing glucose uptake into the muscle and extending endurance during physical exercise |
US7815956B2 (en) | 2001-04-27 | 2010-10-19 | Pepsico | Use of erythritol and D-tagatose in diet or reduced-calorie beverages and food products |
EP1262474A1 (en) | 2001-06-01 | 2002-12-04 | Givaudan SA | Cycloalkanecarboxylic acid derivatives as fragrants with musk characteristics |
JP2002363075A (en) | 2001-06-05 | 2002-12-18 | Kao Corp | Antihypertensive agent |
US20030003212A1 (en) * | 2001-06-13 | 2003-01-02 | Givaudan Sa | Taste modifiers |
WO2003025159A1 (en) | 2001-08-13 | 2003-03-27 | Embrex, Inc. | Methods for injecting avian eggs |
CN1133591C (en) * | 2001-09-25 | 2004-01-07 | 清华同方股份有限公司 | Membrane separation process of treating soybean processing waste water |
US7291352B2 (en) | 2001-10-03 | 2007-11-06 | Herbalscience Llc | Methods and compositions for oral delivery of Areca and mate' or theobromine |
EP1325681A1 (en) | 2001-12-11 | 2003-07-09 | Société des Produits Nestlé S.A. | Composition for promotion of bone growth and maintenance of bone health |
EP1325682A1 (en) | 2001-12-11 | 2003-07-09 | Societe Des Produits Nestle S.A. | Food or pet food composition containing plant extracts for maintenance of bone health and prevention or treatment of bone diseases |
US20030138537A1 (en) | 2001-12-19 | 2003-07-24 | Bailey David T. | Methods of preparing improved water-soluble extracts containing antioxidants and uses thereof |
JP3732782B2 (en) | 2002-01-15 | 2006-01-11 | 花王株式会社 | Containerized coffee beverage |
WO2004002242A1 (en) | 2002-06-28 | 2004-01-08 | Kao Corporation | Beverage |
US20030045473A1 (en) | 2002-07-19 | 2003-03-06 | Sarama Robert Joseph | Compositions, kits, and methods for cardiovascular health |
RU2322158C2 (en) | 2002-09-10 | 2008-04-20 | Пепсико, Инк. | Using surfactants for solubilization of water-insoluble solid substances in beverages |
WO2004028672A1 (en) | 2002-09-27 | 2004-04-08 | Mitsubishi Rayon Co., Ltd. | Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtering device using the module unit, and method of operating the membrane filtering device |
US7294353B2 (en) | 2003-10-24 | 2007-11-13 | Herbalscience, Llc | Methods and compositions comprising ilex |
US7279184B2 (en) | 2003-10-24 | 2007-10-09 | Herbalscience, Llc | Methods and compositions comprising Ilex |
EP1716757B1 (en) * | 2004-01-30 | 2009-07-22 | Kao Corporation | Coffee drink composition |
US20050220868A1 (en) | 2004-03-31 | 2005-10-06 | Marcor Development Corporation | Policosanol composition and its use in treatment of hypercholesterolemia |
JP2006006318A (en) | 2004-05-21 | 2006-01-12 | Toyo Shinyaku:Kk | Taste-modifying agent |
US20060263475A1 (en) | 2004-08-25 | 2006-11-23 | Cadbury Adams Usa, Llc. | Center-filled chewing gum composition |
US7727565B2 (en) | 2004-08-25 | 2010-06-01 | Cadbury Adams Usa Llc | Liquid-filled chewing gum composition |
US20060280835A1 (en) | 2004-08-25 | 2006-12-14 | Cadbury Adams Usa Llc. | Multi-modality flavored chewing gum compositions |
CN100353938C (en) | 2004-09-29 | 2007-12-12 | 中国人民解放军军事医学科学院放射与辐射医学研究所 | Composition containing dicaffeoyl quinic acid and its preparing method |
CN100341500C (en) * | 2004-09-29 | 2007-10-10 | 中国人民解放军军事医学科学院放射与辐射医学研究所 | Emulsion containing dicaffeoyl quinic acid and its preparing method |
JP4883895B2 (en) | 2004-09-30 | 2012-02-22 | 小川香料株式会社 | Flavoring composition |
US7923552B2 (en) | 2004-10-18 | 2011-04-12 | SGF Holdings, LLC | High yield method of producing pure rebaudioside A |
US7666409B2 (en) | 2004-11-16 | 2010-02-23 | Kao Corporation | Low salt liquid seasoning with antihypertensive activity |
US7838044B2 (en) | 2004-12-21 | 2010-11-23 | Purecircle Sdn Bhd | Extraction, separation and modification of sweet glycosides from the Stevia rebaudiana plant |
CN1326827C (en) * | 2005-01-13 | 2007-07-18 | 付信君 | Production technology of extracting chlorogenic acid from burdock leaf |
US8221804B2 (en) * | 2005-02-03 | 2012-07-17 | Signum Biosciences, Inc. | Compositions and methods for enhancing cognitive function |
PL1859684T3 (en) | 2005-03-16 | 2012-06-29 | Kao Corp | Packaged coffee drink |
ES2573863T3 (en) | 2005-05-23 | 2016-06-10 | Intercontinental Great Brands Llc | Confectionery composition that includes an elastomeric component, a cooked saccharide component and a food acid |
US7851006B2 (en) | 2005-05-23 | 2010-12-14 | Cadbury Adams Usa Llc | Taste potentiator compositions and beverages containing same |
AU2006249857B2 (en) | 2005-05-23 | 2010-05-13 | Intercontinental Great Brands Llc | Taste potentiator compositions and edible confectionery and chewing gum products containing same |
HUP0500582A1 (en) | 2005-06-13 | 2007-08-28 | Csaba Jozsef Dr Jaszberenyi | Foods food-additives and nutriment supplements or feed-additives with synergetic physiological effect |
ES2377882T3 (en) | 2005-07-29 | 2012-04-02 | Kao Corporation | Coffee drink with milk packed in a bowl |
TWI365719B (en) | 2005-07-29 | 2012-06-11 | Kao Corp | Packaged milk-coffee beverages |
US8293302B2 (en) | 2005-10-11 | 2012-10-23 | Purecircle Sdn Bhd | Process for manufacturing a sweetener and use thereof |
US7767238B2 (en) | 2005-11-04 | 2010-08-03 | Pepsico, Inc. | Beverage composition and method of preventing degradation of vitamins in beverages |
US8956677B2 (en) | 2005-11-23 | 2015-02-17 | The Coca-Cola Company | High-potency sweetener composition with glucosamine and compositions sweetened therewith |
US8524304B2 (en) | 2005-11-23 | 2013-09-03 | The Coca-Cola Company | High-potency sweetener composition with probiotics/prebiotics and compositions sweetened therewith |
US8367138B2 (en) | 2005-11-23 | 2013-02-05 | The Coca-Cola Company | Dairy composition with high-potency sweetener |
US20150189904A1 (en) * | 2005-11-23 | 2015-07-09 | The Coca-Cola Company | Natural High-Potency Sweetener Compositions with Improved Temporal Profile and/or Flavor Profile, Methods For Their Formulation, and Uses |
US8956678B2 (en) | 2005-11-23 | 2015-02-17 | The Coca-Cola Company | High-potency sweetener composition with preservative and compositions sweetened therewith |
US8512789B2 (en) | 2005-11-23 | 2013-08-20 | The Coca-Cola Company | High-potency sweetener composition with dietary fiber and compositions sweetened therewith |
US9101160B2 (en) | 2005-11-23 | 2015-08-11 | The Coca-Cola Company | Condiments with high-potency sweetener |
US9144251B2 (en) | 2005-11-23 | 2015-09-29 | The Coca-Cola Company | High-potency sweetener composition with mineral and compositions sweetened therewith |
US8367137B2 (en) | 2005-11-23 | 2013-02-05 | The Coca-Cola Company | High-potency sweetener composition with fatty acid and compositions sweetened therewith |
US8940351B2 (en) | 2005-11-23 | 2015-01-27 | The Coca-Cola Company | Baked goods comprising high-potency sweetener |
US8940350B2 (en) | 2005-11-23 | 2015-01-27 | The Coca-Cola Company | Cereal compositions comprising high-potency sweeteners |
US8962058B2 (en) * | 2005-11-23 | 2015-02-24 | The Coca-Cola Company | High-potency sweetener composition with antioxidant and compositions sweetened therewith |
US20070116823A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-potency sweetener for hydration and sweetened hydration composition |
US20070116800A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Chewing Gum with High-Potency Sweetener |
US8435587B2 (en) | 2005-11-23 | 2013-05-07 | The Coca-Cola Company | High-potency sweetener composition with long-chain primary aliphatic saturated alcohol and compositions sweetened therewith |
US20070116829A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | Pharmaceutical Composition with High-Potency Sweetener |
US20070116839A1 (en) | 2005-11-23 | 2007-05-24 | The Coca-Cola Company | High-Potency Sweetener Composition With C-Reactive Protein Reducing Substance and Compositions Sweetened Therewith |
CA2969364C (en) | 2005-11-23 | 2019-01-15 | The Coca-Cola Company | Natural high-potency sweetener compositions with improved temporal profile and/or flavor profile, methods for their formulation, and uses |
US8993027B2 (en) | 2005-11-23 | 2015-03-31 | The Coca-Cola Company | Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses |
JP2007143528A (en) | 2005-11-30 | 2007-06-14 | Kao Corp | Container drink |
GB0603252D0 (en) | 2006-02-17 | 2006-03-29 | Axcess Ltd | Dissolution aids for oral peptide delivery |
US8791253B2 (en) | 2006-06-19 | 2014-07-29 | The Coca-Cola Company | Rebaudioside A composition and method for purifying rebaudioside A |
US20080286421A1 (en) | 2006-07-14 | 2008-11-20 | Delease Patricia | Foam-creating compositions, foaming beverage compositions, and methods of preparation thereof |
US20080014331A1 (en) | 2006-07-17 | 2008-01-17 | Constantin Badalov | Super sweet sugar crystals and syrups for health and method |
US20080063748A1 (en) | 2006-09-08 | 2008-03-13 | Cadbury Adams Usa Llc. | Center-fill confectionery and chewing gum compositions containing suspended saccharide particles |
US8017168B2 (en) | 2006-11-02 | 2011-09-13 | The Coca-Cola Company | High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith |
US9101161B2 (en) | 2006-11-02 | 2015-08-11 | The Coca-Cola Company | High-potency sweetener composition with phytoestrogen and compositions sweetened therewith |
US20080107787A1 (en) | 2006-11-02 | 2008-05-08 | The Coca-Cola Company | Anti-Diabetic Composition with High-Potency Sweetener |
MY148593A (en) | 2007-01-22 | 2013-05-15 | Cargill Inc | Method of producing purified rebaudioside a compositions using solvent/antisolvent crystallization |
JP4012560B1 (en) | 2007-02-02 | 2007-11-21 | 花王株式会社 | Containerized coffee beverage |
BRPI0721019A2 (en) | 2007-02-07 | 2012-12-25 | Miret Lab | combination of cationic preservatives with flavor masking components |
US20080226788A1 (en) | 2007-03-14 | 2008-09-18 | Concentrate Manufacturing Company Of Ireland | Lhg compositions for reducing lingering bitter taste of steviol glycosides |
US8029846B2 (en) * | 2007-03-14 | 2011-10-04 | The Concentrate Manufacturing Company Of Ireland | Beverage products |
US20080226790A1 (en) | 2007-03-14 | 2008-09-18 | Concentrate Manufacturing Company Of Ireland | Long chain fatty acids for reducing off-taste of non-nutritive sweeteners |
US20130071521A1 (en) | 2007-03-14 | 2013-03-21 | Pepsico, Inc. | Rebaudioside d sweeteners and food products sweetened with rebaudioside d |
US8277862B2 (en) | 2007-03-14 | 2012-10-02 | Concentrate Manufacturing Company Of Ireland | Beverage products having steviol glycosides and at least one acid |
WO2008141333A1 (en) | 2007-05-14 | 2008-11-20 | Cadbury Adams Usa Llc | Taste potentiator compositions in oral delivery systems |
US8030481B2 (en) | 2007-05-21 | 2011-10-04 | The Coca-Cola Company | Stevioside polymorphic and amorphous forms, methods for their formulation, and uses |
US20080292775A1 (en) | 2007-05-22 | 2008-11-27 | The Coca-Cola Company | Delivery Systems for Natural High-Potency Sweetener Compositions, Methods for Their Formulation, and Uses |
US20080292765A1 (en) | 2007-05-22 | 2008-11-27 | The Coca-Cola Company | Sweetness Enhancers, Sweetness Enhanced Sweetener Compositions, Methods for Their Formulation, and Uses |
US8709521B2 (en) | 2007-05-22 | 2014-04-29 | The Coca-Cola Company | Sweetener compositions having enhanced sweetness and improved temporal and/or flavor profiles |
WO2008153945A2 (en) | 2007-06-06 | 2008-12-18 | University Of South Florida | Nutraceutical co-crystal compositions |
US20090022851A1 (en) | 2007-07-16 | 2009-01-22 | Pepsico, Inc. | Method of using oligomeric polyphenol compounds and bioflavonoids to alter bubble size of soft drinks |
US8076491B2 (en) | 2007-08-21 | 2011-12-13 | Senomyx, Inc. | Compounds that inhibit (block) bitter taste in composition and use thereof |
WO2009025277A1 (en) * | 2007-08-22 | 2009-02-26 | Kaneka Corporation | Method of producing reduced coenzyme q10 and method of stabilizing the same |
NZ584156A (en) | 2007-09-11 | 2012-06-29 | Suntory Holdings Ltd | Food or drink showing improved taste of sweetener |
WO2009041640A1 (en) | 2007-09-26 | 2009-04-02 | Takasago International Corporation | Plant extract and use thereof |
JP5475945B2 (en) | 2007-11-20 | 2014-04-16 | 花王株式会社 | Containerized coffee beverage |
FR2926955B1 (en) | 2008-02-01 | 2012-07-20 | Agronomique Inst Nat Rech | PROCESS FOR THE PREPARATION OF DICAFEOYLQUINIC ACIDS AND THEIR USE IN THE FIGHT AGAINST PUCERONS |
JP2009201473A (en) | 2008-02-29 | 2009-09-10 | Yamaguchi Univ | Process for production of quinic acid and/or caffeic acid |
US20110033525A1 (en) * | 2008-04-11 | 2011-02-10 | Zhijun Liu | Diterpene Glycosides as Natural Solubilizers |
WO2009153800A1 (en) * | 2008-06-17 | 2009-12-23 | Pawan Kumar Goel | A novel process for extraction of furostanolic saponins from fenugreek seeds |
JP5723275B2 (en) | 2008-07-31 | 2015-05-27 | セノミックス インコーポレイテッド | Compositions containing sweetness enhancers and methods of making the same |
CA2726726A1 (en) | 2008-09-10 | 2010-03-18 | Thrubit B.V. | Ibuprofen for topical administration |
US20100160224A1 (en) | 2008-10-14 | 2010-06-24 | David Thomas | Shelf-stable consumable compositions containing probiotic-mimicking elements and methods of preparing and using the same |
US20100112136A1 (en) | 2008-10-30 | 2010-05-06 | Susan Ruth Ward | Pet food composition comprising an antioxidant component |
US9358264B2 (en) | 2008-10-31 | 2016-06-07 | Naturex, S.A. | Effects of a decaffeinated green coffee extract on body weight control by regulation of glucose metabolism |
CN102355898B (en) | 2009-03-18 | 2016-10-05 | 花王株式会社 | Agent for promoting energy consumption |
US20120058236A1 (en) | 2009-04-09 | 2012-03-08 | Cargill Incorporated | Sweetener composition comprising high solubility form of rebaudioside a and method of making |
US9072762B2 (en) | 2009-04-17 | 2015-07-07 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Natural composition to decrease effects of a high fat diet |
US20100297327A1 (en) | 2009-05-20 | 2010-11-25 | Donavon Stangle | Method, system and combination for delivering sweeteners for consumer use |
CN102481007A (en) | 2009-05-28 | 2012-05-30 | 嘉吉公司 | Shelf stable monatin sweetened beverage |
KR101074271B1 (en) | 2009-06-25 | 2011-10-17 | (주)차바이오앤디오스텍 | Fast dissolving oral dosage form containing steviosides as a taste masking agent |
JP5525210B2 (en) | 2009-08-27 | 2014-06-18 | 小川香料株式会社 | Taste improver for high-intensity sweeteners |
US10624372B2 (en) | 2009-08-28 | 2020-04-21 | Symrise Ag | Reduced-sweetener products, flavoring mixtures for said reduced-sweetener products and process for the production of products of this type |
JP2011071179A (en) | 2009-09-24 | 2011-04-07 | Hitachi Aic Inc | Metallized film capacitor |
US8916138B2 (en) | 2009-10-15 | 2014-12-23 | Purecircle Sdn Bhd | High-purity rebaudioside D and low-calorie tooth paste composition containing the same |
CA2814237A1 (en) * | 2009-10-15 | 2011-04-21 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Water soluble drug-solubilizer powders and their uses |
KR20110043194A (en) | 2009-10-21 | 2011-04-27 | 주식회사한국신약 | Wrinkle improvement composition containing Mate extract or fractions thereof as an active ingredient |
EP2495329B1 (en) * | 2009-10-30 | 2014-12-24 | CJ Cheiljedang Corporation | Process for economically manufacturing xylose from hydrolysate using electrodialysis and direct recovery method |
US8703224B2 (en) | 2009-11-04 | 2014-04-22 | Pepsico, Inc. | Method to improve water solubility of Rebaudioside D |
WO2011090709A1 (en) | 2009-12-28 | 2011-07-28 | The Coca-Cola Company | Sweetness enhancers, compositions thereof, and methods for use |
EP2340719B1 (en) | 2009-12-30 | 2014-02-19 | Symrise AG | Aroma composition comprising o-coumaric acid to reduce or suppress undesirable taste impressions of sweeteners |
JP2013518118A (en) | 2010-01-28 | 2013-05-20 | カーギル・インコーポレイテッド | Process for treating a glycoside mixture to achieve higher purity of one or more glycosides |
KR101227737B1 (en) | 2010-01-29 | 2013-01-29 | 이병일 | A composition comprising Ligularia stenocephala extract, fractions thereof or compounds isolated from Ligularia stenocephala extract and fractions thereof having peroxinitrite-scavenging activity |
US20110189360A1 (en) | 2010-02-04 | 2011-08-04 | Pepsico, Inc. | Method to Increase Solubility Limit of Rebaudioside D in an Aqueous Solution |
CN103079411A (en) * | 2010-02-08 | 2013-05-01 | 可口可乐公司 | Solubility enhanced terpene glycoside(s) |
JP5770426B2 (en) * | 2010-02-19 | 2015-08-26 | 株式会社コーセー | Singlet oxygen scavenger, skin external preparation and cosmetic using the singlet oxygen scavenger |
JP2013090575A (en) | 2010-02-26 | 2013-05-16 | Nippon Paper Chemicals Co Ltd | Stevia extract mixture, and method for dissolving stevia extract |
US8981081B2 (en) | 2010-03-12 | 2015-03-17 | Purecircle Usa Inc. | High-purity steviol glycosides |
JP2011225455A (en) * | 2010-04-15 | 2011-11-10 | Kao Corp | Srebp inhibitor |
RU2567175C2 (en) | 2010-05-11 | 2015-11-10 | Симрайз Аг | Usage of rubozozid for attenuation or suppression of certain unpleasant taste sensations |
BR112012032494A2 (en) | 2010-06-25 | 2015-09-08 | Unilever Nv | product, use and method of production of a product |
US8241680B2 (en) | 2010-06-30 | 2012-08-14 | Rock Creek Pharmaceuticals, Inc. | Nutraceutical product containing anatabine and yerba maté |
US8728545B2 (en) | 2010-07-16 | 2014-05-20 | Justbio Inc. | Extraction method for providing an organic certifiable Stevia rebaudiana extract |
BR112013003332B1 (en) | 2010-08-12 | 2018-11-13 | Senomyx, Inc. | method for improving the stability of candy intensifier and composition containing stabilized candy intensifier |
US8431178B2 (en) | 2010-09-10 | 2013-04-30 | Pepsico, Inc. | Increasing the concentration of terpene compounds in liquids |
CN103140139B (en) | 2010-10-05 | 2015-04-01 | 花王株式会社 | Concentrated coffee composition |
JP5854767B2 (en) | 2010-11-04 | 2016-02-09 | 花王株式会社 | Beverages containing chlorogenic acids |
KR101074839B1 (en) | 2010-11-25 | 2011-10-19 | 주식회사 녹십자 | Pharmaceutical composition for the treatment or prevention of reflux esophagitis comprising sterling extract |
MX346137B (en) | 2010-12-13 | 2017-03-08 | Purecircle Usa Inc | Highly soluble rebaudioside d. |
US10492516B2 (en) | 2010-12-13 | 2019-12-03 | Purecircle Sdn Bhd | Food ingredients from Stevia rebaudiana |
US9510611B2 (en) | 2010-12-13 | 2016-12-06 | Purecircle Sdn Bhd | Stevia composition to improve sweetness and flavor profile |
CA2821306A1 (en) * | 2010-12-16 | 2012-06-21 | Cargill, Incorporated | Monatin sweetened food or beverage with improved sweetener performance |
US20120196019A1 (en) * | 2011-02-01 | 2012-08-02 | Jingang Shi | Stevia sweetener with a surfactant |
WO2012107205A1 (en) | 2011-02-08 | 2012-08-16 | Nutrinova Nutrition Specialties & Food Ingredients Gmbh | Sweetener and/or a sweetness enhancer, sweetener compositions, methods of making the same and consumables containing the same |
US20120201935A1 (en) * | 2011-02-08 | 2012-08-09 | Nutrinova Nutrition Specialties & Food Ingredients Gmbh | Sweetness enhancer, sweetener compositions, methods of making the same and consumables containing the same |
US10362797B2 (en) | 2011-02-10 | 2019-07-30 | Purecircle Sdn Bhd | Stevia composition |
CN102224933B (en) | 2011-05-13 | 2013-07-17 | 烟台新时代健康产业有限公司 | Composition and healthcare food assisting regulation of blood fat and applications thereof |
JP5885397B2 (en) | 2011-05-18 | 2016-03-15 | 東洋精糖株式会社 | Method for dissolving poorly water-soluble substances and use thereof |
EP3101024A1 (en) | 2011-06-03 | 2016-12-07 | Purecircle USA | Stevia compostion comprising rebaudioside a or d with rebaudioside b |
EP2532232A1 (en) | 2011-06-10 | 2012-12-12 | InterMed Discovery GmbH | Long chain glycolipids useful to avoid perishing or microbial contamination of materials |
KR101971748B1 (en) | 2011-06-21 | 2019-04-23 | 카오카부시키가이샤 | Method for manufacturing refined chlorogenic acids composition |
US8530527B2 (en) | 2011-06-23 | 2013-09-10 | Purecircle Sdn Bhd | Food ingredients from Stevia rebaudiana |
MX2014000135A (en) | 2011-07-15 | 2014-07-28 | Prayon | Formulation of transparent and nutritive microemulsions. |
PH12011000255B1 (en) | 2011-07-29 | 2023-03-29 | Del Monte Philippines Inc | A juice supplemented with green coffee bean extract |
JP6424088B2 (en) * | 2011-08-12 | 2018-11-14 | クラフト・フーヅ・グループ・ブランヅ リミテッド ライアビリティ カンパニー | Low moisture liquid beverage concentrate having storage stability and method of making the same |
CN102381974A (en) * | 2011-08-31 | 2012-03-21 | 河南科技大学 | Method for separating and preparing caffeic tannic acid from honeysuckle by utilizing high speed countercurrent chromatography |
MX361892B (en) | 2011-09-06 | 2018-12-18 | Pepsico Inc | Rebaudioside d sweeteners and food products sweetened with rebaudioside d. |
WO2013036767A1 (en) | 2011-09-09 | 2013-03-14 | The Coca-Cola Company | Improved natural sweetened compositions and methods for preparing the same |
EP2570036B1 (en) | 2011-09-15 | 2014-06-18 | Symrise AG | Use of particular neoflavanoids for reinforcing and/or generating a sweet sensory sensation |
AU2012338742B2 (en) * | 2011-11-18 | 2016-11-10 | Naturex | Composition comprising chicory extract |
US8586106B2 (en) | 2011-12-06 | 2013-11-19 | The Concentrate Manufacturing Company Of Ireland | Fatigue-relieving herbal extracts and beverages comprising the same |
RS56884B1 (en) * | 2011-12-19 | 2018-04-30 | Coca Cola Co | Beverage comprising steviol glycosides |
JP6184028B2 (en) * | 2011-12-19 | 2017-08-23 | ジボダン エス エー | Sweetened beverage |
US10292412B2 (en) | 2012-02-15 | 2019-05-21 | Kraft Foods Global Brands Llc | High solubility natural sweetener compositions |
US9060537B2 (en) * | 2012-03-26 | 2015-06-23 | Pepsico, Inc. | Method for enhancing rebaudioside D solubility in water |
JP6367181B2 (en) | 2012-04-16 | 2018-08-01 | ペプシコ, インコーポレイテッドPepsiCo Inc. | Process for producing rebaudioside D sweet diet carbonated soft drink |
US11013248B2 (en) | 2012-05-25 | 2021-05-25 | Kraft Foods Group Brands Llc | Shelf stable, concentrated, liquid flavorings and methods of preparing beverages with the concentrated liquid flavorings |
CN113476499A (en) * | 2012-05-29 | 2021-10-08 | 尤妮金公司 | Compositions and methods for weight management |
US9457009B2 (en) | 2012-05-31 | 2016-10-04 | The United States Of America As Represented By The Department Of Veterans Affairs | Methods and compositions for preventing and treating auditory dysfunctions |
CN102771751A (en) | 2012-07-13 | 2012-11-14 | 常小勇 | Edible compound stevioside for diabetes patients |
DE102012017884A1 (en) | 2012-08-03 | 2014-02-20 | Krüger Gmbh & Co. Kg | Composition for the delayed absorption |
CA2879554A1 (en) | 2012-08-06 | 2014-02-13 | Senomyx, Inc. | Substituted 4-amino-1h-2,1,3-benzothiadiazine 2,2-dioxide compounds and their use as sweet flavor modifiers |
CN102860438A (en) * | 2012-10-10 | 2013-01-09 | 东莞市双胞胎饲料有限公司 | A kind of high-efficiency pig feed compound enzyme preparation added with enzyme protection agent |
ITMI20121749A1 (en) | 2012-10-16 | 2014-04-17 | Indena Spa | HELIANTHUS ANNUUS EXTRACTS USEFUL IN THE TREATMENT OF THE METABOLIC SYNDROME AND IN THE DECREASE OF THE GLICEMIC FOOD INDEX AND PROCEDURE FOR THEIR PREPARATION AND THE COMPOSITIONS THAT CONTAIN THEM |
CN102924544B (en) * | 2012-10-30 | 2015-04-22 | 晨光生物科技集团股份有限公司 | Method for preparing stevioside and chlorogenic acid from stevia step by step |
HK1214736A1 (en) | 2012-11-14 | 2016-08-05 | Pepsico, Inc. | Method to improve dispersibility of a material having low solubility in water |
JP5972778B2 (en) | 2012-12-18 | 2016-08-17 | サントリー食品インターナショナル株式会社 | Carbonated coffee drink |
HK1222515A1 (en) | 2012-12-19 | 2017-07-07 | 可口可乐公司 | Compositions and methods for improving rebaudioside x solubility |
US20140171519A1 (en) | 2012-12-19 | 2014-06-19 | Indra Prakash | Compositions and methods for improving rebaudioside x solubility |
US20150328179A1 (en) * | 2012-12-28 | 2015-11-19 | Kao Corporation | Dicaffeoylquinic acid-containing drink |
JP5671600B2 (en) | 2012-12-28 | 2015-02-18 | 花王株式会社 | Beer-flavored carbonated drink |
HK1217608A1 (en) | 2013-01-11 | 2017-01-20 | Impossible Foods Inc. | Methods and compositions for consumables |
CN103040064A (en) | 2013-01-22 | 2013-04-17 | 重庆加多宝饮料有限公司 | Preparation method of self-heal, folium mori and chrysanthemum beverage |
EP2981178B1 (en) | 2013-02-28 | 2021-01-27 | Swm Luxembourg S.A.R.L | Composition for making a tea beverage or herbal and vegetable broths |
EP2984077A4 (en) | 2013-03-14 | 2017-03-15 | Chromocell Corporation | Compounds, compositions, and methods for modulating sweet taste |
US9717267B2 (en) | 2013-03-14 | 2017-08-01 | The Coca-Cola Company | Beverages containing rare sugars |
US10798961B2 (en) | 2013-03-15 | 2020-10-13 | Altria Client Services Llc | Functional food and beverage compositions with improved taste through the use of sensates |
US10570164B2 (en) * | 2013-03-15 | 2020-02-25 | The Coca-Cola Company | Steviol glycosides, their compositions and their purification |
EP2789247B1 (en) * | 2013-04-14 | 2015-11-18 | Symrise AG | Antioxidative composition |
KR101500485B1 (en) | 2013-04-23 | 2015-03-10 | 한국식품연구원 | Compositions for Alleviating, Preventing or Treating Pain Comprising Ilex paraguayensis Extracts as Active Ingredients |
US20140342044A1 (en) | 2013-05-14 | 2014-11-20 | Pepsico, Inc. | Compositions and Comestibles |
US10780170B2 (en) | 2013-06-07 | 2020-09-22 | Purecircle Sdn Bhd | Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier |
US10952458B2 (en) | 2013-06-07 | 2021-03-23 | Purecircle Usa Inc | Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier |
CN105307502A (en) | 2013-06-19 | 2016-02-03 | 植物科技公司 | Rebaudioside e and food products sweetened with rebaudioside e |
US10039834B2 (en) | 2013-07-12 | 2018-08-07 | The Coca-Cola Company | Compositions and methods using rebaudioside X to provide sweetness enhancement |
US10905146B2 (en) * | 2013-07-12 | 2021-02-02 | The Coca-Cola Company | Compositions for improving rebaudioside M solubility |
EP3027048A1 (en) | 2013-07-31 | 2016-06-08 | DSM IP Assets B.V. | Steviol glycosides |
CN115211549A (en) * | 2013-08-15 | 2022-10-21 | 嘉吉公司 | Sweetener compositions and sweetened compositions incorporating rebaudioside N |
WO2015024218A1 (en) * | 2013-08-21 | 2015-02-26 | 四川九章生物科技有限公司 | Pharmaceutical composition, preparation method therefor and use thereof |
GB201317286D0 (en) | 2013-09-30 | 2013-11-13 | Calscience Internat Ltd | Composition and Use |
CN103656627B (en) | 2013-11-21 | 2015-09-02 | 威海百合生物技术股份有限公司 | A kind of vitamin C collagen compound effervescent tablet and preparation method thereof |
AU2014366958A1 (en) * | 2013-12-16 | 2016-06-30 | Cargill, Incorporated | Stabilized steviol glycoside in concentrated syrup |
JP2015133958A (en) | 2013-12-18 | 2015-07-27 | 花王株式会社 | Coffee concentrate composition |
DE202014100439U1 (en) | 2014-01-17 | 2014-02-25 | Pm-International Ag | Powdered composition for the manufacture of a food substitute |
CA2937368A1 (en) * | 2014-01-29 | 2015-08-06 | Cargill, Incorporated | Stable suspension of a steviol glycoside in concentrated syrup |
WO2015117011A1 (en) | 2014-01-31 | 2015-08-06 | Pocket Tea, Llc | Tea composition for oral administration |
US9629795B2 (en) | 2014-04-01 | 2017-04-25 | Symrise Ag | Substance mixtures |
US10231474B2 (en) | 2014-05-06 | 2019-03-19 | Dr Pepper/Seven Up, Inc. | Sweet taste improving compositions including naringenin |
EP3148982A1 (en) | 2014-05-27 | 2017-04-05 | R. J. Reynolds Tobacco Company | Nicotine salts, co-crystals, and salt co-crystal complexes |
US10485256B2 (en) | 2014-06-20 | 2019-11-26 | Sweet Green Fields International Co., Limited | Stevia sweetener with improved solubility with a cyclodextrin |
DK3050561T3 (en) | 2014-07-30 | 2020-11-16 | Shyam Prasad Kodimule | CHLOROGENIC ACID COMPOSITIONS AND PROCEDURES FOR THE PREPARATION AND USE OF THE SAME IN OBESITY MANAGEMENT |
WO2016036578A1 (en) | 2014-09-02 | 2016-03-10 | Purecircle Sdn Bhd | Stevia extracts |
EP3188728A4 (en) | 2014-09-03 | 2018-02-28 | Chromocell Corporation | Compounds, compositions, and methods for modulating sweet taste |
US20180235917A1 (en) | 2014-09-24 | 2018-08-23 | Nusirt Sciences, Inc. | Compositions, methods and kits for treatment of diabetes and/or hyperlipidemia |
JP6348392B2 (en) | 2014-09-30 | 2018-06-27 | 花王株式会社 | Method for producing purified chlorogenic acid-containing composition |
US20160100689A1 (en) | 2014-10-14 | 2016-04-14 | Andy Wang | Portable multifunction seat cushion |
EP3017708B1 (en) * | 2014-10-24 | 2018-05-02 | Red Bull GmbH | Sweetening composition |
JP6550717B2 (en) | 2014-10-27 | 2019-07-31 | セイコーエプソン株式会社 | Channel opening / closing device and liquid ejecting device |
AU2015343463A1 (en) | 2014-11-07 | 2017-06-15 | Senomyx, Inc. | Substituted 4-amino-5-(cyclohexyloxy)quinoline-3-carboxylic acids as sweet flavor modifiers |
DE102014016495A1 (en) | 2014-11-07 | 2016-05-12 | Klaus Düring | Process for the recovery of high purity 4,5-dicaffeoylquinic acid (4,5-DCQA) and use thereof for the treatment of respiratory syncytial virus (RSV) infections |
US20160165941A1 (en) | 2014-11-21 | 2016-06-16 | Flipn'Sweet, LLC | Sugar substitute compositions comprising digestion resistent soluble fiber |
EP3223608A4 (en) | 2014-11-24 | 2018-06-06 | The Coca-Cola Company | Novel diterpene glycosides, compositions and purification methods |
CN104397785A (en) | 2014-11-24 | 2015-03-11 | 凤阳嘉禾农业科技有限公司 | Sleep-aiding tea soup powder and processing method |
BR112017010868A2 (en) | 2014-11-24 | 2018-01-09 | Cargill Inc | sweetener composition |
CA2968973C (en) | 2014-11-29 | 2024-03-05 | The Coca-Cola Company | Novel diterpene glycosides, compositions and purification methods |
RU2721951C2 (en) | 2014-12-02 | 2020-05-25 | Као Корпорейшн | Roasted coffee beans |
AU2015364481B2 (en) | 2014-12-17 | 2020-05-14 | Cargill, Incorporated | Steviol glycoside compounds, compositions for oral ingestion or use, and method for enhancing steviol glycoside solubility |
RU2017120822A (en) | 2015-01-13 | 2019-02-14 | Хромоселл Корпорейшн | COMPOUNDS, COMPOSITIONS AND METHODS OF MODULATION OF SWEET TASTE |
GB201502268D0 (en) | 2015-02-11 | 2015-04-01 | Calscience Internat Ltd | Dental composition and use |
CN104644623A (en) | 2015-02-13 | 2015-05-27 | 四川九章生物科技有限公司 | Application of chlorogenic acid in preparation of medicines for treating lupus erythematosus |
US11944111B2 (en) | 2015-02-20 | 2024-04-02 | Pepsico., Inc. | Stabilizing sorbic acid in beverage syrup |
EP3264919A1 (en) | 2015-03-04 | 2018-01-10 | Mamajaya S.r.l. | Composition, drink, method of production and use thereof |
US20160296490A1 (en) | 2015-04-13 | 2016-10-13 | Kodimule Prasad | Composition and method for the treatment of obesity |
US10537123B2 (en) | 2015-04-30 | 2020-01-21 | Kraft Foods Group Brands Llc | Quillaja-stabilized liquid beverage concentrates and methods of making same |
EP3097790B1 (en) | 2015-05-26 | 2018-05-16 | Symrise AG | Turbid beverages with improved storage stabiliy |
US20160366915A1 (en) | 2015-06-22 | 2016-12-22 | International Flavors & Fragrances Inc. | Cyclohexanecarboxylic acids for selective taste masking |
US10874130B2 (en) | 2015-08-18 | 2020-12-29 | PURE CIRCLE USA Inc. | Steviol glycoside solutions |
US11399553B2 (en) | 2015-09-02 | 2022-08-02 | Givaudan S.A. | Flavor system for non-animal derived protein containing consumables |
CA2999767C (en) | 2015-09-25 | 2023-09-19 | The Coca-Cola Company | Steviol glycoside blends, compositions and methods |
US10342777B2 (en) | 2015-10-01 | 2019-07-09 | Macau University Of Science And Technology | Caffeoylquinic acid-rich extract and preparation as well as use thereof |
MX392684B (en) | 2015-10-02 | 2025-03-24 | Coca Cola Co | STEVIOL GLUCOSIDE SWEETENERS WITH ENHANCED FLAVOR PROFILES. |
US20170105432A1 (en) | 2015-10-16 | 2017-04-20 | Senomyx, Inc. | Sweetener and flavor enhancer formulations |
SG11201803603WA (en) | 2015-10-29 | 2018-05-30 | Senomyx Inc | High intensity sweeteners |
AU2016364725A1 (en) * | 2015-11-30 | 2018-06-14 | Cargill, Incorporated | Steviol glycoside compositions for oral ingestion or use |
US10327460B2 (en) | 2015-12-07 | 2019-06-25 | J & H Natural Products LLC | Stable low acid beverage concentrate |
DK3394045T3 (en) * | 2015-12-24 | 2021-08-16 | Takeda Pharmaceuticals Co | CO-CRYSTAL, MANUFACTURING PROCEDURE AND MEDICINE CONTAINING CO-CRYSTAL. |
JP6109353B1 (en) | 2016-01-05 | 2017-04-05 | サントリー食品インターナショナル株式会社 | Beverage, method for producing beverage, and method for suppressing foaming of beverage |
US12193460B2 (en) | 2016-01-07 | 2025-01-14 | Purecircle Usa Inc. | Highly soluble steviol glycosides |
JP6715602B2 (en) | 2016-01-08 | 2020-07-01 | 花王株式会社 | Beverages containing chlorogenic acids |
JP6757568B2 (en) * | 2016-01-12 | 2020-09-23 | 花王株式会社 | Carbonated drinks |
US9636373B1 (en) | 2016-02-09 | 2017-05-02 | Kahouokalani Akao | KAVA-based beverage composition |
CN105796542A (en) | 2016-03-15 | 2016-07-27 | 四川九章生物科技有限公司 | Application of chlorogenic acid in preparing drug for treating diseases with LAG-3 as target spot |
CN109152931A (en) | 2016-03-28 | 2019-01-04 | 可口可乐公司 | The sugariness and taste of steviol glycoside or Momordia grosvenori aglycone sweetener with flavonoids improve |
AU2017246876B2 (en) | 2016-04-06 | 2021-09-23 | The Coca-Cola Company | Sweetness and taste improvement of steviol glycoside or mogroside sweeteners |
US20170119033A1 (en) | 2016-04-25 | 2017-05-04 | Senomyx, Inc. | Method of improving stability of sweet enhancer and composition containing stabilized sweet enhancer |
US20190124953A1 (en) | 2016-04-29 | 2019-05-02 | Pepsico, Inc. | Novel steviol glycosides blends |
EP3455233A4 (en) | 2016-05-10 | 2020-03-11 | The Coca-Cola Company | METHODS FOR LYOPHILIZING COMPOSITIONS CONTAINING REBAUDIOSIDE M AND REAUDIOSIDE D |
CN106138298A (en) * | 2016-05-25 | 2016-11-23 | 石任兵 | A kind of composition with reducing blood lipid hypoglycemic activity and preparation method and application |
JP6710115B2 (en) | 2016-06-21 | 2020-06-17 | 花王株式会社 | Gummy candy |
EP3484310A4 (en) | 2016-07-12 | 2020-04-01 | Chromocell Corporation | Compounds, compositions, and methods for modulating sweet taste |
US10588885B2 (en) | 2016-07-12 | 2020-03-17 | Vidya Herbs, Inc. | Chlorogenic acid composition and method for its use in the treatment of Alzheimer's disease |
CN106135298A (en) * | 2016-07-28 | 2016-11-23 | 河南科技学院 | Radix Carpesii extract and its preparation method and application |
US20180092381A1 (en) | 2016-10-04 | 2018-04-05 | Pepsico, Inc. | Mouthfeel blends for low and non-caloric beverages |
JP6763841B2 (en) | 2016-10-26 | 2020-09-30 | 花王株式会社 | Method for producing purified chlorogenic acid-containing composition |
EP3533346B1 (en) | 2016-10-26 | 2021-06-09 | Kao Corporation | Refined chlorogenic acid-containing composition |
WO2018095533A1 (en) | 2016-11-25 | 2018-05-31 | Symrise Ag | Mixtures with stabilising properties |
EA201991224A1 (en) | 2016-11-25 | 2019-11-29 | FOOD COMPOSITIONS CONTAINING VEGETABLE OIL AND MIXTURE WITH STABILIZING PROPERTIES | |
JP6815175B2 (en) | 2016-11-29 | 2021-01-20 | 花王株式会社 | Solid composition |
AU2017367105B2 (en) | 2016-11-29 | 2022-03-10 | Purecircle Usa Inc. | Food ingredients from stevia rebaudiana |
KR102046763B1 (en) | 2016-12-30 | 2019-11-20 | 연세대학교 산학협력단 | Composition comprising 3,5-dicaffeoylquinic acid or extract of chrysanthemum as an effective ingredient for preventing or treating of muscular disorder or improvement of muscular functions |
CN107027930A (en) | 2017-04-18 | 2017-08-11 | 贵州医科大学 | A kind of Rosa roxburghii honeysuckle bealth-care instant tea treasure and preparation method thereof |
CA3061045A1 (en) | 2017-04-25 | 2018-11-01 | The Coca-Cola Company | Sweetness and taste improvement of steviol glycoside and mogroside sweeteners with dihydrochalcones |
JP6529634B1 (en) | 2017-05-12 | 2019-06-12 | 花王株式会社 | Amyloid β degradation efflux promoter |
US20170354175A1 (en) | 2017-05-15 | 2017-12-14 | Senomyx, Inc. | Sweetener composition |
WO2018211845A1 (en) | 2017-05-18 | 2018-11-22 | 花王株式会社 | Food composition |
KR20200012970A (en) | 2017-06-01 | 2020-02-05 | 무트랄 에스에이 | Animal feed supplements |
US20220104524A1 (en) | 2017-06-02 | 2022-04-07 | Givaudan, S.A. | Compositions |
CN107184482A (en) * | 2017-06-26 | 2017-09-22 | 上海家化联合股份有限公司 | Mateine and its application in skin preparations for extenal use |
IT201700096298A1 (en) | 2017-08-25 | 2019-02-25 | Penta Holding | Method for the production of a polyphenolic composition from barley malt |
AU2018326393B2 (en) | 2017-08-31 | 2022-12-01 | The Product Makers (Australia) Pty Ltd | Improving the taste of consumables |
CN107455718A (en) | 2017-09-14 | 2017-12-12 | 成都康辉生物科技有限公司 | The hesperetin flavor improving agent of bitter taste can be reduced |
EP3692987A4 (en) | 2017-10-03 | 2021-06-30 | Kao Corporation | HEAT FLUSH REMEDY AGENT |
CA3078200C (en) | 2017-10-06 | 2023-09-19 | Cargill, Incorporated | Steviol glycoside solubility enhancers |
JP2020536537A (en) | 2017-10-06 | 2020-12-17 | カーギル インコーポレイテッド | Readily Soluble Steviol Glycoside Composition |
US20180086751A1 (en) | 2017-12-01 | 2018-03-29 | Senomyx, Inc. | Sweetener composition |
WO2019121551A1 (en) | 2017-12-22 | 2019-06-27 | Firmenich Sa | Sourness enhancers comprising a cyclohexanecarboxylic acid |
JP2021527622A (en) | 2018-03-16 | 2021-10-14 | ピュアサークル ユーエスエー インコーポレイテッド | High-purity steviol glycoside |
CN111565576A (en) | 2018-03-22 | 2020-08-21 | 弗门尼舍有限公司 | Flavored products with reduced pH |
EP3780970B1 (en) | 2018-04-16 | 2023-06-07 | Almendra Pte. Ltd. | Taste modulator composition, beverage and flavoring composition thereof |
WO2019210192A1 (en) | 2018-04-26 | 2019-10-31 | Rush University Medical Center | Use of methylation inhibitors for the treatment of autoimmune diseases |
CA3100539A1 (en) | 2018-05-17 | 2019-11-21 | The Coca-Cola Company | Process for preparing concentrated solutions of steviol glycosides, and uses |
WO2020014494A1 (en) | 2018-07-11 | 2020-01-16 | Aardvark Therapeutics Inc. | Oral pharmaceutical formulations of bitter compounds for pulmonary hypertension |
US20200023021A1 (en) | 2018-07-19 | 2020-01-23 | The Clorox Company | Weight loss composition including chlorogenic acids and probiotics |
EP3852542A4 (en) | 2018-09-18 | 2022-06-01 | Ohio State Innovation Foundation | Novel small molecules that enhance flavor qualities of coffee and related beverages |
US20220142209A1 (en) | 2019-02-20 | 2022-05-12 | Gregory Aharonian | Methods and compositions for improving the taste of diet cola sodas and other beverages |
WO2020202193A1 (en) | 2019-03-31 | 2020-10-08 | Jeyakodi Shankaranarayanan | Synergistic combination of phytoactives |
EP3953012A1 (en) | 2019-04-06 | 2022-02-16 | Cargill, Incorporated | Methods for making botanical extract composition |
EP3972423A4 (en) | 2019-05-21 | 2023-02-01 | Ohio State Innovation Foundation | Taste modulating compounds and methods of improving the quality of foods and beverages |
WO2021038830A1 (en) | 2019-08-30 | 2021-03-04 | 株式会社メニコン | Urolithiasis prophylactic agent for domesticated animals, production method therefor, diuretic agent for domesticated animals, and urolithiasis prophylactic method for domesticated animals |
WO2021038832A1 (en) | 2019-08-30 | 2021-03-04 | 株式会社メニコン | Livestock feed efficiency improving agent, livestock weight gain promoting feed, livestock breeding method, and methane generation limiting method |
KR102498180B1 (en) | 2019-09-11 | 2023-02-10 | (주) 메드빌 | Composition for Improving Dry Eye Syndrome Comprising Extract of Aralia |
EP4282282A3 (en) | 2019-09-30 | 2024-02-21 | Almendra Pte. Ltd. | Methods and compositions for improved taste quality |
US20220395007A1 (en) | 2019-10-23 | 2022-12-15 | Ohio State Innovation Foundation | Taste modulating compounds and methods of improving the quality of foods and beverages |
WO2021090989A1 (en) | 2019-11-08 | 2021-05-14 | 씨제이제일제당 (주) | Composition for reducing bad odours |
WO2021091322A1 (en) | 2019-11-08 | 2021-05-14 | 씨제이제일제당 (주) | Composition containing polyphenol |
US20220248724A1 (en) | 2019-11-08 | 2022-08-11 | Cj Cheiljedang Corporation | Composition for reducing unpleasant fishy or meat odor |
JP7612326B2 (en) | 2019-12-16 | 2025-01-14 | ロレアル | Stable compositions containing specific combinations of ingredients |
EP4082351A4 (en) | 2019-12-27 | 2024-03-27 | Suntory Holdings Limited | Green tea beverage with enhanced flavor |
-
2018
- 2018-10-05 JP JP2020519072A patent/JP2020536537A/en active Pending
- 2018-10-05 WO PCT/US2018/054698 patent/WO2019071188A1/en unknown
- 2018-10-05 WO PCT/US2018/054743 patent/WO2019071220A1/en unknown
- 2018-10-05 EP EP18864649.1A patent/EP3691468A4/en active Pending
- 2018-10-05 JP JP2020519110A patent/JP7346394B2/en active Active
- 2018-10-05 WO PCT/US2018/054688 patent/WO2019071180A1/en not_active Application Discontinuation
- 2018-10-05 US US16/753,731 patent/US20200268027A1/en not_active Abandoned
- 2018-10-05 CN CN201880075683.3A patent/CN111372468A/en active Pending
- 2018-10-05 CA CA3078545A patent/CA3078545A1/en active Pending
- 2018-10-05 EP EP18865275.4A patent/EP3691469A4/en not_active Withdrawn
- 2018-10-05 CN CN201880074627.8A patent/CN111356373A/en active Pending
- 2018-10-05 CA CA3078210A patent/CA3078210C/en active Active
- 2018-10-05 WO PCT/US2018/054691 patent/WO2019071182A1/en not_active Application Discontinuation
- 2018-10-05 CA CA3078516A patent/CA3078516A1/en active Pending
- 2018-10-05 EP EP18864945.3A patent/EP3691467A4/en active Pending
- 2018-10-05 MY MYPI2020001675A patent/MY205475A/en unknown
- 2018-10-05 CN CN201880071978.3A patent/CN111698910B/en active Active
- 2018-10-05 EP EP18864552.7A patent/EP3691667A4/en not_active Withdrawn
- 2018-10-05 MY MYPI2020001674A patent/MY201035A/en unknown
- 2018-10-05 CA CA3078234A patent/CA3078234A1/en active Pending
- 2018-10-05 CN CN201880072288.XA patent/CN111683671A/en active Pending
- 2018-10-05 BR BR112020006822-5A patent/BR112020006822B1/en active IP Right Grant
- 2018-10-05 JP JP2020519669A patent/JP7280872B2/en active Active
- 2018-10-05 EP EP18864553.5A patent/EP3691465A4/en not_active Withdrawn
- 2018-10-05 WO PCT/US2018/054696 patent/WO2019071187A1/en not_active Application Discontinuation
- 2018-10-05 JP JP2020519104A patent/JP7391017B2/en active Active
- 2018-10-05 CA CA3078233A patent/CA3078233A1/en active Pending
- 2018-10-05 US US16/753,869 patent/US20200260767A1/en not_active Abandoned
- 2018-10-05 CN CN201880071974.5A patent/CN111315234B/en active Active
- 2018-10-08 EP EP18864651.7A patent/EP3691466A4/en active Pending
- 2018-10-08 BR BR112020006665-6A patent/BR112020006665A2/en not_active Application Discontinuation
- 2018-10-08 CN CN201880071893.5A patent/CN111295097B/en active Active
- 2018-10-08 MY MYPI2020001683A patent/MY199383A/en unknown
- 2018-10-08 WO PCT/US2018/054804 patent/WO2019071250A1/en unknown
- 2018-10-08 CA CA3078214A patent/CA3078214C/en active Active
-
2019
- 2019-04-02 US US16/373,206 patent/US11717549B2/en active Active
- 2019-04-03 US US16/374,388 patent/US11701400B2/en active Active
- 2019-04-03 US US16/374,422 patent/US20190223483A1/en not_active Abandoned
- 2019-04-04 US US16/374,894 patent/US11351214B2/en active Active
-
2022
- 2022-06-20 US US17/807,798 patent/US20220323528A1/en active Pending
-
2023
- 2023-01-06 JP JP2023001291A patent/JP7569391B2/en active Active
- 2023-01-12 US US18/153,484 patent/US20230364171A1/en not_active Abandoned
- 2023-06-02 US US18/328,066 patent/US12097231B2/en active Active
- 2023-06-06 JP JP2023093310A patent/JP2023113830A/en active Pending
- 2023-06-15 US US18/335,946 patent/US20240082333A1/en active Pending
- 2023-06-15 US US18/335,968 patent/US20240082334A1/en not_active Abandoned
- 2023-09-06 JP JP2023144114A patent/JP2023171741A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110183056A1 (en) * | 2008-10-03 | 2011-07-28 | Toyoshige Morita | New steviol glycoside |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11944112B2 (en) | 2020-04-20 | 2024-04-02 | Cargill, Incorporated | Stabilized steviol glycoside malonic acid esters |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240082333A1 (en) | Readily dissolvable steviol glycoside compositions | |
US11918014B2 (en) | Sensory modifiers | |
CN113710105B (en) | Steviol glycoside solubility enhancers | |
JP2020536537A5 (en) | ||
US20160360775A1 (en) | Highly soluble stevia sweetener | |
AU2018247334A1 (en) | Stabilized steviol glycoside in concentrated syrup | |
US11944112B2 (en) | Stabilized steviol glycoside malonic acid esters | |
BR112020006674B1 (en) | COMPOSITION OF READY DISSOLVABLE STEVIOL GLYCOSIDE, AND DRY COMPOSITION OF READY DISSOLVABLE STEVIOL GLYCOSIDE | |
US12349710B2 (en) | Sensory modifiers | |
US20250194651A1 (en) | Steviol glycoside concentrates and highly soluble steviol glycosides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |