US20190341656A1 - Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same - Google Patents
Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same Download PDFInfo
- Publication number
- US20190341656A1 US20190341656A1 US16/508,595 US201916508595A US2019341656A1 US 20190341656 A1 US20190341656 A1 US 20190341656A1 US 201916508595 A US201916508595 A US 201916508595A US 2019341656 A1 US2019341656 A1 US 2019341656A1
- Authority
- US
- United States
- Prior art keywords
- layer
- negative electrode
- inorganic
- organic
- organic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 77
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 239000010410 layer Substances 0.000 claims abstract description 116
- 239000011368 organic material Substances 0.000 claims abstract description 96
- 239000007773 negative electrode material Substances 0.000 claims abstract description 68
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 65
- 239000011147 inorganic material Substances 0.000 claims abstract description 65
- 239000011247 coating layer Substances 0.000 claims abstract description 55
- 239000002245 particle Substances 0.000 claims description 45
- -1 acryl Chemical group 0.000 claims description 36
- 239000012044 organic layer Substances 0.000 claims description 34
- 229920000642 polymer Polymers 0.000 claims description 21
- 229920000098 polyolefin Polymers 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000008151 electrolyte solution Substances 0.000 claims description 8
- 239000002356 single layer Substances 0.000 claims description 8
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000005060 rubber Substances 0.000 claims description 7
- 239000010954 inorganic particle Substances 0.000 claims 3
- 239000000203 mixture Substances 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 17
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 16
- 229910001416 lithium ion Inorganic materials 0.000 description 16
- 239000007774 positive electrode material Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 239000004020 conductor Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 230000035515 penetration Effects 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000010292 electrical insulation Methods 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 229920003048 styrene butadiene rubber Polymers 0.000 description 7
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 229910052593 corundum Inorganic materials 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910001845 yogo sapphire Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910021450 lithium metal oxide Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000011356 non-aqueous organic solvent Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000003660 carbonate based solvent Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 229910017089 AlO(OH) Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- 229910015806 BaTiO2 Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910011011 Ti(OH)4 Inorganic materials 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical class CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229920005993 acrylate styrene-butadiene rubber polymer Polymers 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical group 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 2
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000005466 carboxylated polyvinylchloride Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910001679 gibbsite Inorganic materials 0.000 description 2
- 229910021436 group 13–16 element Inorganic materials 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 229920000973 polyvinylchloride carboxylated Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- JYVXNLLUYHCIIH-UHFFFAOYSA-N (+/-)-mevalonolactone Natural products CC1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910001559 LiC4F9SO3 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910021447 LiN(CxF2x+1SO2)(CyF2y+1SO2) Inorganic materials 0.000 description 1
- 229910013417 LiN(SO3C2F5)2 Inorganic materials 0.000 description 1
- 229910013825 LiNi0.33Co0.33Mn0.33O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910014063 LiNi1-xCoxO2 Inorganic materials 0.000 description 1
- 229910014402 LiNi1—xCoxO2 Inorganic materials 0.000 description 1
- 229910013124 LiNiVO4 Inorganic materials 0.000 description 1
- 229910021466 LiQS2 Inorganic materials 0.000 description 1
- 229910012946 LiV2O5 Inorganic materials 0.000 description 1
- 229910021448 LiaA1-bXbD2 Inorganic materials 0.000 description 1
- 229910021449 LiaA1-bXbO2-cDc Inorganic materials 0.000 description 1
- 229910021462 LiaCoGbO2 Inorganic materials 0.000 description 1
- 229910021451 LiaE1-bXbO2-cDc Inorganic materials 0.000 description 1
- 229910021452 LiaE2-bXbO4-cDc Inorganic materials 0.000 description 1
- 229910021463 LiaMn1-bGbO2 Inorganic materials 0.000 description 1
- 229910021465 LiaMn1-gGgPO4 Inorganic materials 0.000 description 1
- 229910021464 LiaMn2GbO4 Inorganic materials 0.000 description 1
- 229910021453 LiaNi1-b-cCobXcDα Inorganic materials 0.000 description 1
- 229910021455 LiaNi1-b-cCobXcO2-αT2 Inorganic materials 0.000 description 1
- 229910021454 LiaNi1-b-cCobXcO2-αTα Inorganic materials 0.000 description 1
- 229910021456 LiaNi1-b-cMnbXcDα Inorganic materials 0.000 description 1
- 229910021458 LiaNi1-b-cMnbXcO2-αT2 Inorganic materials 0.000 description 1
- 229910021457 LiaNi1-b-cMnbXcO2-αTα Inorganic materials 0.000 description 1
- 229910021461 LiaNiGbO2 Inorganic materials 0.000 description 1
- 229910021460 LiaNibCocMndGeO2 Inorganic materials 0.000 description 1
- 229910021459 LiaNibEcGdO2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910013437 LizO2 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- JYVXNLLUYHCIIH-ZCFIWIBFSA-N R-mevalonolactone, (-)- Chemical compound C[C@@]1(O)CCOC(=O)C1 JYVXNLLUYHCIIH-ZCFIWIBFSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910021475 bohrium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-L carboxylato carbonate Chemical compound [O-]C(=O)OC([O-])=O ZFTFAPZRGNKQPU-UHFFFAOYSA-L 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011326 fired coke Substances 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910021473 hassium Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N methyl acetate Chemical compound COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229940057061 mevalonolactone Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- GHZRKQCHJFHJPX-UHFFFAOYSA-N oxacycloundecan-2-one Chemical compound O=C1CCCCCCCCCO1 GHZRKQCHJFHJPX-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- 229910021477 seaborgium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- a negative electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same are disclosed.
- Oxides that include lithium and transition elements and are capable of intercalating and deintercalating lithium ions for example, LiCoO 2 , LiMn 2 O 4 , LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 1) and the like, have been used as positive active materials for rechargeable lithium batteries.
- As for negative active materials for a rechargeable lithium battery various carbon-based materials such as artificial graphite, natural graphite, and hard carbon, which intercalate and deintercalate lithium ions, have been used.
- a rechargeable lithium battery including the above-described positive and negative active materials has stability and safety problems, because the positive and negative electrodes become thermally unstable, depending on the charge state of the battery, at a temperature of greater than or equal to 25° C., and thus, the positive and negative active materials, electrolyte salt, and an organic solvent of the battery are decomposed.
- An aspect of one embodiment of the present disclosure is directed toward a negative electrode for a rechargeable lithium battery having excellent safety, thermal stability, and cycle-life characteristics by initially suppressing (or reducing) exothermicity of the battery and preventing (or reducing the likelihood of) a short-circuit between a positive electrode and the negative electrode.
- Another aspect of an embodiment of the present disclosure is directed toward a rechargeable lithium battery including the negative electrode.
- a negative electrode for a rechargeable lithium battery includes: a current collector; a negative active material layer on the current collector; and a coating layer directly contacting the negative active material layer, the coating layer including an organic material and an inorganic material.
- the coating layer is a single layer or has a multi-layered structure.
- the coating layer partially penetrates a surface of the negative active material layer.
- the coating layer may be a composite layer including the organic material and the inorganic material in a single layer.
- the coating layer may include an inorganic layer including the inorganic material; and an organic layer including the organic material.
- the inorganic layer may directly contact the negative active material layer, and the organic layer may directly contact the inorganic layer; or the organic layer may directly contact the negative active material layer, and the inorganic layer may directly contact the organic layer.
- the organic material may comprise a polymer particle including a polyolefin, a polyolefin derivative, a polyolefin wax, an acryl-based compound, or a combination thereof.
- the organic material may include a polymer particle having a melting point in a range from 85 to 130° C.
- the polymer particle may include a polyolefin, a polyolefin derivative, a polyolefin wax, an acryl-based compound, or a combination thereof.
- the organic material may have a weight average molecular weight in a range from 300 to 10,000 g/mol.
- a particle size of the polymer particle may be in a range from 0.1 to 5 m.
- the organic material may be included in the negative electrode in an amount in a range from 0.5 to 10 wt % based on the total amount of the negative active material layer and the coating layer.
- the inorganic material may include SiO 2 , Al 2 O 3 , Al(OH) 3 , AlO(OH), TiO 2 , BaTiO 2 , ZnO 2 , Mg(OH) 2 , MgO, Ti(OH) 4 , aluminum nitride, silicon carbide, boron nitride, or a combination thereof.
- the inorganic material may have a particle size of 0.1 to 5 ⁇ m.
- the inorganic material may be included in the negative electrode in an amount in a range from 1 to 20 wt % based on the total amount of the negative active material layer and the coating layer.
- a thickness of the composite layer may be in a range from 1 to 20 ⁇ m.
- a thickness of the inorganic layer may be in a range from 1 to 10 m, and a thickness of the organic layer may be in a range from 1 to 10 ⁇ m.
- the coating layer may further include a binder different from the organic material, and the binder may include a styrene-butadiene rubber (SBR), a carboxylmethyl cellulose (CMC), a polyvinylidene fluoride (PVdF), a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, an ethylenevinylacetate (EVA), a hydroxyethyl cellulose (HEC), a polyvinyl alcohol (PVA), a polyvinylbutyral (PVB), an ethylene-acrylic acid copolymer, an acrylonitrile, a vinyl acetate derivative, a polyethylene glycol, an acryl-based rubber, or a combination thereof.
- SBR styrene-butadiene rubber
- CMC carboxylmethyl cellulose
- PVdF polyvinylidene fluoride
- PVdF-HFP polyvinylidene
- a rechargeable lithium battery includes the negative electrode; a positive electrode facing the negative electrode; an electrolyte solution impregnating the negative electrode and the positive electrode; and a separator between the negative electrode and the positive electrode.
- the separator may include an organic material, and a melting point of the organic material of the separator may be higher than a melting point of the organic material of the coating layer.
- a rechargeable lithium battery having excellent safety, thermal stability, and cycle-life characteristics may be realized by initially suppressing (or reducing) exothermicity and preventing (or reducing the likelihood of) a short-circuit between the positive electrode and the negative electrode.
- FIG. 1 is a schematic view showing a rechargeable lithium battery according to one embodiment in an unassembled state.
- FIG. 2 is a cross-sectional view of a negative electrode for a rechargeable lithium battery according to one embodiment.
- FIG. 3 is a cross-sectional view of a negative electrode for a rechargeable lithium battery according to another embodiment.
- FIG. 4 is a cross-sectional view of a negative electrode for a rechargeable lithium battery according to yet another embodiment.
- FIG. 5 is a graph of a temperature and resistance of the negative electrodes for a rechargeable lithium battery according to Examples 1 and 2 and Comparative Examples 1 and 2.
- a rechargeable lithium battery according to one embodiment will now be described with reference to FIG. 1 .
- FIG. 1 is a schematic view of a rechargeable lithium battery according to one embodiment.
- a rechargeable lithium battery 100 includes an electrode assembly 110 , a battery case 120 housing the electrode assembly 110 , and an electrode tab 130 that provides an electrical channel for transmitting a current formed in the electrode assembly 110 out of the rechargeable lithium battery.
- the battery case 120 may include two sides that are overlapped with one another and sealed.
- an electrolyte solution is injected into the battery case 120 housing the electrode assembly 110 .
- the electrode assembly 110 includes a positive electrode, a negative electrode facing the positive electrode, and a separator between the positive electrode and the negative electrode.
- the negative electrode includes a current collector, a negative active material layer on the current collector, and a coating layer on (e.g., directly contacting) the negative active material layer.
- the coating layer may be a single layer or may have a multi-layered structure and may include an organic material and an inorganic material.
- the coating layer partially penetrates a surface of the negative active material layer.
- the coating layer may be directly coated on the negative active material layer to partially penetrate the negative active material layer.
- the organic material is coated on the negative active material layer.
- the organic material may be directly coated on the negative active material to directly contact the negative active material layer.
- the organic material may prevent (or reduce) movement of lithium ions at a temperature of 85 to 130° C. due to a shut-down function of the organic material, thereby increasing internal resistance of the battery and deteriorating electrical/chemical reactivity of the battery at the temperature.
- the organic material of the coating layer when the organic material of the coating layer has a shut-down function, the organic material may melt at temperatures of 85 to 130° C., thereby blocking or occluding pores of the separator and/or pores of the coating layer to prevent (or reduce) the movement of lithium ions between the negative electrode and the positive electrode. Accordingly, when an organic material capable of shutting down (e.g., an organic material having a shut-down function) is coated on an electrode, for example, on the surface of the negative electrode, exothermicity of a battery including the electrode may be initially suppressed (or reduced).
- an organic material capable of shutting down e.g., an organic material having a shut-down function
- the coating layer described herein may prevent (or reduce the likelihood) of thermal runaway of the battery and improve the safety of the battery by blocking (or reducing) movement of lithium ions between the positive electrode and the negative electrode at temperatures of 85 to 130° C., or higher.
- the inorganic material may be coated (e.g., directly coated) on the negative active material layer and may form an electrically insulating layer on an electrode, for example, on the surface of a negative electrode and thus, the inorganic material may prevent (or reduce the likelihood of) a short-circuit between the positive electrode and the negative electrode.
- the separator may be broken due to a physical impact, thereby nullifying the effects of the organic material.
- the organic material and/or the inorganic material are directly coated on a surface of an electrode, which provides strong support for the organic material and the inorganic material, and thus, results in a more stable rechargeable lithium battery having improved safety, as compared to a rechargeable lithium battery prepared by coating the organic material and the inorganic material on a surface of a separator substrate.
- the organic material and the inorganic material may protect the electrode, prevent (or reduce) detachment of an electrode active material of the electrode and decrease surface roughness of the electrode, thereby preventing (or reducing the likelihood of) the occurrence of a defect due to electrode friction during assembly of the battery.
- FIGS. 2 to 4 The structures of embodiments of the negative electrode are illustrated in FIGS. 2 to 4 .
- FIGS. 2 to 4 provide illustrations of embodiments of the negative electrode, but the negative electrode is not limited thereto.
- FIG. 2 is a cross-sectional view showing a structure of one embodiment of a negative electrode for a rechargeable lithium battery.
- a negative electrode 10 for a rechargeable lithium battery includes a current collector 11 , a negative active material layer 12 on the current collector 11 , and a coating layer on the negative active material layer 12 .
- the coating layer has a single layer structure.
- the coating layer may be a composite layer 13 in which an organic material 14 and an inorganic material 15 form a single layer.
- the organic material When an organic material and an inorganic material are coated on an electrode, for example, on a surface of a negative electrode as a single layer, the organic material may shut down a battery including the layer when the battery reaches high temperatures and, thus, initially suppress (or reduce) exothermicity of the battery.
- the inorganic material has an electrical insulation property and, thus, may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode. Accordingly, safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery may be improved by including the organic material and the inorganic material in a coating layer of the rechargeable lithium battery.
- FIG. 3 is a cross-sectional view showing a structure of another embodiment of a negative electrode for a rechargeable lithium battery.
- a negative electrode 20 for a rechargeable lithium battery includes a current collector 21 , a negative active material layer 22 on the current collector 21 , and a coating layer on (e.g., directly contacting) the negative active material layer 22 .
- the coating layer has a multi-layered structure and, includes an inorganic layer 23 including an inorganic material 25 and an organic layer 24 including an organic material 26 .
- the inorganic layer 23 may be coated on (e.g., directly coated on) the negative active material layer 22
- the organic layer 24 may be coated on (e.g., directly coated on) the inorganic layer 23 .
- the organic material may initially suppress (or reduce) exothermicity of a battery including the organic material and the inorganic material due to a shut-down function of the organic material.
- the inorganic material may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode due to an electrical insulation property of the inorganic material. Accordingly, safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery may be improved.
- FIG. 4 is a cross-sectional view showing a structure of yet another embodiment of a negative electrode for a rechargeable lithium battery.
- a negative electrode 30 for a rechargeable lithium battery includes a current collector 31 , a negative active material layer 32 on the current collector 31 , and a coating layer on the negative active material layer 32 .
- the coating layer has a multi-layered structure.
- the coating layer may include an organic layer 33 including an organic material 35 and an inorganic layer 34 including an inorganic material 36 .
- the organic layer 33 may be coated on (e.g., directly coated on) the negative active material layer 32
- the inorganic layer 34 may be coated on (e.g., directly coated on) the organic layer 33 .
- the organic material may initially suppress (or reduce) exothermicity of a battery including the organic material and the inorganic material due to a shut-down function of the organic material.
- the inorganic material may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode due to an electrical insulation property of the inorganic material. Accordingly, safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery may be improved.
- the organic material included in the composite layer and the organic layer in FIGS. 2 to 4 may include a polymer particle having a melting point in a range from 85 to 130° C.
- exothermicity of a battery including the organic material may be initially suppressed (or reduced) due to a shut-down function of the organic material.
- the separator includes an organic material such as a polyolefin based polymer, and the melting point of the organic material of the separator is higher than the melting point of the organic material of the coating layer.
- the organic material of the separator may have a melting point of 130° C. or more, and thus, the separator may carry out a shut-down function at a temperature of 130° C. or more.
- initial exothermicity of the battery rapidly increases when the battery has abnormal exothermicity, and thus, it is difficult to control the stability of the battery with only the shut-down function of the separator.
- an organic material having a lower melting point than that of the organic material of the separator is coated on the negative active material layer, and the organic material coated on the negative active material layer may be first melted and shut-down at a temperature lower than 130° C.
- electrical/chemical reactivity may be suppressed at a lower temperature and exothermicity of the battery may be initially suppressed.
- the reactivity of a battery may be primarily suppressed by a shut-down of an organic material coated on the negative active material layer, and then shut-down of the organic material of the separator may be secondarily generated. Accordingly, the stability of a battery may be effectively obtained or improved.
- the polymer particle may include a polyolefin, a polyolefin derivative, a polyolefin wax, an acryl-based compound, or a combination thereof.
- the polyolefin may be, for example, polyethylene, polypropylene, or a combination thereof.
- the polymer particle of the organic material includes polyethylene.
- a weight average molecular weight of the organic material may be in a range from 300 to 10,000 g/mol, for example, 2,000 to 6,000 g/mol.
- An average particle size of the polymer particle may be in a range from 0.1 to 5 ⁇ m, for example, 0.2 to 3 ⁇ m.
- the polymer particle When the polymer particle has a weight average molecular weight and an average particle size within one of the foregoing ranges, the polymer may minimize (or reduce) resistance to the movement of lithium ions, secure good performance of a battery including the organic material, reinforce a shut-down function of the organic material, and thus, initially suppress (or reduce) exothermicity of the battery.
- the organic material may be included in the negative electrode in an amount in a range from 0.5 to 10 wt %, for example, 3 to 7 wt %, based on the total amount of the negative active material layer and the coating layer.
- the organic material is included within either of the foregoing ranges, its shut-down function is further reinforced, and exothermicity of a battery including the organic material may be initially suppressed (or reduced).
- the inorganic material included in the composite layer and the inorganic layer in FIGS. 2 to 4 may include SiO 2 , Al 2 O 3 , Al(OH) 3 , AlO(OH), TiO 2 , BaTiO 2 , ZnO 2 , Mg(OH) 2 , MgO, Ti(OH) 4 , aluminum nitride, silicon carbide, boron nitride, or a combination thereof.
- An average particle size of the inorganic material may be in a range from 0.1 to 5 ⁇ m, for example, 0.3 to 1 ⁇ m.
- the inorganic material may be uniformly coated on the negative active material layer and thus, prevent (or prevent the likelihood of) a short-circuit between a positive electrode and the negative electrode due to an excellent electrical insulation property of the inorganic material.
- the inorganic material layer may minimize (or reduce) resistance to the movement of lithium ions and secure good battery performance.
- the inorganic material may be included in an amount in a range from 1 to 20 wt %, for example, 5 to 12 wt % based on the total amount of the negative active material layer and the coating layer.
- the inorganic material When the inorganic material is included within either of the above ranges, the inorganic material has an excellent electrical insulation property and may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode.
- a thickness of the composite layer including the organic material and the inorganic material may be in a range from 1 to 20 ⁇ m, for example, 2 to 10 ⁇ m.
- the composite layer has an excellent shut-down function and electrical insulation property and, thus, may initially suppress (or reduce) exothermicity of a battery and prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode.
- the composite layer may minimize (or reduce) resistance to the movement of lithium ions and minimize (or reduce) the thickness of the coating layer and, thus, secure good battery performance.
- a thickness of the inorganic layer may be in a range from 1 to 10 ⁇ m, for example, 2 to 7 ⁇ m, and a thickness of the organic layer may be in a range from 1 to 10 ⁇ m, for example, 3 to 7 ⁇ m.
- the inorganic and organic layers each have a thickness within one of their respective ranges, a short-circuit between the positive electrode and the negative electrode may be prevented (or the likelihood of such a short-circuit may be reduced) due to an excellent electrical insulation property, and exothermicity of a battery may be initially suppressed (or reduced) due to a reinforced shut-down function.
- the inorganic and organic layers may minimize (or reduce) resistance to movement of lithium ions and may minimize (or reduce) the thickness of a coating layer and, thus, secure good battery performance.
- the coating layer may further include a binder as well as the organic material and the inorganic material.
- the organic layer may further include a binder as well as the organic material
- the inorganic layer may further include a binder as well as the inorganic material.
- the binder may be a material that is different from the organic material.
- the binder may include a styrene-butadiene rubber (SBR), a carboxylmethyl cellulose (CMC), a polyvinylidene fluoride (PVdF), a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, an ethylenevinyl acetate (EVA), hydroxyethyl cellulose (HEC), a polyvinyl alcohol (PVA), a polyvinylbutyral (PVB), an ethylene-acrylic acid copolymer, an acrylonitrile, a vinyl acetate derivative, a polyethylene glycol, an acryl-based rubber, and a combination thereof.
- SBR styrene-butadiene rubber
- CMC carboxylmethyl cellulose
- PVdF polyvinylidene fluoride
- PVdF-HFP polyvinyliden
- the styrene-butadiene rubber SBR
- a mixture of the styrene-butadiene rubber SBR
- CMC carboxylmethyl cellulose
- EVA ethylenevinylacetate
- PVA polyvinyl alcohol
- PVA ethylene-acrylic acid copolymer
- acryl-based rubber may be used as the binder.
- the binder When the binder is included in the coating layer, adherence to the surface of the negative electrode is improved, and adherence between organic material particles, between inorganic material particles, and/or between the organic material particles and the inorganic material particles may be improved.
- the current collector of the negative electrode may be a copper foil.
- the negative active material layer includes a negative active material, a binder, and, optionally, a conductive material.
- the negative active material may include a material that reversibly intercalates/deintercalates lithium ions, a lithium metal, a lithium metal alloy, a material capable of doping and dedoping lithium, or a transition metal oxide.
- the material that reversibly intercalates/deintercalates lithium ions is a carbon material, and may be any suitable carbon-based negative active material generally used in rechargeable lithium batteries.
- the carbon-based negative active material may include crystalline carbon, amorphous carbon or a mixture thereof.
- the crystalline carbon may be non-shaped, or sheet, flake, spherical, or fiber shaped natural graphite or artificial graphite, and the amorphous carbon may be a soft carbon (e.g., carbon sintered at a low temperature), a hard carbon, mesophase pitch carbonized products, fired coke, and the like.
- the lithium metal alloy may be an alloy of lithium and a metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn.
- the material capable of doping and dedoping lithium may be Si, SiO x (0 ⁇ x ⁇ 2), a Si—C composite, a Si-Q alloy (wherein Q is an alkali metal, an alkaline-earth metal, Group 13 to 16 elements, transition metal, a rare earth element, or a combination thereof, and is not Si), Sn, SnO 2 , a Sn—C composite, Sn—R (wherein R is an alkali metal, an alkaline-earth metal, Group 13 to 16 elements, transition metal, a rare earth element, or a combination thereof, and not Sn), and the like, and at least one of these materials may be mixed with SiO 2 .
- Examples of the Q and R may include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof.
- the transition metal oxide may be vanadium oxide, lithium vanadium oxide, and the like.
- the binder of the negative active material layer improves binding properties of the negative active material particles with one another and with a current collector.
- the binder of the negative active material layer may include a polyvinyl alcohol, a carboxylmethyl cellulose, a hydroxypropyl cellulose, a polyvinylchloride, a carboxylated polyvinylchloride, a polyvinylfluoride, an ethylene oxide-containing polymer, a polyvinylpyrrolidone, a polyurethane, a polytetrafluoroethylene, a polyvinylidene fluoride, a polyethylene, a polypropylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but the binder is not limited thereto.
- the conductive material improves conductivity of an electrode.
- Any suitable, electrically conductive material may be used as the conductive material, unless it causes a chemical change in the battery.
- the conductive material may include a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and the like; a metal-based material such as a metal powder or a metal fiber and the like of copper, nickel, aluminum, silver, and the like; a conductive polymer such as a polyphenylene derivative and the like; or a mixture thereof.
- the negative electrode may be manufactured by a method including mixing the negative active material, the binder and the conductive material in a solvent to prepare a negative active material composition, and coating the negative active material composition on a negative current collector.
- a solvent include N-methylpyrrolidone and the like, but the solvent is not limited thereto.
- the positive electrode may include a current collector and a positive active material layer on the current collector.
- An example of the current collector may include aluminum, but the current collector is not limited thereto.
- the positive active material layer includes a positive active material.
- the positive active material may be a compound (e.g., a lithiated intercalation compound) capable of intercalating and deintercalating lithium, for example, a lithium metal oxide.
- a compound e.g., a lithiated intercalation compound capable of intercalating and deintercalating lithium, for example, a lithium metal oxide.
- the lithium metal oxide may be, for example, an oxide including lithium and at least one metal selected from cobalt, manganese, nickel, and aluminum.
- compounds represented by the following chemical formulae may be used.
- Li a A 1-b X b D 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a A 1-b X b O 2-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a E 1-b X b O 2-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a E 2-b X b O 4-c D c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-b-c Co b X c D ⁇ (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ 2); Li a Ni 1-b-c Co b X c O 2- ⁇ T ⁇ (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ 2); Li a Ni 1-b-c Co b X c O 2- ⁇ T
- A is selected from Ni, Co, Mn, and a combination thereof;
- X is selected from Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element, and a combination thereof;
- D is selected from O, F, S, P, and a combination thereof;
- E is selected from Co, Mn, and a combination thereof;
- T is selected from F, S, P, and a combination thereof;
- G is selected from Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and a combination thereof;
- Q is selected from Ti, Mo, Mn, and a combination thereof;
- the lithium metal oxide may be, for example, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, or a combination thereof.
- a mixture of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide may be used as the lithium metal oxide.
- the positive active material layer may further include a binder and a conductive material as well as the above-described positive active material.
- the binder of the positive active material layer improves binding properties between the electrode active material particles and also attaches the electrode active material to the positive current collector.
- the positive active material layer may include a polyvinyl alcohol, a carboxylmethyl cellulose, a hydroxypropyl cellulose, a diacetyl cellulose, a polyvinylchloride, a carboxylated polyvinylchloride, a polyvinylfluoride, an ethylene oxide-containing polymer, a polyvinylpyrrolidone, a polyurethane, a polytetrafluoroethylene, a polyvinylidene fluoride, a polyethylene, a polypropylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but the binder of the positive active material layer is not limited thereto.
- the conductive material of the positive active material layer improves conductivity of the positive electrode.
- Any suitable, electrically conductive material may be used as the conductive material, unless it causes a chemical change in the battery.
- the conductive material may include a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, a carbon fiber, or the like; a metal-based material such as a metal powder or a metal fiber or the like of copper, nickel, aluminum, silver, or the like; a conductive polymer such as a polyphenylene derivative or the like; or a mixture thereof.
- the electrolyte solution may include a non-aqueous organic solvent and a lithium salt.
- the non-aqueous organic solvent serves as a medium for transmitting ions taking part in the electrochemical reaction of the battery.
- the non-aqueous organic solvent may be selected from a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent, and an aprotic solvent.
- the carbonate-based solvent may include, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and/or the like.
- DMC dimethyl carbonate
- DEC diethyl carbonate
- DPC dipropyl carbonate
- MPC methylpropyl carbonate
- EPC ethylpropyl carbonate
- MEC methylethyl carbonate
- EMC ethylmethyl carbonate
- EMC ethylmethyl carbonate
- EC ethylene carbonate
- PC propylene carbonate
- BC butylene carbonate
- the carbonate-based solvent may include linear carbonate compounds and/or cyclic carbonate compounds.
- linear carbonate compounds and cyclic carbonate compounds When the linear carbonate compounds and cyclic carbonate compounds are mixed, an organic solvent having high dielectric constant and low viscosity can be provided.
- the cyclic carbonate and the linear carbonate are mixed together in a volume ratio in a range from about 1:1 to about 1:9.
- the ester-based solvent may include, for example, n-methylacetate, n-ethylacetate, n-propylacetate, dimethylacetate, methylpropionate, ethylpropionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and/or the like.
- the ether solvent may include, for example, dibutylether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and/or the like
- the ketone-based solvent may include cyclohexanone, and/or the like.
- the alcohol-based solvent may include, for example, ethyl alcohol, isopropyl alcohol, and/or the like.
- the non-aqueous organic solvent may be used singularly or in a mixture.
- the mixing ratio of the mixture may be controlled in accordance with a desirable battery performance.
- the non-aqueous electrolyte solution may further include an overcharge inhibitor additive such as ethylenecarbonate, pyrocarbonate, and/or the like.
- an overcharge inhibitor additive such as ethylenecarbonate, pyrocarbonate, and/or the like.
- the lithium salt is dissolved in an organic solvent, supplies lithium ions in a battery, enables operation of the rechargeable lithium battery, and improves lithium ion transportation between positive and negative electrodes therein.
- the lithium salt may include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN(SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiCIO 4 , LiAIO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB(C 2 O 4 ) 2 (lithium bis(oxalato) borate, LiBOB), or a combination thereof, as a supporting electrolytic salt.
- the lithium salt may be used in a concentration in a range from about 0.1 M to about 2.0 M.
- the electrolyte may have improved performance and lithium ion mobility due to good electrolyte conductivity and viscosity.
- the separator may include any materials commonly used in lithium batteries as long as the separator is capable of separating a negative electrode from a positive electrode and providing a transporting passage for lithium ions.
- the separator may be made of a material having a low resistance to ion transportation and an improved ability for impregnation of an electrolyte.
- the material of the separator may be selected from glass fiber, polyester, TEFLON® (tetrafluoroethylene; TEFLON is a registered trademark of E. I. Du Pont de Nemours and Company, Wilmington, Del.), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and a combination thereof. It may have a form of a non-woven fabric or a woven fabric.
- a polyolefin-based polymer separator such as polyethylene, polypropylene or the like is mainly used for a lithium ion battery.
- a coated separator including a ceramic component and/or a polymer material may be used.
- the separator may have a mono-layered or multi-layered structure.
- An organic layer composition was prepared by mixing 98 wt % of polyethylene particles (Mitsui Chemicals, Inc, Chemipearl W401) having a melting point of 110° C., an average particle size of 1 ⁇ m, and a weight average molecular weight of 5,000 g/mol; and 2 wt % of an acryl-based rubber (ZEON Corporation, BM-900B) in water.
- polyethylene particles Mitsubishi Chemicals, Inc, Chemipearl W401
- ZEON Corporation BM-900B
- An inorganic layer composition was prepared by mixing 95 wt % of Al 2 O 3 (Sumitomo Chemical Co., AES-12) having a particle size of 0.45 m, and 5 wt % of an acryl-based rubber (ZEON Corporation, BM-520B) in an N-methylpyrrolidone solvent.
- a slurry was prepared by adding 97.5 wt % of graphite, 1.5 wt % of a styrene-butadiene rubber (SBR), and 1 wt % of carboxylmethyl cellulose (CMC) to water as a solvent.
- SBR styrene-butadiene rubber
- CMC carboxylmethyl cellulose
- the slurry was coated on a copper foil and dried, and then pressed with a roll presser to form a negative active material layer. Subsequently, the inorganic layer composition was coated on the negative active material layer to form an inorganic layer, and the organic layer composition was coated on the inorganic layer to form an organic layer, thereby manufacturing a negative electrode.
- the inorganic layer was 6 ⁇ m thick, and the organic layer was 2 ⁇ m thick.
- the polyethylene particle and the Al 2 O 3 were included in amounts of 1.6 wt % and 9.8 wt %, respectively, based on the total weight of the negative active material layer and a coating layer including the inorganic layer and the organic layer.
- a slurry was prepared by combining 94 wt % of a mixture including 90 wt % of LiNi 0.33 Co 0.33 Mn 0.33 O 2 and 10 wt % of LiNi 0.8 Co 0.15 Al 0.05 O 2 , 3 wt % of carbon black, and 3 wt % of polyvinylidene fluoride in an N-methylpyrrolidone (NMP) solvent.
- NMP N-methylpyrrolidone
- An electrolyte solution was prepared by mixing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 2:4:4 and adding 1.15 M LiPF 6 to the mixed solvent.
- a rechargeable lithium battery cell was manufactured using the positive electrode, the negative electrode, and the electrolyte solution described above, and a polyethylene separator.
- a rechargeable lithium battery cell was manufactured as in Example 1 except that the organic layer was formed to be 4 ⁇ m thick.
- a rechargeable lithium battery cell was manufactured as in Example 1 except that the negative electrode was manufactured as follows.
- the organic layer composition was coated on the negative active material layer to form an organic layer, and the inorganic layer composition was coated on the organic layer to form an inorganic layer, thereby manufacturing a negative electrode.
- the organic layer was 4 ⁇ m thick, and the inorganic layer was 6 m thick.
- the rechargeable lithium battery cell was manufactured as in Example 1 except that the negative electrode was manufactured as follows.
- a composite layer composition was prepared by mixing 47.5 wt % of polyethylene particle (Mitsui Chemicals, Inc, Chemipearl W401, which were vacuum-dried after being dispersed in water) having a melting point of 110° C., an average particle size of 1 ⁇ m, and a weight average molecular weight of 5,000 g/mol; 47.5 wt % of Al 2 O 3 (Sumitomo Chemical Co., Ltd., AES-12) having a particle size of 0.45 m; and 5 wt % of an acryl-based rubber (ZEON Corporation, BM-520B) in an N-methylpyrrolidone solvent.
- polyethylene particle Mitsubishi Chemicals, Inc, Chemipearl W401, which were vacuum-dried after being dispersed in water
- 47.5 wt % of Al 2 O 3 Suditomo Chemical Co., Ltd., AES-12
- an acryl-based rubber ZEON Corporation, BM-520B
- the composite layer composition was coated on the negative active material layer to form a composite layer, thereby manufacturing a negative electrode.
- the composite layer was 8 m thick.
- the polyethylene particle and the Al 2 O 3 were included in amounts of 4.9 wt % and 4.9 wt %, respectively, based on the total weight of the negative active material layer and a coating layer including the inorganic layer and the organic layer.
- a rechargeable lithium battery was manufactured as in Example 1 except that the slurry was coated on a copper foil, dried, and then pressed with a roll presser to manufacture the negative electrode.
- a rechargeable lithium battery cell was manufactured as in Example 1 except that the negative electrode was manufactured as follows.
- the inorganic layer composition was coated on the negative active material layer to form an inorganic layer, thereby manufacturing a negative electrode.
- the inorganic layer was 6 ⁇ m thick.
- FIG. 5 is a graph showing a relationship between temperature and resistance of the rechargeable lithium battery cells according to Examples 1 to 4 and Comparative Examples 1 and 2.
- the rechargeable lithium battery cells using a negative electrode having a coating layer including an organic material and an inorganic material on a negative active material layer according to Examples 1 to 4 showed a lower temperature at which resistance starts to increase compared with the rechargeable lithium battery cell using a negative electrode having no coating layer according to Comparative Example 1 and the rechargeable lithium battery cell using a negative electrode coated by only an inorganic material according to Comparative Example 2. Accordingly, the organic material of Examples 1 to 4 suppressed (or reduced) exothermicity of the battery due to a shut-down function of the organic material.
- the rechargeable lithium battery cells were charged at a charge current of 0.5 C up to 4.20V and cut off at 0.05 C and penetration evaluation was performed by using a penetration pin having a diameter of 2.5 mm at a speed of 80 mm/sec.
- the rechargeable lithium battery cells using a negative electrode having a coating layer including an organic material and an inorganic material on a negative active material layer according to Examples 1 to 4 showed excellent penetration safety compared with the rechargeable lithium battery cell using a negative electrode having no coating layer according to Comparative Example 1 and the rechargeable lithium battery cell using a negative electrode coated by only an inorganic material according to Comparative Example 2.
- the rechargeable lithium battery cell using a negative electrode including the organic material of Examples 1 and 2 for example, a thicker organic layer according to Example 2 showed better penetration safety. Accordingly, the negative electrode coated with an organic material and an inorganic material on the surface showed excellent penetration safety due to a shut-down function of the organic material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 14/228,118, filed on Mar. 27, 2014, which claims priority to and the benefit of U.S. Provisional Application No. 61/865,985, filed on Aug. 14, 2013 in the U.S. Patent and Trademark Office, the entire content of each of which is incorporated herein by reference.
- A negative electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same are disclosed.
- Recently, due to reductions in size and weight of portable electronic equipment, there has been a need to develop rechargeable lithium batteries for portable electronic equipment that have both high performance and large capacity.
- Oxides that include lithium and transition elements and are capable of intercalating and deintercalating lithium ions, for example, LiCoO2, LiMn2O4, LiNi1-xCoxO2 (0<x<1) and the like, have been used as positive active materials for rechargeable lithium batteries. As for negative active materials for a rechargeable lithium battery, various carbon-based materials such as artificial graphite, natural graphite, and hard carbon, which intercalate and deintercalate lithium ions, have been used.
- A rechargeable lithium battery including the above-described positive and negative active materials has stability and safety problems, because the positive and negative electrodes become thermally unstable, depending on the charge state of the battery, at a temperature of greater than or equal to 25° C., and thus, the positive and negative active materials, electrolyte salt, and an organic solvent of the battery are decomposed.
- In addition, due to an increasing demand for higher capacity batteries, it has become more difficult to provide higher battery stability and safety.
- An aspect of one embodiment of the present disclosure is directed toward a negative electrode for a rechargeable lithium battery having excellent safety, thermal stability, and cycle-life characteristics by initially suppressing (or reducing) exothermicity of the battery and preventing (or reducing the likelihood of) a short-circuit between a positive electrode and the negative electrode.
- Another aspect of an embodiment of the present disclosure is directed toward a rechargeable lithium battery including the negative electrode.
- According to one embodiment of the present disclosure a negative electrode for a rechargeable lithium battery includes: a current collector; a negative active material layer on the current collector; and a coating layer directly contacting the negative active material layer, the coating layer including an organic material and an inorganic material. In some embodiments, the coating layer is a single layer or has a multi-layered structure.
- In some embodiments, the coating layer partially penetrates a surface of the negative active material layer.
- The coating layer may be a composite layer including the organic material and the inorganic material in a single layer.
- The coating layer may include an inorganic layer including the inorganic material; and an organic layer including the organic material.
- In an embodiment of the negative electrode, the inorganic layer may directly contact the negative active material layer, and the organic layer may directly contact the inorganic layer; or the organic layer may directly contact the negative active material layer, and the inorganic layer may directly contact the organic layer.
- The organic material may comprise a polymer particle including a polyolefin, a polyolefin derivative, a polyolefin wax, an acryl-based compound, or a combination thereof.
- The organic material may include a polymer particle having a melting point in a range from 85 to 130° C. The polymer particle may include a polyolefin, a polyolefin derivative, a polyolefin wax, an acryl-based compound, or a combination thereof. The organic material may have a weight average molecular weight in a range from 300 to 10,000 g/mol. A particle size of the polymer particle may be in a range from 0.1 to 5 m.
- The organic material may be included in the negative electrode in an amount in a range from 0.5 to 10 wt % based on the total amount of the negative active material layer and the coating layer.
- The inorganic material may include SiO2, Al2O3, Al(OH)3, AlO(OH), TiO2, BaTiO2, ZnO2, Mg(OH)2, MgO, Ti(OH)4, aluminum nitride, silicon carbide, boron nitride, or a combination thereof.
- The inorganic material may have a particle size of 0.1 to 5 μm.
- The inorganic material may be included in the negative electrode in an amount in a range from 1 to 20 wt % based on the total amount of the negative active material layer and the coating layer.
- A thickness of the composite layer may be in a range from 1 to 20 μm.
- A thickness of the inorganic layer may be in a range from 1 to 10 m, and a thickness of the organic layer may be in a range from 1 to 10 μm.
- The coating layer may further include a binder different from the organic material, and the binder may include a styrene-butadiene rubber (SBR), a carboxylmethyl cellulose (CMC), a polyvinylidene fluoride (PVdF), a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, an ethylenevinylacetate (EVA), a hydroxyethyl cellulose (HEC), a polyvinyl alcohol (PVA), a polyvinylbutyral (PVB), an ethylene-acrylic acid copolymer, an acrylonitrile, a vinyl acetate derivative, a polyethylene glycol, an acryl-based rubber, or a combination thereof.
- According another embodiment of the present disclosure, a rechargeable lithium battery includes the negative electrode; a positive electrode facing the negative electrode; an electrolyte solution impregnating the negative electrode and the positive electrode; and a separator between the negative electrode and the positive electrode.
- The separator may include an organic material, and a melting point of the organic material of the separator may be higher than a melting point of the organic material of the coating layer.
- Additional embodiments of the present disclosure are included in the following detailed description.
- According to aspects of the present disclosure, a rechargeable lithium battery having excellent safety, thermal stability, and cycle-life characteristics may be realized by initially suppressing (or reducing) exothermicity and preventing (or reducing the likelihood of) a short-circuit between the positive electrode and the negative electrode.
- The accompanying drawings, together with the specification, illustrate embodiments of the present invention, and, together with the description, serve to explain the principles of the present invention.
-
FIG. 1 is a schematic view showing a rechargeable lithium battery according to one embodiment in an unassembled state. -
FIG. 2 is a cross-sectional view of a negative electrode for a rechargeable lithium battery according to one embodiment. -
FIG. 3 is a cross-sectional view of a negative electrode for a rechargeable lithium battery according to another embodiment. -
FIG. 4 is a cross-sectional view of a negative electrode for a rechargeable lithium battery according to yet another embodiment. -
FIG. 5 is a graph of a temperature and resistance of the negative electrodes for a rechargeable lithium battery according to Examples 1 and 2 and Comparative Examples 1 and 2. - Hereinafter, only certain embodiments of the present invention are shown and described, by way of illustration. However, these embodiments are exemplary, and this disclosure is not limited thereto. As those skilled in the art would recognize, the invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Also, in the context of the present application, when a first element is referred to as being “on” a second element, it can be directly on the second element or be indirectly on the second element with one or more intervening elements interposed therebetween. Like reference numerals designate like elements throughout the specification.
- A rechargeable lithium battery according to one embodiment will now be described with reference to
FIG. 1 . -
FIG. 1 is a schematic view of a rechargeable lithium battery according to one embodiment. - Referring to
FIG. 1 , arechargeable lithium battery 100 according to one embodiment includes anelectrode assembly 110, abattery case 120 housing theelectrode assembly 110, and anelectrode tab 130 that provides an electrical channel for transmitting a current formed in theelectrode assembly 110 out of the rechargeable lithium battery. Thebattery case 120 may include two sides that are overlapped with one another and sealed. In addition, an electrolyte solution is injected into thebattery case 120 housing theelectrode assembly 110. - The
electrode assembly 110 includes a positive electrode, a negative electrode facing the positive electrode, and a separator between the positive electrode and the negative electrode. - The negative electrode according to one embodiment includes a current collector, a negative active material layer on the current collector, and a coating layer on (e.g., directly contacting) the negative active material layer. The coating layer may be a single layer or may have a multi-layered structure and may include an organic material and an inorganic material. In some embodiments, the coating layer partially penetrates a surface of the negative active material layer. For example, the coating layer may be directly coated on the negative active material layer to partially penetrate the negative active material layer.
- In some embodiments, the organic material is coated on the negative active material layer. For example, the organic material may be directly coated on the negative active material to directly contact the negative active material layer. The organic material may prevent (or reduce) movement of lithium ions at a temperature of 85 to 130° C. due to a shut-down function of the organic material, thereby increasing internal resistance of the battery and deteriorating electrical/chemical reactivity of the battery at the temperature.
- For example, when the organic material of the coating layer has a shut-down function, the organic material may melt at temperatures of 85 to 130° C., thereby blocking or occluding pores of the separator and/or pores of the coating layer to prevent (or reduce) the movement of lithium ions between the negative electrode and the positive electrode. Accordingly, when an organic material capable of shutting down (e.g., an organic material having a shut-down function) is coated on an electrode, for example, on the surface of the negative electrode, exothermicity of a battery including the electrode may be initially suppressed (or reduced). For example, the coating layer described herein may prevent (or reduce the likelihood) of thermal runaway of the battery and improve the safety of the battery by blocking (or reducing) movement of lithium ions between the positive electrode and the negative electrode at temperatures of 85 to 130° C., or higher.
- In addition, the inorganic material may be coated (e.g., directly coated) on the negative active material layer and may form an electrically insulating layer on an electrode, for example, on the surface of a negative electrode and thus, the inorganic material may prevent (or reduce the likelihood of) a short-circuit between the positive electrode and the negative electrode.
- Accordingly, when the organic material and the inorganic material are coated on the surface of a negative electrode, exothermicity of a battery of including the negative electrode may be initially suppressed (or reduced), and a short-circuit between the positive electrode and the negative electrode may be prevented (or the likelihood of such a short circuit may be reduced), thereby improving safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery.
- On the other hand, when the organic material and the inorganic material are coated on a surface of a separator substrate, the separator may be broken due to a physical impact, thereby nullifying the effects of the organic material. According to one embodiment of the present disclosure, the organic material and/or the inorganic material are directly coated on a surface of an electrode, which provides strong support for the organic material and the inorganic material, and thus, results in a more stable rechargeable lithium battery having improved safety, as compared to a rechargeable lithium battery prepared by coating the organic material and the inorganic material on a surface of a separator substrate. In addition, the organic material and the inorganic material may protect the electrode, prevent (or reduce) detachment of an electrode active material of the electrode and decrease surface roughness of the electrode, thereby preventing (or reducing the likelihood of) the occurrence of a defect due to electrode friction during assembly of the battery.
- The structures of embodiments of the negative electrode are illustrated in
FIGS. 2 to 4 .FIGS. 2 to 4 provide illustrations of embodiments of the negative electrode, but the negative electrode is not limited thereto. -
FIG. 2 is a cross-sectional view showing a structure of one embodiment of a negative electrode for a rechargeable lithium battery. - Referring to
FIG. 2 , one embodiment of anegative electrode 10 for a rechargeable lithium battery includes acurrent collector 11, a negativeactive material layer 12 on thecurrent collector 11, and a coating layer on the negativeactive material layer 12. In the embodiment shown inFIG. 2 , the coating layer has a single layer structure. For example, the coating layer may be acomposite layer 13 in which anorganic material 14 and aninorganic material 15 form a single layer. - When an organic material and an inorganic material are coated on an electrode, for example, on a surface of a negative electrode as a single layer, the organic material may shut down a battery including the layer when the battery reaches high temperatures and, thus, initially suppress (or reduce) exothermicity of the battery. The inorganic material has an electrical insulation property and, thus, may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode. Accordingly, safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery may be improved by including the organic material and the inorganic material in a coating layer of the rechargeable lithium battery.
-
FIG. 3 is a cross-sectional view showing a structure of another embodiment of a negative electrode for a rechargeable lithium battery. - Referring to
FIG. 3 , one embodiment of anegative electrode 20 for a rechargeable lithium battery includes acurrent collector 21, a negativeactive material layer 22 on thecurrent collector 21, and a coating layer on (e.g., directly contacting) the negativeactive material layer 22. InFIG. 3 , the coating layer has a multi-layered structure and, includes aninorganic layer 23 including aninorganic material 25 and anorganic layer 24 including anorganic material 26. Herein, in this embodiment, theinorganic layer 23 may be coated on (e.g., directly coated on) the negativeactive material layer 22, and theorganic layer 24 may be coated on (e.g., directly coated on) theinorganic layer 23. - When an organic material and an inorganic material are coated on an electrode, for example, on a surface of a negative electrode (e.g., the inorganic material is coated, or directly coated, on the surface of the negative electrode, and the organic material is coated, or directly coated, as a separate layer thereon), the organic material may initially suppress (or reduce) exothermicity of a battery including the organic material and the inorganic material due to a shut-down function of the organic material. The inorganic material may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode due to an electrical insulation property of the inorganic material. Accordingly, safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery may be improved.
-
FIG. 4 is a cross-sectional view showing a structure of yet another embodiment of a negative electrode for a rechargeable lithium battery. - Referring to
FIG. 4 , one embodiment of anegative electrode 30 for a rechargeable lithium battery includes acurrent collector 31, a negativeactive material layer 32 on thecurrent collector 31, and a coating layer on the negativeactive material layer 32. InFIG. 4 , the coating layer has a multi-layered structure. For example, the coating layer may include anorganic layer 33 including anorganic material 35 and aninorganic layer 34 including aninorganic material 36. Herein, in this embodiment, theorganic layer 33 may be coated on (e.g., directly coated on) the negativeactive material layer 32, and theinorganic layer 34 may be coated on (e.g., directly coated on) theorganic layer 33. - When an organic material and an inorganic material are coated on an electrode, for example on a surface of a negative electrode (e.g., the organic material is coated, or directly coated, on the surface of the negative electrode, and an inorganic material is coated, or directly coated, thereon as a separate layer), the organic material may initially suppress (or reduce) exothermicity of a battery including the organic material and the inorganic material due to a shut-down function of the organic material. The inorganic material may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode due to an electrical insulation property of the inorganic material. Accordingly, safety, thermal stability, and cycle-life characteristics of the rechargeable lithium battery may be improved.
- The organic material included in the composite layer and the organic layer in
FIGS. 2 to 4 may include a polymer particle having a melting point in a range from 85 to 130° C. When the organic material has a melting point within the foregoing range, exothermicity of a battery including the organic material may be initially suppressed (or reduced) due to a shut-down function of the organic material. - According to an embodiment, the separator includes an organic material such as a polyolefin based polymer, and the melting point of the organic material of the separator is higher than the melting point of the organic material of the coating layer.
- The organic material of the separator may have a melting point of 130° C. or more, and thus, the separator may carry out a shut-down function at a temperature of 130° C. or more. However, in the case of a battery having a high energy density for high capacity or in the case of using an active material having decreased structural or chemical stability, initial exothermicity of the battery rapidly increases when the battery has abnormal exothermicity, and thus, it is difficult to control the stability of the battery with only the shut-down function of the separator. Accordingly, in one embodiment, an organic material having a lower melting point than that of the organic material of the separator is coated on the negative active material layer, and the organic material coated on the negative active material layer may be first melted and shut-down at a temperature lower than 130° C. Thus, electrical/chemical reactivity may be suppressed at a lower temperature and exothermicity of the battery may be initially suppressed. In other words, the reactivity of a battery may be primarily suppressed by a shut-down of an organic material coated on the negative active material layer, and then shut-down of the organic material of the separator may be secondarily generated. Accordingly, the stability of a battery may be effectively obtained or improved.
- For example, the polymer particle may include a polyolefin, a polyolefin derivative, a polyolefin wax, an acryl-based compound, or a combination thereof. The polyolefin may be, for example, polyethylene, polypropylene, or a combination thereof.
- In some embodiments of the negative electrode, the polymer particle of the organic material includes polyethylene.
- A weight average molecular weight of the organic material may be in a range from 300 to 10,000 g/mol, for example, 2,000 to 6,000 g/mol. An average particle size of the polymer particle may be in a range from 0.1 to 5 μm, for example, 0.2 to 3 μm.
- When the polymer particle has a weight average molecular weight and an average particle size within one of the foregoing ranges, the polymer may minimize (or reduce) resistance to the movement of lithium ions, secure good performance of a battery including the organic material, reinforce a shut-down function of the organic material, and thus, initially suppress (or reduce) exothermicity of the battery.
- The organic material may be included in the negative electrode in an amount in a range from 0.5 to 10 wt %, for example, 3 to 7 wt %, based on the total amount of the negative active material layer and the coating layer. When the organic material is included within either of the foregoing ranges, its shut-down function is further reinforced, and exothermicity of a battery including the organic material may be initially suppressed (or reduced).
- The inorganic material included in the composite layer and the inorganic layer in
FIGS. 2 to 4 may include SiO2, Al2O3, Al(OH)3, AlO(OH), TiO2, BaTiO2, ZnO2, Mg(OH)2, MgO, Ti(OH)4, aluminum nitride, silicon carbide, boron nitride, or a combination thereof. - An average particle size of the inorganic material may be in a range from 0.1 to 5 μm, for example, 0.3 to 1 μm. When the inorganic material particle has an average particle size within either of the foregoing ranges, the inorganic material may be uniformly coated on the negative active material layer and thus, prevent (or prevent the likelihood of) a short-circuit between a positive electrode and the negative electrode due to an excellent electrical insulation property of the inorganic material. In addition, the inorganic material layer may minimize (or reduce) resistance to the movement of lithium ions and secure good battery performance.
- The inorganic material may be included in an amount in a range from 1 to 20 wt %, for example, 5 to 12 wt % based on the total amount of the negative active material layer and the coating layer. When the inorganic material is included within either of the above ranges, the inorganic material has an excellent electrical insulation property and may prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode.
- In
FIG. 2 , a thickness of the composite layer including the organic material and the inorganic material may be in a range from 1 to 20 μm, for example, 2 to 10 μm. When the composite layer has a thickness within either of the foregoing ranges, the composite layer has an excellent shut-down function and electrical insulation property and, thus, may initially suppress (or reduce) exothermicity of a battery and prevent (or reduce the likelihood of) a short-circuit between a positive electrode and the negative electrode. In addition, the composite layer may minimize (or reduce) resistance to the movement of lithium ions and minimize (or reduce) the thickness of the coating layer and, thus, secure good battery performance. - In
FIGS. 3 and 4 , a thickness of the inorganic layer may be in a range from 1 to 10 μm, for example, 2 to 7 μm, and a thickness of the organic layer may be in a range from 1 to 10 μm, for example, 3 to 7 μm. When the inorganic and organic layers each have a thickness within one of their respective ranges, a short-circuit between the positive electrode and the negative electrode may be prevented (or the likelihood of such a short-circuit may be reduced) due to an excellent electrical insulation property, and exothermicity of a battery may be initially suppressed (or reduced) due to a reinforced shut-down function. In addition, the inorganic and organic layers may minimize (or reduce) resistance to movement of lithium ions and may minimize (or reduce) the thickness of a coating layer and, thus, secure good battery performance. - The coating layer, for example, the composite layer of
FIG. 2 , may further include a binder as well as the organic material and the inorganic material. InFIGS. 3 and 4 , the organic layer may further include a binder as well as the organic material, and the inorganic layer may further include a binder as well as the inorganic material. - The binder may be a material that is different from the organic material. Examples of the binder may include a styrene-butadiene rubber (SBR), a carboxylmethyl cellulose (CMC), a polyvinylidene fluoride (PVdF), a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer, an ethylenevinyl acetate (EVA), hydroxyethyl cellulose (HEC), a polyvinyl alcohol (PVA), a polyvinylbutyral (PVB), an ethylene-acrylic acid copolymer, an acrylonitrile, a vinyl acetate derivative, a polyethylene glycol, an acryl-based rubber, and a combination thereof. In some embodiments of the negative electrode, the styrene-butadiene rubber (SBR), a mixture of the styrene-butadiene rubber (SBR) and the carboxylmethyl cellulose (CMC), the ethylenevinylacetate (EVA), the polyvinyl alcohol (PVA), the ethylene-acrylic acid copolymer, and/or the acryl-based rubber may be used as the binder.
- When the binder is included in the coating layer, adherence to the surface of the negative electrode is improved, and adherence between organic material particles, between inorganic material particles, and/or between the organic material particles and the inorganic material particles may be improved.
- The current collector of the negative electrode may be a copper foil.
- The negative active material layer includes a negative active material, a binder, and, optionally, a conductive material.
- The negative active material may include a material that reversibly intercalates/deintercalates lithium ions, a lithium metal, a lithium metal alloy, a material capable of doping and dedoping lithium, or a transition metal oxide.
- The material that reversibly intercalates/deintercalates lithium ions is a carbon material, and may be any suitable carbon-based negative active material generally used in rechargeable lithium batteries. Examples of the carbon-based negative active material may include crystalline carbon, amorphous carbon or a mixture thereof. The crystalline carbon may be non-shaped, or sheet, flake, spherical, or fiber shaped natural graphite or artificial graphite, and the amorphous carbon may be a soft carbon (e.g., carbon sintered at a low temperature), a hard carbon, mesophase pitch carbonized products, fired coke, and the like.
- The lithium metal alloy may be an alloy of lithium and a metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn.
- The material capable of doping and dedoping lithium may be Si, SiOx (0<x<2), a Si—C composite, a Si-Q alloy (wherein Q is an alkali metal, an alkaline-earth metal,
Group 13 to 16 elements, transition metal, a rare earth element, or a combination thereof, and is not Si), Sn, SnO2, a Sn—C composite, Sn—R (wherein R is an alkali metal, an alkaline-earth metal,Group 13 to 16 elements, transition metal, a rare earth element, or a combination thereof, and not Sn), and the like, and at least one of these materials may be mixed with SiO2. Examples of the Q and R may include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, or a combination thereof. - The transition metal oxide may be vanadium oxide, lithium vanadium oxide, and the like.
- The binder of the negative active material layer improves binding properties of the negative active material particles with one another and with a current collector. Examples of the binder of the negative active material layer may include a polyvinyl alcohol, a carboxylmethyl cellulose, a hydroxypropyl cellulose, a polyvinylchloride, a carboxylated polyvinylchloride, a polyvinylfluoride, an ethylene oxide-containing polymer, a polyvinylpyrrolidone, a polyurethane, a polytetrafluoroethylene, a polyvinylidene fluoride, a polyethylene, a polypropylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but the binder is not limited thereto.
- The conductive material improves conductivity of an electrode. Any suitable, electrically conductive material may be used as the conductive material, unless it causes a chemical change in the battery. Examples of the conductive material may include a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber and the like; a metal-based material such as a metal powder or a metal fiber and the like of copper, nickel, aluminum, silver, and the like; a conductive polymer such as a polyphenylene derivative and the like; or a mixture thereof.
- The negative electrode may be manufactured by a method including mixing the negative active material, the binder and the conductive material in a solvent to prepare a negative active material composition, and coating the negative active material composition on a negative current collector. Examples of the solvent include N-methylpyrrolidone and the like, but the solvent is not limited thereto.
- The positive electrode may include a current collector and a positive active material layer on the current collector.
- An example of the current collector may include aluminum, but the current collector is not limited thereto.
- The positive active material layer includes a positive active material.
- The positive active material may be a compound (e.g., a lithiated intercalation compound) capable of intercalating and deintercalating lithium, for example, a lithium metal oxide.
- The lithium metal oxide may be, for example, an oxide including lithium and at least one metal selected from cobalt, manganese, nickel, and aluminum. For example, compounds represented by the following chemical formulae may be used.
- LiaA1-bXbD2 (0.90≤a≤1.8, 0≤b≤0.5); LiaA1-bXbO2-cDc (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05); LiaE1-bXbO2-cDc (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05); LiaE2-bXbO4-cDc (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05); LiaNi1-b-cCobXcDα (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<α<2); LiaNi1-b-cCobXcO2-αTα (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<α≤2); LiaNi1-b-cCobXcO2-αT2 (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<α<2); LiaNi1-b-cMnbXcDα (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<α≤2); LiaNi1-b-cMnbXcO2-αTα (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<α<2); LiaNi1-b-cMnbXcO2-αT2 (0.90≤a≤1.8, 0≤b≤0.5, 0≤c≤0.05, 0<α≤2); LiaNibEcGdO2 (0.90≤a≤1.8, 0≤b≤0.9, 0≤c≤0.5, 0.001≤d≤0.1); LiaNibCocMndGeO2 (0.90≤a≤1.8, 0≤b≤0.9, 0≤c≤0.5, 0≤d≤0.5, 0.001≤e≤0.1); LiaNiGbO2 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaCoGbO2 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaMn1-bGbO2 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaMn2GbO4 (0.90≤a≤1.8, 0.001≤b≤0.1); LiaMn1-gGgPO4 (0.90≤a≤1.8, 0≤g≤0.5); QO2; QS2; LiQS2; V2O5; LiV2O5; LiZO2; LiNiVO4; Li(3-f)J2(PO4)3 (0≤f≤2); Li(3-f)Fe2(PO4)3(0≤f≤2); LiFePO4.
- In the above chemical formulae, A is selected from Ni, Co, Mn, and a combination thereof; X is selected from Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element, and a combination thereof; D is selected from O, F, S, P, and a combination thereof; E is selected from Co, Mn, and a combination thereof; T is selected from F, S, P, and a combination thereof; G is selected from Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and a combination thereof; Q is selected from Ti, Mo, Mn, and a combination thereof; Z is selected from Cr, V, Fe, Sc, Y, and a combination thereof; and J is selected from V, Cr, Mn, Co, Ni, Cu, and a combination thereof.
- The lithium metal oxide may be, for example, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, or a combination thereof. In some embodiments of the negative electrode, a mixture of lithium nickel cobalt manganese oxide and lithium nickel cobalt aluminum oxide may be used as the lithium metal oxide.
- The positive active material layer may further include a binder and a conductive material as well as the above-described positive active material.
- The binder of the positive active material layer improves binding properties between the electrode active material particles and also attaches the electrode active material to the positive current collector. Examples of the positive active material layer may include a polyvinyl alcohol, a carboxylmethyl cellulose, a hydroxypropyl cellulose, a diacetyl cellulose, a polyvinylchloride, a carboxylated polyvinylchloride, a polyvinylfluoride, an ethylene oxide-containing polymer, a polyvinylpyrrolidone, a polyurethane, a polytetrafluoroethylene, a polyvinylidene fluoride, a polyethylene, a polypropylene, a styrene-butadiene rubber, an acrylated styrene-butadiene rubber, an epoxy resin, nylon, and the like, but the binder of the positive active material layer is not limited thereto.
- The conductive material of the positive active material layer improves conductivity of the positive electrode. Any suitable, electrically conductive material may be used as the conductive material, unless it causes a chemical change in the battery. Examples of the conductive material may include a carbon-based material such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, a carbon fiber, or the like; a metal-based material such as a metal powder or a metal fiber or the like of copper, nickel, aluminum, silver, or the like; a conductive polymer such as a polyphenylene derivative or the like; or a mixture thereof.
- The electrolyte solution may include a non-aqueous organic solvent and a lithium salt.
- The non-aqueous organic solvent serves as a medium for transmitting ions taking part in the electrochemical reaction of the battery. The non-aqueous organic solvent may be selected from a carbonate-based solvent, an ester-based solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent, and an aprotic solvent.
- The carbonate-based solvent may include, for example, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and/or the like.
- The carbonate-based solvent may include linear carbonate compounds and/or cyclic carbonate compounds. When the linear carbonate compounds and cyclic carbonate compounds are mixed, an organic solvent having high dielectric constant and low viscosity can be provided. The cyclic carbonate and the linear carbonate are mixed together in a volume ratio in a range from about 1:1 to about 1:9.
- The ester-based solvent may include, for example, n-methylacetate, n-ethylacetate, n-propylacetate, dimethylacetate, methylpropionate, ethylpropionate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and/or the like. The ether solvent may include, for example, dibutylether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, and/or the like, and the ketone-based solvent may include cyclohexanone, and/or the like. The alcohol-based solvent may include, for example, ethyl alcohol, isopropyl alcohol, and/or the like.
- The non-aqueous organic solvent may be used singularly or in a mixture. When the organic solvent is used in a mixture, the mixing ratio of the mixture may be controlled in accordance with a desirable battery performance.
- The non-aqueous electrolyte solution may further include an overcharge inhibitor additive such as ethylenecarbonate, pyrocarbonate, and/or the like.
- The lithium salt is dissolved in an organic solvent, supplies lithium ions in a battery, enables operation of the rechargeable lithium battery, and improves lithium ion transportation between positive and negative electrodes therein.
- The lithium salt may include LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(SO3C2F5)2, LiC4F9SO3, LiCIO4, LiAIO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2) (where x and y are natural numbers), LiCl, LiI, LiB(C2O4)2 (lithium bis(oxalato) borate, LiBOB), or a combination thereof, as a supporting electrolytic salt.
- The lithium salt may be used in a concentration in a range from about 0.1 M to about 2.0 M. When the lithium salt is included within the above concentration range, the electrolyte may have improved performance and lithium ion mobility due to good electrolyte conductivity and viscosity.
- The separator may include any materials commonly used in lithium batteries as long as the separator is capable of separating a negative electrode from a positive electrode and providing a transporting passage for lithium ions. For example, the separator may be made of a material having a low resistance to ion transportation and an improved ability for impregnation of an electrolyte. For example, the material of the separator may be selected from glass fiber, polyester, TEFLON® (tetrafluoroethylene; TEFLON is a registered trademark of E. I. Du Pont de Nemours and Company, Wilmington, Del.), polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and a combination thereof. It may have a form of a non-woven fabric or a woven fabric. For example, a polyolefin-based polymer separator such as polyethylene, polypropylene or the like is mainly used for a lithium ion battery. In order to ensure good heat resistance and/or mechanical strength, a coated separator including a ceramic component and/or a polymer material may be used. For example, the separator may have a mono-layered or multi-layered structure.
- Hereinafter, embodiments of the present disclosure are described in more detail with reference to examples by way of illustration. However, the present disclosure is not limited to the examples disclosed herein.
- Furthermore, what is not described in this disclosure may be sufficiently understood by those who have knowledge in the field relevant to this disclosure and will not be illustrated or described here.
- An organic layer composition was prepared by mixing 98 wt % of polyethylene particles (Mitsui Chemicals, Inc, Chemipearl W401) having a melting point of 110° C., an average particle size of 1 μm, and a weight average molecular weight of 5,000 g/mol; and 2 wt % of an acryl-based rubber (ZEON Corporation, BM-900B) in water.
- An inorganic layer composition was prepared by mixing 95 wt % of Al2O3 (Sumitomo Chemical Co., AES-12) having a particle size of 0.45 m, and 5 wt % of an acryl-based rubber (ZEON Corporation, BM-520B) in an N-methylpyrrolidone solvent.
- A slurry was prepared by adding 97.5 wt % of graphite, 1.5 wt % of a styrene-butadiene rubber (SBR), and 1 wt % of carboxylmethyl cellulose (CMC) to water as a solvent.
- The slurry was coated on a copper foil and dried, and then pressed with a roll presser to form a negative active material layer. Subsequently, the inorganic layer composition was coated on the negative active material layer to form an inorganic layer, and the organic layer composition was coated on the inorganic layer to form an organic layer, thereby manufacturing a negative electrode. In this example, the inorganic layer was 6 μm thick, and the organic layer was 2 μm thick. Herein, the polyethylene particle and the Al2O3 were included in amounts of 1.6 wt % and 9.8 wt %, respectively, based on the total weight of the negative active material layer and a coating layer including the inorganic layer and the organic layer.
- A slurry was prepared by combining 94 wt % of a mixture including 90 wt % of LiNi0.33Co0.33Mn0.33O2 and 10 wt % of LiNi0.8Co0.15Al0.05O2, 3 wt % of carbon black, and 3 wt % of polyvinylidene fluoride in an N-methylpyrrolidone (NMP) solvent. The slurry was coated on an aluminum (Al) thin film and dried, and then pressed with a roll presser, thereby manufacturing a positive electrode.
- An electrolyte solution was prepared by mixing ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate in a volume ratio of 2:4:4 and adding 1.15 M LiPF6 to the mixed solvent.
- A rechargeable lithium battery cell was manufactured using the positive electrode, the negative electrode, and the electrolyte solution described above, and a polyethylene separator.
- A rechargeable lithium battery cell was manufactured as in Example 1 except that the organic layer was formed to be 4 μm thick.
- A rechargeable lithium battery cell was manufactured as in Example 1 except that the negative electrode was manufactured as follows.
- The organic layer composition was coated on the negative active material layer to form an organic layer, and the inorganic layer composition was coated on the organic layer to form an inorganic layer, thereby manufacturing a negative electrode. In this example, the organic layer was 4 μm thick, and the inorganic layer was 6 m thick.
- The rechargeable lithium battery cell was manufactured as in Example 1 except that the negative electrode was manufactured as follows.
- A composite layer composition was prepared by mixing 47.5 wt % of polyethylene particle (Mitsui Chemicals, Inc, Chemipearl W401, which were vacuum-dried after being dispersed in water) having a melting point of 110° C., an average particle size of 1 μm, and a weight average molecular weight of 5,000 g/mol; 47.5 wt % of Al2O3(Sumitomo Chemical Co., Ltd., AES-12) having a particle size of 0.45 m; and 5 wt % of an acryl-based rubber (ZEON Corporation, BM-520B) in an N-methylpyrrolidone solvent. The composite layer composition was coated on the negative active material layer to form a composite layer, thereby manufacturing a negative electrode. In this example, the composite layer was 8 m thick. Herein, the polyethylene particle and the Al2O3 were included in amounts of 4.9 wt % and 4.9 wt %, respectively, based on the total weight of the negative active material layer and a coating layer including the inorganic layer and the organic layer.
- A rechargeable lithium battery was manufactured as in Example 1 except that the slurry was coated on a copper foil, dried, and then pressed with a roll presser to manufacture the negative electrode.
- A rechargeable lithium battery cell was manufactured as in Example 1 except that the negative electrode was manufactured as follows.
- The inorganic layer composition was coated on the negative active material layer to form an inorganic layer, thereby manufacturing a negative electrode. In this comparative example, the inorganic layer was 6 μm thick.
- Resistance changes depending on a temperature of the rechargeable lithium battery cells according to Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated, and the results are shown in
FIG. 5 . -
FIG. 5 is a graph showing a relationship between temperature and resistance of the rechargeable lithium battery cells according to Examples 1 to 4 and Comparative Examples 1 and 2. - Referring to
FIG. 5 , the rechargeable lithium battery cells using a negative electrode having a coating layer including an organic material and an inorganic material on a negative active material layer according to Examples 1 to 4 showed a lower temperature at which resistance starts to increase compared with the rechargeable lithium battery cell using a negative electrode having no coating layer according to Comparative Example 1 and the rechargeable lithium battery cell using a negative electrode coated by only an inorganic material according to Comparative Example 2. Accordingly, the organic material of Examples 1 to 4 suppressed (or reduced) exothermicity of the battery due to a shut-down function of the organic material. - Penetration safety of the rechargeable lithium battery cells according to Examples 1 to 4 and Comparative Examples 1 and 2 were evaluated, and the results are shown in the following Table 1.
- The rechargeable lithium battery cells were charged at a charge current of 0.5 C up to 4.20V and cut off at 0.05 C and penetration evaluation was performed by using a penetration pin having a diameter of 2.5 mm at a speed of 80 mm/sec.
-
TABLE 1 Comparative Examples Examples 1 2 3 4 1 2 Evaluation Non-ignition Non-ignition Non-ignition Non-ignition Explosion Ignition result of (maximum (maximum (maximum (maximum penetration temperature temperature temperature temperature safety 125° C.) 79° C.) 81° C.) 78° C.) - Referring to Table 1, the rechargeable lithium battery cells using a negative electrode having a coating layer including an organic material and an inorganic material on a negative active material layer according to Examples 1 to 4 showed excellent penetration safety compared with the rechargeable lithium battery cell using a negative electrode having no coating layer according to Comparative Example 1 and the rechargeable lithium battery cell using a negative electrode coated by only an inorganic material according to Comparative Example 2. In addition, the rechargeable lithium battery cell using a negative electrode including the organic material of Examples 1 and 2, for example, a thicker organic layer according to Example 2 showed better penetration safety. Accordingly, the negative electrode coated with an organic material and an inorganic material on the surface showed excellent penetration safety due to a shut-down function of the organic material.
- While the present invention has been described in connection with certain embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof. While this disclosure has been described in connection with what are presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof.
-
- 10, 20, 30: negative electrode
- 11, 21, 31: current collector
- 12, 22, 32: negative active material layer
- 13: composite layer
- 14, 26, 35: organic material
- 15, 25, 36: inorganic material
- 23, 34: inorganic layer
- 24, 33: organic layer
- 100: rechargeable lithium battery
- 110: electrode assembly
- 120: battery case
- 130: electrode tab
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/508,595 US20190341656A1 (en) | 2013-08-14 | 2019-07-11 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361865985P | 2013-08-14 | 2013-08-14 | |
US14/228,118 US10381690B2 (en) | 2013-08-14 | 2014-03-27 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
US16/508,595 US20190341656A1 (en) | 2013-08-14 | 2019-07-11 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/228,118 Division US10381690B2 (en) | 2013-08-14 | 2014-03-27 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190341656A1 true US20190341656A1 (en) | 2019-11-07 |
Family
ID=50389362
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/228,118 Active 2034-06-19 US10381690B2 (en) | 2013-08-14 | 2014-03-27 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
US16/508,595 Abandoned US20190341656A1 (en) | 2013-08-14 | 2019-07-11 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/228,118 Active 2034-06-19 US10381690B2 (en) | 2013-08-14 | 2014-03-27 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
Country Status (5)
Country | Link |
---|---|
US (2) | US10381690B2 (en) |
EP (1) | EP2838142B1 (en) |
JP (1) | JP6388432B2 (en) |
KR (1) | KR102258082B1 (en) |
CN (1) | CN104377342B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210210795A1 (en) * | 2016-03-24 | 2021-07-08 | Uchicago Argonne, Llc | Materials to improve the performance of lithium and sodium batteries |
US11545660B2 (en) | 2017-10-20 | 2023-01-03 | Lg Energy Solutions, Ltd. | Long-life and ultra-high energy density lithium secondary battery |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160108116A (en) * | 2015-03-05 | 2016-09-19 | 주식회사 엘지화학 | Battery Cell Comprising a Separator with Enhanced Adhesive Property |
CN106159179B (en) * | 2015-04-21 | 2018-12-04 | 宁德时代新能源科技股份有限公司 | Metal lithium battery |
CN104979550A (en) * | 2015-06-17 | 2015-10-14 | 河南力源电池有限公司 | Novel 3V lithium ion battery capable of cyclically charging and discharging and manufacturing process of novel 3V lithium ion battery |
DE102016008918B4 (en) * | 2016-07-21 | 2023-08-03 | Mercedes-Benz Group AG | Electrode, electrochemical energy store with an electrode and method for producing an electrode |
KR20180040334A (en) * | 2016-10-12 | 2018-04-20 | 삼성에스디아이 주식회사 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
KR102314082B1 (en) * | 2016-10-26 | 2021-10-15 | 삼성에스디아이 주식회사 | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
KR20180049986A (en) * | 2016-11-04 | 2018-05-14 | 삼성에스디아이 주식회사 | Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same |
JP6149147B1 (en) * | 2016-11-25 | 2017-06-14 | Attaccato合同会社 | Framework forming agent and negative electrode using the same |
JP6878962B2 (en) * | 2017-03-02 | 2021-06-02 | トヨタ自動車株式会社 | Negative electrode for lithium ion secondary battery |
KR102448929B1 (en) * | 2017-05-10 | 2022-09-30 | 한국전자통신연구원 | Manufacturing method of electrode structure for lithium battery and manufacturing method of lithium battery using same |
CN109004219A (en) * | 2017-06-07 | 2018-12-14 | 银隆新能源股份有限公司 | A kind of lithium ion battery comprising rare earth modified barium titanium composite oxide |
CN107565089A (en) * | 2017-08-02 | 2018-01-09 | 天津市捷威动力工业有限公司 | A kind of method and battery for preparing pole piece table and applying more ceramic of compact figure layer |
KR102264691B1 (en) * | 2017-08-11 | 2021-06-15 | (주)엘지에너지솔루션 | Pre-lithiation Method using lithium metal and inorganic compound |
DE202018006949U1 (en) | 2017-09-21 | 2024-09-09 | Applied Materials, Inc. | anode electrode structure |
KR102671920B1 (en) * | 2017-10-30 | 2024-06-05 | 알케마 인코포레이티드 | Lithium-ion battery separator |
KR102244952B1 (en) * | 2017-11-06 | 2021-04-27 | 주식회사 엘지화학 | Negative electrode active material, negative electrode comprising the negative electrode active material, lithium secondarty battery comprising the negative electrode, and method for prepareing the negative electrode active material |
KR102258088B1 (en) * | 2017-11-08 | 2021-05-27 | 삼성에스디아이 주식회사 | Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery having the same, method for manufacturing non-aqueous electrolyte rechargeable battery and electrode for non-aqueous electrolyte rechargeable battery |
EP3483957A1 (en) | 2017-11-08 | 2019-05-15 | Samsung SDI Co., Ltd. | Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, the rechargeable battery and method for manufacturing the electrode |
EP3483948B1 (en) * | 2017-11-08 | 2021-10-06 | Samsung SDI Co., Ltd. | Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery |
KR102289964B1 (en) * | 2017-12-07 | 2021-08-13 | 주식회사 엘지에너지솔루션 | Anode for lithium metal battery and electrochemical device comprising the same |
JP7206763B2 (en) * | 2017-12-19 | 2023-01-18 | 株式会社リコー | Electrode and its manufacturing method, electrode element, non-aqueous electrolyte storage element |
CN114497432B (en) * | 2017-12-19 | 2024-07-09 | 株式会社理光 | Electrode, method of manufacturing the same, electrode element, and nonaqueous electrolyte storage element |
CN109994688B (en) * | 2017-12-29 | 2021-09-17 | 宁德时代新能源科技股份有限公司 | Composite separator, method for producing same, and electrochemical device using same |
CN108365178B (en) * | 2018-02-11 | 2020-12-08 | 珠海冠宇电池股份有限公司 | Protection method of lithium metal negative electrode, lithium metal negative electrode and lithium battery |
KR102226429B1 (en) | 2018-02-19 | 2021-03-10 | 삼성에스디아이 주식회사 | Positive electrode active material for rechargable lithium battery, positive electrode including the same and rechargeable lithium battery including same |
CN110277536B (en) * | 2018-03-16 | 2023-01-10 | 株式会社理光 | Electrode, coating liquid for insulating layer, and method for producing electrode |
KR102259219B1 (en) | 2018-07-03 | 2021-05-31 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR102259218B1 (en) | 2018-07-03 | 2021-05-31 | 삼성에스디아이 주식회사 | Electrode for lithium secondary battery, and lithium secondary battery including the same |
CN111199833A (en) * | 2018-11-16 | 2020-05-26 | 宁德时代新能源科技股份有限公司 | Electrochemical device |
KR102323950B1 (en) | 2018-12-12 | 2021-11-08 | 삼성에스디아이 주식회사 | Electrode for rechargeable lithium battery and rechargeable lithium battery including same |
KR102425514B1 (en) | 2019-05-03 | 2022-07-25 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR102492831B1 (en) * | 2019-05-03 | 2023-01-26 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR102425515B1 (en) | 2019-05-03 | 2022-07-25 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR102425513B1 (en) | 2019-05-03 | 2022-07-25 | 삼성에스디아이 주식회사 | Lithium secondary battery |
KR102487628B1 (en) * | 2019-05-03 | 2023-01-12 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
KR102492832B1 (en) | 2019-05-03 | 2023-01-26 | 삼성에스디아이 주식회사 | Lithium secondary battery |
WO2021153966A1 (en) * | 2020-01-31 | 2021-08-05 | 주식회사 엘지에너지솔루션 | Method for manufacturing separator-integrated electrode comprising inorganic layers with multilayer structure, and separator-integrated electrode manufactured thereby |
KR102706489B1 (en) * | 2020-08-28 | 2024-09-11 | 삼성에스디아이 주식회사 | Electrode assembly for rechargeable lithium battery, and rechargeable lithium battery including same |
KR102706490B1 (en) * | 2020-08-28 | 2024-09-11 | 삼성에스디아이 주식회사 | Electrode assembly for rechargeable lithium battery, and rechargeable lithium battery including same |
US12113190B2 (en) * | 2020-11-23 | 2024-10-08 | Nano And Advanced Materials Institute Limited | Thermal responsive electrode structure for lithium-ion batteries |
KR20230037378A (en) * | 2021-09-09 | 2023-03-16 | 삼성전자주식회사 | Battery comprising composite protection layer for electrode and method of manufacturing the same |
JP2024521370A (en) * | 2021-12-10 | 2024-05-31 | エルジー エナジー ソリューション リミテッド | Anode, method for producing anode, anode slurry, and secondary battery including anode |
KR20230155213A (en) * | 2022-05-03 | 2023-11-10 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode |
CN114744158B (en) * | 2022-05-18 | 2024-05-03 | 中南大学 | Method for modifying surface of lithium metal electrode by using organic/inorganic composite coating |
KR102795203B1 (en) | 2023-06-19 | 2025-04-17 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery with improved safety of internal short, lithium secondary battery containing the same and lithium secondary battery system therefor |
CN117374438A (en) * | 2023-12-08 | 2024-01-09 | 中国第一汽车股份有限公司 | Negative electrode plate, preparation method thereof and lithium ion battery comprising negative electrode plate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100248026A1 (en) * | 2009-03-25 | 2010-09-30 | Tdk Corporation | Electrode for lithium ion secondary battery and lithium ion secondary battery |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3030053B2 (en) | 1990-05-22 | 2000-04-10 | 三洋電機株式会社 | Rechargeable battery |
JP5071055B2 (en) | 1995-06-28 | 2012-11-14 | 宇部興産株式会社 | Non-aqueous secondary battery |
US6365299B1 (en) * | 1995-06-28 | 2002-04-02 | Fuji Photo Film Co., Ltd. | Nonaqueous secondary battery |
JP4415241B2 (en) | 2001-07-31 | 2010-02-17 | 日本電気株式会社 | Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode |
DE10238945B4 (en) | 2002-08-24 | 2013-01-03 | Evonik Degussa Gmbh | Electric separator with shut-off mechanism, process for its preparation, use of the separator in lithium batteries and battery with the separator |
KR20050035074A (en) * | 2003-10-10 | 2005-04-15 | 엘에스전선 주식회사 | Lithium secondary battery having ptc powder and manufacturing method thereof |
KR100666821B1 (en) | 2004-02-07 | 2007-01-09 | 주식회사 엘지화학 | Electrode with organic / inorganic composite porous coating layer and electrochemical device comprising the same |
US7615314B2 (en) * | 2004-12-10 | 2009-11-10 | Canon Kabushiki Kaisha | Electrode structure for lithium secondary battery and secondary battery having such electrode structure |
TWI346406B (en) | 2006-02-16 | 2011-08-01 | Lg Chemical Ltd | Lithium secondary battery with enhanced heat-resistance |
KR20080090655A (en) | 2007-04-05 | 2008-10-09 | 삼성에스디아이 주식회사 | Electrode for lithium secondary battery and lithium secondary battery comprising same |
KR20090106841A (en) | 2008-04-07 | 2009-10-12 | 삼성에스디아이 주식회사 | Electrode assembly and secondary battery having same |
JP2009277597A (en) * | 2008-05-16 | 2009-11-26 | Panasonic Corp | Nonaqueous electrolyte secondary battery |
KR20080106881A (en) | 2008-10-22 | 2008-12-09 | 주식회사 엘지화학 | Membrane and Electrochemical Device Using the Same |
JP5316905B2 (en) * | 2009-02-09 | 2013-10-16 | トヨタ自動車株式会社 | Lithium secondary battery |
JP2010225545A (en) | 2009-03-25 | 2010-10-07 | Tdk Corp | Electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2010117060A1 (en) * | 2009-04-09 | 2010-10-14 | 日産自動車株式会社 | Collector for secondary battery, and secondary battery using same |
KR101055536B1 (en) | 2009-04-10 | 2011-08-08 | 주식회사 엘지화학 | Separator comprising a porous coating layer, a method of manufacturing the same and an electrochemical device having the same |
JP2010255545A (en) | 2009-04-27 | 2010-11-11 | Daihatsu Motor Co Ltd | Blow-by gas treatment device for internal combustion engine |
JP2010267475A (en) | 2009-05-14 | 2010-11-25 | Panasonic Corp | Lithium ion secondary battery |
JPWO2011080884A1 (en) * | 2009-12-28 | 2013-05-09 | パナソニック株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5119277B2 (en) * | 2010-01-12 | 2013-01-16 | 株式会社日立製作所 | ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME |
KR101107079B1 (en) * | 2010-05-06 | 2012-01-20 | 삼성에스디아이 주식회사 | Cathode for energy storage device and energy storage device comprising the same |
KR20120026296A (en) | 2010-09-09 | 2012-03-19 | 주식회사 엘지화학 | A separator with developed safety, preparation method thereof, and electrochemical device containing the same |
KR101334615B1 (en) * | 2010-12-27 | 2013-11-29 | 주식회사 엘지화학 | Anode Active Material and Secondary Battery Comprising the Same |
KR20120122674A (en) | 2011-04-29 | 2012-11-07 | 삼성전자주식회사 | Negative electrode for lithium secondary battery, method of preparing the same, and lithium secondary battery employing the same |
JP2013054909A (en) * | 2011-09-05 | 2013-03-21 | Hitachi Ltd | Lithium ion secondary battery |
JP5660112B2 (en) * | 2012-04-27 | 2015-01-28 | 株式会社豊田自動織機 | Positive electrode for lithium ion secondary battery and lithium ion secondary battery |
-
2014
- 2014-03-27 US US14/228,118 patent/US10381690B2/en active Active
- 2014-03-31 EP EP14162829.7A patent/EP2838142B1/en active Active
- 2014-04-02 KR KR1020140039532A patent/KR102258082B1/en active Active
- 2014-05-30 JP JP2014112262A patent/JP6388432B2/en active Active
- 2014-08-14 CN CN201410398403.6A patent/CN104377342B/en active Active
-
2019
- 2019-07-11 US US16/508,595 patent/US20190341656A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100248026A1 (en) * | 2009-03-25 | 2010-09-30 | Tdk Corporation | Electrode for lithium ion secondary battery and lithium ion secondary battery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210210795A1 (en) * | 2016-03-24 | 2021-07-08 | Uchicago Argonne, Llc | Materials to improve the performance of lithium and sodium batteries |
US11545660B2 (en) | 2017-10-20 | 2023-01-03 | Lg Energy Solutions, Ltd. | Long-life and ultra-high energy density lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP2838142A1 (en) | 2015-02-18 |
JP6388432B2 (en) | 2018-09-12 |
JP2015037077A (en) | 2015-02-23 |
EP2838142B1 (en) | 2019-04-24 |
US20150050533A1 (en) | 2015-02-19 |
KR20150020022A (en) | 2015-02-25 |
CN104377342B (en) | 2019-11-19 |
KR102258082B1 (en) | 2021-05-27 |
CN104377342A (en) | 2015-02-25 |
US10381690B2 (en) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190341656A1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
US10529972B2 (en) | Separator for rechargeable lithium battery and rechargeable lithium battery including same | |
US10541401B2 (en) | Separator for rechargeable lithium battery and rechargeable lithium battery including same | |
US9553293B2 (en) | Rechargeable lithium battery | |
US10461358B2 (en) | Rechargeable lithium battery | |
KR101724009B1 (en) | Rechargeable lithium battery | |
US10205148B2 (en) | Rechargeable lithium battery | |
US9620821B2 (en) | Rechargeable lithium battery | |
US11380900B2 (en) | Anode for lithium secondary battery and lithium secondary battery comprising same | |
US9905854B2 (en) | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
US10879524B2 (en) | Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
KR20160053708A (en) | Electrode for rechargeable lithium battery and rechargeable lithium battery including the same | |
US20150200397A1 (en) | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAM, JUNG-HYUN;PARK, JONG-HWAN;CHOI, YEON-JOO;AND OTHERS;REEL/FRAME:050049/0483 Effective date: 20140326 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |