US20200172217A1 - Integrated variable stiffness member - Google Patents
Integrated variable stiffness member Download PDFInfo
- Publication number
- US20200172217A1 US20200172217A1 US16/638,079 US201816638079A US2020172217A1 US 20200172217 A1 US20200172217 A1 US 20200172217A1 US 201816638079 A US201816638079 A US 201816638079A US 2020172217 A1 US2020172217 A1 US 2020172217A1
- Authority
- US
- United States
- Prior art keywords
- fiber
- rods
- cross
- plural
- stiffness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 claims abstract description 95
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 20
- 239000003733 fiber-reinforced composite Substances 0.000 claims description 8
- 238000005452 bending Methods 0.000 abstract description 9
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 5
- 239000004917 carbon fiber Substances 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 4
- 229920000642 polymer Polymers 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 33
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 241001272720 Medialuna californiensis Species 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H9/00—Marine propulsion provided directly by wind power
- B63H9/04—Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
- B63H9/06—Types of sail; Constructional features of sails; Arrangements thereof on vessels
- B63H9/065—Battens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H9/00—Marine propulsion provided directly by wind power
- B63H9/04—Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H9/00—Marine propulsion provided directly by wind power
- B63H9/04—Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
- B63H9/08—Connections of sails to masts, spars, or the like
- B63H2009/086—Connections of sails to masts, spars, or the like by sliders, i.e. by shoes sliding in, or guided by channels, tracks or rails; for connecting luffs, leeches, battens, or the like to masts, spars or booms
Definitions
- This invention relates to selectively and preferentially rigidizing structural members made from fiber composite materials and more particularly to carbon fiber composite sail battens.
- Composite materials such as carbon fiber reinforced polymers have long been used to create structural elements due to their low weight and high stiffness/strength to bending moments along the oblong fibers' orientation.
- battens may provide a superior response to dynamical longitudinal bending moments, they may not exhibit adequate strength and stiffness to dynamical torsional moments. This can be a problem when the cross-section of the batten is not angularly uniform and when the batten loosely engages the pocket in the sail. Relatively loose engagement is preferred in order to easily insert and remove the batten from the pocket. Further, due to unpredictabilities and inaccuracies in the shape of the pocket, often caused by lack of precision in manufacturing, and caused by wear on the sail, the batten may be subjected to various unplanned bending and torsional loads.
- the principal and secondary objects of the invention are to provide an improved fiber reinforced composite structural member. These and other objects can be achieved by an oblong member having fiber reinforced material having plural fiber orientations selected to adjust longitudinal stiffness different from latitudinal stiffness.
- an oblong stiffening member such as a sail batten having a tapered geometry to provide variable stiffness along its length.
- the member can be made from fiber composite materials such as carbon fiber embedded epoxy resin wherein the orientations of the fibers are varied to provide both bending and torsional strength and stiffness that varies along the length of the member.
- improved variable stiffness structural member comprises: said member having an oblong shape in a longitudinal direction; said member having a proximal end and a distal end; a first zone between said proximal end and said distal end; wherein said first zone comprises a first fiber reinforced material having a first set of plural fiber orientations; wherein first fiber reinforced material has a first longitudinal stiffness and a first latitudinal stiffness different from said first longitudinal stiffness.
- said member further comprises: a second zone between said proximal end and said distal end; wherein said second zone comprises a second fiber reinforced material having a second set of plural fiber orientations different from said first set of plural fiber orientations; wherein said second fiber reinforced material has a second longitudinal stiffness different from said first longitudinal stiffness.
- said first set of plural fiber orientations comprises a first fiber layer orientation rotated a first non-zero angle with respect to a second fiber layer orientation.
- said first set of plural fiber orientations further comprises a third fiber layer orientation rotated a second non-zero angle with respect to said second fiber layer orientation, and wherein said second non-zero angle is different from said first non-zero angle.
- said second set of plural fiber orientations comprises a fourth fiber layer orientation rotated a third non-zero angle with respect to a second fiber layer orientation.
- said first non-zero angle is at least 90 degrees
- said second non-zero angle is at least 45 degrees
- said third non-zero angle is at least 30 degrees.
- said first set of plural fiber orientations and said second set of plural fiber orientations have a least one fiber layer in common.
- said member further comprises: a pair of substantially parallel, oblong, spaced-apart rods, laterally joined by a webbing strip; and, wherein each of said pair of rods gradually tapers from said proximal end toward said distal end.
- said first one of said pair of rods comprises an axial hollow.
- said first one of said rods has a substantially conical shape; and wherein said axial hollow has a substantially conical shape.
- said member has a variable cross-sectional geometry along a longitudinal length of said member.
- said member further comprises: said member having a first cross-sectional area near said proximal end and a second cross-sectional area near said distal end; wherein said first cross-sectional area is larger than said second cross-sectional area.
- said first cross-sectional area is substantially barbell shaped.
- said first cross-sectional area comprises a pair of spaced apart, interconnected, diametrically symmetric geometric shapes selected from the group consisting of: circles, ellipses, triangles, squares, rectangles, trapezoids, pentagons, hexagons, heptagons, octagons, nonagons, and decagons.
- said member is formed by a unitary piece of composite material.
- said rods have a substantially oblique circular conical shape.
- both of said pair of rods are similarly shaped and dimensioned.
- said first cross-sectional area has a width dimension corresponding to said webbing strip, and a height dimension corresponding to an outer diameter of said one of said rods, and wherein said width dimension is equal to or greater than said diameter dimension.
- said member further comprises: said member having a first width dimension at said proximal end and a second width dimension at said distal end; and, wherein said first width dimension is equal to or greater than said second width dimension.
- a sailing craft having a sail and a plurality of sail battens
- at least one of said battens comprises: a fiber reinforced composite structural member having a first set of plural fiber orientations; wherein said member comprises: a pair of substantially parallel, spaced-apart tapering rods, laterally joined by a webbing strip.
- an improved variable stiffness structural member comprises a fiber reinforced material having plural fiber orientations selected to adjust a longitudinal stiffness different from a latitudinal stiffness.
- an improved variable stiffness structural member comprises: a pair of substantially parallel, oblong, spaced-apart rods, laterally joined by a webbing strip; wherein each of said rods has a variable cross-sectional geometry along a length of said member.
- said member further comprises: a proximal end and a distal end; said member having a first cross-sectional area near said proximal end and a second cross-sectional area near said distal end; wherein said first cross-sectional area is larger than said second cross-sectional area.
- each of said pair of rods gradually tapers from said proximal end toward said distal end.
- said first one of said pair of rods comprises an axial hollow.
- said axial hollow has a substantially conical shape.
- said rods have a substantially conical shape.
- said rods have a substantially oblique circular conical shape.
- both of said pair of rods are similarly shaped and dimensioned.
- said first cross-sectional area is substantially barbell shaped.
- said first cross-sectional area comprises a pair of spaced apart, interconnected, diametrically symmetric geometric shapes.
- said shapes are selected from the group consisting of: circles, ellipses, triangles, squares, rectangles, trapezoids, pentagons, hexagons, heptagons, octagons, nonagons, and decagons.
- said first cross-sectional area has a width dimension corresponding to said webbing strip, and a height dimension corresponding to an outer diameter of said one of said rods, and wherein said width dimension is equal to or greater than said diameter dimension.
- said member further comprises having a first width dimension at said proximal end and a second width dimension at said distal end.
- said first width dimension is equal to or greater than said second width dimension.
- said member is formed by a unitary piece of composite material.
- said member further comprises fiber reinforced material having a first fiber orientation and a second fiber orientation.
- said first orientation is rotated substantially 90 degrees with respect to said second fiber orientation.
- said member further comprises fiber reinforced material having a third fiber orientation rotated substantially 45 degrees with respect to said second fiber orientation.
- said member further comprises: a plural number of discrete zones wherein a first of said zones includes a first set of plural fiber orientations, and a second of said zones includes a second set of plural fiber orientations different from said first set of plural fiber orientations.
- a sailing craft having a sail and a plurality of sail battens, wherein at least one of said battens comprises: a fiber reinforced composite structural member which comprises: a pair of substantially parallel, spaced-apart tapering rods, laterally joined by a webbing strip.
- FIG. 1 is a diagrammatic perspective view of an improved fiber reinforced composite structural member used as a sail batten on a sailing vessel.
- FIG. 2 is a diagrammatic front view of a fiber reinforced composite structural member according to an exemplary embodiment of the invention.
- FIG. 3 is a diagrammatic partial elevational front view thereof.
- FIG. 4 is a diagrammatic partial elevational side view thereof.
- FIG. 5 is a diagrammatic distal end view thereof.
- FIG. 6 is a diagrammatic cross-sectional end view taken along a medial section thereof.
- FIG. 7 is a diagrammatic proximal end view thereof.
- FIG. 8 is a diagrammatic partial, cross-sectional front view of a fiber reinforced composite structural member having rod lumens according to an alternate exemplary embodiment of the invention.
- FIG. 9 is a diagrammatic distal end view of the member of FIG. 8 .
- FIG. 10 is a diagrammatic cross-sectional end view taken along a medial section of the member of FIG. 8 .
- FIG. 11 is a diagrammatic proximal end view of the member of FIG. 8 .
- FIG. 12 is a diagrammatic partial perspective view of fiber composite layers having differential orientations.
- FIG. 13 is a diagrammatic top view of a fiber composite member showing the variously selected fiber orientations.
- FIG. 14 is a diagrammatic top view of a fiber composite member showing plural zones of variously selected fiber orientations.
- FIG. 15 is a diagrammatic cross-sectional views of various rod geometries.
- FIG. 1 a multidimensionally reinforced fiber composite lightweight stiffening member 11 according to an exemplary embodiment of the invention as implemented on a batten 12 carried within a transverse pocket 13 of a sail 14 of a sailing vessel 15 where the batten urges the sail into a more optimum aerodynamic shape.
- FIG. 2 shows the member 11 removed from the sail and laid flat.
- the member has an oblong, substantially rectangular shape extending logitudinally from a proximal end 16 or base, to be located near the mast 10 of the sailing vessel, to an opposite distal end 17 , to be located near the trailing edge 9 of the sail.
- the member 11 includes a pair of parallelly spaced apart, solid rods 21 , 22 forming the opposite lateral edges 24 , 25 of the member and extending along substantially the entire longitudinal length L of the member from the proximal end 16 to the distal end 17 .
- Each of the rods can have a substantially conical shape having a substantially circular cross-section where the diameter Dr varies according to its longitudinal position on the member, gently and gradually tapering from a wider proximal diameter Dp to a narrower distal diameter Dd.
- the substantially conical shape can be characterized by a ratio between these two diameters Dd/Dp which ranges from between about 0.05 to 0.5.
- the conical shape can be an oblique circular cone so that cross-sections perpendicular to the elongation axis of the member form circles.
- the conical shape can be a right circular cone where cross-sections perpendicular to the elongation axis of the member form ellipses, albeit ones with very low eccentricity.
- the rods 21 , 22 are interconnected by a medial webbing strip 23 having generally parallel trapezoidal front and back surfaces.
- the webbing strip can be substantially planar, having a substantially uniform thickness T along the entire longitudinal length of the member.
- the rods can be angled outwardly so that the lateral extent of the member remains substantially uniform.
- the overall width W of the member can remain constant. This also causes the width of the webbing strip Ww to vary between a narrower width at the proximal end of the member to a wider width at the distal end of the member.
- W Ww+2(Dr).
- the member 11 can be made to be symmetric about a plane 31 perpendicularly bisecting the webbing strip 23 .
- the symmetrical member can be conveniently loaded in the pocket without regard to whether which rod is located on the top side.
- the transition between each rod and webbing strip can be gradual in the form of a concave fillet 27 having a radius of between approximately 5% to 25% of the cross-sectional diameter of the rod at the point of contact with the fillet.
- the member is shown having a barbell shaped cross-section where the rods form a pair of circles, other shapes are available, such as for example, ellipses, rounded squares, rectangles ovals, or other polygons having rounded vertices.
- the member 40 can be further adapted so that the rods 41 , 42 are hollow, each having a central lumen 43 , 44 extending the length of the respective rod.
- the medial webbing strip 45 interconnecting the rods can remain solid.
- the shape and dimensioning of the lumen can be selected so that the wall formed between the outer surface of the rod and the inner surface facing the lumen is ring-shaped having a circular outer surface cross-section and a circular inner surface cross-section.
- the wall thickness can thus be angularly uniform at every cross-section and linearly uniform from end to end.
- the lumen can terminate in apertures at the distal and proximal ends. Alternately, the lumens can terminate in a closed cup at the distal extremity of the lumen.
- the lumens can serve to reduce the mass and amount of material contained in the member while maintaining adequate bending and torsional stiffness and strength.
- the stiffness properties of the member can be adjusted by forming the member from fiber-resin composite materials such as a carbon-fiber epoxy resin composite.
- the uncured epoxy is combined with carbon fibers using techniques well known in the art.
- a thermosetting preimpregnated resin tape or “prepreg” is used such as unidirectional fiber tape available from American Cyanamid Co. of Wayne, N.J. Layers of the tape are successively wrapped onto one another to form into an uncured member body corresponding to the desired size of the sail batten. Once cured the body becomes the unitary fiber composite member.
- the orientation of the fibers can be selected to enhance stiffness with respect to bending moments apart from the elongation direction of the member.
- successive layers 61 , 62 , 63 of tape can be applied where the orientation or direction of fibers in each layer are different from the direction of fibers in each successive layer to adjust stiffness properties to forces applied from various directions and magnitudes over time.
- a first layer 61 can be oriented at 0 degrees so that the elongation direction of the embedded fibers are parallel with the elongation axis 65 of the member 60 .
- a second layer 62 can be oriented so that the elongation direction 66 of the embedded fibers are at an angle A 1 of about 45 degrees with respect to the elongation axis of the member.
- a third layer 63 can be oriented so that the elongation direction 67 of the embedded fibers are at an angle A 2 of about 90 degrees with respect to the elongation axis of the member.
- a fourth layer can be oriented so that the elongation direction 68 of the embedded fibers are at an angle A 3 of about 135 degrees with respect to the elongation axis of the member.
- the fiber reinforced material forming the member can have a set of fiber orientations where a first layer is rotated a first non-zero angle with respect to a second layer, and a third layer rotated a second non-zero angle with respect to the first layer, and so on. It has been found that a variable stiffness member can be made having the first angle A 1 being at least 15 degrees, the second angle A 2 being at least 30 degrees, and the third angle A 3 being at least 45 degrees. Successive layers can have even greater angles as shown below.
- the structural member can be divided into a plural number of zones where the fiber orientation of the various layers within each zone can be different from the orientations on other zones in order to selectively and preferentially rigidize the different zones of the member differently.
- each zone can have a fiber reinforced material having a set plural fiber orientations that are the same or different from the set of fiber orientations of the material in another zone.
- the member 70 can be divided along its longitudinal dimension into three discrete latitudinal zones 71 , 72 , 73 where the first distal zone 71 can have a set of fiber layers oriented in the 0 degree direction and in the 30 degree and 150 degree directions.
- a second medial zone 72 can have a set of fiber layers oriented in the 0 degree direction and in the 45 degree and 135 degree directions.
- a third proximal zone 73 can have a set of fiber layers oriented in the 0 degree direction and in the 45 degree, 90 degree, and 135 degree directions.
- the set of fiber layers in a particular zone results in that set having a plural number of different fiber orientations.
- plural fiber orientations of one set can be different from the plural fiber orientations of another set.
- These differential fiber orientation sets combined over the length of the member can preferentially rigidize the proximal zone to greater bending and torsional loads than the distal zone.
- adjacent zones can share a layer having a particular orientation.
- a single layer can have the 0 degree orientation and extend across all three zones as shown.
- layers from one zone can, and in practice often do partially overlap into an adjacent zone. It has been found that a variable stiffness member can be made of latitudinally separated zones, each having a set of fiber orientations which include different layers being rotated at least 15 degrees with respect to one another.
- a first zone 73 can have a first set of fiber orientations where some layers are rotated at least 90 degrees with respect to one another, and other layers rotated at least 45 degrees with respect to one another, and another zone 71 sharing the 0 degree layer and having a second set of fiber orientations where some layers are rotated at least 30 degrees with respect to one another.
- the cross-sectional shape of the member 80 can include rods 81 , 82 having a substantially circular shape.
- the rods can have an elliptical shape 83 , or a quadrangular shape, including squares and rectangles 84 .
- Rods having other diametrically symmetrical polygonal shapes such as hexagons 85 , octagons, and decagons can be used to provide a member cross section which is symmetric about the side-to-side transverse axis 86 , and the front-to-back transverse axis 88 .
- the above-described members can provide bending stiffness as a function of distance from the proximal end of the member according to the geometry of the lateral rods, fiber orientation within the various zones of the member, and the thickness of the interconnecting webbing strip.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
An oblong stiffening member such as a sail batten having a tapered geometry formed by a pair of parallely spaced apart oblique circular cones interconnected by a webbing strip. The member can be made from a unitary piece of fiber composite material such as a carbon fiber infused polymer wherein the orientations of the fibers are varied to provide both bending and torsional strength and stiffness that varies along the length of the member. Such properties can be useful in sail battens due to the rigorous dynamical forces subjected to such structures.
Description
- This is a continuation-in-part of U.S. patent application Ser. No. 15/675,515, filed 11 Aug. 2017.
- This invention relates to selectively and preferentially rigidizing structural members made from fiber composite materials and more particularly to carbon fiber composite sail battens.
- Composite materials such as carbon fiber reinforced polymers have long been used to create structural elements due to their low weight and high stiffness/strength to bending moments along the oblong fibers' orientation.
- U.S. Pat. No. 5,413,060 to Quigley, incorporated herein by reference, describes using a fiber reinforced composite material to make a sail batten. The cross-sectional geometry of the batten changes from the proximal end of the batten located near the mast to the opposite distal end near the trailing edge of the sail in order to adjust the stiffness of the batten along its longitudinal length.
- One problem with such prior battens is that although they may provide a superior response to dynamical longitudinal bending moments, they may not exhibit adequate strength and stiffness to dynamical torsional moments. This can be a problem when the cross-section of the batten is not angularly uniform and when the batten loosely engages the pocket in the sail. Relatively loose engagement is preferred in order to easily insert and remove the batten from the pocket. Further, due to unpredictabilities and inaccuracies in the shape of the pocket, often caused by lack of precision in manufacturing, and caused by wear on the sail, the batten may be subjected to various unplanned bending and torsional loads.
- Therefore, there is a need for an apparatus which addresses one or more of the above identified inadequacies.
- The principal and secondary objects of the invention are to provide an improved fiber reinforced composite structural member. These and other objects can be achieved by an oblong member having fiber reinforced material having plural fiber orientations selected to adjust longitudinal stiffness different from latitudinal stiffness.
- In some embodiments there is provided an oblong stiffening member such as a sail batten having a tapered geometry to provide variable stiffness along its length.
- In some embodiments the member can be made from fiber composite materials such as carbon fiber embedded epoxy resin wherein the orientations of the fibers are varied to provide both bending and torsional strength and stiffness that varies along the length of the member.
- In some embodiments there is provided a pair of substantially parallel, spaced-apart tapering rods laterally joined by a substantially planar webbing strip.
- In some embodiments there is provided improved variable stiffness structural member comprises: said member having an oblong shape in a longitudinal direction; said member having a proximal end and a distal end; a first zone between said proximal end and said distal end; wherein said first zone comprises a first fiber reinforced material having a first set of plural fiber orientations; wherein first fiber reinforced material has a first longitudinal stiffness and a first latitudinal stiffness different from said first longitudinal stiffness.
- In some embodiments said member further comprises: a second zone between said proximal end and said distal end; wherein said second zone comprises a second fiber reinforced material having a second set of plural fiber orientations different from said first set of plural fiber orientations; wherein said second fiber reinforced material has a second longitudinal stiffness different from said first longitudinal stiffness.
- In some embodiments said first set of plural fiber orientations comprises a first fiber layer orientation rotated a first non-zero angle with respect to a second fiber layer orientation.
- In some embodiments said first set of plural fiber orientations further comprises a third fiber layer orientation rotated a second non-zero angle with respect to said second fiber layer orientation, and wherein said second non-zero angle is different from said first non-zero angle.
- In some embodiments said second set of plural fiber orientations comprises a fourth fiber layer orientation rotated a third non-zero angle with respect to a second fiber layer orientation.
- In some embodiments said first non-zero angle is at least 90 degrees, said second non-zero angle is at least 45 degrees, and said third non-zero angle is at least 30 degrees.
- In some embodiments said first set of plural fiber orientations and said second set of plural fiber orientations have a least one fiber layer in common.
- In some embodiments said member further comprises: a pair of substantially parallel, oblong, spaced-apart rods, laterally joined by a webbing strip; and, wherein each of said pair of rods gradually tapers from said proximal end toward said distal end.
- In some embodiments said first one of said pair of rods comprises an axial hollow.
- In some embodiments said first one of said rods has a substantially conical shape; and wherein said axial hollow has a substantially conical shape.
- In some embodiments said member has a variable cross-sectional geometry along a longitudinal length of said member.
- In some embodiments said member further comprises: said member having a first cross-sectional area near said proximal end and a second cross-sectional area near said distal end; wherein said first cross-sectional area is larger than said second cross-sectional area.
- In some embodiments said first cross-sectional area is substantially barbell shaped.
- In some embodiments said first cross-sectional area comprises a pair of spaced apart, interconnected, diametrically symmetric geometric shapes selected from the group consisting of: circles, ellipses, triangles, squares, rectangles, trapezoids, pentagons, hexagons, heptagons, octagons, nonagons, and decagons.
- In some embodiments said member is formed by a unitary piece of composite material.
- In some embodiments said rods have a substantially oblique circular conical shape.
- In some embodiments both of said pair of rods are similarly shaped and dimensioned.
- In some embodiments said first cross-sectional area has a width dimension corresponding to said webbing strip, and a height dimension corresponding to an outer diameter of said one of said rods, and wherein said width dimension is equal to or greater than said diameter dimension.
- In some embodiments said member further comprises: said member having a first width dimension at said proximal end and a second width dimension at said distal end; and, wherein said first width dimension is equal to or greater than said second width dimension.
- In some embodiments there is provided the combination of a sailing craft having a sail and a plurality of sail battens, wherein at least one of said battens comprises: a fiber reinforced composite structural member having a first set of plural fiber orientations; wherein said member comprises: a pair of substantially parallel, spaced-apart tapering rods, laterally joined by a webbing strip.
- In some embodiments there is provided an improved variable stiffness structural member comprises a fiber reinforced material having plural fiber orientations selected to adjust a longitudinal stiffness different from a latitudinal stiffness.
- In some embodiments there is provided an improved variable stiffness structural member comprises: a pair of substantially parallel, oblong, spaced-apart rods, laterally joined by a webbing strip; wherein each of said rods has a variable cross-sectional geometry along a length of said member.
- In some embodiments said member further comprises: a proximal end and a distal end; said member having a first cross-sectional area near said proximal end and a second cross-sectional area near said distal end; wherein said first cross-sectional area is larger than said second cross-sectional area.
- In some embodiments each of said pair of rods gradually tapers from said proximal end toward said distal end.
- In some embodiments said first one of said pair of rods comprises an axial hollow.
- In some embodiments said axial hollow has a substantially conical shape.
- In some embodiments said rods have a substantially conical shape.
- In some embodiments said rods have a substantially oblique circular conical shape.
- In some embodiments both of said pair of rods are similarly shaped and dimensioned.
- In some embodiments said first cross-sectional area is substantially barbell shaped.
- In some embodiments said first cross-sectional area comprises a pair of spaced apart, interconnected, diametrically symmetric geometric shapes.
- In some embodiments said shapes are selected from the group consisting of: circles, ellipses, triangles, squares, rectangles, trapezoids, pentagons, hexagons, heptagons, octagons, nonagons, and decagons.
- In some embodiments said first cross-sectional area has a width dimension corresponding to said webbing strip, and a height dimension corresponding to an outer diameter of said one of said rods, and wherein said width dimension is equal to or greater than said diameter dimension.
- In some embodiments said member further comprises having a first width dimension at said proximal end and a second width dimension at said distal end.
- In some embodiments said first width dimension is equal to or greater than said second width dimension.
- In some embodiments said member is formed by a unitary piece of composite material.
- In some embodiments said member further comprises fiber reinforced material having a first fiber orientation and a second fiber orientation.
- In some embodiments said first orientation is rotated substantially 90 degrees with respect to said second fiber orientation.
- In some embodiments said member further comprises fiber reinforced material having a third fiber orientation rotated substantially 45 degrees with respect to said second fiber orientation.
- In some embodiments said member further comprises: a plural number of discrete zones wherein a first of said zones includes a first set of plural fiber orientations, and a second of said zones includes a second set of plural fiber orientations different from said first set of plural fiber orientations.
- In some embodiments there is provided the combination of a sailing craft having a sail and a plurality of sail battens, wherein at least one of said battens comprises: a fiber reinforced composite structural member which comprises: a pair of substantially parallel, spaced-apart tapering rods, laterally joined by a webbing strip.
- The original text of the original claims is incorporated herein by reference as describing features in some embodiments.
-
FIG. 1 is a diagrammatic perspective view of an improved fiber reinforced composite structural member used as a sail batten on a sailing vessel. -
FIG. 2 is a diagrammatic front view of a fiber reinforced composite structural member according to an exemplary embodiment of the invention. -
FIG. 3 is a diagrammatic partial elevational front view thereof. -
FIG. 4 is a diagrammatic partial elevational side view thereof. -
FIG. 5 is a diagrammatic distal end view thereof. -
FIG. 6 is a diagrammatic cross-sectional end view taken along a medial section thereof. -
FIG. 7 is a diagrammatic proximal end view thereof. -
FIG. 8 is a diagrammatic partial, cross-sectional front view of a fiber reinforced composite structural member having rod lumens according to an alternate exemplary embodiment of the invention. -
FIG. 9 is a diagrammatic distal end view of the member ofFIG. 8 . -
FIG. 10 is a diagrammatic cross-sectional end view taken along a medial section of the member ofFIG. 8 . -
FIG. 11 is a diagrammatic proximal end view of the member ofFIG. 8 . -
FIG. 12 is a diagrammatic partial perspective view of fiber composite layers having differential orientations. -
FIG. 13 is a diagrammatic top view of a fiber composite member showing the variously selected fiber orientations. -
FIG. 14 is a diagrammatic top view of a fiber composite member showing plural zones of variously selected fiber orientations. -
FIG. 15 is a diagrammatic cross-sectional views of various rod geometries. - Referring now to the drawing, there is shown in
FIG. 1 a multidimensionally reinforced fiber compositelightweight stiffening member 11 according to an exemplary embodiment of the invention as implemented on a batten 12 carried within atransverse pocket 13 of asail 14 of asailing vessel 15 where the batten urges the sail into a more optimum aerodynamic shape.FIG. 2 shows themember 11 removed from the sail and laid flat. The member has an oblong, substantially rectangular shape extending logitudinally from aproximal end 16 or base, to be located near themast 10 of the sailing vessel, to an oppositedistal end 17, to be located near the trailing edge 9 of the sail. - The word “substantially” is used throughout this specification to mean that minor inaccuracies due to low tolerances, and manufacturing and material defects can lead to inexactitude of various parameters. Those skilled in the art will readily appreciate such inexactitude in the context in which the described stiffening member is used.
- Referring now to
FIGS. 2-7 , themember 11 includes a pair of parallelly spaced apart,solid rods proximal end 16 to thedistal end 17. Each of the rods can have a substantially conical shape having a substantially circular cross-section where the diameter Dr varies according to its longitudinal position on the member, gently and gradually tapering from a wider proximal diameter Dp to a narrower distal diameter Dd. The substantially conical shape can be characterized by a ratio between these two diameters Dd/Dp which ranges from between about 0.05 to 0.5. The conical shape can be an oblique circular cone so that cross-sections perpendicular to the elongation axis of the member form circles. Alternately, the conical shape can be a right circular cone where cross-sections perpendicular to the elongation axis of the member form ellipses, albeit ones with very low eccentricity. - The
rods medial webbing strip 23 having generally parallel trapezoidal front and back surfaces. Thus, the webbing strip can be substantially planar, having a substantially uniform thickness T along the entire longitudinal length of the member. - The rods can be angled outwardly so that the lateral extent of the member remains substantially uniform. In other words, the overall width W of the member can remain constant. This also causes the width of the webbing strip Ww to vary between a narrower width at the proximal end of the member to a wider width at the distal end of the member. Thus the width of the member can be defined as W=Ww+2(Dr).
- Referring now to
FIG. 7 , by making bothrods member 11 can be made to be symmetric about aplane 31 perpendicularly bisecting thewebbing strip 23. In this way, the symmetrical member can be conveniently loaded in the pocket without regard to whether which rod is located on the top side. It shall be noted that the transition between each rod and webbing strip can be gradual in the form of aconcave fillet 27 having a radius of between approximately 5% to 25% of the cross-sectional diameter of the rod at the point of contact with the fillet. Although the member is shown having a barbell shaped cross-section where the rods form a pair of circles, other shapes are available, such as for example, ellipses, rounded squares, rectangles ovals, or other polygons having rounded vertices. - Referring now to
FIGS. 8-11 , themember 40 can be further adapted so that therods central lumen medial webbing strip 45 interconnecting the rods can remain solid. The shape and dimensioning of the lumen can be selected so that the wall formed between the outer surface of the rod and the inner surface facing the lumen is ring-shaped having a circular outer surface cross-section and a circular inner surface cross-section. The wall thickness can thus be angularly uniform at every cross-section and linearly uniform from end to end. The lumen can terminate in apertures at the distal and proximal ends. Alternately, the lumens can terminate in a closed cup at the distal extremity of the lumen. The lumens can serve to reduce the mass and amount of material contained in the member while maintaining adequate bending and torsional stiffness and strength. - The stiffness properties of the member can be adjusted by forming the member from fiber-resin composite materials such as a carbon-fiber epoxy resin composite. The uncured epoxy is combined with carbon fibers using techniques well known in the art. In this example a thermosetting preimpregnated resin tape or “prepreg” is used such as unidirectional fiber tape available from American Cyanamid Co. of Wayne, N.J. Layers of the tape are successively wrapped onto one another to form into an uncured member body corresponding to the desired size of the sail batten. Once cured the body becomes the unitary fiber composite member.
- The orientation of the fibers can be selected to enhance stiffness with respect to bending moments apart from the elongation direction of the member.
- As shown diagrammatically in
FIGS. 12 and 13 ,successive layers first layer 61, can be oriented at 0 degrees so that the elongation direction of the embedded fibers are parallel with theelongation axis 65 of themember 60. Asecond layer 62, can be oriented so that theelongation direction 66 of the embedded fibers are at an angle A1 of about 45 degrees with respect to the elongation axis of the member. Similarly, athird layer 63, can be oriented so that theelongation direction 67 of the embedded fibers are at an angle A2 of about 90 degrees with respect to the elongation axis of the member. A fourth layer, can be oriented so that theelongation direction 68 of the embedded fibers are at an angle A3 of about 135 degrees with respect to the elongation axis of the member. In this way, the fiber reinforced material forming the member can have a set of fiber orientations where a first layer is rotated a first non-zero angle with respect to a second layer, and a third layer rotated a second non-zero angle with respect to the first layer, and so on. It has been found that a variable stiffness member can be made having the first angle A1 being at least 15 degrees, the second angle A2 being at least 30 degrees, and the third angle A3 being at least 45 degrees. Successive layers can have even greater angles as shown below. - Referring now to
FIG. 14 , the structural member can be divided into a plural number of zones where the fiber orientation of the various layers within each zone can be different from the orientations on other zones in order to selectively and preferentially rigidize the different zones of the member differently. In other words, each zone can have a fiber reinforced material having a set plural fiber orientations that are the same or different from the set of fiber orientations of the material in another zone. - By way of example, the
member 70 can be divided along its longitudinal dimension into three discretelatitudinal zones distal zone 71 can have a set of fiber layers oriented in the 0 degree direction and in the 30 degree and 150 degree directions. Asecond medial zone 72 can have a set of fiber layers oriented in the 0 degree direction and in the 45 degree and 135 degree directions. A thirdproximal zone 73 can have a set of fiber layers oriented in the 0 degree direction and in the 45 degree, 90 degree, and 135 degree directions. Thus, the set of fiber layers in a particular zone results in that set having a plural number of different fiber orientations. - Further, as detailed above, plural fiber orientations of one set can be different from the plural fiber orientations of another set. These differential fiber orientation sets combined over the length of the member can preferentially rigidize the proximal zone to greater bending and torsional loads than the distal zone. Of course adjacent zones can share a layer having a particular orientation. For example, a single layer can have the 0 degree orientation and extend across all three zones as shown. In addition layers from one zone can, and in practice often do partially overlap into an adjacent zone. It has been found that a variable stiffness member can be made of latitudinally separated zones, each having a set of fiber orientations which include different layers being rotated at least 15 degrees with respect to one another. In the above example a
first zone 73 can have a first set of fiber orientations where some layers are rotated at least 90 degrees with respect to one another, and other layers rotated at least 45 degrees with respect to one another, and anotherzone 71 sharing the 0 degree layer and having a second set of fiber orientations where some layers are rotated at least 30 degrees with respect to one another. - Referring now to
FIG. 15 , as previously shown, the cross-sectional shape of themember 80 can includerods elliptical shape 83, or a quadrangular shape, including squares andrectangles 84. Rods having other diametrically symmetrical polygonal shapes such ashexagons 85, octagons, and decagons can be used to provide a member cross section which is symmetric about the side-to-sidetransverse axis 86, and the front-to-back transverse axis 88. Other shapes can be used which are diametrically symmetric depending on orientation such astrapezoids 88, pentagons, and heptagons. Myriad other more complex shapes which provide symmetricity with respect to both transverse axes are available such as substantially half-moon shapes 89. For sail batten applications such symmetricity is preferred in order to ease installation of the battens in the sails. However, non-symmetric rod cross-sections can be used depending on the application. - The above-described members can provide bending stiffness as a function of distance from the proximal end of the member according to the geometry of the lateral rods, fiber orientation within the various zones of the member, and the thickness of the interconnecting webbing strip.
- It has been found that the properties exhibited by the above described structural member can be useful in sail battens due to the rigorous dynamical moments subjected to such structures and the variable stiffness of the member along its length.
- While the preferred embodiments of the invention have been described, modifications can be made and other embodiments may be devised without departing from the spirit of the invention and the scope of the appended claims.
Claims (21)
1. An improved variable stiffness structural member comprises:
said member having an oblong shape in a longitudinal direction;
said member having a proximal end and a distal end;
a first zone between said proximal end and said distal end;
wherein said first zone comprises a first fiber reinforced material having a first set of plural fiber orientations;
wherein first fiber reinforced material has a first longitudinal stiffness and a first latitudinal stiffness different from said first longitudinal stiffness.
2. The member of claim 1 , wherein said member further comprises:
a second zone between said proximal end and said distal end;
wherein said second zone comprises a second fiber reinforced material having a second set of plural fiber orientations different from said first set of plural fiber orientations;
wherein said second fiber reinforced material has a second longitudinal stiffness different from said first longitudinal stiffness.
3. The member of claim 2 , wherein said first set of plural fiber orientations comprises a first fiber layer orientation rotated a first non-zero angle with respect to a second fiber layer orientation.
4. The member of claim 3 , wherein said first set of plural fiber orientations further comprises a third fiber layer orientation rotated a second non-zero angle with respect to said second fiber layer orientation, and wherein said second non-zero angle is different from said first non-zero angle.
5. The member of claim 4 , wherein said second set of plural fiber orientations comprises a fourth fiber layer orientation rotated a third non-zero angle with respect to a second fiber layer orientation.
6. The member of claim 5 , wherein said first non-zero angle is at least 90 degrees, said second non-zero angle is at least 45 degrees, and said third non-zero angle is at least 30 degrees.
7. The member of claim 2 , wherein said first set of plural fiber orientations and said second set of plural fiber orientations have a least one fiber layer in common.
8. The member of claim 1 , wherein said member further comprises:
a pair of substantially parallel, oblong, spaced-apart rods, laterally joined by a webbing strip; and,
wherein each of said pair of rods gradually tapers from said proximal end toward said distal end.
9. The member of claim 8 , wherein said first one of said pair of rods comprises an axial hollow.
10. The member of claim 9 , wherein said first one of said rods has a substantially conical shape; and wherein said axial hollow has a substantially conical shape.
11. The member of claim 1 , wherein said member has a variable cross-sectional geometry along a logitudinal length of said member.
12. The member of claim 1 , wherein said member further comprises:
said member having a first cross-sectional area near said proximal end and a second cross-sectional area near said distal end;
wherein said first cross-sectional area is larger than said second cross-sectional area.
13. The member of claim 12 , wherein said first cross-sectional area is substantially barbell shaped.
14. The member of claim 12 , wherein said first cross-sectional area comprises a pair of spaced apart, interconnected, diametrically symmetric geometric shapes selected from the group consisting of:
circles, ellipses, triangles, squares, rectangles, trapezoids, pentagons, hexagons, heptagons, octagons, nonagons, and decagons.
15. The member of claim 1 , wherein said member is formed by a unitary piece of composite material.
16. The member of claim 8 , wherein said rods have a substantially oblique circular conical shape.
17. The member of claim 8 , wherein both of said pair of rods are similarly shaped and dimensioned.
18. The member of claim 12 , wherein said first cross-sectional area has a width dimension corresponding to said webbing strip, and a height dimension corresponding to an outer diameter of said one of said rods, and wherein said width dimension is equal to or greater than said diameter dimension.
19. The member of claim 1 , wherein said member further comprises:
said member having a first width dimension at said proximal end and a second width dimension at said distal end; and,
wherein said first width dimension is equal to or greater than said second width dimension.
20. The combination of a sailing craft having a sail and a plurality of sail battens, wherein at least one of said battens comprises:
a fiber reinforced composite structural member having a first set of plural fiber orientations;
wherein said member comprises:
a pair of substantially parallel, spaced-apart tapering rods, laterally joined by a webbing strip.
21. An improved variable stiffness structural member comprises a fiber reinforced material having plural fiber orientations selected to adjust a longitudinal stiffness different from a latitudinal stiffness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/638,079 US20200172217A1 (en) | 2017-08-11 | 2018-08-09 | Integrated variable stiffness member |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/675,515 US10315745B2 (en) | 2017-08-11 | 2017-08-11 | Integrated variable stiffness member |
PCT/US2018/046088 WO2019032883A1 (en) | 2017-08-11 | 2018-08-09 | Integrated variable stiffness member |
US16/638,079 US20200172217A1 (en) | 2017-08-11 | 2018-08-09 | Integrated variable stiffness member |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,515 Continuation-In-Part US10315745B2 (en) | 2017-08-11 | 2017-08-11 | Integrated variable stiffness member |
US15/675,515 Continuation US10315745B2 (en) | 2017-08-11 | 2017-08-11 | Integrated variable stiffness member |
PCT/US2018/046088 A-371-Of-International WO2019032883A1 (en) | 2017-08-11 | 2018-08-09 | Integrated variable stiffness member |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/166,703 Continuation-In-Part US11598083B2 (en) | 2017-08-11 | 2021-02-03 | Adjustable stiffness cantilevered support |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200172217A1 true US20200172217A1 (en) | 2020-06-04 |
Family
ID=65272672
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,515 Active - Reinstated US10315745B2 (en) | 2017-08-11 | 2017-08-11 | Integrated variable stiffness member |
US16/638,079 Abandoned US20200172217A1 (en) | 2017-08-11 | 2018-08-09 | Integrated variable stiffness member |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/675,515 Active - Reinstated US10315745B2 (en) | 2017-08-11 | 2017-08-11 | Integrated variable stiffness member |
Country Status (2)
Country | Link |
---|---|
US (2) | US10315745B2 (en) |
WO (1) | WO2019032883A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220257336A1 (en) * | 2017-08-11 | 2022-08-18 | Roger J. Malcolm | Body worn body part support device and method |
US11598083B2 (en) * | 2017-08-11 | 2023-03-07 | Roger J. Malcolm | Adjustable stiffness cantilevered support |
USD899221S1 (en) * | 2017-08-11 | 2020-10-20 | Roger J. Malcolm | Structural stiffening member |
USD884102S1 (en) * | 2018-04-16 | 2020-05-12 | Noerstick.Aps | Stepless mast extension for windsurfing boards |
CN112211093B (en) * | 2020-09-18 | 2022-03-22 | 中盛路桥科技集团有限公司 | Bridge telescoping device with regulatory function |
CN113492629B (en) * | 2021-08-05 | 2024-02-13 | 中国重汽集团济南动力有限公司 | Stepped main and auxiliary spring support |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2608172A (en) * | 1946-10-11 | 1952-08-26 | Biuw Carl Oscar Eric | Sail batten |
US3905321A (en) * | 1974-03-22 | 1975-09-16 | Jr Joseph A Blythe | Sail batten |
US4136630A (en) | 1975-06-26 | 1979-01-30 | Fraser Ian K | Sail batten |
NL8200716A (en) | 1982-02-23 | 1982-05-03 | Parmentier Jan Anton | SAILING BAR. |
GB2230243B (en) | 1989-04-12 | 1993-08-11 | Howlett Ian C | Sail batten |
US5352311A (en) * | 1992-07-02 | 1994-10-04 | Composite Development Corporation | Method of manufacturing a composite sail batten |
US5549947A (en) * | 1994-01-07 | 1996-08-27 | Composite Development Corporation | Composite shaft structure and manufacture |
DE19908332A1 (en) * | 1999-02-26 | 2000-08-31 | Ruediger Knaak | Sail batten of free-set tandem rods uses crosspiece rods in free space between rod overlaps to prevent batten twist with sail run taut. |
US20110120039A1 (en) * | 2009-11-24 | 2011-05-26 | Kysor Panel Systems, Division Of Welbilt Walk-Ins Lp | High strength composite framing members |
US20120190473A1 (en) * | 2011-01-26 | 2012-07-26 | Jason Swist | Variable stiffness sports equipment |
US20130267394A1 (en) * | 2012-04-06 | 2013-10-10 | Bart Duke | Flexible Exercise Device |
ITMI20141346A1 (en) * | 2014-07-24 | 2016-01-24 | Getters Spa | SAILS FOR BOATS INCLUDING SHAPE MEMORY MATERIAL ELEMENTS, APPARATUS AND METHOD FOR THEIR OPERATION |
-
2017
- 2017-08-11 US US15/675,515 patent/US10315745B2/en active Active - Reinstated
-
2018
- 2018-08-09 WO PCT/US2018/046088 patent/WO2019032883A1/en active Application Filing
- 2018-08-09 US US16/638,079 patent/US20200172217A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US10315745B2 (en) | 2019-06-11 |
WO2019032883A1 (en) | 2019-02-14 |
US20190047671A1 (en) | 2019-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10315745B2 (en) | Integrated variable stiffness member | |
US10895081B2 (en) | Tile leveling device | |
AU2008226028B2 (en) | Mast for a wind turbine | |
US20210156137A1 (en) | Adjustable stiffness cantilevered support | |
US6354970B1 (en) | Curve ball | |
US4653216A (en) | Tube for fishing rod | |
US20130026713A1 (en) | Advanced bag toss game | |
US20150240847A1 (en) | Self Gripping Clip Apparatus | |
US20120157247A1 (en) | Arrow shaft | |
US9234351B1 (en) | Polar-oriented lattice isogrid for circular structures | |
US11254404B2 (en) | Propeller | |
US11703078B2 (en) | Fiber composite strut | |
US10087995B2 (en) | Tolerance ring | |
JP2020512250A (en) | Highly wear resistant patches and conveyor belts with highly wear resistant patches | |
DE102013204033A1 (en) | Watercraft, in particular container or towboat | |
TWI677369B (en) | badminton | |
US20230204084A1 (en) | Variable stiffness cantilevered support | |
US12195169B2 (en) | Raised structure and wing | |
US2397049A (en) | Boat construction | |
RU2641867C2 (en) | Method of manufacture of composite structural element, composite structural element and wind-driven power plant | |
CN111388156B (en) | Biological coatings and implants | |
JP6754273B2 (en) | Continuous fiber reinforcement | |
US9578932B2 (en) | Variable radii flanges for mechanically retained crush tubes | |
HRP20230451T1 (en) | Screw with a variable locking angle and a corresponding locking system | |
US20110318979A1 (en) | Water-sport boarding apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |