US20190275262A1 - Integrated needle and cannula for plastic surgery - Google Patents
Integrated needle and cannula for plastic surgery Download PDFInfo
- Publication number
- US20190275262A1 US20190275262A1 US16/368,693 US201916368693A US2019275262A1 US 20190275262 A1 US20190275262 A1 US 20190275262A1 US 201916368693 A US201916368693 A US 201916368693A US 2019275262 A1 US2019275262 A1 US 2019275262A1
- Authority
- US
- United States
- Prior art keywords
- cannula
- needle
- patient
- hypodermic needle
- skin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3295—Multiple needle devices, e.g. a plurality of needles arranged coaxially or in parallel
- A61M5/3297—Needles arranged coaxially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M19/00—Local anaesthesia; Hypothermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3205—Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
- A61M5/321—Means for protection against accidental injuries by used needles
- A61M5/322—Retractable needles, i.e. disconnected from and withdrawn into the syringe barrel by the piston
- A61M5/3232—Semi-automatic needle retraction, i.e. in which triggering of the needle retraction requires a deliberate action by the user, e.g. manual release of spring-biased retraction means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3286—Needle tip design, e.g. for improved penetration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3287—Accessories for bringing the needle into the body; Automatic needle insertion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3468—Trocars; Puncturing needles for implanting or removing devices, e.g. prostheses, implants, seeds, wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00792—Plastic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06004—Means for attaching suture to needle
- A61B2017/06009—Means for attaching suture to needle having additional means for releasably clamping the suture to the needle, e.g. actuating rod slideable within the needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B2017/06052—Needle-suture combinations in which a suture is extending inside a hollow tubular needle, e.g. over the entire length of the needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B2017/06085—Needles, e.g. needle tip configurations having a blunt tip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06166—Sutures
- A61B2017/06176—Sutures with protrusions, e.g. barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0059—Cosmetic or alloplastic implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/20—Pathogenic agents
- A61M2202/203—Bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/04—Skin
Definitions
- the present invention relates to medical instruments used by medical practitioners including Plastic Surgeons, Dermatologists, Otolaryngologists and mid-level medical practitioners. These medical instruments are used to inject substances beneath the skin including liquids and solid objects, such as threads. These injections are typically placed in the intra-dermal, sub-dermal, intra-muscular and/or sub-periosteal spaces.
- Plastic surgery, dermatology and otolaryngology involve medical procedures for improving and/or restoring the form and function of a body.
- medical practitioners have developed a number of techniques and technologies to facilitate their art. From the earliest skin flap done by Tagliacozzi, the movement of tissue has benefited the form, appearance and function of patients. This tissue movement includes cosmetic and reconstructive procedures, such as breast augmentation, breast reconstruction, abdominoplasty, liposuction, nasal surgery, eyelid surgery and sub-dermal injections to restore tissue and volume.
- sub-dermal injections include injections of fillers, Botulinum Toxin (“Botox”), fat transfer and subcutaneous threads. Injections of sub-dermal substances are minimally invasive procedures to add substances, remove substances, stimulate tissues, lift tissues or tighten tissues to alter the contours of the face and body. Substances are also injected to dissolve fat and fillers. Common areas to inject sub-dermal substances are in the face, neck, hands, breasts and buttocks resulting in a contour change to create a restored, more youthful appearance.
- Botulinum Toxin Botulinum Toxin
- Injections of sub-dermal substances are minimally invasive procedures to add substances, remove substances, stimulate tissues, lift tissues or tighten tissues to alter the contours of the face and body. Substances are also injected to dissolve fat and fillers. Common areas to inject sub-dermal substances are in the face, neck, hands, breasts and buttocks resulting in a contour change to create a restored, more youthful appearance.
- injectable substances include, but are not limited to, deoxycholic (bile) acid, hyaluronic acids, collagen-stimulating tumescent and autologous fillers (fat, platelet rich plasma), Botox, lidocaine, saline, hyaluronic acid fillers, synthetic wrinkle fillers (e.g., calcium hydroxyapatite, poly-1-lactic acid, poly glycolic acid), collagen wrinkle fillers, poly methyl methacrylate with bovine collagen, autologous wrinkle fillers, absorbable threads, non-absorbable threads and tumescent anesthesia solutions (collectively “medications” or “sub-dermal substances”).
- deoxycholic (bile) acid hyaluronic acids
- collagen-stimulating tumescent and autologous fillers fat, platelet rich plasma
- Botox e.g., lidocaine, saline
- hyaluronic acid fillers e.g., synthetic wrinkle fillers (e.g.,
- Hyaluronic acid fillers are cross-linked hyaluronic acids typically used to naturally augment the lips and fill the areas of the face which lose volume with age, such as the temples, mid-cheek break, tear through, nasolabial fold and marionette lines. They are equally useful in men and women, although currently used more commonly in men. Hyaluronic acids are volumizing agents which typically last for six months to two years.
- Collagen-stimulating fillers such as sculptra poly-1-lactic acid, radiesse and calcium hydroxyapatite, are typically injected throughout the whole face to provide more structural volumizing. They typically last at least 18 months.
- Botox When injected, Botox blocks the nerve signals that cause muscles to contract. This effect relaxes and smoothes the look of lines and wrinkles caused by repetitive movements on the face—most commonly, between the brows (i.e., the frown), crows-feet around the eyes, and horizontal forehead creases. Botox is also used cosmetically to balance facial symmetry and relax tight neck bands, as well as medically to reduce perspiration, treat migraine headaches and treat muscle spasticity. Fat grafting is a procedure that involves the transfer of fat from areas where a patient has excess fat, such as the flanks and thighs, into areas that would benefit from added volume, stem cells or platelet rich plasma [PRP], such as the face, hands, breasts or buttocks.
- PRP platelet rich plasma
- Sub-dermal injections are typically performed using a needle attached to or coupled with a syringe. While a syringe with a sharp tipped needle is useful for penetrating a patient's skin, that same sharp tipped needle can cause significant bruising, vessel laceration, soft tissue necrosis and even blindness when the sharp needle transgresses vascular structures. Transgression of vascular structures is virtually unavoidable using a needle alone. For this reason, many medical practitioners prefer using a blunt tipped instrument, such as a blunt-tipped cannula, to administer sub-dermal substances to a patient. Nonetheless, since its tip is blunt, the blunt-tipped cannula is unable to readily penetrate the surface of the skin.
- a blunt tipped instrument such as a blunt-tipped cannula
- a sharp-tipped needle including a lancet, scalpel, trough or trocar
- a blunt-tipped cannula for their sub-dermal injections in a two-step process.
- the medical practitioner uses the sharp-tipped needle to puncture a hole in the patient's skin.
- the sharp-tipped needle is then withdrawn from the hole and the cannula is inserted into the hole so the substance can be delivered or withdrawn from within the subcutaneous space.
- the present invention provides a way for medical practitioners to inject sub-dermal substances with a single medical instrument in a way that is quick, easy and accurate, with all the patient and medical practitioner benefits that come with using a hypodermic needle (or a lancet, scalpel, trough or trocar) and a blunt-tipped cannula.
- a blunt-tipped cannula is chosen with a small enough diameter so it can slide through the annular space in a hypodermic needle. In this way, after the hypodermic needle penetrates into the patient's skin, the medical practitioner can slide the blunt-tipped cannula through the annular space of the needle and directly under the patient's skin. Once the blunt-tipped cannula is under the patient's skin, the hypodermic needle is withdrawn from the patient's skin to allow the injection to be made using only the blunt-tipped cannula.
- the integrated needle and cannula of the present invention has a blunt-tipped cannula attached to the end of a syringe and threaded, at its distal end, through the annular space of a sharp-tipped hypodermic needle.
- the medical practitioner inserts the hypodermic needle into the patient's skin and, with the other hand, the medical practitioner then slides the blunt-tipped cannula through the annular space of the needle and moves it underneath the patient's skin as the sub-dermal substance is being injected.
- the medical practitioner inserts a sharp trocar embedded in a soft holder into the patient's skin at desired locations.
- the surface of the holder that lies against the skin may have some adhesive or adherent substance that can help the holder adhere to the skin.
- the medical practitioner withdraws the sharp trocar while leaving the soft holder in the patient's skin.
- the medical practitioner inserts the distal end of a blunt-tipped cannula.
- the medical practitioner should press down on the soft holder as the cannula is being inserted into the patient's skin. After the cannula is inserted, injections can be made using the blunt-tipped cannula.
- a transporter assembly is interposed between a syringe and an integrated hypodermic needle/cannula.
- the transporter assembly preferably includes a retractable inner needle tube or prong(s) attached to the hypodermic needle.
- the external transporter housing connects the syringe to the cannula, preferably through an integral cannula connector.
- the blunt-tipped cannula in this transporter assembly embodiment is threaded through the annular space of the hypodermic needle.
- the medical practitioner first advances the inner needle tube forward until the hypodermic needle at its distal tip penetrates into the patient's skin.
- the inner needle tube As the inner needle tube is advanced forward, it covers the full length of the blunt-tipped cannula and stabilizes the blunt-tipped cannula.
- the external transporter housing is advanced forward over the inner needle tube to cause the blunt-tipped cannula to slide through the needle and under the patient's skin.
- the inner needle tube is then pulled back to remove the needle from under the patient's skin, leaving only the blunt-tipped cannula in the skin. This can be accomplished manually by the medical practitioner or by using a triggering mechanism, such as a push or pull spring, that has been built into the device. The medical practitioner can then maneuver the blunt-tipped cannula under the patient's skin while injecting sub-dermal substances into the patient through the distal end of the blunt-tipped cannula.
- a triggering mechanism such as a push or pull spring
- a sharp-tipped trocar is placed concentrically inside a blunt-tipped cannula so that the sharp end of the trocar protrudes from the distal end of the cannula.
- the sharp tip of the trocar will penetrate into the patient's skin.
- the trocar is then fully or partially retracted from the cannula so that the cannula can be safely maneuvered under the patient's skin to inject sub-dermal substances.
- the distal end of the cannula is formed from a flexible, polymeric material that will seal up when the sharp end of the trocar is withdrawn.
- a dissolvable thread such as a barbed, polydioxanone (PDO) thread
- PDO polydioxanone
- a hypodermic needle is placed over the thread carrying cannula to puncture a hole in the skin. After the hole is made, the hypodermic needle is retracted. The threaded cannula needle is then advanced under the patient's skin to deposit the dissolvable thread.
- FIG. 1 is a perspective view of a first preferred integrated needle and cannula embodiment of the present invention.
- FIG. 2A illustrates a second preferred embodiment using a sharp trocar embedded in a soft holder.
- FIG. 2B illustrates the trocar embedded holder of FIG. 2A after it penetrates the patient's skin.
- FIG. 2C shows removal of the trocar from the trocar embedded holder of FIG. 2A .
- FIG. 2D shows insertion of a cannula into the FIG. 2A holder.
- FIG. 3 illustrates a perspective view of a third preferred embodiment where a transporter assembly is interposed between a syringe and an overlapping hypodermic needle/cannula.
- FIG. 4A is a side, cross-section view of the transporter assembly embodiment of FIG. 3 where the inner needle tube is extended partially forward.
- FIG. 4B is a side, cross-section view of the transporter assembly embodiment of FIG. 3 where the inner needle tube is retracted backward.
- FIG. 4C is a transverse, cross-section view of the FIG. 3 transporter assembly.
- FIG. 5A is an exploded, side cross-section view of the FIG. 3 transporter assembly components.
- FIG. 5B is an exploded, perspective view of the FIG. 3 transporter assembly components.
- FIG. 6A illustrates insertion of the hypodermic needle from the FIG. 3 transporter assembly embodiment into a patient's skin.
- FIG. 6B is a side, cross-section view of the FIG. 6A transporter assembly embodiment after hypodermic needle insertion.
- FIG. 6C illustrates how the blunt-tipped cannula can be inserted through the hypodermic needle and underneath the patient's skin using the FIG. 3 transporter assembly embodiment.
- FIG. 6D illustrates how the hypodermic needle is retracted while the blunt-tipped cannula remains under the patient's skin for the FIG. 3 transporter assembly embodiment.
- FIG. 6E illustrates how medication is inserted into the patient using the syringe in the FIG. 3 transporter assembly embodiment.
- FIG. 7A is a side, cross-section view occurring prior to hypodermic needle insertion of an alternative transporter assembly embodiment where the hypodermic needle is attached to two prongs rather than an inner needle tube.
- FIG. 7B is a side, cross-section view of the two-pronged alternative embodiment of FIG. 7A after the hypodermic needle penetrates a patient's skin.
- FIG. 7C is a side, cross-section view of the two-pronged alternative embodiment of FIG. 7A illustrating partial retraction of the hypodermic needle.
- FIG. 7D is a side, cross-section view of the two-pronged alternative embodiment of FIG. 7A illustrating full retraction of the hypodermic needle.
- FIG. 7E is a side, cross-section view of the two-pronged alternative embodiment of FIG. 7A illustrating injection of sub-dermal substances using the cannula.
- FIG. 8A illustrates a preferred integrated cannula and trocar embodiment of the present invention.
- FIG. 8B is a close-up, cross-section view of the distal tip of the cannula and trocar embodiment of FIG. 8A .
- FIG. 8C illustrates insertion of the cannula and trocar distal tip into a patient's skin for the FIG. 8A embodiment.
- FIG. 8D is a close-up, cross-section view of the FIG. 8A embodiment after the distal tip of the cannula and trocar have been inserted into a patient's skin.
- FIG. 8E illustrates retraction of the trocar from the cannula's distal tip for the FIG. 8A embodiment.
- FIG. 8F is a close-up, cross-section view of the FIG. 8A embodiment after the trocar has been retracted from the cannula's distal tip.
- FIG. 8G illustrates insertion of sub-dermal substances for the FIG. 8A embodiment after the trocar has been retracted from the cannula's distal tip.
- FIG. 8H is a close-up, cross-section view of the FIG. 8A embodiment illustrating insertion of sub-dermal substances after the trocar has been retracted from the cannula's distal tip.
- FIG. 9A is a cross-section view of a pull spring transporter assembly embodiment prior to release of the pull spring.
- FIG. 9B is a cross-section view of the pull spring transporter assembly embodiment of FIG. 9A after release of the pull spring.
- FIG. 10A is a cross-section view of a push spring transporter assembly embodiment prior to release of the push spring.
- FIG. 10B is a cross-section view of the push spring transporter assembly embodiment of FIG. 10A after release of the push spring.
- FIG. 11A illustrates an alternative push spring transporter assembly embodiment prior to release of the push spring.
- FIG. 11B illustrates the alternative push spring transporter assembly embodiment of FIG. 11A after release of the push spring.
- FIG. 11C is a cross-section view of the alternative push spring transporter assembly embodiment of FIG. 11A prior to release of the push spring.
- FIG. 11D is a cross-section view of the alternative push spring transporter assembly embodiment of FIG. 11A after release of the push spring.
- FIG. 11E is a cross-section view of the alternative push spring transporter assembly embodiment of FIG. 11A showing extension of the cannula.
- FIG. 11F is a cross-section view of the alternative push spring transporter assembly embodiment of FIG. 11A illustrating insertion of sub-dermal substances.
- FIG. 11G is a cross-section view of the alternative push spring transporter assembly embodiment of FIG. 11A after is has been reset for repeat use.
- FIG. 12A illustrates a cut-away view of an integrated needle and cannula that includes an exterior surgical thread for a thread-lift procedure.
- FIG. 12B illustrates the threaded needle/cannula embodiment of FIG. 12A after the thread has been inserted into a patient's skin.
- FIG. 13A illustrates a cut-away view of an integrated needle and cannula that includes an interior surgical thread for a thread-lift procedure.
- FIG. 13B illustrates the threaded needle/cannula embodiment of FIG. 13A where the interior surgical thread is more coiled.
- FIG. 14A illustrates a cut-away view of an integrated needle and cannula with an interior surgical thread where the cannula is open ended.
- FIG. 14B illustrates the threaded needle/cannula embodiment of FIG. 14A where filler is injected at the same time as surgical thread.
- This needle and cannula assembly 10 includes a syringe 12 , a blunt-tipped cannula 20 and a hypodermic needle device 30 .
- the syringe 12 in this embodiment is of conventional design with a generally cylindrical tube 13 to hold medication, a plunger 14 to squeeze out the sub-dermal substance, a finger grip 16 and the male portion of a connector 18 , which is preferably a Luer LockTM connector.
- a cannula 20 Attached to the syringe 12 in this preferred embodiment is a cannula 20 .
- a female connector 22 is used, which is preferably a female Luer LockTM connector capable of attaching to a male Luer LockTM connector 18 on the syringe 12 .
- the cannula 20 is preferably a blunt-tipped micro cannula that can be made in a wide range of lengths and gauges. For example, a typical length and gauge for sub-dermal substance application is 1.5 inches and 27 gauge.
- the type of cannula that can be attached to the syringe 12 includes the DermaSculptTM micro cannulas produced by CosmoFrance, Inc., SoftFilTM micro cannulas produced by SoftFil-USA as well as micro cannulas produced by Kerylos Corporation and others.
- At the distal end 24 of the cannula 20 there are one or more holes 25 which allow medication to exit the cannula and be injected under the patient's skin.
- Blunt-tipped cannulas 20 are preferred for the present invention because they minimize the bruising, vessel lacerations and necrosis that can be associated with administration of medication, such as a sub-dermal filler, using a sharp hypodermic needle.
- the hypodermic needle device 30 of this first preferred embodiment includes a needle holder 34 and needle 32 .
- the needle holder 34 is preferably made from a hard, hypoallergenic plastic and the needle 32 is preferably made from metal, such as stainless steel or titanium with a sharp, beveled edge.
- the hypodermic needle device 30 preferably will be much shorter than the partner cannula 20 and must be long enough that, once advanced, it may penetrate the patient's epidermis and dermis.
- the present invention is applicable to many lengths and gauges of hypodermic needle 32 .
- a typical hypodermic needle 32 used for puncturing the skin for application of sub-dermal substances could be 27 gauge and 3 millimeters in length.
- the hypodermic needle 32 needs to be of larger gauge than the cannula 20 so that the cannula 20 can slide into the annular space 36 formed inside the needle 32 .
- the needle 32 could be approximately 27 gauge.
- the objective is to allow the cannula 20 to freely slide concentrically back and forth within the annular space 36 of the needle 32 without appreciable friction but with the smallest possible incision or hole in the patient's face. This is for the patient's comfort and optimal cosmesis. While the examples provided here involve a hypodermic needle tube, those of skill in the art will recognize that the hypodermic needle could be a partial tube or similar skin puncturing medical instrument.
- the medical practitioner begins by pushing the distal end 37 of the hypodermic needle 32 with one hand until it is slightly beyond the distal end 24 of the cannula 20 while, at the same time, holding the syringe 12 with the other hand.
- the medical practitioner then inserts the needle 32 through the patient's skin at an appropriate location.
- the medical practitioner presses the syringe 12 forward to slide the cannula 20 through the needle 32 and under the patient's skin.
- the needle 32 is then withdrawn from the patient's skin while the distal end 24 of the cannula 20 remains under the patient's skin.
- a locking mechanism can be implemented between the needle holder 34 and the female connector 22 , such as a friction fit or a screw lock (not shown).
- FIGS. 2A-2D illustrate a second preferred embodiment of the present invention.
- a trocar embedded holder 40 is used which includes a sharp tipped trocar 42 and a soft holder 44 .
- the soft holder 44 is preferably a small disk that can be made from rubber or plastic.
- the trocar 44 is preferably made from a hard metal such as stainless steel or titanium alloy.
- the objective of the trocar embedded holder 40 is to allow the medical practitioner, in one step, to create an entrance into the patient's skin in a way that allows ready insertion of a blunt-tipped cannula 20 .
- the soft, holder 44 should be large enough for the medical practitioner to easily manipulate the blunt-tipped cannula 20 , but small and lightweight enough that it will not fall off the patient's skin.
- a disk is used for the soft holder 44 which is 1 cm in in diameter and 1 ⁇ 2 cm in thickness.
- the trocar 42 is initially attached to the soft holder 44 as shown in FIG. 2A .
- An adhesive or adherent substance may be applied to the soft holder 44 to aid in attachment to the patient's skin.
- the trocar 42 is then withdrawn from the soft holder 44 as shown in FIG. 2C to provide on opening for the cannula 20 .
- the cannula 20 is then inserted through the vacated central hole 45 in the soft holder 44 so that sub-dermal substances can be injected.
- trocar embedded holder 40 While a single trocar embedded holder 40 has been illustrated in FIGS. 2A-D , the medical practitioner may choose to use multiple trocar embedded holders 40 simultaneously. For example, the medical practitioner can place soft holders 44 at all the locations on a patient's face where collagen filler is to be injected. The medical practitioner can then use a syringe with cannula to readily go from soft holder 44 to soft holder 44 injecting a desired amount of collagen filler at each location. After collagen filler has been injected at one location, the soft holder 44 is removed before moving onto the next location.
- the integrated needle and cannula 50 includes a transporter assembly 55 interposed between the syringe 12 and the concentric hypodermic needle 72 /cannula 90 . Because of the transporter assembly 55 , the medical practitioner can insert the needle 72 using the same hand that is holding the syringe 12 . This allows the medical practitioner to use their other hand to locate and prepare a port site on the patient's body for insertion of the needle 72 .
- the integrated needle and cannula with transporter assembly 50 includes a syringe 12 , a retractable inner needle tube 60 with hypodermic needle device 70 , an external transporter housing 80 and a cannula 90 .
- the syringe 12 is preferably of the same type illustrated in FIG. 1 with a generally cylindrical tube 13 to hold the sub-dermal substance, a plunger 14 , a finger grip 16 and the male portion of a connector 18 , which is preferably a Luer LockTM connector. Through its male connector 18 , the syringe 12 attaches to the external transporter housing connector 84 inside the external transporter housing 80 .
- This external transporter housing connector 84 preferably includes a connector tip 57 which mates directly with the syringe connector 18 .
- the connector tip 57 inside the external transporter housing 80 would be a mating female Luer LockTM connector.
- the external transporter housing 80 is generally cylindrical in shape and, apart from its internal connector 84 , is generally hollow inside.
- the purpose of the internal connector 84 of the external transporter housing 80 is to connect the syringe 12 to the external transporter housing 80 at the proximal end 87 of the internal connector 84 and connect the cannula 90 to the external transporter housing 80 at the distal end 86 of the internal connector 84 .
- the external transporter housing 80 is preferably made from a hard plastic, but could also be made from other materials, such as stainless steel or titanium.
- On each side of the external transporter housing 80 is a finger grip 82 . The finger grips 82 allow the external transporter housing 80 to be held and manipulated more easily.
- the retractable needle tube 60 Inserted within the hollow interior annular space 85 of the external transporter housing 80 is the retractable needle tube 60 .
- the inner tube 60 is preferably made from a hard plastic, but could also be made from other materials, such as stainless steel.
- the retractable inner needle tube 60 is attached to the needle holder portion 74 of a hypodermic needle device 70 .
- the purpose of the retractable inner needle tube 60 is to slide the hypodermic needle 72 backward and forward within the external transporter housing 80 .
- a tab 62 and multiple humps 66 are placed on top of the inner needle tube 60
- the inner needle tube 60 is placed concentrically inside the external transporter housing 80 .
- a longitudinal gap 65 is formed on the bottom of the inner needle tube 60 to accept the base 83 of the external transporter housing connector 84 .
- this connector base 83 acts as a track to hold the inner needle tube 60 in place and prevent it from wobbling as it moves backward and forward.
- the gauge of the needle 72 of the hypodermic needle device 70 should be larger than the cannula 90 gauge so that the cannula 90 can slide concentrically through the interior annular space of the needle 72 .
- the transporter assembly 55 assists with the concentric movement of the cannula 90 with respect to the needle 72 so the medical practitioner does not have to worry about threading the cannula 90 into the annular space of the needle 72 .
- FIGS. 6A-6E illustrate how the integrated needle and cannula with transporter assembly 50 can be used by a medical practitioner to easily and comfortably inject the sub-dermal substance into a patient.
- the medical practitioner first pushes the inner needle tube 60 and, with it, the hypodermic needle 70 forward until the inner needle tube 60 completely encloses the cannula 90 (see, FIG. 6B ).
- the inner needle tube 60 locks onto the external transporter housing 80 when the inner needle tube 60 is in this extended position.
- the locking can be accomplished, for example, by creating a latch, slide or other locking mechanism (not shown) at the interface between the inner needle tube 60 and the external transporter housing 80 .
- the medical practitioner inserts the hypodermic needle 72 into the patient at an appropriate location as shown in FIGS. 6A-B .
- the medical practitioner then pushes the external transporter housing 80 forward as shown in FIG. 6C which has the effect of moving the cannula 90 through the annular space of the concentric hypodermic needle 72 and underneath the patient's skin. Moving the external transporter housing 80 forward as shown in FIG. 6C also has the effect of retracting the inner needle tube 60 into the external transporter housing 80 .
- the medical practitioner then pulls the hypodermic needle 72 and transporter assembly 55 backward to remove the hypodermic needle 70 from the patient while leaving the cannula 90 under the patient's skin.
- the medical practitioner is then ready to inject the sub-dermal substance 91 into the patient by pressing down on the syringe plunger 14 as shown in FIG. 6E .
- the medical practitioner can move the cannula 90 around underneath the patient's skin while the sub-dermal substance is being injected to insure that the sub-dermal substance is being evenly distributed.
- FIGS. 7A-E illustrates an. integrated hypodermic needle/cannula 100 with a simplified transporter assembly.
- the syringe 12 is attached directly to the cannula 92 here, preferably with a Luer LockTM type mechanism.
- the transporter assembly features a two-pronged hypodermic needle holder 120 and a mating prong receiver 110 formed on or attached to the syringe 12 .
- Both the hypodermic needle holder 120 and the prong receiver 110 are preferably made from a hard, medical plastic.
- the hypodermic needle holder 120 consists of an outward facing hypodermic needle 128 , a base 126 holding the hypodermic needle and one or more prongs 122 attached to the base 126 .
- two prongs 122 are used.
- Each of the prongs 122 is sized to fit into the longitudinal interior space 111 of a prong receiver 110 .
- holes 114 , 118 are preferably formed on the outer facing wall 116 of each prong receiver 110 .
- the holes are sized to fit bumps 124 which are formed at the proximal end of each prong 122 .
- the purpose of the holes 114 , 118 and bumps 124 are to allow the hypodermic needle holder 120 to be secured in either a forward position ( FIGS. 7A-B ) or a retracted position ( FIGS. 7D-E ).
- the integrated hypodermic needle/cannula 100 starts with the hypodermic needle holder 120 secured in its forward position as shown in FIGS. 7A-B .
- the hypodermic needle 128 covers and protrudes past the distal tip 93 of the cannula 92 . This allows the hypodermic needle 128 to penetrate into the patient's skin.
- the bumps 124 of prongs 122 are received into the forward holes 114 of the prong receiver 110 .
- FIG. 7B shows the hypodermic needle 128 penetrating into the patient's skin while the prongs 122 are in a forward, secured position.
- hypodermic needle 128 Once the hypodermic needle 128 has made an introducer hole in the patient's skin, it is retracted as shown in FIG. 7C . In the preferred embodiment shown, retraction is simply a matter of pressing the bumps 124 out of the forward holes 114 to release the prongs 122 and pulling the prongs 122 upward. The prongs 122 should continue to be pulled upward until the bumps 124 click into the rear holes 118 of the prong receiver 110 as shown in FIG. 7D .
- the two-pronged hypodermic needle holder 120 is secured into its fully retracted position and remains stationary as sub-dermal substances 91 are injected through the cannula 92 and into the patient by pressing down on the syringe plunger 14 , as shown in FIG. 7E .
- FIGS. 8A-H illustrate an integrated cannula/trocar 130 preferred embodiment of the present invention.
- the needle which punctures the skin in this embodiment is inside the cannula rather than outside the cannula.
- the syringe 133 in this embodiment is attached directly to the cannula 140 in a manner similar to the FIGS. 1 and 7A -E embodiments. Nonetheless, the syringe 133 in this embodiment differs from the syringe 12 in the FIGS.
- the syringe 133 in this embodiment has a plunger 134 for dispensing sub-dermal substances into the patient.
- the trocar plunger 132 is concentrically inside the sub-dermal substance plunger 134 .
- the trocar plunger can be configured to be concentrically outside the sub-dermal substance plunger.
- the sub-dermal substance plunger 134 of the syringe 133 starts in its fully retracted position while the trocar plunger 132 starts in its fully forward position.
- the trocar plunger 132 starts in its fully forward position so that the tip 152 of the trocar 150 will be fully forward and protruding out of cannula tip 143 as shown in FIG. 8B .
- This locking can be accomplished, for example, with a twist or screw lock.
- the trocar 150 is preferably made from stainless steel or a medical grade metal alloy (e.g., nickel titanium alloy) and provided with a sharpened tip 152 .
- a puncture hole is made in the patient's skin 99
- the trocar plunger 132 is pulled upward (e.g., after unlocking) as shown in FIGS. 8E-F to retract the trocar 150 within the cannula 140 .
- the cannula tip 143 is made from a flexible memory polymer which will re-seal itself as shown in FIG. 8F as the trocar 150 is withdrawn.
- FIGS. 9A-B , 10 A-B and 11 A-G illustrate three integrated hypodermic needle/cannula embodiments where a spring mechanism is used to automatically retract the hypodermic needle after it has penetrated into the patient's skin.
- the spring retraction mechanisms allow the medical practitioner to easily operate the integrated hypodermic needle/cannula with one hand while keeping the other hand free. With a free hand, for example, the medical practitioner can touch the patient's skin to prepare the patent's skin for injection or find an optimal entry point.
- the pull spring integrated needle/cannula 160 embodiment shown in FIGS. 9A-B is similar to the transporter assembly embodiment shown in FIGS. 3-6E except for the addition of a pull spring 178 and a trigger 190 .
- the pull spring integrated cannula 160 shown in FIGS. 9A-B includes a syringe 12 attached to an external transporter housing 170 and a cannula 90 .
- the external transporter housing 170 is slidably attached to a retractable inner needle tube 180 having a hypodermic needle 182 at its distal end.
- a pull spring 178 is inserted to connect the two surfaces.
- Clips 177 , 179 are preferably used to attach the ends of the pull spring 178 to the two surfaces.
- the spring 178 is referred to as a “pull spring” because it is elongated when originally loaded into the integrated/needle cannula 160 ( FIG. 9A ) and, when released, it compresses to pull the two surfaces together.
- a trigger 190 is preferably used to hold the pull spring 178 in elongated position until it is ready to be released.
- the trigger 190 takes the form of a spring loaded lever 192 that is biased into a notch 174 etched into the external transporter housing connector 172 .
- the lever 192 is biased with a metallic V-spring 194 .
- triggers or switches may alternatively be used to hold the pull spring 178 in elongated position until it is ready to be released.
- the pull spring integrated needle/cannula 160 starts with the inner needle tube 180 in its fully forward position so that its hypodermic needle 182 covers and protrudes past the distal end of the cannula 90 ( FIG. 9A ).
- the pull spring 178 is held in its elongated position by trigger 190 .
- the medical practitioner inserts the hypodermic needle 182 into the patient's skin.
- the medical practitioner can push down on trigger 190 while holding onto the external transporter housing 170 . As the trigger 190 is pushed down, it is removed from notch 174 .
- the spring 178 to pull the inner needle tube 180 backward so that the hypodermic needle 182 is removed from the patient's skin and transported to its fully retracted position as shown in FIG. 9B .
- the distal tip of the cannula should extend nearly to the tip of the hypodermic needle 182 when the hypodermic needle 182 is inserted into the patient's skin (see, FIG. 9A ).
- the medical practitioner can maneuver the cannula 90 under the patient's skin to inject sub-dermal substances.
- the medical practitioner will want to make injections at multiple locations on the patient using the same syringe 12 .
- the pull spring integrated needle/cannula 160 is configured to allow such repeated use. After injection at the first location, the medical practitioner simply pushes the retractable inner needle tube 180 forward relative to the external transporter housing 170 while holding the trigger 190 down until the trigger 190 clicks back into the connector notch 174 . When this happens, the pull spring 178 elongates so that the pull spring integrated needle/cannula 160 resumes its original position as shown in FIG. 9A and is ready for re-use.
- a ramp 175 is preferably formed at the distal end of the connector notch 176 to guide the trigger 190 into the notch 174 .
- FIGS. 10A-B show a push spring integrated needle/cannula 200 embodiment that is again similar to the transporter assembly embodiments shown in FIGS. 3-6E and FIGS. 9A-B .
- the push spring integrated needle/cannula 200 shown in FIGS. 10A-B includes a syringe 12 attached to an external transporter housing 201 and a cannula 90 .
- the external transporter housing 200 is slidably attached to a retractable inner needle tube 203 having a hypodermic needle 205 at its distal end.
- the push spring integrated needle/cannula 200 embodiment shown in FIGS. 10A-B differs from the pull spring integrated needle/cannula 160 embodiment shown in FIGS. 9A-B because the spring 208 is used to push the inner needle tube 203 into a retracted position rather than pull it.
- the push spring 208 is located between the proximal end of the external transporter housing connector 202 and the proximal end of the hollow portion of the inner needle tube 203 .
- clips are preferably used to attach the ends of the push spring 208 to the two surfaces but are less important here than in the pull spring embodiment because the spring 208 pushes rather than pulls.
- the spring 208 is referred to as a “push spring” because it is contracted when originally loaded into the integrated needle/cannula 200 ( FIG. 10A ) and, when released, it expands to push the two surfaces apart.
- a trigger 190 is preferably used to hold the push spring 208 in a compressed position until it is ready to be released.
- the trigger 190 can take the form of a spring loaded lever 192 that is biased into a notch 204 etched into the external transporter housing connector 202 .
- Other types of triggers or switches may alternatively be used to hold the push spring 208 in compressed position until it is ready to be released.
- the push spring integrated needle/cannula 200 starts with the inner needle tube 203 in its fully forward position so that its hypodermic needle 205 covers and protrudes slightly past the distal end of the cannula 90 as shown in FIG. 10A .
- the push spring 208 is held in its compressed position by trigger 190 .
- the medical practitioner inserts the hypodermic needle 205 into the patient's skin.
- the medical practitioner can push down on trigger 190 while holding onto the external transporter housing 201 to expand the spring 208 .
- the medical practitioner can hold the external transporter housing 201 by finger grips 82 .
- the trigger 190 is preferably placed on the upper surface of the inner needle tube 203 between the two finger grips 82 . As the trigger 190 is pushed down, it is removed from notch 204 . This allows the spring 208 to push the inner needle tube 203 backward so that the hypodermic needle 205 is removed from the patient's skin and transported to its fully retracted position as shown in FIG. 10B . To insure that the cannula 90 remains in the patient as the hypodermic needle 205 is retracted, the distal tip of the cannula 90 should again extend nearly to the tip of the hypodermic needle 205 when the hypodermic needle 205 is inserted into the patient's skin (see, FIG. 10A ).
- the medical practitioner can maneuver the cannula 90 under the patient's skin to inject sub-dermal substances.
- the push spring loaded integrated needle/cannula 200 can be reset for use at another patient location by pushing the retractable inner needle tube 203 forward while holding the trigger 190 down until the trigger 190 clicks back into the connector notch 204 .
- a ramp 206 is preferably formed in the connector notch 204 to guide the trigger 190 into the notch 204 .
- FIGS. 11A-G illustrates an alternative push spring integrated needle/cannula 210 embodiment.
- the alternative embodiment 210 has a syringe 12 connected to a cannula 90 , preferably through a Luer-LockTM connector in a manner similar to the FIG. 1 embodiment.
- Attached to the outside of the syringe 12 is a sleeve 221 that can slidably move up and down within an exterior tube 220 .
- the exterior tube 220 has a hypodermic needle 222 .
- the hypodermic needle 222 in this embodiment is movable with respect to the exterior tube 220 to which it is attached. As shown in FIGS.
- a push spring 230 can move the hypodermic needle 222 between the extended position shown in FIG. 11C to the retracted position shown in FIG. 11D .
- a roller switch 212 holds the hypodermic needle 222 in the fully extended position by keeping the push spring 230 contracted.
- the roller switch 222 is preferably in the shape of an oval to act as a cam and is preferably made from a flexible polymer.
- the push spring 230 expands to push the hypodermic needle 222 upward until the upper flange 226 of the hypodermic needle 222 presses against exterior tube stop 225 .
- alternative switches can be used in place of the roller switch 212 shown.
- the alternative push spring integrated needle/cannula 210 starts with the hypodermic needle 222 in the fully extended position shown in FIGS. 11A and 11C .
- the distal tip of the cannula 90 should be slightly behind the distal tip of the hypodermic needle 222 as shown in FIG. 11C .
- the medical practitioner inserts the hypodermic needle 222 into the patient's skin ( FIG. 11C ).
- the medical practitioner then turns the roller switch 212 to release the push spring 230 and retract the hypodermic needle 222 ( FIG. 11D ).
- the hypodermic needle 222 is fully encased in the exterior tube 220 so that it will no longer come in contact with the patient's skin.
- the hypodermic needle 222 retracts, it leaves the distal end of the cannula 90 in the patient's skin ( FIG. 11D ). As shown in FIGS. 11E-F , the syringe 12 and sleeve 221 can then be pushed downward within the exterior tube 220 to advance the cannula 90 deeper into the patient's skin. When the cannula reaches in appropriate position under the patient's skin, the medical practitioner can press down on the plunger 14 to insert sub-dermal substances 91 into the patient ( FIG. 11F ). If the medical practitioner wants to make multiple injections at different locations in the patient's skin, the roller switch 212 can be turned further as shown in FIG. 11G to re-compress the spring 230 and, in the process, re-extend the hypodermic needle 222 so that the push spring integrated needle/cannula 210 is ready for re-use.
- the integrated needle/cannula concepts of the present invention have applications beyond insertion of sub-dermal substances.
- Absorbable (i.e., dissolvable) or non-absorbable surgical thread can be inserted on the cannula so the cannula acts like a sewing needle. After the hypodermic needle punctures a hole in the patient's skin, the cannula can be used, for example, to push and pull surgical thread through portions of a patent's face to perform a face lift.
- Suitable surgical threads include, but are not limited to, gold thread as well as Mono/Screw/Tornado/CogV forms of polydioxanone (PDO) thread.
- PDO polydioxanone
- the surgical thread can be barbed or include multiple spherical bumps. As will be recognized by this of skill in the art, all the previously described embodiments can be modified to perform thread-lift procedures.
- FIG. 12A illustrates an integrated needle and cannula 240 of the present invention similar to the FIG. 1 integrated needle and cannula embodiment except for the addition of an exterior surgical thread 244 .
- this integrated needle and cannula embodiment 240 includes a hypodermic needle device 246 and a concentric cannula 242 .
- the surgical thread 244 is preferably attached to the distal end 245 of the cannula 242 and then threaded through the concentric space between the cannula 242 and hypodermic needle device 246 .
- a foam ring 248 may be placed around the thread 244 and cannula 242 to keep the thread 244 adjacent to the cannula 242 .
- the surgical thread 244 may have barbs 247 to hook into the patient's skin as the cannula 242 is being retracted.
- FIG. 12A illustrates the integrated needle and cannula 240 after the hypodermic needle device 246 has punctured the patient's skin and the cannula 242 has been introduced.
- FIG. 12B illustrates subsequent retraction of the hypodermic needle device 246 to allow free sub-dermal movement of the cannula 242 .
- the cannula 242 is in the process of being withdrawn to leave the surgical thread 244 behind.
- filler 249 may also be deposited by a syringe (see FIG. 1 ) at the same time the surgical thread 244 is being inserted.
- FIGS. 13A and 13B illustrates another integrated needle and cannula embodiment 250 that is useful for thread-lift procedures.
- this integrated needle and cannula embodiment 250 includes a hypodermic needle device 254 , a concentric cannula 252 and a surgical thread 256 with barbs 257 .
- this integrated needle and cannula embodiment 250 differs from the FIG. 12A embodiment insofar as the surgical thread 256 is inside, rather than outside of, the cannula 252 and the cannula tip 253 is partially open. Having the thread 256 inside the cannula 252 can make the thread 256 easier to control.
- FIG. 13B illustrates how the surgical thread 256 in the FIG. 13A embodiment can be coiled to allow more of it to be stored in the cannula 252 .
- FIGS. 14A and 14B illustrates a further integrated needle and cannula embodiment 260 having an interior surgical thread 266 for thread-lift procedures. Like the FIG. 13A embodiment, it has a concentric cannula 262 , a hypodermic needle device 264 and an interior surgical thread with barbs 267 .
- the FIGS. 14A and 14B embodiment differs from the FIG. 13A embodiment insofar as the distal end 263 of the cannula 262 is fully open. This allows the distal end 268 of the surgical thread 266 to feed directly out of the cannula end 263 .
- FIG. 14B illustrates that a syringe ( FIG. 1 ) can be used to pass filler through the distal end 263 of the cannula 262 while the barbed surgical thread 266 is being placed under the patient's skin.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Environmental & Geological Engineering (AREA)
- Pathology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
An integrated needle and cannula assembly for plastic surgery including a syringe connected to a blunt-tipped cannula where the blunt-tipped cannula is inserted into the hollow annular space of a hypodermic needle. In operation, the medical practitioner penetrates into the patient's skin using the hypodermic needle and then slides the blunt-tipped cannula through the annular space of the needle. A transporter assembly can be interposed between the syringe and the overlapping needle/cannula. The transporter assembly may include a retractable inner needle tube attached to the hypodermic needle and an external transporter housing which connects the syringe to the cannula through a cannula connector. Once the blunt tipped cannula is under the patient's skin, the needle is preferably withdrawn from the patient's skin to allow sub-dermal substances to be injected using only the blunt-tipped cannula. Withdrawal of the needle can be assisted with either a pull spring or push spring. In an alternative embodiment, a sharp-tipped trocar inside a cannula is used to penetrate the patient's skin. In a further alternative embodiment, a barbed surgical thread may be attached to said cannula to perform thread-lift procedures.
Description
- This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/207,886, filed on Aug. 20, 2015, and entitled “Integrated Needle and Cannula For Plastic Surgery,” the disclosure of which is hereby incorporated by reference in its entirety.
- The present invention relates to medical instruments used by medical practitioners including Plastic Surgeons, Dermatologists, Otolaryngologists and mid-level medical practitioners. These medical instruments are used to inject substances beneath the skin including liquids and solid objects, such as threads. These injections are typically placed in the intra-dermal, sub-dermal, intra-muscular and/or sub-periosteal spaces.
- Plastic surgery, dermatology and otolaryngology involve medical procedures for improving and/or restoring the form and function of a body. Over the years, medical practitioners have developed a number of techniques and technologies to facilitate their art. From the earliest skin flap done by Tagliacozzi, the movement of tissue has benefited the form, appearance and function of patients. This tissue movement includes cosmetic and reconstructive procedures, such as breast augmentation, breast reconstruction, abdominoplasty, liposuction, nasal surgery, eyelid surgery and sub-dermal injections to restore tissue and volume.
- Popular sub-dermal injections include injections of fillers, Botulinum Toxin (“Botox”), fat transfer and subcutaneous threads. Injections of sub-dermal substances are minimally invasive procedures to add substances, remove substances, stimulate tissues, lift tissues or tighten tissues to alter the contours of the face and body. Substances are also injected to dissolve fat and fillers. Common areas to inject sub-dermal substances are in the face, neck, hands, breasts and buttocks resulting in a contour change to create a restored, more youthful appearance. The types of injectable substances available include, but are not limited to, deoxycholic (bile) acid, hyaluronic acids, collagen-stimulating tumescent and autologous fillers (fat, platelet rich plasma), Botox, lidocaine, saline, hyaluronic acid fillers, synthetic wrinkle fillers (e.g., calcium hydroxyapatite, poly-1-lactic acid, poly glycolic acid), collagen wrinkle fillers, poly methyl methacrylate with bovine collagen, autologous wrinkle fillers, absorbable threads, non-absorbable threads and tumescent anesthesia solutions (collectively “medications” or “sub-dermal substances”).
- The most commonly used sub-dermal substances are hyaluronic acid fillers, collagen-stimulating fillers and Botox. Hyaluronic fillers are cross-linked hyaluronic acids typically used to naturally augment the lips and fill the areas of the face which lose volume with age, such as the temples, mid-cheek break, tear through, nasolabial fold and marionette lines. They are equally useful in men and women, although currently used more commonly in men. Hyaluronic acids are volumizing agents which typically last for six months to two years.
- Collagen-stimulating fillers, such as sculptra poly-1-lactic acid, radiesse and calcium hydroxyapatite, are typically injected throughout the whole face to provide more structural volumizing. They typically last at least 18 months.
- When injected, Botox blocks the nerve signals that cause muscles to contract. This effect relaxes and smoothes the look of lines and wrinkles caused by repetitive movements on the face—most commonly, between the brows (i.e., the frown), crows-feet around the eyes, and horizontal forehead creases. Botox is also used cosmetically to balance facial symmetry and relax tight neck bands, as well as medically to reduce perspiration, treat migraine headaches and treat muscle spasticity. Fat grafting is a procedure that involves the transfer of fat from areas where a patient has excess fat, such as the flanks and thighs, into areas that would benefit from added volume, stem cells or platelet rich plasma [PRP], such as the face, hands, breasts or buttocks.
- Sub-dermal injections are typically performed using a needle attached to or coupled with a syringe. While a syringe with a sharp tipped needle is useful for penetrating a patient's skin, that same sharp tipped needle can cause significant bruising, vessel laceration, soft tissue necrosis and even blindness when the sharp needle transgresses vascular structures. Transgression of vascular structures is virtually unavoidable using a needle alone. For this reason, many medical practitioners prefer using a blunt tipped instrument, such as a blunt-tipped cannula, to administer sub-dermal substances to a patient. Nonetheless, since its tip is blunt, the blunt-tipped cannula is unable to readily penetrate the surface of the skin.
- It is becoming increasingly popular for plastic surgeons and other medical practitioners to use a combination of a sharp-tipped needle (including a lancet, scalpel, trough or trocar) and a blunt-tipped cannula for their sub-dermal injections in a two-step process. First, the medical practitioner uses the sharp-tipped needle to puncture a hole in the patient's skin. The sharp-tipped needle is then withdrawn from the hole and the cannula is inserted into the hole so the substance can be delivered or withdrawn from within the subcutaneous space.
- While this two-step process is simple in concept, it is not simple in application. For example, after the sharp-tipped needle is withdrawn from the patient's skin, it is often difficult for the medical practitioner to find the hole created by the sharp-tipped needle. He or she must also find a place to put the needle down. It can be awkward, time-consuming and embarrassing for the medical practitioner to hunt for the needle hole. Despite creating better aesthetic results for the patient with less risk, the current two-step needle-cannula process is more difficult for the medical practitioner to manage. As a result, many medical practitioners are reluctant to adopt the current two-step needle-cannula process and, instead, simply use a hypodermic needle attached to a syringe to administer sub-dermal substances. Although blunt-tipped cannula use for the administration of sub-dermal substances should become the standard of care for these procedures, the current technical and practical difficulties in using them in two un-integrated steps serves as an impediment to the adoption of the safer cannula technique.
- What is needed is a way for medical practitioners to make injections quickly, easily and accurately using both a needle for puncturing the skin and a blunt-tipped cannula connected to a syringe for injecting the sub-dermal substances.
- The present invention provides a way for medical practitioners to inject sub-dermal substances with a single medical instrument in a way that is quick, easy and accurate, with all the patient and medical practitioner benefits that come with using a hypodermic needle (or a lancet, scalpel, trough or trocar) and a blunt-tipped cannula. In several preferred embodiments, a blunt-tipped cannula is chosen with a small enough diameter so it can slide through the annular space in a hypodermic needle. In this way, after the hypodermic needle penetrates into the patient's skin, the medical practitioner can slide the blunt-tipped cannula through the annular space of the needle and directly under the patient's skin. Once the blunt-tipped cannula is under the patient's skin, the hypodermic needle is withdrawn from the patient's skin to allow the injection to be made using only the blunt-tipped cannula.
- In one preferred embodiment, the integrated needle and cannula of the present invention has a blunt-tipped cannula attached to the end of a syringe and threaded, at its distal end, through the annular space of a sharp-tipped hypodermic needle. With one hand, the medical practitioner inserts the hypodermic needle into the patient's skin and, with the other hand, the medical practitioner then slides the blunt-tipped cannula through the annular space of the needle and moves it underneath the patient's skin as the sub-dermal substance is being injected.
- In a second preferred embodiment, the medical practitioner inserts a sharp trocar embedded in a soft holder into the patient's skin at desired locations. The surface of the holder that lies against the skin may have some adhesive or adherent substance that can help the holder adhere to the skin. After insertion, the medical practitioner withdraws the sharp trocar while leaving the soft holder in the patient's skin. Through the vacated trocar hole in the soft holder, the medical practitioner inserts the distal end of a blunt-tipped cannula. To insure an accurate injection, the medical practitioner should press down on the soft holder as the cannula is being inserted into the patient's skin. After the cannula is inserted, injections can be made using the blunt-tipped cannula.
- In a third preferred embodiment, a transporter assembly is interposed between a syringe and an integrated hypodermic needle/cannula. The transporter assembly preferably includes a retractable inner needle tube or prong(s) attached to the hypodermic needle. The external transporter housing connects the syringe to the cannula, preferably through an integral cannula connector. As with the previous preferred embodiments, the blunt-tipped cannula in this transporter assembly embodiment is threaded through the annular space of the hypodermic needle. In operation, the medical practitioner first advances the inner needle tube forward until the hypodermic needle at its distal tip penetrates into the patient's skin. As the inner needle tube is advanced forward, it covers the full length of the blunt-tipped cannula and stabilizes the blunt-tipped cannula. After the hypodermic needle has penetrated into the patient's skin, the external transporter housing is advanced forward over the inner needle tube to cause the blunt-tipped cannula to slide through the needle and under the patient's skin. The inner needle tube is then pulled back to remove the needle from under the patient's skin, leaving only the blunt-tipped cannula in the skin. This can be accomplished manually by the medical practitioner or by using a triggering mechanism, such as a push or pull spring, that has been built into the device. The medical practitioner can then maneuver the blunt-tipped cannula under the patient's skin while injecting sub-dermal substances into the patient through the distal end of the blunt-tipped cannula.
- In a fourth preferred embodiment, a sharp-tipped trocar is placed concentrically inside a blunt-tipped cannula so that the sharp end of the trocar protrudes from the distal end of the cannula. When the cannula is pressed against the patient's skin, the sharp tip of the trocar will penetrate into the patient's skin. The trocar is then fully or partially retracted from the cannula so that the cannula can be safely maneuvered under the patient's skin to inject sub-dermal substances. In one embodiment, the distal end of the cannula is formed from a flexible, polymeric material that will seal up when the sharp end of the trocar is withdrawn.
- The principles of the present invention are also applicable to thread-lift procedures, such as threaded face lifts. A dissolvable thread, such as a barbed, polydioxanone (PDO) thread, can be attached at one end to the distal end of the cannula. The remaining thread can then either be carried outside or inside the cannula. As in previous embodiments, a hypodermic needle is placed over the thread carrying cannula to puncture a hole in the skin. After the hole is made, the hypodermic needle is retracted. The threaded cannula needle is then advanced under the patient's skin to deposit the dissolvable thread.
-
FIG. 1 is a perspective view of a first preferred integrated needle and cannula embodiment of the present invention. -
FIG. 2A illustrates a second preferred embodiment using a sharp trocar embedded in a soft holder. -
FIG. 2B illustrates the trocar embedded holder ofFIG. 2A after it penetrates the patient's skin. -
FIG. 2C shows removal of the trocar from the trocar embedded holder ofFIG. 2A . -
FIG. 2D shows insertion of a cannula into theFIG. 2A holder. -
FIG. 3 illustrates a perspective view of a third preferred embodiment where a transporter assembly is interposed between a syringe and an overlapping hypodermic needle/cannula. -
FIG. 4A is a side, cross-section view of the transporter assembly embodiment ofFIG. 3 where the inner needle tube is extended partially forward. -
FIG. 4B is a side, cross-section view of the transporter assembly embodiment ofFIG. 3 where the inner needle tube is retracted backward. -
FIG. 4C is a transverse, cross-section view of theFIG. 3 transporter assembly. -
FIG. 5A is an exploded, side cross-section view of theFIG. 3 transporter assembly components. -
FIG. 5B is an exploded, perspective view of theFIG. 3 transporter assembly components. -
FIG. 6A illustrates insertion of the hypodermic needle from theFIG. 3 transporter assembly embodiment into a patient's skin. -
FIG. 6B is a side, cross-section view of theFIG. 6A transporter assembly embodiment after hypodermic needle insertion. -
FIG. 6C illustrates how the blunt-tipped cannula can be inserted through the hypodermic needle and underneath the patient's skin using theFIG. 3 transporter assembly embodiment. -
FIG. 6D illustrates how the hypodermic needle is retracted while the blunt-tipped cannula remains under the patient's skin for theFIG. 3 transporter assembly embodiment. -
FIG. 6E illustrates how medication is inserted into the patient using the syringe in theFIG. 3 transporter assembly embodiment. -
FIG. 7A is a side, cross-section view occurring prior to hypodermic needle insertion of an alternative transporter assembly embodiment where the hypodermic needle is attached to two prongs rather than an inner needle tube. -
FIG. 7B is a side, cross-section view of the two-pronged alternative embodiment ofFIG. 7A after the hypodermic needle penetrates a patient's skin. -
FIG. 7C is a side, cross-section view of the two-pronged alternative embodiment ofFIG. 7A illustrating partial retraction of the hypodermic needle. -
FIG. 7D is a side, cross-section view of the two-pronged alternative embodiment ofFIG. 7A illustrating full retraction of the hypodermic needle. -
FIG. 7E is a side, cross-section view of the two-pronged alternative embodiment ofFIG. 7A illustrating injection of sub-dermal substances using the cannula. -
FIG. 8A illustrates a preferred integrated cannula and trocar embodiment of the present invention. -
FIG. 8B is a close-up, cross-section view of the distal tip of the cannula and trocar embodiment ofFIG. 8A . -
FIG. 8C illustrates insertion of the cannula and trocar distal tip into a patient's skin for theFIG. 8A embodiment. -
FIG. 8D is a close-up, cross-section view of theFIG. 8A embodiment after the distal tip of the cannula and trocar have been inserted into a patient's skin. -
FIG. 8E illustrates retraction of the trocar from the cannula's distal tip for theFIG. 8A embodiment. -
FIG. 8F is a close-up, cross-section view of theFIG. 8A embodiment after the trocar has been retracted from the cannula's distal tip. -
FIG. 8G illustrates insertion of sub-dermal substances for theFIG. 8A embodiment after the trocar has been retracted from the cannula's distal tip. -
FIG. 8H is a close-up, cross-section view of theFIG. 8A embodiment illustrating insertion of sub-dermal substances after the trocar has been retracted from the cannula's distal tip. -
FIG. 9A is a cross-section view of a pull spring transporter assembly embodiment prior to release of the pull spring. -
FIG. 9B is a cross-section view of the pull spring transporter assembly embodiment ofFIG. 9A after release of the pull spring. -
FIG. 10A is a cross-section view of a push spring transporter assembly embodiment prior to release of the push spring. -
FIG. 10B is a cross-section view of the push spring transporter assembly embodiment ofFIG. 10A after release of the push spring. -
FIG. 11A illustrates an alternative push spring transporter assembly embodiment prior to release of the push spring. -
FIG. 11B illustrates the alternative push spring transporter assembly embodiment ofFIG. 11A after release of the push spring. -
FIG. 11C is a cross-section view of the alternative push spring transporter assembly embodiment ofFIG. 11A prior to release of the push spring. -
FIG. 11D is a cross-section view of the alternative push spring transporter assembly embodiment ofFIG. 11A after release of the push spring. -
FIG. 11E is a cross-section view of the alternative push spring transporter assembly embodiment ofFIG. 11A showing extension of the cannula. -
FIG. 11F is a cross-section view of the alternative push spring transporter assembly embodiment ofFIG. 11A illustrating insertion of sub-dermal substances. -
FIG. 11G is a cross-section view of the alternative push spring transporter assembly embodiment ofFIG. 11A after is has been reset for repeat use. -
FIG. 12A illustrates a cut-away view of an integrated needle and cannula that includes an exterior surgical thread for a thread-lift procedure. -
FIG. 12B illustrates the threaded needle/cannula embodiment ofFIG. 12A after the thread has been inserted into a patient's skin. -
FIG. 13A illustrates a cut-away view of an integrated needle and cannula that includes an interior surgical thread for a thread-lift procedure. -
FIG. 13B illustrates the threaded needle/cannula embodiment ofFIG. 13A where the interior surgical thread is more coiled. -
FIG. 14A illustrates a cut-away view of an integrated needle and cannula with an interior surgical thread where the cannula is open ended. -
FIG. 14B illustrates the threaded needle/cannula embodiment ofFIG. 14A where filler is injected at the same time as surgical thread. - Referring to
FIG. 1 , a first preferred embodiment of the integrated needle andcannula assembly 10 of the present invention is shown. This needle andcannula assembly 10 includes asyringe 12, a blunt-tippedcannula 20 and ahypodermic needle device 30. Thesyringe 12 in this embodiment is of conventional design with a generallycylindrical tube 13 to hold medication, aplunger 14 to squeeze out the sub-dermal substance, afinger grip 16 and the male portion of aconnector 18, which is preferably a Luer Lock™ connector. - Attached to the
syringe 12 in this preferred embodiment is acannula 20. To securely attach thecannula 20 to thesyringe 12, afemale connector 22 is used, which is preferably a female Luer Lock™ connector capable of attaching to a male LuerLock™ connector 18 on thesyringe 12. Thecannula 20 is preferably a blunt-tipped micro cannula that can be made in a wide range of lengths and gauges. For example, a typical length and gauge for sub-dermal substance application is 1.5 inches and 27 gauge. The type of cannula that can be attached to thesyringe 12 includes the DermaSculpt™ micro cannulas produced by CosmoFrance, Inc., SoftFil™ micro cannulas produced by SoftFil-USA as well as micro cannulas produced by Kerylos Corporation and others. At thedistal end 24 of thecannula 20, there are one ormore holes 25 which allow medication to exit the cannula and be injected under the patient's skin. Blunt-tippedcannulas 20 are preferred for the present invention because they minimize the bruising, vessel lacerations and necrosis that can be associated with administration of medication, such as a sub-dermal filler, using a sharp hypodermic needle. - The
hypodermic needle device 30 of this first preferred embodiment includes aneedle holder 34 andneedle 32. Theneedle holder 34 is preferably made from a hard, hypoallergenic plastic and theneedle 32 is preferably made from metal, such as stainless steel or titanium with a sharp, beveled edge. Thehypodermic needle device 30 preferably will be much shorter than thepartner cannula 20 and must be long enough that, once advanced, it may penetrate the patient's epidermis and dermis. The present invention is applicable to many lengths and gauges ofhypodermic needle 32. For example, a typicalhypodermic needle 32 used for puncturing the skin for application of sub-dermal substances could be 27 gauge and 3 millimeters in length. - In the present invention, the
hypodermic needle 32 needs to be of larger gauge than thecannula 20 so that thecannula 20 can slide into theannular space 36 formed inside theneedle 32. For example, if a 25 gauge micro cannula were selected, theneedle 32 could be approximately 27 gauge. The objective is to allow thecannula 20 to freely slide concentrically back and forth within theannular space 36 of theneedle 32 without appreciable friction but with the smallest possible incision or hole in the patient's face. This is for the patient's comfort and optimal cosmesis. While the examples provided here involve a hypodermic needle tube, those of skill in the art will recognize that the hypodermic needle could be a partial tube or similar skin puncturing medical instrument. - In operation, the medical practitioner begins by pushing the
distal end 37 of thehypodermic needle 32 with one hand until it is slightly beyond thedistal end 24 of thecannula 20 while, at the same time, holding thesyringe 12 with the other hand. The medical practitioner then inserts theneedle 32 through the patient's skin at an appropriate location. After theneedle 32 has penetrated into the patient's skin, the medical practitioner presses thesyringe 12 forward to slide thecannula 20 through theneedle 32 and under the patient's skin. Theneedle 32 is then withdrawn from the patient's skin while thedistal end 24 of thecannula 20 remains under the patient's skin. To retain theneedle 32 in the retracted position, a locking mechanism can be implemented between theneedle holder 34 and thefemale connector 22, such as a friction fit or a screw lock (not shown). With theneedle device 30 secured in a retracted position, the medical practitioner is now free to safely maneuver thecannula 20 under the patient's skin using thesyringe 12 while pressing down on thesyringe plunger 14 to administer medication. -
FIGS. 2A-2D illustrate a second preferred embodiment of the present invention. In this embodiment, a trocar embeddedholder 40 is used which includes a sharp tippedtrocar 42 and asoft holder 44. Thesoft holder 44 is preferably a small disk that can be made from rubber or plastic. Thetrocar 44 is preferably made from a hard metal such as stainless steel or titanium alloy. The objective of the trocar embeddedholder 40 is to allow the medical practitioner, in one step, to create an entrance into the patient's skin in a way that allows ready insertion of a blunt-tippedcannula 20. To accomplish this objective, the soft,holder 44 should be large enough for the medical practitioner to easily manipulate the blunt-tippedcannula 20, but small and lightweight enough that it will not fall off the patient's skin. In one embodiment, a disk is used for thesoft holder 44 which is 1 cm in in diameter and ½ cm in thickness. Thetrocar 42 is initially attached to thesoft holder 44 as shown inFIG. 2A . An adhesive or adherent substance may be applied to thesoft holder 44 to aid in attachment to the patient's skin. In operation, one inserts the trocar embeddedholder 40 into the patient's skin as shown inFIG. 2B by virtue of the sharp-tippedtrocar 42. Thetrocar 42 is then withdrawn from thesoft holder 44 as shown inFIG. 2C to provide on opening for thecannula 20. Thecannula 20 is then inserted through the vacatedcentral hole 45 in thesoft holder 44 so that sub-dermal substances can be injected. - While a single trocar embedded
holder 40 has been illustrated inFIGS. 2A-D , the medical practitioner may choose to use multiple trocar embeddedholders 40 simultaneously. For example, the medical practitioner can placesoft holders 44 at all the locations on a patient's face where collagen filler is to be injected. The medical practitioner can then use a syringe with cannula to readily go fromsoft holder 44 tosoft holder 44 injecting a desired amount of collagen filler at each location. After collagen filler has been injected at one location, thesoft holder 44 is removed before moving onto the next location. - Turning now to
FIGS. 3-5B , a third preferred embodiment of the present invention is illustrated where the integrated needle andcannula 50 includes atransporter assembly 55 interposed between thesyringe 12 and the concentrichypodermic needle 72/cannula 90. Because of thetransporter assembly 55, the medical practitioner can insert theneedle 72 using the same hand that is holding thesyringe 12. This allows the medical practitioner to use their other hand to locate and prepare a port site on the patient's body for insertion of theneedle 72. - As shown in
FIG. 5B , the integrated needle and cannula withtransporter assembly 50 includes asyringe 12, a retractableinner needle tube 60 withhypodermic needle device 70, anexternal transporter housing 80 and acannula 90. Thesyringe 12 is preferably of the same type illustrated inFIG. 1 with a generallycylindrical tube 13 to hold the sub-dermal substance, aplunger 14, afinger grip 16 and the male portion of aconnector 18, which is preferably a Luer Lock™ connector. Through itsmale connector 18, thesyringe 12 attaches to the externaltransporter housing connector 84 inside theexternal transporter housing 80. This externaltransporter housing connector 84 preferably includes aconnector tip 57 which mates directly with thesyringe connector 18. For example, where the syringe connector is a male Luer Lock™ connector, theconnector tip 57 inside theexternal transporter housing 80 would be a mating female Luer Lock™ connector. - In the preferred embodiment, the
external transporter housing 80 is generally cylindrical in shape and, apart from itsinternal connector 84, is generally hollow inside. The purpose of theinternal connector 84 of theexternal transporter housing 80 is to connect thesyringe 12 to theexternal transporter housing 80 at theproximal end 87 of theinternal connector 84 and connect thecannula 90 to theexternal transporter housing 80 at thedistal end 86 of theinternal connector 84. Theexternal transporter housing 80 is preferably made from a hard plastic, but could also be made from other materials, such as stainless steel or titanium. On each side of theexternal transporter housing 80 is afinger grip 82. The finger grips 82 allow theexternal transporter housing 80 to be held and manipulated more easily. - Inserted within the hollow interior
annular space 85 of theexternal transporter housing 80 is theretractable needle tube 60. Like theexternal transporter housing 80, theinner tube 60 is preferably made from a hard plastic, but could also be made from other materials, such as stainless steel. At itsdistal end 61, the retractableinner needle tube 60 is attached to theneedle holder portion 74 of ahypodermic needle device 70. The purpose of the retractableinner needle tube 60 is to slide thehypodermic needle 72 backward and forward within theexternal transporter housing 80. To aid in moving theinner needle tube 60, atab 62 andmultiple humps 66 are placed on top of theinner needle tube 60 - As best shown in
FIG. 4C , theinner needle tube 60 is placed concentrically inside theexternal transporter housing 80. Alongitudinal gap 65 is formed on the bottom of theinner needle tube 60 to accept thebase 83 of the externaltransporter housing connector 84. In addition to allowing theconnector 84 to properly align thesyringe 12 andcannula 90, thisconnector base 83 acts as a track to hold theinner needle tube 60 in place and prevent it from wobbling as it moves backward and forward. - As in the previous preferred embodiments, the gauge of the
needle 72 of thehypodermic needle device 70 should be larger than thecannula 90 gauge so that thecannula 90 can slide concentrically through the interior annular space of theneedle 72. In this embodiment, thetransporter assembly 55 assists with the concentric movement of thecannula 90 with respect to theneedle 72 so the medical practitioner does not have to worry about threading thecannula 90 into the annular space of theneedle 72. -
FIGS. 6A-6E illustrate how the integrated needle and cannula withtransporter assembly 50 can be used by a medical practitioner to easily and comfortably inject the sub-dermal substance into a patient. The medical practitioner first pushes theinner needle tube 60 and, with it, thehypodermic needle 70 forward until theinner needle tube 60 completely encloses the cannula 90 (see,FIG. 6B ). To enhance reliability, it is preferable that theinner needle tube 60 locks onto theexternal transporter housing 80 when theinner needle tube 60 is in this extended position. The locking can be accomplished, for example, by creating a latch, slide or other locking mechanism (not shown) at the interface between theinner needle tube 60 and theexternal transporter housing 80. After theinner needle tube 60 andhypodermic needle 72 are extended forwardly, the medical practitioner inserts thehypodermic needle 72 into the patient at an appropriate location as shown inFIGS. 6A-B . - Using the finger grips 82, the medical practitioner then pushes the
external transporter housing 80 forward as shown inFIG. 6C which has the effect of moving thecannula 90 through the annular space of the concentrichypodermic needle 72 and underneath the patient's skin. Moving theexternal transporter housing 80 forward as shown inFIG. 6C also has the effect of retracting theinner needle tube 60 into theexternal transporter housing 80. - As shown in
FIG. 6D , the medical practitioner then pulls thehypodermic needle 72 andtransporter assembly 55 backward to remove thehypodermic needle 70 from the patient while leaving thecannula 90 under the patient's skin. The medical practitioner is then ready to inject thesub-dermal substance 91 into the patient by pressing down on thesyringe plunger 14 as shown inFIG. 6E . As desired, the medical practitioner can move thecannula 90 around underneath the patient's skin while the sub-dermal substance is being injected to insure that the sub-dermal substance is being evenly distributed. -
FIGS. 7A-E illustrates an. integrated hypodermic needle/cannula 100 with a simplified transporter assembly. As in theFIG. 1 embodiment, thesyringe 12 is attached directly to thecannula 92 here, preferably with a Luer Lock™ type mechanism. In this embodiment, the transporter assembly features a two-prongedhypodermic needle holder 120 and amating prong receiver 110 formed on or attached to thesyringe 12. Both thehypodermic needle holder 120 and theprong receiver 110 are preferably made from a hard, medical plastic. Thehypodermic needle holder 120 consists of an outward facinghypodermic needle 128, abase 126 holding the hypodermic needle and one ormore prongs 122 attached to thebase 126. In the preferred embodiment shown inFIGS. 7A-E , twoprongs 122 are used. Each of theprongs 122 is sized to fit into the longitudinalinterior space 111 of aprong receiver 110. In the preferred embodiment, holes 114, 118 are preferably formed on the outer facingwall 116 of eachprong receiver 110. The holes are sized to fitbumps 124 which are formed at the proximal end of eachprong 122. The purpose of theholes bumps 124 are to allow thehypodermic needle holder 120 to be secured in either a forward position (FIGS. 7A-B ) or a retracted position (FIGS. 7D-E ). - In operation, the integrated hypodermic needle/
cannula 100 starts with thehypodermic needle holder 120 secured in its forward position as shown inFIGS. 7A-B . In this forward position, thehypodermic needle 128 covers and protrudes past thedistal tip 93 of thecannula 92. This allows thehypodermic needle 128 to penetrate into the patient's skin. To keep thehypodermic needle 128 steady as it is penetrating into the patient's skin, thebumps 124 ofprongs 122 are received into theforward holes 114 of theprong receiver 110.FIG. 7B shows thehypodermic needle 128 penetrating into the patient's skin while theprongs 122 are in a forward, secured position. Once thehypodermic needle 128 has made an introducer hole in the patient's skin, it is retracted as shown inFIG. 7C . In the preferred embodiment shown, retraction is simply a matter of pressing thebumps 124 out of theforward holes 114 to release theprongs 122 and pulling theprongs 122 upward. Theprongs 122 should continue to be pulled upward until thebumps 124 click into therear holes 118 of theprong receiver 110 as shown inFIG. 7D . At this point, the two-prongedhypodermic needle holder 120 is secured into its fully retracted position and remains stationary assub-dermal substances 91 are injected through thecannula 92 and into the patient by pressing down on thesyringe plunger 14, as shown inFIG. 7E . -
FIGS. 8A-H illustrate an integrated cannula/trocar 130 preferred embodiment of the present invention. Unlike the earlier integrated hypodermic needle/cannula embodiments, the needle which punctures the skin in this embodiment is inside the cannula rather than outside the cannula. As shown inFIG. 8A , thesyringe 133 in this embodiment is attached directly to thecannula 140 in a manner similar to theFIGS. 1 and 7A -E embodiments. Nonetheless, thesyringe 133 in this embodiment differs from thesyringe 12 in theFIGS. 1 and 7A -E embodiments because it includes a sharp-endedtrocar 150 as well as aplunger 132 for manipulating thetrocar 150 up and down within thesyringe 133. Like theFIGS. 1 and 7A -E embodiments, thesyringe 133 in this embodiment has aplunger 134 for dispensing sub-dermal substances into the patient. In this preferred embodiment, thetrocar plunger 132 is concentrically inside thesub-dermal substance plunger 134. Alternatively, those of skill in the art will recognize that the trocar plunger can be configured to be concentrically outside the sub-dermal substance plunger. - In operation, as illustrated in
FIGS. 8A-B , thesub-dermal substance plunger 134 of thesyringe 133 starts in its fully retracted position while thetrocar plunger 132 starts in its fully forward position. Thetrocar plunger 132 starts in its fully forward position so that thetip 152 of thetrocar 150 will be fully forward and protruding out ofcannula tip 143 as shown inFIG. 8B . In this starting position, it is preferable that thetrocar plunger 132 andtrocar tip 152 be temporarily locked in place so they will not move when thetrocar tip 152 is used to puncture a hole in the patient'sskin 99 as shown inFIGS. 8C-D . This locking can be accomplished, for example, with a twist or screw lock. To facilitate penetration into the patient'sskin 99, thetrocar 150 is preferably made from stainless steel or a medical grade metal alloy (e.g., nickel titanium alloy) and provided with a sharpenedtip 152. Once a puncture hole is made in the patient'sskin 99, thetrocar plunger 132 is pulled upward (e.g., after unlocking) as shown inFIGS. 8E-F to retract thetrocar 150 within thecannula 140. In one preferred embodiment, thecannula tip 143 is made from a flexible memory polymer which will re-seal itself as shown inFIG. 8F as thetrocar 150 is withdrawn. To the extent the cannula,tip 143 reseals itself, this allowssub-dermal substance 91 to be dispensed through aside hole 142 near thedistal cannula tip 143 as shown inFIGS. 8G-H as thesub-dermal substance plunger 134 is pressed downward. Otherwise,sub-dermal substance 91 can be dispensed through thecannula tip 143 to the extent it does not reseal itself. -
FIGS. 9A-B , 10A-B and 11A-G illustrate three integrated hypodermic needle/cannula embodiments where a spring mechanism is used to automatically retract the hypodermic needle after it has penetrated into the patient's skin. The spring retraction mechanisms allow the medical practitioner to easily operate the integrated hypodermic needle/cannula with one hand while keeping the other hand free. With a free hand, for example, the medical practitioner can touch the patient's skin to prepare the patent's skin for injection or find an optimal entry point. - The pull spring integrated needle/
cannula 160 embodiment shown inFIGS. 9A-B is similar to the transporter assembly embodiment shown inFIGS. 3-6E except for the addition of apull spring 178 and atrigger 190. Like the transporter assembly embodiments shown inFIGS. 3-6E , the pull spring integratedcannula 160 shown inFIGS. 9A-B includes asyringe 12 attached to anexternal transporter housing 170 and acannula 90. Throughconnector 172, theexternal transporter housing 170 is slidably attached to a retractableinner needle tube 180 having ahypodermic needle 182 at its distal end. Between the distal end of the externaltransporter housing connector 172 and the distal end of the hollow portion of theinner needle tube 180, apull spring 178 is inserted to connect the two surfaces.Clips pull spring 178 to the two surfaces. Thespring 178 is referred to as a “pull spring” because it is elongated when originally loaded into the integrated/needle cannula 160 (FIG. 9A ) and, when released, it compresses to pull the two surfaces together. Atrigger 190 is preferably used to hold thepull spring 178 in elongated position until it is ready to be released. In one preferred embodiment, thetrigger 190 takes the form of a spring loadedlever 192 that is biased into anotch 174 etched into the externaltransporter housing connector 172. In this embodiment, thelever 192 is biased with a metallic V-spring 194. Those of skill in the art will recognize that other types of triggers or switches may alternatively be used to hold thepull spring 178 in elongated position until it is ready to be released. - In operation, the pull spring integrated needle/
cannula 160 starts with theinner needle tube 180 in its fully forward position so that itshypodermic needle 182 covers and protrudes past the distal end of the cannula 90 (FIG. 9A ). Thepull spring 178 is held in its elongated position bytrigger 190. From this configuration, the medical practitioner inserts thehypodermic needle 182 into the patient's skin. After thehypodermic needle 182 has been inserted, the medical practitioner can push down ontrigger 190 while holding onto theexternal transporter housing 170. As thetrigger 190 is pushed down, it is removed fromnotch 174. This allows thespring 178 to pull theinner needle tube 180 backward so that thehypodermic needle 182 is removed from the patient's skin and transported to its fully retracted position as shown inFIG. 9B . To insure that thecannula 90 remains in the patient as thehypodermic needle 182 is retracted, the distal tip of the cannula should extend nearly to the tip of thehypodermic needle 182 when thehypodermic needle 182 is inserted into the patient's skin (see,FIG. 9A ). With thehypodermic needle 182 held in a fully retracted position bypull spring 178 as shown inFIG. 9B , the medical practitioner can maneuver thecannula 90 under the patient's skin to inject sub-dermal substances. - In some instances, the medical practitioner will want to make injections at multiple locations on the patient using the
same syringe 12. The pull spring integrated needle/cannula 160 is configured to allow such repeated use. After injection at the first location, the medical practitioner simply pushes the retractableinner needle tube 180 forward relative to theexternal transporter housing 170 while holding thetrigger 190 down until thetrigger 190 clicks back into theconnector notch 174. When this happens, thepull spring 178 elongates so that the pull spring integrated needle/cannula 160 resumes its original position as shown inFIG. 9A and is ready for re-use. To facilitate re-setting the pull spring integrated needle/cannula 160 in this manner, aramp 175 is preferably formed at the distal end of the connector notch 176 to guide thetrigger 190 into thenotch 174. -
FIGS. 10A-B show a push spring integrated needle/cannula 200 embodiment that is again similar to the transporter assembly embodiments shown inFIGS. 3-6E andFIGS. 9A-B . Like the transporter assembly embodiments shown inFIGS. 3-6E and 9A -B, the push spring integrated needle/cannula 200 shown inFIGS. 10A-B includes asyringe 12 attached to anexternal transporter housing 201 and acannula 90. Throughconnector 202, theexternal transporter housing 200 is slidably attached to a retractableinner needle tube 203 having ahypodermic needle 205 at its distal end. - The push spring integrated needle/
cannula 200 embodiment shown inFIGS. 10A-B differs from the pull spring integrated needle/cannula 160 embodiment shown inFIGS. 9A-B because thespring 208 is used to push theinner needle tube 203 into a retracted position rather than pull it. In this embodiment, thepush spring 208 is located between the proximal end of the externaltransporter housing connector 202 and the proximal end of the hollow portion of theinner needle tube 203. Again, clips (not shown) are preferably used to attach the ends of thepush spring 208 to the two surfaces but are less important here than in the pull spring embodiment because thespring 208 pushes rather than pulls. Thespring 208 is referred to as a “push spring” because it is contracted when originally loaded into the integrated needle/cannula 200 (FIG. 10A ) and, when released, it expands to push the two surfaces apart. As in the pull spring embodiment, atrigger 190 is preferably used to hold thepush spring 208 in a compressed position until it is ready to be released. As before, thetrigger 190 can take the form of a spring loadedlever 192 that is biased into anotch 204 etched into the externaltransporter housing connector 202. Other types of triggers or switches may alternatively be used to hold thepush spring 208 in compressed position until it is ready to be released. - In operation, the push spring integrated needle/
cannula 200 starts with theinner needle tube 203 in its fully forward position so that itshypodermic needle 205 covers and protrudes slightly past the distal end of thecannula 90 as shown inFIG. 10A . Thepush spring 208 is held in its compressed position bytrigger 190. From this configuration, the medical practitioner inserts thehypodermic needle 205 into the patient's skin. After insertion, the medical practitioner can push down ontrigger 190 while holding onto theexternal transporter housing 201 to expand thespring 208. Referring back toFIG. 3 , the medical practitioner can hold theexternal transporter housing 201 by finger grips 82. in this configuration, thetrigger 190 is preferably placed on the upper surface of theinner needle tube 203 between the two finger grips 82. As thetrigger 190 is pushed down, it is removed fromnotch 204. This allows thespring 208 to push theinner needle tube 203 backward so that thehypodermic needle 205 is removed from the patient's skin and transported to its fully retracted position as shown inFIG. 10B . To insure that thecannula 90 remains in the patient as thehypodermic needle 205 is retracted, the distal tip of thecannula 90 should again extend nearly to the tip of thehypodermic needle 205 when thehypodermic needle 205 is inserted into the patient's skin (see,FIG. 10A ). With thehypodermic needle 205 held in a fully retracted position bypush spring 208 as shown inFIG. 10B , the medical practitioner can maneuver thecannula 90 under the patient's skin to inject sub-dermal substances. The push spring loaded integrated needle/cannula 200 can be reset for use at another patient location by pushing the retractableinner needle tube 203 forward while holding thetrigger 190 down until thetrigger 190 clicks back into theconnector notch 204. Aramp 206 is preferably formed in theconnector notch 204 to guide thetrigger 190 into thenotch 204. -
FIGS. 11A-G illustrates an alternative push spring integrated needle/cannula 210 embodiment. As illustrated inFIGS. 11A-D , thealternative embodiment 210 has asyringe 12 connected to acannula 90, preferably through a Luer-Lock™ connector in a manner similar to theFIG. 1 embodiment. Attached to the outside of thesyringe 12 is asleeve 221 that can slidably move up and down within anexterior tube 220. At its distal end, theexterior tube 220 has ahypodermic needle 222. Unlike previous embodiments, thehypodermic needle 222 in this embodiment is movable with respect to theexterior tube 220 to which it is attached. As shown inFIGS. 11C-D , apush spring 230 can move thehypodermic needle 222 between the extended position shown inFIG. 11C to the retracted position shown inFIG. 11D . In theFIG. 11C position, aroller switch 212 holds thehypodermic needle 222 in the fully extended position by keeping thepush spring 230 contracted. Theroller switch 222 is preferably in the shape of an oval to act as a cam and is preferably made from a flexible polymer. When theroller switch 212 is turned as shown inFIG. 11D , thepush spring 230 expands to push thehypodermic needle 222 upward until theupper flange 226 of thehypodermic needle 222 presses againstexterior tube stop 225. As those of skill in the art will recognize, alternative switches can be used in place of theroller switch 212 shown. - In operation, the alternative push spring integrated needle/
cannula 210 starts with thehypodermic needle 222 in the fully extended position shown inFIGS. 11A and 11C . The distal tip of thecannula 90 should be slightly behind the distal tip of thehypodermic needle 222 as shown inFIG. 11C . From this starting configuration, the medical practitioner inserts thehypodermic needle 222 into the patient's skin (FIG. 11C ). The medical practitioner then turns theroller switch 212 to release thepush spring 230 and retract the hypodermic needle 222 (FIG. 11D ). In this retracted position, thehypodermic needle 222 is fully encased in theexterior tube 220 so that it will no longer come in contact with the patient's skin. As thehypodermic needle 222 retracts, it leaves the distal end of thecannula 90 in the patient's skin (FIG. 11D ). As shown inFIGS. 11E-F , thesyringe 12 andsleeve 221 can then be pushed downward within theexterior tube 220 to advance thecannula 90 deeper into the patient's skin. When the cannula reaches in appropriate position under the patient's skin, the medical practitioner can press down on theplunger 14 to insertsub-dermal substances 91 into the patient (FIG. 11F ). If the medical practitioner wants to make multiple injections at different locations in the patient's skin, theroller switch 212 can be turned further as shown inFIG. 11G to re-compress thespring 230 and, in the process, re-extend thehypodermic needle 222 so that the push spring integrated needle/cannula 210 is ready for re-use. - As illustrated in
FIGS. 12A-14B , the integrated needle/cannula concepts of the present invention have applications beyond insertion of sub-dermal substances. Absorbable (i.e., dissolvable) or non-absorbable surgical thread can be inserted on the cannula so the cannula acts like a sewing needle. After the hypodermic needle punctures a hole in the patient's skin, the cannula can be used, for example, to push and pull surgical thread through portions of a patent's face to perform a face lift. In the art, this is referred to as a “thread-lift.” Suitable surgical threads include, but are not limited to, gold thread as well as Mono/Screw/Tornado/CogV forms of polydioxanone (PDO) thread. To aid insertion, the surgical thread can be barbed or include multiple spherical bumps. As will be recognized by this of skill in the art, all the previously described embodiments can be modified to perform thread-lift procedures. -
FIG. 12A illustrates an integrated needle andcannula 240 of the present invention similar to theFIG. 1 integrated needle and cannula embodiment except for the addition of an exteriorsurgical thread 244. Like theFIG. 1 embodiment, this integrated needle andcannula embodiment 240 includes ahypodermic needle device 246 and aconcentric cannula 242. Thesurgical thread 244 is preferably attached to thedistal end 245 of thecannula 242 and then threaded through the concentric space between thecannula 242 andhypodermic needle device 246. Afoam ring 248 may be placed around thethread 244 andcannula 242 to keep thethread 244 adjacent to thecannula 242. Thesurgical thread 244 may havebarbs 247 to hook into the patient's skin as thecannula 242 is being retracted.FIG. 12A illustrates the integrated needle andcannula 240 after thehypodermic needle device 246 has punctured the patient's skin and thecannula 242 has been introduced.FIG. 12B illustrates subsequent retraction of thehypodermic needle device 246 to allow free sub-dermal movement of thecannula 242. In thisFIG. 12B , thecannula 242 is in the process of being withdrawn to leave thesurgical thread 244 behind. For better results,filler 249 may also be deposited by a syringe (seeFIG. 1 ) at the same time thesurgical thread 244 is being inserted. -
FIGS. 13A and 13B illustrates another integrated needle andcannula embodiment 250 that is useful for thread-lift procedures. Like theFIG. 12A embodiment, this integrated needle andcannula embodiment 250 includes ahypodermic needle device 254, aconcentric cannula 252 and asurgical thread 256 withbarbs 257. Nonetheless, this integrated needle andcannula embodiment 250 differs from theFIG. 12A embodiment insofar as thesurgical thread 256 is inside, rather than outside of, thecannula 252 and thecannula tip 253 is partially open. Having thethread 256 inside thecannula 252 can make thethread 256 easier to control.FIG. 13B illustrates how thesurgical thread 256 in theFIG. 13A embodiment can be coiled to allow more of it to be stored in thecannula 252. -
FIGS. 14A and 14B illustrates a further integrated needle andcannula embodiment 260 having an interiorsurgical thread 266 for thread-lift procedures. Like theFIG. 13A embodiment, it has aconcentric cannula 262, ahypodermic needle device 264 and an interior surgical thread withbarbs 267. TheFIGS. 14A and 14B embodiment differs from theFIG. 13A embodiment insofar as thedistal end 263 of thecannula 262 is fully open. This allows thedistal end 268 of thesurgical thread 266 to feed directly out of thecannula end 263.FIG. 14B illustrates that a syringe (FIG. 1 ) can be used to pass filler through thedistal end 263 of thecannula 262 while the barbedsurgical thread 266 is being placed under the patient's skin. - In the foregoing specification, the invention has been described with reference to specific preferred embodiments and methods. It will, however, be evident to those of skill in the art that various modifications and changes may be made without departing from the broader spirit and scope of the invention as set forth in the appended claims. For these reasons, the specification and drawings are, accordingly, to be regarded in an illustrative, rather than restrictive sense; the invention being limited only by the appended claims.
Claims (22)
1-4. (canceled)
5. An integrated needle and cannula assembly, comprising:
a syringe;
a cannula and a prong receiver attached to said syringe;
a hypodermic needle having a hollow annular space;
a prong attached to said hypodermic needle;
wherein said cannula is inserted into the hollow annular space of said hypodermic needle and said prong is inserted into said prong receiver.
6. The integrated needle and cannula assembly of claim 5 further comprising a second prong attached to said hypodermic needle and a second prong receiver to receive said second prong.
7. The integrated needle and cannula assembly of claim 5 further comprising a bump on said prong and a mating hole on said prong receiver to secure said hypodermic needle in a desired position with respect to said cannula.
8-20. (canceled)
21. A trocar embedded holder comprising a sharp-tipped trocar inserted into an annular space of a soft holder.
22. The trocar embedded holder of claim 21 wherein said soft holder is made from rubber or plastic.
23. The trocar embedded holder of claim 21 wherein the annular space of said soft holder is large enough to accept a cannula after removal of said trocar.
24. A method of injecting medication into a patient comprising the steps of:
selecting an integrated needle and cannula assembly comprising a syringe containing medication, a cannula attached to said syringe and a hypodermic needle having a hollow annular space wherein said cannula is inserted into the hollow annular space of said hypodermic needle;
inserting said hypodermic needle into the skin of a patient;
inserting said cannula through said hypodermic needle until it is underneath the skin of said patient;
retracting said hypodermic needle on said cannula from the skin of said patient; and,
injecting medication into said patient through said cannula.
25. The method of claim 24 wherein said medication is selected from the group of deoxycholic (bile) acid, silicone, lidocaine, saline, hyaluronic acid, fillers, synthetic wrinkle fillers (calcium hydroxyapatite, poly-1-lactic acid, poly glycolic acid), collagen wrinkle fillers, poly methyl methacrylate with bovine collagen, autologous wrinkle fillers and tumescent anesthesia solutions.
26. The method of claim 24 wherein said medication is a Botulinum toxin.
27. The method of claim 24 wherein said cannula is a blunt-tipped cannula.
28. A method of injecting medication into a patient comprising the steps of:
selecting an integrated needle and cannula assembly comprising a syringe, a transporter assembly having an external transporter housing and an inner needle tube slidably and concentrically situated within a hollow annular space of said external transporter housing, wherein said external transporter housing is attached at one end to a syringe and at its other end to a cannula, further wherein said inner needle tube is attached at one end to a hypodermic needle with a hollow annular space such that said cannula can be inserted concentrically into the hollow annular space of said hypodermic needle;
extending said inner needle tube forward from said external transporter housing so that said hypodermic needle is exposed but not said cannula;
inserting said hypodermic needle into the skin of a patient;
moving said external transporter housing forward over the length of said inner needle tube while keeping said, hypodermic needle within the skin of said patient so that said cannula slides through said hypodermic needle until it is underneath the skin of said patient;
pulling said integrated needle and cannula assembly backward to pull said hypodermic needle out of the skin of said patient while leaving said cannula underneath the skin of said patient;
injecting medication into said patient through said cannula.
29. The method of claim 28 wherein said cannula is a blunt-tipped cannula.
30. The method of claim 28 wherein said medication is selected from the group of deoxycholic (bile) acid, silicone, lidocaine, saline, hyaluronic acid fillers, synthetic wrinkle fillers (calcium hydroxyapatite, poly-1-lactic acid, poly glycolic acid), collagen wrinkle fillers, poly methyl methacrylate with bovine collagen, autologous wrinkle fillers and tumescent anesthesia solutions.
31. The method of claim 28 wherein said medication is a Botulinum toxin.
32. An integrated cannula and trocar assembly comprising:
a syringe;
a cannula attached to said syringe having a hollow annular space and an open distal tip;
a trocar with a sharp distal tip;
wherein said trocar is inserted concentrically into the hollow annular space of said cannula so that the sharp distal tip of said trocar can protrude from the open distal tip of said cannula.
33. An integrated needle and cannula assembly for thread-lift procedures comprising:
a cannula attached to a surgical thread;
a hypodermic needle having a hollow annular space;
wherein said cannula and surgical thread are inserted into the hollow annular space of said hypodermic needle.
34. The integrated needle and cannula assembly of claim 33 wherein said surgical thread has barbs.
35. The integrated needle and cannula assembly of claim 33 further comprising a syringe containing sub-dermal substances attached to said cannula.
36. The integrated needle and cannula assembly of claim 33 wherein said surgical thread is situated inside said cannula.
37. The integrated needle and cannula assembly of claim 33 wherein said surgical thread is attached to the distal end of said cannula and is otherwise exterior to said cannula.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/368,693 US20190275262A1 (en) | 2015-08-20 | 2019-03-28 | Integrated needle and cannula for plastic surgery |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562207886P | 2015-08-20 | 2015-08-20 | |
USPCT/US2016/047917 | 2016-08-19 | ||
PCT/US2016/047917 WO2017031478A1 (en) | 2015-08-20 | 2016-08-19 | Integrated needle and cannula for plastic surgery |
US15/242,455 US10286161B2 (en) | 2015-08-20 | 2016-08-19 | Integrated needle and cannula for plastic surgery |
US16/368,693 US20190275262A1 (en) | 2015-08-20 | 2019-03-28 | Integrated needle and cannula for plastic surgery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/242,455 Division US10286161B2 (en) | 2015-08-20 | 2016-08-19 | Integrated needle and cannula for plastic surgery |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190275262A1 true US20190275262A1 (en) | 2019-09-12 |
Family
ID=58052043
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/242,455 Expired - Fee Related US10286161B2 (en) | 2015-08-20 | 2016-08-19 | Integrated needle and cannula for plastic surgery |
US16/368,693 Abandoned US20190275262A1 (en) | 2015-08-20 | 2019-03-28 | Integrated needle and cannula for plastic surgery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/242,455 Expired - Fee Related US10286161B2 (en) | 2015-08-20 | 2016-08-19 | Integrated needle and cannula for plastic surgery |
Country Status (7)
Country | Link |
---|---|
US (2) | US10286161B2 (en) |
EP (1) | EP3337531A1 (en) |
KR (1) | KR20180072670A (en) |
CN (1) | CN108430535A (en) |
AU (1) | AU2016309012A1 (en) |
CA (1) | CA2998845A1 (en) |
WO (1) | WO2017031478A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021222223A1 (en) | 2020-04-27 | 2021-11-04 | Arya Medical, Inc. | Combined needle and cannula |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3036289B1 (en) * | 2015-05-19 | 2021-10-22 | Peter Cumbo | INJECTION DEVICE FOR INJECTABLE PRODUCT CONTAINING A CANNULA SLIDING INTO A NEEDLE AND SYSTEM USING SUCH A DEVICE |
US10188777B2 (en) | 2015-08-20 | 2019-01-29 | Aurastem Llc | Liposuction device and system and use thereof |
EP3439716B1 (en) | 2016-04-08 | 2023-11-01 | Allergan, Inc. | Aspiration and injection device |
US10595977B2 (en) | 2017-01-24 | 2020-03-24 | Allergan Industrie, Sas | Thread insertion devices |
US10709444B2 (en) * | 2017-01-24 | 2020-07-14 | Allergan Industrie Sas | Thread insertion devices |
US10265151B2 (en) | 2017-01-24 | 2019-04-23 | Allergan Industrie Sas | Thread insertion devices |
US10258447B2 (en) | 2017-01-24 | 2019-04-16 | Allergan Industrie Sas | Thread insertion devices |
US10820900B2 (en) | 2017-01-24 | 2020-11-03 | Allergan Industrie Sas | Thread insertion devices |
JP6765990B2 (en) * | 2017-02-24 | 2020-10-07 | テルモ株式会社 | Medical device |
US20180289467A1 (en) * | 2017-04-05 | 2018-10-11 | Ernesto Andrade | Dispensing device, kit, and method for tissue augmentation |
KR102508533B1 (en) * | 2017-04-28 | 2023-03-13 | 아우라스템 엘엘씨 | Micro liposuction needle device and use |
KR101992315B1 (en) * | 2017-08-24 | 2019-06-26 | (주)엠큐어 | Embedding therapy tool capable of continuous supply of embedding thread |
KR101878258B1 (en) * | 2018-01-11 | 2018-08-17 | 주식회사 오브이월드 | Medical suture material insertion tool |
US10856907B2 (en) * | 2018-02-21 | 2020-12-08 | Charles P. Virden | Atraumatic trocar medication delivery method |
US11406806B2 (en) * | 2018-02-21 | 2022-08-09 | Charles P. Virden | Atraumatic trocar apparatus, system and kit |
KR200494671Y1 (en) * | 2018-09-10 | 2021-12-27 | (주)제이월드 | Medical filling material injecting device |
KR102347080B1 (en) * | 2018-12-14 | 2022-01-05 | (주)제이월드 | Cannula for inserting suture |
WO2020162368A1 (en) * | 2019-02-06 | 2020-08-13 | テルモ株式会社 | Implanted body retaining apparatus and implanted body |
JP7391081B2 (en) * | 2019-03-18 | 2023-12-04 | テルモ株式会社 | Implant placement device |
CN110433360B (en) * | 2019-06-26 | 2022-03-01 | 青岛达宸医疗科技有限公司 | Filling injection needle capable of avoiding vascular embolism |
USD914871S1 (en) * | 2019-07-12 | 2021-03-30 | Retractable Technologies, Inc. | Syringe barrel |
USD914873S1 (en) * | 2019-07-12 | 2021-03-30 | Retractable Technologies, Inc | Syringe barrel |
USD914874S1 (en) * | 2019-07-12 | 2021-03-30 | Retractable Technologies, Inc | Syringe barrel |
USD914872S1 (en) * | 2019-07-12 | 2021-03-30 | Retractable Technologies, Inc. | Syringe barrel |
USD914875S1 (en) * | 2019-07-12 | 2021-03-30 | Retractable Technologies, Inc. | Syringe barrel |
US10932765B1 (en) * | 2019-11-04 | 2021-03-02 | Cufix, Llc | Fractionated tissue attachment device and method |
IL273004A (en) | 2020-03-01 | 2021-09-30 | Luminera Derm Ltd | Thread insertion device |
CN111467005B (en) * | 2020-04-15 | 2023-04-25 | 聊城市人民医院 | Positioning type intrathecal medical needle |
US20210338236A1 (en) * | 2020-04-29 | 2021-11-04 | Greene Technologies, LLC | Thread lift cannula and method of performing a thread lift |
US11596748B2 (en) * | 2020-10-06 | 2023-03-07 | Sebastien Dewandre | Hybrid blunt cannula with puncture needle assembly |
KR102580423B1 (en) * | 2020-12-23 | 2023-09-18 | 오스템임플란트 주식회사 | Lifting device for plastic surgery |
KR102560579B1 (en) * | 2020-12-23 | 2023-07-28 | 오스템임플란트 주식회사 | Lifting device for plastic surgery |
CN114259285B (en) * | 2021-12-23 | 2024-03-01 | 程波 | Kidney puncture fixing surgical instrument assembly |
CN114391932B (en) * | 2022-01-13 | 2023-12-22 | 江苏康康同学科技有限公司 | Dermatological positioning puncture needle for necrotic part |
KR102703827B1 (en) * | 2022-02-10 | 2024-09-09 | 에이비메디컬 주식회사 | Sample collecting device |
KR102524999B1 (en) * | 2022-10-18 | 2023-04-24 | 이상진 | Multipurpose Injection Needle |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772264A (en) | 1986-06-23 | 1988-09-20 | Regents Of The University Of Minnesota | Catheter introduction set |
US4828547A (en) | 1987-09-28 | 1989-05-09 | Bio-Plexus, Inc. | Self-blunting needle assembly and device including the same |
US5685852A (en) | 1992-03-30 | 1997-11-11 | Symbiosis Corporation | Needle assembly and methods useful for epidural anesthesia |
US5800389A (en) | 1996-02-09 | 1998-09-01 | Emx, Inc. | Biopsy device |
US6203524B1 (en) | 1997-02-10 | 2001-03-20 | Emx, Inc. | Surgical and pharmaceutical site access guide and methods |
US5704914A (en) | 1996-02-23 | 1998-01-06 | Stocking; John E. | Catheter placement assembly |
US6391007B2 (en) * | 1998-12-23 | 2002-05-21 | Joseph Jawshin Chang | Solid blunt for a needle assembly |
US6936006B2 (en) | 2002-03-22 | 2005-08-30 | Novo Nordisk, A/S | Atraumatic insertion of a subcutaneous device |
US7338465B2 (en) | 2002-07-02 | 2008-03-04 | Patton Medical Devices, Lp | Infusion device and method thereof |
US20080281292A1 (en) | 2006-10-16 | 2008-11-13 | Hickingbotham Dyson W | Retractable Injection Port |
US7812941B2 (en) * | 2007-06-15 | 2010-10-12 | Abbott Cardiovascular Systems Inc. | Systems and methods for the inspection of cylinders |
US20090069751A1 (en) * | 2007-09-11 | 2009-03-12 | Curtis Brian E | Intravenous Delivery Systems |
US20100287793A1 (en) | 2009-05-13 | 2010-11-18 | K-2 Corporation | Sports boot construction |
WO2010133460A1 (en) | 2009-05-18 | 2010-11-25 | Basf Se | Coating process for water-absorbent polymer particles |
US8092424B2 (en) | 2009-09-21 | 2012-01-10 | Mueller Jeffrey T | Safety syringe |
US9414930B2 (en) * | 2010-10-26 | 2016-08-16 | Kyphon SÀRL | Activatable devices containing a chemonucleolysis agent |
WO2012058267A2 (en) * | 2010-10-26 | 2012-05-03 | Kyphon Sarl | Devices containing a chemonucleolysis agent and methods for treating an intervertebral disc or spinal arachnoiditis |
US8840588B2 (en) | 2011-02-11 | 2014-09-23 | Mectra Labs, Inc. | Insufflation needle with dual indicator and method of use |
US9205204B2 (en) * | 2012-08-06 | 2015-12-08 | Elwha Llc | Devices and methods for wearable injection guides |
US20160287792A1 (en) * | 2015-04-02 | 2016-10-06 | XEND Medical, LLC | Plugged hypodermic needle system |
-
2016
- 2016-08-19 US US15/242,455 patent/US10286161B2/en not_active Expired - Fee Related
- 2016-08-19 WO PCT/US2016/047917 patent/WO2017031478A1/en active Application Filing
- 2016-08-19 EP EP16837943.6A patent/EP3337531A1/en not_active Withdrawn
- 2016-08-19 KR KR1020187007802A patent/KR20180072670A/en not_active Ceased
- 2016-08-19 AU AU2016309012A patent/AU2016309012A1/en not_active Abandoned
- 2016-08-19 CN CN201680060822.6A patent/CN108430535A/en active Pending
- 2016-08-19 CA CA2998845A patent/CA2998845A1/en not_active Abandoned
-
2019
- 2019-03-28 US US16/368,693 patent/US20190275262A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021222223A1 (en) | 2020-04-27 | 2021-11-04 | Arya Medical, Inc. | Combined needle and cannula |
Also Published As
Publication number | Publication date |
---|---|
CA2998845A1 (en) | 2017-02-23 |
US20170049972A1 (en) | 2017-02-23 |
WO2017031478A1 (en) | 2017-02-23 |
KR20180072670A (en) | 2018-06-29 |
CN108430535A (en) | 2018-08-21 |
US10286161B2 (en) | 2019-05-14 |
EP3337531A1 (en) | 2018-06-27 |
AU2016309012A1 (en) | 2018-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190275262A1 (en) | Integrated needle and cannula for plastic surgery | |
US7998119B2 (en) | System and method for delivering fluid into flexible biological barrier | |
CN104010679B (en) | Intubation without bruising | |
US8007466B2 (en) | System and method for delivering fluid into flexible biological barrier | |
US10820900B2 (en) | Thread insertion devices | |
US11039910B2 (en) | Thread insertion devices | |
US11224501B2 (en) | Thread insertion devices | |
US20240268816A1 (en) | Thread insertion devices | |
CN116367878A (en) | Microneedle patch application system | |
US20100324530A1 (en) | Hollow needle | |
KR101643904B1 (en) | Suture Inserting Device for Removing Wrinkles of Skin | |
US20240148983A1 (en) | Combined needle and cannula | |
Hertzog et al. | The flexible needle, a safe and easy new technique to inject the face | |
NZ626278B2 (en) | Bruiseless cannula |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |