US20190362432A1 - Compliance Aware Crime Risk Avoidance System - Google Patents
Compliance Aware Crime Risk Avoidance System Download PDFInfo
- Publication number
- US20190362432A1 US20190362432A1 US16/420,744 US201916420744A US2019362432A1 US 20190362432 A1 US20190362432 A1 US 20190362432A1 US 201916420744 A US201916420744 A US 201916420744A US 2019362432 A1 US2019362432 A1 US 2019362432A1
- Authority
- US
- United States
- Prior art keywords
- crime
- data
- location
- risk
- crime risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/08—Insurance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9537—Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
Definitions
- FIG. 1 is a simplified figure of a display of a GPS device per the present invention showing by shaded areas a graphical representation all of criminal risk;
- FIG. 6 is a flow chart showing statistical development all of crime data from crime proxies
- additional data may be added to the extracted data from the script 86 itself to provide a complete picture of the crime incidents. Most typically, this added data will be a city and a state which are normally implicit in the data of the particular website 76 but not contained per se in the data output from that website 76 . As noted, data is then formatted in a consistent form and provided to a geocoder 102 , being a website that will take a street address and converted to a longitude and latitude value per process block 104 . At the conclusion of this process, a data structure will be obtained and stored in the database 88 as indicated in the following Table 1.
- the next site in the list 84 is accessed and this process is repeated.
- the extraction system may operate at regular intervals during the day preferably at times of low Internet use.
- the suggestions may include alternative routes that avoid the crime area or that provide safer passage through the crime area or a simple notifications that the user is entered a high-risk crime area for particular types of crimes. Notifications may be forward-looking as far as assessing the crime risk not only for the current time but for future times and may inform the individual that crime risk will be increasing. If the user stops and leaves his or her car, these notifications may recommend measures like locking the car. Assessing that the user has left the car can be done by monitoring changes in location of the mobile device such as indicate a change in speed or location indicative of foot travel.
- the collection of crime data can be augmented by enlisting users of the GPS device itself.
- Such users can report on their perceptions of crime in the area where they live or with an advanced GPS system providing for two-way communication by entering simple data into the GPS device reflecting their perception of their current location for example “this area is safe” or “this area is unsafe”. While this data would not necessarily be as reliable as other types of crime data, its quality could be factored into an assessment of total crime risk. Further this sort of data may have greater weighting near the time of the reporting.
- Perceptions of how ‘safe’ individuals feel, particularly when it can be established that they are physically in the area being evaluated, can be compared or contrasted to actual crime data in this difference used as another measurement factor. Perception of safety can be sorted' by demographics as well (men/women, age, etc.) and correlated to actual crime risk to establish another proxy for crime risk.
- references to “a microprocessor” and “a processor” or “the microprocessor” and “the processor,” can be understood to include one or more microprocessors that can communicate in a stand-alone and/or a distributed environment(s), and can thus be configured to communicate via wired or wireless communications with other processors, where such one or more processor can be configured to operate on one or more processor-controlled devices that can be similar or different devices.
- references to memory can include one or more processor-readable and accessible memory elements and/or components that can be internal to the processor-controlled device, external to the processor-controlled device, and can be accessed via a wired or wireless network.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Technology Law (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Software Systems (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
Abstract
Description
- This application claims the benefit of U.S.
provisional application 62/676,097 filed May 24, 2018 and U.S.provisional application 62/676,100 filed May 24, 2018 both hereby incorporated in their entirety by reference. - The present invention relates to systems for evaluating the crime risk of a particular location and in particular to a system that evaluates compliance with crime avoidance behavior to create a situational assessment of crime risk.
- Knowledge about the risk of crime can be extremely helpful to travelers unfamiliar with the location helping them to avoid crime-ridden areas that can be associated with increased risks of specific crimes as well as be highly correlated with traffic accidents and the like.
- U.S. Pat. No. 8,290,705 assigned to the assignee of the present invention describes a system that collects crime data from police websites or the like to generate a crime map making this information more broadly accessible. This crime data may be linked to environmental conditions such as time of day weather etc. to make the information more relevant to individual decisions.
- U.S. Pat. No. 8,515,673 assigned to the assignee of the present invention describes a system that normalizes proxy data such as obtained from images to crime data to allow this proxy data to be used to fill in gaps in existing crime data sources. This system allows individual users to fill in questionnaires and take pictures of areas to provide improved assessment of crime.
- While these systems provide a method of providing information about crime risk, particular individuals may take a fatalistic attitude about avoiding crime or maybe forgetful with respect to consulting such sources or may rely on insurance or the like creating a moral hazard increasing costs for all.
- Even though knowledge about the risk of crime in a particular location has great value, for example to those who are purchasing a house, traveling through an area, making investment, or shipping goods or products, obtaining this knowledge is extremely difficult.
- Not surprisingly, there is often a lack of interest in some municipalities in reporting crime problems, such reporting which may drive away investment and human capital and/or point to inadequacies in the delivery of governmental services. Accordingly police data may be incomplete or intentionally obscured making the obtaining of crime data more difficult.
- The present invention provides a system that both offers crime risk information and that encourages use of this information by consumers both by pushing crime risk tips to the individual based on the environmental crime risk and recording the individual's compliance with crime avoidance recommendations to create the opportunity for discount insurance programs that encourage prudent consumer risk avoidance. The system also allows for the assessment of risk both in a consumer's actions and their attempts to comply with risk avoidance which may be used by insurance companies and the like for making underwriting decisions for example in adjusting premiums.
- In another embodiment, the present invention provides for hybrid high speed computerized based scoring of image and questionnaire data from individuals to return a real-time assessment to the individual collecting that data. By simplifying the process and providing a benefit for collecting data, crowdsourcing is greatly increased.
- These and other object of the invention may apply to only some embodiments described herein and thus should not be used to define the scope of the invention
-
FIG. 1 is a simplified figure of a display of a GPS device per the present invention showing by shaded areas a graphical representation all of criminal risk; -
FIG. 2 is a block diagram of the components of the GPS system ofFIG. 1 including map and crime data memories; -
FIG. 3 is a figure similar to that ofFIG. 1 showing the GPS display at a first time of day; -
FIG. 4 is a figure similar to that ofFIG. 3 showing the GPS display at a later time of day; and -
FIG. 5 is a set of graphical representations of the transformation of point crime data into the crime mapping of the present invention; -
FIG. 6 is a flow chart showing statistical development all of crime data from crime proxies; -
FIG. 7 is a block diagram of an extraction system for collecting comprehensive crime data on a real-time basis; -
FIG. 8 is a flow chart of the program executed by the extraction system ofFIG. 7 ; -
FIG. 9 is a flowchart of a map creator program used with the extraction system ofFIG. 7 ; -
FIG. 10 is a schematic diagram of a shape file created by the map creator program ofFIG. 9 ; -
FIG. 11 is a figure similar to that ofFIG. 1 showing accommodation of limited access highways in the display of the present invention; and -
FIG. 12 is a flowchart of a program using the crime data developed by the present invention for route planning purposes. -
FIG. 13 is a simplified system of a computer system communicating on a network for generation of the crime risk data per the present invention; -
FIG. 14 is a schematic representation of panoramic image data available at a variety of sample points for which crime data must be determined; -
FIG. 15 is a flow chart of the principal steps of the present invention as may be implemented entirely or in part on an automatic basis in an electronic computer; -
FIG. 16 is a display produced by the present invention showing crime risk and supporting images; -
FIG. 17 is a flowchart of a program executed in part on the user's portable electronic device and in part on a central server of crime information to promote prudent crime risk avoidance; and -
FIG. 18 is a diagrammatic representation of an individual scoring a region to obtain an immediate crime assessment report. - Referring now to
FIG. 1 , a GPS device of a type that may be mounted in a car or the like may provide ahousing 12 supporting one or more usercontrollable buttons 14 on the side of a colorgraphic display 16. As is generally understood in the art, thedisplay 16 may depict amap showing streets 18 and acursor 20 showing the location of the vehicle. The orientation of the streets may change to show the direction of travel of the vehicle according to standard conventions, for example, the direction of travel being vertical on thedisplay 16. - The present invention may further provide for a first and second zone of shading 22 and 24 superimposed on the map and depicting a measure of the crime in the vicinity of the
cursor 20. The shading may be different brightnesses, colors, or highlighting, a density of points (either randomly placed or each indicating a crime), or simply boundary markings according to techniques well known in the art and may cover particular streets 18 (to be visually in front of the street) or be covered by the street (to be visually behind the street) reflecting the degree to which the crime risk indicated by the shading affects those on the street. - For example, a
local street 18 a might be covered by shading 22 denoting a likelihood of auto theft. This is because auto theft would affect anyone parking on thelocal street 18 a. Conversely, alimited access highway 18 b may be positioned visually in front of the shading 22 denoting a likelihood of auto theft, because travelers on thehighway 18 b would not be susceptible to problems of auto theft. A shading 24 denoting weapon crimes, on the other hand, might coverlimited access highway 18 b to the extent that such activity reflects a more significant risk to highway travelers. - Referring now to
FIG. 2 , theGPS system 10 may employ standard GPS electrical architecture including aGPS receiver 30 communicating with amicrocontroller 32 executing a standard operating system program. The GPS receiver may receive a GPS signals through aGPS antenna 34 and relay position information and time information to themicrocontroller 32. Themicrocontroller 32 may in turn control thedisplay 16 to output the map ofFIG. 1 , for example, according tomap data 36 held in amemory 37 and according to the time and position information from theGPS receiver 30. Themicrocontroller 32 may also include anantenna 35, or asocket 39 forstandard memory card 38, or other media input allowing downloading ofmap data 36 andcrime risk data 41 into theGPS system 10. - This
crime risk data 41, as will be described, provides data compatible with themap data 36 to produce theshadings crime risk data 41 may provide for geographic coordinates demarcating zones of crime risk represented by areas of theshading shading crime risk data 41 for a given location may be keyed to different times during the day, for example, business hours and after the business hours as will be described below. Alternatively or in addition the crime risk may be keyed to dates or ranges of dates to reflect seasonal variations, for example, weather or tourist influx. Alternatively, when the crime data is collected it may be linked to environmental conditions such as air temperature, phase of the moon, precipitation. For GPS systems that provide updated weather information be presented crime data may be adjusted to conform to those current environmental conditions. The crime risk types may include and distinguish among, for example, auto theft, assaults against persons, drug arrests, traffic violations such as speeding, and the like. In addition non-crime data proxies may be provided such as population density, average income, density of government buildings and police stations, and the like. - Referring now to
FIG. 3 , the keying of crime data to different times of the day allows thedisplay 16 to provide fordifferent crime shadings GPS receiver 30. For example, during business hours, as shown inFIG. 3 , a crime zone of shading 22 might be fairly isolated representing streets that are not main thoroughfares or the like, whereas at a later time, for example, after the normal business day, crime zone of shading 22 may increase and a new zone of crime shading 24 may appear. The user may be given a feature allowing them to accelerate the clock to look at the transition of crime during the day in animated form. In one display mode, the animation may cycle through the current day with a depiction of the time of day so as to give the user an indication of changes in crime patterns that they may experience in that area. - Referring now to
FIG. 5 , crime data may be obtained from a variety of public sources, generally as crime points 40, 42 or 43 where a given crime will be identified as to type, time of day and date, and location on a geographic grid 44. This data may retained as point data indicating an incident of a crime type (for example through color) and its location, or may be turned intoareal crime shadings dimensional convolution kernel 46 applied to eachcrime point crime point 42 shown for clarity) where the two-dimensional convolution kernel 46 is aligned with eachtransportation corridor 50 on the grid 44 reflecting a general propensity of crime risk to travel with people along transportation corridors. In this case, a simple two-dimensional Gaussian curve may be used as theconvolution kernel 46 reflecting a general fall off of crime as one moves away from the crime scene. A sum of the results of the two-dimensional convolution kernel 46, applied to eachcrime point 40 42 and 43, for eachtransportation corridor 50, may then be modified by a generalblurring convolution kernel 52 which provides a smooth continuity of crime risk over broader area. The height of the surface created after the convolution bykernel 52 may be represented by iso-crime lines 54 assigning both spatial extent and risk to each particular crime type. - As will be understood, a
crime map 56 is created from the iso-crime lines 54 and stored in theGPS system 10. Acrime shading crime lines 54 greater than or equal to this threshold. Typically this threshold will be set by the manufacturer but may be adjusted by the user to allow their risk propensities to be respected. - In cases where the crime data is sparse at the given magnification of the map, invoking the crime data it may cause a zooming out all the map to a resolution were meaningful crime statistics can be displayed. The user may set the thresholds for the amount of crime risk to be displayed and the types of crime to be displayed, for example opting to show only severe crime risks or crime risks key to the current time of day, range of dates, or environmental conditions. The user may opt to view only actual crime data or actual crime data and crime data derived from proxy sets as will be described.
- The crime maps of 56 may be updated periodically and provided to subscribers to give them ongoing indications of possible risks.
- Referring now to
FIG. 6 , not all jurisdictions provide crime data and there may be some situations where crime data provided by a particular area is suspect or incomplete. In these cases the user may still be provided withcrime shadings crime data 62 for the same regions by acorrelation process 64 of type well known in the art to produce a set of correlation rules 66 relating one kind of data to the other. For example, through standard regression, a formula may be developed equating the proxy set with particular crime risk. These correlation rules 66 may be applied to proxy sets 68 of other jurisdictions having unknown or suspect crime data to develop synthesizedcrime data 70 that may still provide the user with some guidance in areas where there would otherwise be no guiding data. - Referring now to
FIG. 7 , the collection of high-resolution crime data providing time place and crime type as is necessary to produce the present invention is hampered by two significant factors. First, in the United States, and in most countries, police activity is exclusively in the hands of local governments who therefore hold the exclusive right to the operation of a police force and the collection and dissemination of crime data. Such government entities operate outside of the private sector and can be indifferent to market demands to provide comprehensive and accessible crime data. The control of this data by local governmental entities can also create a disincentive to make crime data freely and easily available if that data may reflect poorly on local communities. These factors are reflected in the wide variety of different websites reporting crime data in a tabular form that requires entry of specific addresses before data will be released. - Accordingly, the present inventors have developed an
extraction system 72 operating over theInternet 74 to interact with various different crime-reporting sites 76 a-76 c in the manner of an individual user capable of adapting to idiosyncratic user interfaces. Theextraction system 72 collects data and compiles it into a comprehensive view of the crime situation in a particular area. - In a preferred embodiment, the
extraction system 72 comprises a Web connectedcomputer 78 having abrowser 80 executing agathering program 82. Thegathering program 82 employees aWeb address list 84 holding URLs of the particular websites 76 a-76 c through which this data is provided. Thegathering program 82 further includes a set ofscripts 86 uniquely identified to one website 76 and that provides set of steps for iteratively extracting a full set of data from the particular website 76. The crime data extracted from the website is stored in a uniform format in adatabase 88 that may be also implemented on theextraction system 72. If the website requires authorization to access the database of information, login information can be extracted from the page by searching for text after the terms “user” and “password” if that cannot be found the server will check for a password to the site stored in the database. Alternatively if the website requires authorization or password which is protected by requiring a user to respond to a CAPTCHA. In this case either a user can oversee any CAPTCHA each time the server runs the gather process or alternatively the page with the CAPTCHA can be sent to Amazon (or other company) providing a “Mechanical Turk” program where human operators are paid small amounts of money to do simple tasks that are difficult of a computer. In this manner the gatherer can function without direct user intervention by the server administrator. - A
map generation program 90 converts the data of thedatabase 88 into the desired map formats and may download them again over theInternet 74 to particular users ofGPS devices 92. - Referring now to
FIG. 8 , thegathering program 82 may begin operation as indicated byprocess block 94 by contacting an individual website (for example,site 76 a) identified for example by the first web address onWeb address list 84. At succeedingprocess block 96, thegathering program 82 executes theparticular script 86 necessary to extract the data from thatwebsites 76 a. Thescript 86 will typically execute repeatedly as indicated byarrow 98, for example, entering in each address on a given street to check the occurrence of crime at that address, if necessary. Thescripts 86 will be customized to the particular websites 76 to extract crime type, crime location, and crime time. - At succeeding
process block 100, additional data may be added to the extracted data from thescript 86 itself to provide a complete picture of the crime incidents. Most typically, this added data will be a city and a state which are normally implicit in the data of the particular website 76 but not contained per se in the data output from that website 76. As noted, data is then formatted in a consistent form and provided to ageocoder 102, being a website that will take a street address and converted to a longitude and latitude value perprocess block 104. At the conclusion of this process, a data structure will be obtained and stored in thedatabase 88 as indicated in the following Table 1. -
TABLE 1 UTM SAddress City State Zip Geo CrimeCode CrimeDes Date/Time Square 111 E Milwaukee WI 53202 43.038539, 1 ALL Oct. 16, 2007 34 WISCONSIN −87.909517 OTHER 08:11 AM AV LARCENY 1216 E Milwaukee WI 53202 43.053092, 5 ALL Oct. 16, 2007 31 BRADY ST −87.896512 OTHER 09:10 PM LARCENY 2066 N Milwaukee WI 53202 43.058249, 5 THEFT Oct. 17, 2007 22 CAMBRIDGE −87.891785 FROM 11:11 PM AV MOTOR VEHICLE 133 N Milwaukee WI 53202 35.644868, 1 ALL Oct. 18, 2007 34 JACKSON −88.857165 OTHER 3:11 AM ST #233 LARCENY - This data structure provides a particular address of a crime and the city, state, and (optionally) zip code, shown in the first through fourth columns. This information, when fed to the geocoder, provides a longitude and latitude value shown in the fifth column. A crime code is usually extracted from the website which provides a coding according to a standard FBI coding scheme or a variant on this scheme implemented by various localities. The
script 86 translates these locally implemented codes into a standard FBI coding scheme and stores the code and a written description at columns 6 and 7. The date and time of the crime is also obtained and stored at column 8 to provide data specific to different seasons or times of the day. Whether data and almanacs may be consulted to add in information about environmental conditions for example air temperature, phase of the moon, precipitation that may improve the predictive power of the crime data when it is displayed. Thus, for example, when there is a new moon at night crime data may increase for some types of crime. - The
program 82 next calculates a UTM grid value, as will be described below, identifying a regular region (e.g. a grid square) in which the crime occurred. This is indicated byprocess block 106 and added to the data structure at column 9. - At
process block 108, after all the data is extracted from a givenwebsite 76 a, the next site in thelist 84 is accessed and this process is repeated. The extraction system may operate at regular intervals during the day preferably at times of low Internet use. - Referring now to
FIG. 10 , a crime map may be generated from the data structure of Table 1 by dividing the world into regular polygons, in this case squares having a width and height of 0.005.degree. of longitude or latitude or any size block depending on the granularity which is desired. The mapping to the grid described with respect to process block 106 above, then simply determines whether aparticular crime incident 110 occurred within a particular UTM square 112, each UTM square 112 having aunique identifier 114. This mapping is precalculated at process block 106 for greater speed in map generation or done at this time for greater flexibility in determining types and times of crime. - Referring now to
FIG. 9 , the generation of a map may be performed on demand beginning at process block 115 where, for example, according to a user request, the data of thedatabase 88 is sorted bymap generation program 90 to obtain crime statistics in a particular area of the world (for example, as defined by a set of UTM numbers) at a particular time and date range. The date range may be dynamically adjusted to obtain a statistically significant sampling of data for the crime map weighting which is most current. In this respect, the data may span more than one year, for example, for seasonal data, looking at comparable seasonal crime during previous years to establish a trend line used to establish current crime values. - At
process block 116, the sorted data, in one embodiment, is then used to populate a grid ofUTM squares 112 within in area to the desired map. The number of crime incidents in eachUTM square 112 is then mapped to a color for the square, for example, green shades indicating relatively low crime rates and red shades indicating relatively high crime rates according to standard mapmaking conventions. - The color values all the
UTM squares 112 are then assembled to create a shape file in a vector format defining polygons having vertices and a particular translucent shading value as determined by the number ofcrime incidents 110. This shape file creation is indicated atprocess block 118. The shape file may then be downloaded, as indicated byprocess block 120 to a GPS user and provides an overlay on existing maps already held in the GPS device and in a format that may be readily interpreted by most GPS systems. - Referring now to
FIGS. 8 and 9 , the shape file created at process block 118 may include amargin 122 aroundlimited access highways 124 reflecting the fact that local crime statistics usually do not affect high-speed traffic on busy highways that may go through those neighborhoods. Thismargin 122 may increase as the scale of the map is increased to provide a visual indication of this feature for travel planning. - Referring to
FIG. 12 , the present invention also provides a method of incorporating crime data, as described above, into the route planning process. Using thedatabase 88 developed above with respect toFIG. 8 ,travel planning program 130, such as may operate on a computer similar to that described inFIG. 7 , may use standard routing techniques perprocess block 132 to identify a shortest route between two points identified by the user. At process block, 134 that route is traversed point by point per process blocks 136-144. - If the user has identified a starting time, then as the route is traversed, that time is updated per
process block 136 by regular increments and a location along the route determined at process block 138 using known statistics on road type or average traffic velocity. If the user has not identified a starting time an arbitrary time of zero is selected and the time of occurrence of the crimes is ignored. - At
decision block 140, it is determined whether, at the particular location determined byprocess block 138, the route is on a limited access highway. If so, theprogram 130, loops back to process block 136 to continue traversal of the route. If atdecision block 140 the user is not on a limited access highway, but instead on a local road, then atdecision block 142 the crime statistics in theUTM square 112 of the location is reviewed to see whether a crime threshold (selectable by the user) has been exceeded. If not, theprogram 130 loops back to process block 136 to continue traversal, but if so, a new second shortest route (under the constraint of not using the road passing through the indicated crime zone) is determined and the traversal process is reinitiated looping back to process block 134. When a route has been fully traversed without exceeding the desired crime threshold, the route is output as indicated byprocess block 136. - This same process could be used to assess the travel risk of a particular route and assign it a quantitative value that could be used for example by shipping or trucking companies to add a safety surcharge based on whether their vehicles travel into unsafe areas.
- Referring now to
FIG. 17 , this routing information may be used to provide “push” notifications to the user through the user's portable device, for example, by monitoring the user's current location as indicated byprocess block 400 and assessing crime risk at that location or at upcoming portions of a route where a route is known atprocess block 402. In this context, a push notification is a notification that occurs without a specific request by the user but based simply on passive location monitoring. Based on concurrent knowledge of crime environment of the user's location, multiple push suggestions may be made to the user as indicated byprocess block 404, for example depending on the severity of the crime level and particular options available to the user. The suggestions may include alternative routes that avoid the crime area or that provide safer passage through the crime area or a simple notifications that the user is entered a high-risk crime area for particular types of crimes. Notifications may be forward-looking as far as assessing the crime risk not only for the current time but for future times and may inform the individual that crime risk will be increasing. If the user stops and leaves his or her car, these notifications may recommend measures like locking the car. Assessing that the user has left the car can be done by monitoring changes in location of the mobile device such as indicate a change in speed or location indicative of foot travel. - It will be understood that when the user is planning a trip, for example, using a route planning program, this planned route may also be used as the current location for process block 400 so as to provide advanced suggestions of routes and procedures. In this case the suggestions may include not only rerouting but options such as taking commercial transportation, times of day for travel, etc.
- At process block 406 the user's response to these recommendations may be recorded for the purpose of evaluating whether the user is entitled to discounts for crime risk avoidance, for example, insurance or the like. This response, for example, can be am assessed by how fast the user takes the alternate route or follows rerouting options proposed during planning. A report may be generated indicating this behavior. Similarly, employers may use this information with respect to enforcing safe crime reduction practices with their drivers and the like. Package delivery services may be given suggestions with respect to delivery of packages or this information may be given to consumers who are purchasing packages to let them know of the risk of package theft or the like. In this case, the push notification is an email to user of the service. When the user is necessarily traveling in a high crime risk area and stopping there, this information may be used with the consumer's permission to direct advertisements to the consumer that may be helpful, for example, for alarm discounts and security services.
- The collection of crime data can be augmented by enlisting users of the GPS device itself. Such users, perhaps provided with an incentive with respect to obtaining crime data, can report on their perceptions of crime in the area where they live or with an advanced GPS system providing for two-way communication by entering simple data into the GPS device reflecting their perception of their current location for example “this area is safe” or “this area is unsafe”. While this data would not necessarily be as reliable as other types of crime data, its quality could be factored into an assessment of total crime risk. Further this sort of data may have greater weighting near the time of the reporting. Perceptions of how ‘safe’ individuals feel, particularly when it can be established that they are physically in the area being evaluated, can be compared or contrasted to actual crime data in this difference used as another measurement factor. Perception of safety can be sorted' by demographics as well (men/women, age, etc.) and correlated to actual crime risk to establish another proxy for crime risk.
- Other inputs as proxies for crime risks are also contemplated by the invention including sound (e.g. busy traffic, people shouting, warns honking). Images may be processed to identify individuals were loitering filtered by time of day.
- Different crime risks may be presented to the user depending on the type of travel they are using for example: biking, walking, or traveling by car with higher risks of some types of crime being assigned to slower modes of transportation.
- Crime risk can also be modified by factors such as traffic, with some types of crime risk rising if there is a congested or blocked traffic area and some types of crime risk being reduced if high traffic indicates greater safety because of the larger number of individuals. Low traffic associated with late hours may also increase crime risk.
- The invention contemplates permitting a sharing of crime risk sentiment of an area/route with other users or friends as well as rating of a route on a simple numerical scale or according to questions such as: “would you take that route again—how safe did you feel?” Users can review others' comments about a location indexed to the particular location of the individual or route the individual was contemplating.
- Generally input from the user's can be in a variety of forms including voice recognition, image, questionnaires, typing etc.
- Crime data obtained from public sources and through the use of proxies can also be augmented by crime data reported on paper the latter which may be analyzed using optical character recognition or manually input. In this way data can be collected from any source even those not reporting electronically.
- Integrating the current crime system into a concierge service such as COMMAND from Mercedes or ONSTAR from GM could be used to increase response times for calls generated by stopped vehicles in high crime areas.
- Referring now to
FIG. 13 , acomputer system 210 useful for production of crime data per the present invention may provide a server/computer 212 executing a storedprogram 214 to communicate on theInternet 216 with aremote database 220 through aserver 218. Theremote database 220 may, for example, include crime data collected by municipalities and the like in addition to ground level images of particular geographic locations. Thedatabase 220 need not be a single installation and may, in fact, representmultiple servers 218 anddatabases 220 accessible through theInternet 216. - Multiple
individual computers 222 may also communicate through theInternet 216 with the server/computer 212 to provide crime data input that will be stored indatabase 223. - Referring now to
FIGS. 14 and 15 , theprogram 214 may operate as indicated byprocess block 224 to identify sample points 227 in ageographic region 230 for which augmenting crime data is desired. Typically, such sampled points will be both in regions where official crime data is required (for bench marking purposes) and regions where scarce or no official crime data is available. Ideally the crime sample points will be randomly selected and dispersed. - For each sample point 227, a ground-
level image 232 will be developed, for example, of panoramic view of greater than 180.degree. and typically 360.degree. at the sample point 227 as would be visible by a person on the ground. The particular sample points 227 may then be provided to the individual user ofcomputer 222 together with an electronic scorecard to complete based on that image. The individual may be required to circle particular elements on a display screen to allow for machine scoring for each element with different weights for different feature of interest and to permit display of the circled elements to ultimate users for independent assessment of the scoring. - As indicated by
process block 234, individuals at thecomputers 222 may then review theimages 232 with respect to predetermined categories such as for example, overall impression, the visibility of trash, graffiti, late model cars (e.g. greater than 10 years old), state of repair of buildings, presence of window bars, quality of the roads, business types, number of residences visible, et cetera. These scorecards can be refined by an empirical testing in which actual crime data from law enforcement agencies as reduced to a crime index is compared to a risk value determined from the scorecard categories and correlated to identify those categories with highest correlation. - For example a questionnaire may provide the following questions:
- (1) multiple pieces of visible trash (yes/no)
(2) multiple instances of visible graffiti (yes/no)
(3) visible window bars (yes/no)
(4) prepare state of road (good/average/poor)
(5) visible check-cashing stores (yes/no)
(6) visible disabled cars (yes/no)
A quantitative score may be developed using the following scoring:
question 1: yes=10, no=zero
question 2: yes=10, no=zero
question 3: yes=10, no=zero
question 4: good=0, average=5, poor=10
question 5: yes=10, no=zero
question 6: yes=10, no=zero - For example, a questionnaire may be completed with respect to the predetermined categories and scored to produce a quantitative value of 70, for example, were higher values indicate higher crime risk. This value may then be compared to an index value derived from actual crime data, for example, indicating particular categories of crime and the number of incidents per time per area. This index value may be, for example, 80. A normalizing factor may then be developed equal to 80/70 and used to multiply the quantitative values provided from the questionnaire for areas where there is no official crime data. Thus, for example, an area with no official crime data may provide a questionnaire value of 60 and using the normalizing factor derived above of 80/70 may yield a normalized crime value of 68.5.
- When a subjective evaluation of an individual is used in the scoring, a different normalization factor may be used for each such individual, to provide consistency among different individuals.
- As indicated at
process block 236, the proxy data obtained in this manner may be fit to known crime data in the region, if any, and used to provide for higher granularity crime data. Alternatively the proxy data may be used alone to determine the crime risk in an area. When a proxy is used, that fact may be indicated on the display screen to the user. - As indicated by
process block 238, the crime data, being any or both of actual crime data and proxy data may then be used to provide a map output or the like such as a single indicator bar, graphic, number or the like useful for the user of a mobile phone, home computer, or automotive device, indicating an assessment of crime risk in the particular region selected by the user or derived from GPS or the like from the location of the user. - Referring now to
FIG. 16 , in the latter case, themap 240 may display standard map features such asroads 242 and the like and provideshaded zones 244 indicating generally a crime risk. Each zone may provide one ormore images 246 providing reference for the user of the type of image data underlying a particular crime assessment. In this respect, the images may be ranked according to the amount that they are relied upon in the crime assessment and only the highest ranked image shown, to allow the user to make an independent assessment. The particular images may be highlighted to show features relied upon in the evaluation, for example circling or highlighting of a disabled car. - The scoring may be statistically processed, for example, by averaging scores in a number of regions and the statistical sampling may be adjusted depending on the score of neighboring regions to obtain additional data. That is, for example, those areas rated with high crime may receive additional sample points to reduce the possibility of an anomaly caused by a single poorly maintained building or the like. Generally, statistical techniques of smoothing, for example, data fitting to a limited order surface, may be applied to the proxy crime data as will be understood in the art.
- It will be understood that the scoring of the images may also be done by computer algorithms using machine learning or the like. It will further be understood that the source of the crime assessment may be indicated to be through the use of proxy sources such as the scoring system described above when actual crime data is not available.
- Referring now to
FIG. 18 , using the above system, an individual may use theirsmart phone 300 to capture animage 232 of thelocal environment 302 and to mark features of interest as indicated above. Thisimage 232 and possible questionnaire answers discussed above are captured together with thegeographic location information 304 obtained using GPS or cell phone triangulation of thesmart phone 300 and sent to aremote server system 306 for processing as described above. Theserver 306 may provide theimage 232 together with the user-marked regions (held as metadata distinguishable from the image 232) and thegeographic information 304 andquestionnaire information 306 to a set of special-purposeneural networks 310 each trained with a training set specific to particular tasks. For example someneural networks 310 will be trained to look for late model cars, some for trash, some for window bars and the like. Separateneural networks 310 may evaluate the location against other known crime data and the answers from the questionnaire linked to the particular person making that answer for normalization as discussed above. A statistical analysis of the questionnaire answers may be used to detect falsification by the individual entering the data. Each of these neural networks feed an integratingneural network 312 which provides acrime risk assessment 316 for that area which may be relayed back to the user'ssmart phone 300 to provide adisplay 318, for example, a bar display having an arrow indicating thecrime risk assessment 316 in substantially real time. This information can be used by a user to assess crime risk in a particular area while also providing additional data to improve the crime risk assessments of all users. This data is not entered into the database for use by others unless vetted for accuracy, for example by repeated measurements or statistical validation. - In order to encourage this behavior, users of mobile devices providing information from which crime data can be derived for particular locations may receive an immediate reward, for example, in the form of an assessment of crime risk of the particular area on which they are reporting including not only risk derived from the material they have provided but also accumulated from other sources to provide a more complete picture of crime risk. Alternatively, the reward may be in terms of credits or points with respect to obtaining crime data from other locations prospectively.
- It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein and the claims should be understood to include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims. All of the publications described herein, including patents and non-patent publications, are hereby incorporated herein by reference in their entireties.
- Certain terminology is used herein for purposes of reference only, and thus is not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “bottom” and “side”, describe the orientation of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second” and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
- When introducing elements or features of the present disclosure and the exemplary embodiments, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of such elements or features. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements or features other than those specifically noted. It is further to be understood that the method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
- References to “a microprocessor” and “a processor” or “the microprocessor” and “the processor,” can be understood to include one or more microprocessors that can communicate in a stand-alone and/or a distributed environment(s), and can thus be configured to communicate via wired or wireless communications with other processors, where such one or more processor can be configured to operate on one or more processor-controlled devices that can be similar or different devices. Furthermore, references to memory, unless otherwise specified, can include one or more processor-readable and accessible memory elements and/or components that can be internal to the processor-controlled device, external to the processor-controlled device, and can be accessed via a wired or wireless network.
- It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein and the claims should be understood to include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims. All of the publications described herein, including patents and non-patent publications, are hereby incorporated herein by reference in their entireties
- To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/420,744 US20190362432A1 (en) | 2018-05-24 | 2019-05-23 | Compliance Aware Crime Risk Avoidance System |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862676097P | 2018-05-24 | 2018-05-24 | |
US201862676100P | 2018-05-24 | 2018-05-24 | |
US16/420,744 US20190362432A1 (en) | 2018-05-24 | 2019-05-23 | Compliance Aware Crime Risk Avoidance System |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190362432A1 true US20190362432A1 (en) | 2019-11-28 |
Family
ID=68614708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/420,744 Abandoned US20190362432A1 (en) | 2018-05-24 | 2019-05-23 | Compliance Aware Crime Risk Avoidance System |
Country Status (1)
Country | Link |
---|---|
US (1) | US20190362432A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210150651A1 (en) * | 2019-11-19 | 2021-05-20 | Matthew G. Shoup | Property and neighborhood assessment system and method |
US20210334905A1 (en) * | 2020-04-24 | 2021-10-28 | Allstate Insurance Company | Determining geocoded region based rating systems for decisioning outputs |
CN114020991A (en) * | 2021-11-05 | 2022-02-08 | 珠海市新德汇信息技术有限公司 | Intelligent network-involved crime risk revealing method |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6924750B2 (en) * | 2000-05-17 | 2005-08-02 | Omega Patents, L.L.C. | Vehicle tracking unit for controlling operable vehicle devices using a vehicle data bus and related methods |
JP2007272799A (en) * | 2006-03-31 | 2007-10-18 | Fujitsu Ltd | Sales promotion method and sales promotion server |
US20100332131A1 (en) * | 2009-06-26 | 2010-12-30 | Microsoft Corporation | Routing, alerting, and transportation guidance based on preferences and learned or inferred risks and desirabilities |
US20110161116A1 (en) * | 2009-12-31 | 2011-06-30 | Peak David F | System and method for geocoded insurance processing using mobile devices |
US20140129457A1 (en) * | 2012-11-02 | 2014-05-08 | Stroz Friedberg, LLC | An interactive organizational decision-making and compliance facilitation portal |
US8805707B2 (en) * | 2009-12-31 | 2014-08-12 | Hartford Fire Insurance Company | Systems and methods for providing a safety score associated with a user location |
US20150142313A1 (en) * | 2013-11-18 | 2015-05-21 | Seth Haberman | Systems and methods for generating and using dynamic and localized route-based environmental information |
US20160264097A1 (en) * | 2015-03-10 | 2016-09-15 | GM Global Technology Operations LLC | Selective passive door lock functions for vehicles |
US20180004211A1 (en) * | 2016-06-30 | 2018-01-04 | GM Global Technology Operations LLC | Systems for autonomous vehicle route selection and execution |
US9904289B1 (en) * | 2015-01-20 | 2018-02-27 | State Mutual Automobile Insurance Company | Facilitating safer vehicle travel utilizing telematics data |
US10104527B1 (en) * | 2017-04-13 | 2018-10-16 | Life360, Inc. | Method and system for assessing the safety of a user of an application for a proactive response |
WO2019059422A1 (en) * | 2017-09-19 | 2019-03-28 | 주식회사 웬즈데이에잇피엠 | Wearable device, application, and server-based system for transmitting location to police and surrounding people in multiple and simultaneous way in preparation for crime situation |
US20190156191A1 (en) * | 2017-11-17 | 2019-05-23 | International Business Machines Corporation | Detecting personal danger using a deep learning system |
US20190242718A1 (en) * | 2018-02-02 | 2019-08-08 | Cory Rebecca Siskind | Generating safe routes for traffic using crime-related information |
US20190295333A1 (en) * | 2016-09-16 | 2019-09-26 | Stoneridge, Inc. | Electronic Logging Device (ELD) Apparatus, System, and Method |
US20190364401A1 (en) * | 2015-11-20 | 2019-11-28 | Daimler Ag | Method for automatically transmitting a message |
US10984479B1 (en) * | 2015-10-20 | 2021-04-20 | United Services Automobile Association (Usaa) | System and method for tracking the operation of a vehicle and/or the actions of a driver |
US11115615B1 (en) * | 2018-02-26 | 2021-09-07 | Amazon Technologies, Inc. | Augmented reality display of local information |
-
2019
- 2019-05-23 US US16/420,744 patent/US20190362432A1/en not_active Abandoned
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6924750B2 (en) * | 2000-05-17 | 2005-08-02 | Omega Patents, L.L.C. | Vehicle tracking unit for controlling operable vehicle devices using a vehicle data bus and related methods |
JP2007272799A (en) * | 2006-03-31 | 2007-10-18 | Fujitsu Ltd | Sales promotion method and sales promotion server |
US20100332131A1 (en) * | 2009-06-26 | 2010-12-30 | Microsoft Corporation | Routing, alerting, and transportation guidance based on preferences and learned or inferred risks and desirabilities |
US20110161116A1 (en) * | 2009-12-31 | 2011-06-30 | Peak David F | System and method for geocoded insurance processing using mobile devices |
US8805707B2 (en) * | 2009-12-31 | 2014-08-12 | Hartford Fire Insurance Company | Systems and methods for providing a safety score associated with a user location |
US20140129457A1 (en) * | 2012-11-02 | 2014-05-08 | Stroz Friedberg, LLC | An interactive organizational decision-making and compliance facilitation portal |
US20150142313A1 (en) * | 2013-11-18 | 2015-05-21 | Seth Haberman | Systems and methods for generating and using dynamic and localized route-based environmental information |
US9904289B1 (en) * | 2015-01-20 | 2018-02-27 | State Mutual Automobile Insurance Company | Facilitating safer vehicle travel utilizing telematics data |
US20160264097A1 (en) * | 2015-03-10 | 2016-09-15 | GM Global Technology Operations LLC | Selective passive door lock functions for vehicles |
US10984479B1 (en) * | 2015-10-20 | 2021-04-20 | United Services Automobile Association (Usaa) | System and method for tracking the operation of a vehicle and/or the actions of a driver |
US20190364401A1 (en) * | 2015-11-20 | 2019-11-28 | Daimler Ag | Method for automatically transmitting a message |
US20180004211A1 (en) * | 2016-06-30 | 2018-01-04 | GM Global Technology Operations LLC | Systems for autonomous vehicle route selection and execution |
US20190295333A1 (en) * | 2016-09-16 | 2019-09-26 | Stoneridge, Inc. | Electronic Logging Device (ELD) Apparatus, System, and Method |
US10104527B1 (en) * | 2017-04-13 | 2018-10-16 | Life360, Inc. | Method and system for assessing the safety of a user of an application for a proactive response |
WO2019059422A1 (en) * | 2017-09-19 | 2019-03-28 | 주식회사 웬즈데이에잇피엠 | Wearable device, application, and server-based system for transmitting location to police and surrounding people in multiple and simultaneous way in preparation for crime situation |
US20190156191A1 (en) * | 2017-11-17 | 2019-05-23 | International Business Machines Corporation | Detecting personal danger using a deep learning system |
US20190242718A1 (en) * | 2018-02-02 | 2019-08-08 | Cory Rebecca Siskind | Generating safe routes for traffic using crime-related information |
US11115615B1 (en) * | 2018-02-26 | 2021-09-07 | Amazon Technologies, Inc. | Augmented reality display of local information |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210150651A1 (en) * | 2019-11-19 | 2021-05-20 | Matthew G. Shoup | Property and neighborhood assessment system and method |
US20210334905A1 (en) * | 2020-04-24 | 2021-10-28 | Allstate Insurance Company | Determining geocoded region based rating systems for decisioning outputs |
US11710186B2 (en) * | 2020-04-24 | 2023-07-25 | Allstate Insurance Company | Determining geocoded region based rating systems for decisioning outputs |
US20230316413A1 (en) * | 2020-04-24 | 2023-10-05 | Allstate Insurance Company | Determining geocoded region based rating systems for decisioning outputs |
CN114020991A (en) * | 2021-11-05 | 2022-02-08 | 珠海市新德汇信息技术有限公司 | Intelligent network-involved crime risk revealing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8515673B2 (en) | Crime risk assessment system | |
US10217169B2 (en) | Computer system for determining geographic-location associated conditions | |
US8290705B2 (en) | Mobile navigation system with graphic crime-risk display | |
US20110213628A1 (en) | Systems and methods for providing a safety score associated with a user location | |
US9558665B2 (en) | Method and system for avoidance of parking violations | |
US20180174446A1 (en) | System and method for traffic violation avoidance | |
Marisamynathan et al. | Modeling pedestrian crossing behavior and safety at signalized intersections | |
Quinn et al. | Neighborhood physical disorder in new York City | |
US20190362432A1 (en) | Compliance Aware Crime Risk Avoidance System | |
US20230342867A1 (en) | Systems and Methods for Generating a Home Score for a User | |
US20230342868A1 (en) | Systems and Methods for Generating a Home Score for a User | |
US20240037680A1 (en) | Systems and Methods for Generating a Home Score for a User | |
Hamim et al. | Towards safer streets: A framework for unveiling pedestrians’ perceived road safety using street view imagery | |
US20230342869A1 (en) | Systems and Methods for Generating a Home Score for a User Using a Home Score Component Model | |
Vilaça et al. | Multinomial logistic regression for prediction of vulnerable road users risk injuries based on spatial and temporal assessment | |
Chung et al. | Investigating the effects of POI-based land use on traffic accidents in Suzhou Industrial Park, China | |
Clark | Co-assessment through digital technologies | |
US20240320755A1 (en) | Systems and methods for generating a home score for a user | |
Shaaban et al. | Identifying optimal locations for speed enforcement cameras | |
CN115512084A (en) | Shop analysis method and device based on AR, terminal equipment and server | |
Kadar et al. | Towards a burglary risk profiler using demographic and spatial factors | |
Mukherjee et al. | Do the mobility patterns for city taxicabs impact road safety? | |
Oh et al. | Costs and benefits of MDOT intelligent transportation system deployments. | |
Radwan et al. | Assessment of sidewalk/bicycle-lane gaps with safety and developing statewide pedestrian crash rates. | |
Amiruzzaman | Studying geospatial urban visual appearance and diversity to understand social phenomena |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |