US20190170321A1 - Compact Holographic Illumination Device - Google Patents
Compact Holographic Illumination Device Download PDFInfo
- Publication number
- US20190170321A1 US20190170321A1 US16/208,050 US201816208050A US2019170321A1 US 20190170321 A1 US20190170321 A1 US 20190170321A1 US 201816208050 A US201816208050 A US 201816208050A US 2019170321 A1 US2019170321 A1 US 2019170321A1
- Authority
- US
- United States
- Prior art keywords
- light
- esbg
- led
- green
- illumination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 56
- 230000003287 optical effect Effects 0.000 claims description 60
- 239000000758 substrate Substances 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 13
- 238000007493 shaping process Methods 0.000 claims description 4
- 230000004075 alteration Effects 0.000 claims description 3
- 239000003086 colorant Substances 0.000 claims 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 33
- 230000010287 polarization Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 239000004973 liquid crystal related substance Substances 0.000 description 13
- 230000005684 electric field Effects 0.000 description 11
- 238000001093 holography Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000005276 holographic polymer dispersed liquid crystals (HPDLCs) Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000012771 pancakes Nutrition 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000001828 Gelatine Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004557 technical material Substances 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/04—Refractors for light sources of lens shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
- F21K9/64—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
- G02B27/102—Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1086—Beam splitting or combining systems operating by diffraction only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/32—Holograms used as optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3152—Modulator illumination systems for shaping the light beam
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3164—Modulator illumination systems using multiple light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2113/00—Combination of light sources
- F21Y2113/10—Combination of light sources of different colours
- F21Y2113/13—Combination of light sources of different colours comprising an assembly of point-like light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
- G02F1/133607—Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133613—Direct backlight characterized by the sequence of light sources
-
- G02F2001/133607—
-
- G02F2001/133613—
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/62—Switchable arrangements whereby the element being usually not switchable
Definitions
- This invention relates to an apparatus for illuminating a display, and more particularly to an illuminator device based on Bragg gratings.
- Recent developments in microdisplays and Light Emitting Diode (LED) technology are driving the development of a range of consumer applications such as compact projectors and thin form factor rear projection televisions.
- Current microdisplays employ a variety of technologies including liquid crystals, micro-mechanical mirrors (MEMs), micro-mechanical diffraction gratings and others.
- Liquid Crystal Displays (LCDs) are the most well known examples.
- the most efficient method of illuminating microdisplays is to present red, green and blue illumination sequentially with the display image data being updated in the same sequence. Such procedures require that the display update rate is fast enough for the sequential single-color images to appear to the observer as a full color image.
- FIG. 1 shows an example of a prior art illumination system.
- the illumination system comprises an incoherent light source 1001 , condenser mirror 1002 , focusing lens 1003 , color wheel 1004 , collimating lens 1005 and filter 1006 .
- the ray directions are generally indicated by the arrowed lines 2000 .
- a projection display would further comprise a microdisplay 1007 and a projection lens 1008 forming an image on a screen 1009 .
- Illumination systems based on incoherent sources such as UHP lamps, for example, suffer from the problems of bulk, warm up time lag, high heat dissipation and power consumption, short lamp lifetime, noise (resulting from the color wheel) and poor color saturation.
- LED illumination uses dichroic beam splitters known as X-cubes.
- the prior art illuminator shown in FIG. 2 comprises red, green and blue LED sources 1010 a , 1010 b , 1010 c each comprising LED die and collimators, an X-cube 1011 , focusing lens 1012 , light integrator 1013 , a further relay lens 1014 which directs light from the integrator onto the surface of a microdisplay 1015 .
- the ray directions are generally indicated by the arrowed lines 2010 .
- illuminators based on LEDs suffer from several problems.
- LEDs provide high lumen output they have large emittance angles, making the task of collecting and relaying light through the narrower acceptance cones of a microdisplay a very challenging optical design problem. LEDs require fairly large collimators, making it difficult to achieve compact form factors. LED triplet configurations using a shared collimation element suffer from thermal problems if the die are configured too closely. In the case of X-cube architectures such as the one shown in FIG. 2 , the resulting image is barely bright enough, with the X-cube itself losing around one third of the light from the LEDs. X-cubes also present alignment, bulk and cost problems. Thus there exists a need for a compact, efficient LED illuminator for microdisplays.
- DOEs Diffractive optical elements offer a route to solving the problems of conventional optical designs by providing unique compact form factors and high optical efficiency.
- DOEs may be fabricated from a range of recording materials including dichromated gelatine and photo-polymers.
- ESBGs Electrically Switchable Holographic Bragg Gratings
- PDLC polymer dispersed liquid crystal
- ESBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. Techniques for making and filling glass cells are well known in the liquid crystal display industry. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A volume phase grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure.
- the monomers polymerize and the HPDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer.
- the alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating.
- the resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer.
- an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels.
- diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from near 100% efficiency with no voltage applied to essentially zero efficiency with a sufficiently high voltage applied.
- U.S. Pat. Nos. 5,942,157 and 5,751,452 describe monomer and liquid crystal material combinations suitable for fabricating ESBG devices.
- a publication by Butler et al. (“Diffractive properties of highly birefringent volume gratings: investigation”, Journal of the Optical Society of America B, Volume 19 No. 2, February 2002) describes analytical methods useful to design ESBG devices and provides numerous references to prior publications describing the fabrication and application of ESBG devices.
- DOEs based on HPDLC may also be used as non-switchable devices. Such DOEs benefit from high refractive index modulations.
- Another approach to combining light from more than one LED of a particular colour is to exploit the angle/wavelength selectivity of Bragg gratings.
- High efficiency can be provided in different incidence angle ranges for different wavelengths according to the well-known Bragg diffraction equation.
- the resulting incidence angle range will not be sufficiently large to separate the LED die. For example, if green sources with peak wavelengths at the extremities of the green band of the visible spectrum were provided the resulting incidence angles would differ by just a few degrees. This would make it at best extremely difficult to integrate the LED die and condenser optics into a compact package.
- a first embodiment comprising a LED module, a condenser lens and an Electrically Switchable Bragg Grating (ESBG) device configured as a stack of separately switchable ESBG layers.
- Said optical elements are aligned along an optical axis normal to the surface of each element
- Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied.
- Each ESBG has a diffracting state and a non-diffracting state.
- Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state.
- Each ESBG is operative to diffract at least one wavelength of red, green or blue light.
- the illuminator further comprises a diffractive optical element (DOE) for beam intensity shaping.
- DOE diffractive optical element
- the DOE is operative to alter the wavefronts of incident red green and blue light to control the spatial distribution of illumination. Diffusion characteristics may be built into the ESBG devices. The diffusing properties of the ESBGs and the CGH may be combined to produce a desired illumination correction.
- the ESBG device comprises a green diffracting ESBG layer, a red diffracting ESBG layer and a blue diffracting ESBG layer.
- the red and green LEDs are disposed with their emission axes in a common plane.
- the blue LED is disposed with its emission axis disposed in an orthogonal plane.
- red, green and blue LEDs may be configured to lie in a common plane.
- the ESBG device comprises a first ESBG into which two superimposed red and green Bragg gratings have been recorded and a second ESBG into which a blue Bragg grating has been recorded.
- the ESBG device comprises red and green diffracting layers only.
- the blue LED is disposed with its emission axis parallel to the optical axis.
- the light from the blue LED is collimated by the lens system but is not deflected by the ESBG instead continuing to propagate without substantial deflection parallel to the optical axis.
- a further embodiment of the invention comprises a LED module, a condenser lens, a group of ESBGs configured as a stack of separately switchable ESBG layers, a DOE and a relay lens.
- Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied.
- Each ESBG has a diffracting state and a non-diffracting state.
- Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state.
- Each ESBG is operative to diffract at least one wavelength of red, green or blue light.
- the LED module comprises two green emitters, a blue emitter and a red emitter.
- the ESBG group comprises green diffracting ESBG layers and a red diffracting ESBG.
- the DOE is operative to alter the wave fronts of incident red green and blue light to control to spatial distribution of illumination at the display panel.
- the output from the DOE comprises diffused light.
- the DOE is a Computer Generated Hologram (CGH) operative to diffract and diffuse red green and blue light.
- CGH Computer Generated Hologram
- the ESBGs may also have diffusing properties that operate on light at the diffraction wavelength. The diffusing properties of the ESBGs and the CGH may be combined to produce a desired illumination correction
- light from at least one LED is directed towards the ESBG device by means of a dichroic beam splitter.
- elements of the illuminator may be configured in folding configurations to provide a compact form factor when the apparatus is not in use.
- the LED die are disposed on a curved substrate.
- refracting elements are disposed in front of each LED die to modify the LED emission angular distribution.
- a polarization insensitive illuminator in which the ESBG groups in any of the above embodiments further comprise a half wave plate and further ESBG layers.
- the ESBGs may be replaced by non-switchable Bragg gratings.
- colour sequential illumination is provided by switching red, green and blue LEDs in sequence.
- more efficient use of LED emission may be achieved by running two identical pulse sequentially driven LEDs.
- the illuminator further comprises a polarization rotating filter operative to rotate the polarization of at least one primary colour through ninety degrees.
- the illuminator may incorporate at least one light guide for one or more of the red green and blue lights.
- the light guide is disposed in the optical path between the LEDs and the ESBG device.
- diffusing characteristics are encoded within one or more of the Bragg gratings.
- the LED module comprises a multiplicity of emitters arranged in a circular pattern on a substrate.
- the ESBGs are disposed on a rotating substrate containing at least one ESBG.
- the ESBGs are disposed on a rotating substrate.
- the ESBG configuration comprises two displaced ESBGs disposed such that while one ESBG overlaps the beam path of a first LED, the second ESBG is ready to overlap the beam path of an adjacent LED.
- the illuminator comprises an LED module comprising a substrate and an array of LED die, a printed circuit board containing apertures, an array of lens elements disposed on a substrate and a stack of ESBGs.
- an illuminator comprising: a first LED characterised by a first wavelength; a second LED characterised by said first wavelength; a collimating lens; and a first Bragg grating.
- the grating is recorded by means of a first recording beam incident normal to the grating and a second recording beam incident at an angle to the grating.
- the lens collimates and directs light from the first and second LEDs towards said grating at first and second angles respectively.
- the second angle is substantially equal to the incidence angle of the second recording beam.
- the grating has a maximum acceptance angle for light beams whose average direction corresponds to that of said first recording beam, said acceptance angle being defined by the angle at which the diffraction efficiency of said grating falls to a predetermined value.
- the first angle is greater than said maximum acceptance angle.
- the normal to the surface of the grating defines an illumination direction. The first grating diffracts light from said second LED into said illumination direction.
- an illuminator comprising: a first LED characterised by a first wavelength; a second LED characterised by said first wavelength; a collimating lens; and a first ESBG.
- the ESBG is recorded by means of a first recording beam incident normal to the ESBG and a second recording beam incident at an angle to the ESBG.
- the lens collimates and directs light from the first and second LEDs towards said ESBG at first and second angles respectively.
- the second angle is substantially equal to the incidence angle of the second recording beam.
- the ESBG has a maximum acceptance angle for light beams whose average direction corresponds to that of said first recording beam, said acceptance angle being defined by the angle at which the diffraction efficiency of said ESBG falls to a predetermined value.
- the first angle is greater than said maximum acceptance angle.
- the normal to the surface of the ESBG defines an illumination direction. The first ESBG diffracts light from said second LED into said illumination direction.
- an illuminator comprising: a holographic optical element into which superimposed third and fourth Bragg gratings have been recorded; a third LED emitting light of a second wavelength; and a fourth LED emitting light of a third wavelength.
- the lens diffracts said second and third wavelength light at a third and fourth angles respectively with respect to said holographic optical element.
- the second and third wavelength light is diffracted into a direction normal to said holographic optical element.
- the Bragg grating is a first ESBG and the holographic optical element is a second ESBG.
- the Bragg grating is a first ESBG and the holographic optical element is a second ESBG.
- the apparatus further comprises in series a half wave plate; a third ESBG and a fourth ESBG.
- the third ESBG is identical to said first ESBG and the fourth ESBG is identical to said second ESBG.
- FIG. 1 is a schematic side view of a first prior art illuminator.
- FIG. 2 is a schematic side elevation view of a second prior art illuminator.
- FIG. 3 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 4 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 5 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 6 is a schematic plan view of a further embodiment of the invention.
- FIG. 7 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 8 is a schematic plan view of a further embodiment of the invention.
- FIG. 9 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 10 is a schematic plan view of a further embodiment of the invention.
- FIG. 11 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 12 is a schematic plan view of a further embodiment of the invention.
- FIG. 13 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 14 is a front elevation view of an LED device.
- FIG. 15 is a schematic front elevation view of a first LED configuration.
- FIG. 16 is a schematic front elevation view of a second LED configuration.
- FIG. 17 is a schematic front elevation view of a third LED configuration.
- FIG. 18 is a schematic plan view of a LED configuration incorporating a dichroic beam splitter.
- FIG. 19 is a schematic side view of a LED configuration incorporating a dichroic beam splitter.
- FIG. 20A is a diagram defining LED emission angles used in the charts in FIG. 13 and FIG. 14
- FIG. 20B is a chart showing normalized LED intensity as a function of angle.
- FIG. 21 is a chart showing normalized LED luminous flux as a function of angle.
- FIG. 22 is a schematic side elevation view of another embodiment of the invention.
- FIG. 23 is a schematic side elevation view of another embodiment of the invention.
- FIG. 24 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 25A is a schematic front elevation view of a further embodiment of the invention.
- FIG. 25B is a schematic front elevation view of a further embodiment of the invention.
- FIG. 25C is a schematic side elevation view of a further embodiment of the invention.
- FIG. 26 is a schematic front elevation view of a further embodiment of the invention.
- FIG. 27 is a schematic three-dimensional view of a further embodiment of the invention.
- FIG. 28 is a schematic three-dimensional view of a further embodiment of the invention.
- FIG. 29 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 30 is a schematic plan view of the further embodiment of the invention in FIG. 27 .
- FIG. 31 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 32 is a chart illustrating a LED drive scheme for use with the invention.
- FIG. 33 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 34 is a schematic plan view of the further embodiment of the invention in FIG. 31 .
- FIG. 35 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 36 is a schematic side elevation view of a further embodiment of the invention.
- FIGS. 37A and 37B are schematic side elevation views of a further embodiment of the invention.
- FIG. 38 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 39 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 40 is a schematic side elevation view of a further embodiment of the invention.
- FIG. 41 is a schematic side elevation view of a yet further embodiment of the invention.
- FIG. 42 is a schematic side elevation view illustrating elements of said yet further embodiment of the invention.
- FIG. 43 is a schematic side elevation view illustrating elements of said yet further embodiment of the invention.
- FIG. 44 is a chart showing characteristics of one particular embodiment of said yet further embodiment of the invention.
- FIG. 45 is a schematic side elevation view of a particular embodiment of the invention.
- FIG. 3 shows a schematic side elevation view of a first embodiment of the invention.
- the illuminator comprises the LED module 1 , condenser lens 2 , and an ESBG device configured as a stack of separately switchable ESBG layers. Said optical elements are aligned along an optical axis normal to the surface of each element
- Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied.
- Each ESBG has a diffracting state and a non-diffracting state.
- Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state.
- Each ESBG is operative to diffract at least one wavelength of red, green or blue light.
- the LED module comprises emitters 1 a , 1 b , 1 c which would normally comprised red green and blue LEDs. Although only one LED of each colour is shown in FIG. 3 more than one LED of a particular primary colour may be used. Embodiments in which, for example, two green LEDs, one red and one blue LED are used will be discussed later.
- the collimator lens collimates light 101 a , 101 b , 101 c from LEDs 10 a , 10 b , 10 c to provide the substantially collimated beams 102 a , 102 b , 102 c respectively.
- the ESBG device may be designed such that a particular primary colour is not diffracted. In other words an ESBG is not provided for that particular colour.
- FIG. 4 shows a schematic side elevation view of an illuminator according to the first embodiment of the invention.
- the apparatus includes the elements of FIG. 2A and further comprises a Diffractive Optical Element (DOE) 4 and a relay lens 5 .
- a complete display system further comprises the microdisplay panel 6 .
- the illuminator forms a diffused image of the LED die at a surface 7 . Typically said image surface is located close to the surface of the microdisplay.
- the microdisplay may any type of transmissive or reflective array device.
- the microdisplay does not form part of the present invention.
- the DOE 4 is operative to alter the wavefronts of incident red green and blue light to control to spatial distribution of illumination at the display panel.
- the output from the DOE 4 comprises diffused light as generally indicated by 104.
- Non-uniformities to be corrected by the DOE may be contributed by the LED polar distributions, vignetting aberrations and other factors.
- the DOE is a Computer Generated Hologram (CGH) operative to diffract and diffuse red green and blue light.
- CGH Computer Generated Hologram
- the basic principles of the design and fabrication of CGH devices suitable for use in the present invention are discussed in references such as. “Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology” by B. Kress and P. Meyrueis, published in 2000 by John Wiley & Sons Inc.
- the ESBGs may also have diffusing properties that operate on light at the diffraction wavelength.
- the required diffusion characteristics may be built into the ESBG devices using procedures well known to those skilled in the art of Holographic Optical Elements (HOEs).
- the diffusing properties of the ESBGs and the CGH may be
- FIG. 5-6 show a schematic side elevation and plan views respectively of a further embodiment of the invention in which one particular embodiment of the ESBG device is shown in detail.
- the ESBG group comprises green diffracting ESBG layer 30 a , a red diffracting ESBG layer 30 b and a blue diffracting ESBG layer 30 c .
- the red and green LEDs 10 a , 10 b are disposed in a common plane.
- the blue LED 10 c is disposed in the orthogonal plane.
- the ESBG layers 30 a , 30 b , 30 c diffract the beam 102 a , 102 b , 102 c into the directions 103 a , 103 b , 103 c respectively where directions 103 a , 103 b , 103 c are substantially parallel to the optical axis. In each projection the rays around a mean direction normal to the page are indicated by dashed lines.
- the ESBG layers further comprise means for applying a voltage, across the electrodes of each ESBG cell and logic circuits for controlling the sequence in which the ESBGs are activated. In alternative embodiments related to the one illustrated in FIGS. 5-6 the three LEDs may be configured to lie in a common plane.
- the blue LED In such a configuration it would not be practical for the blue LED to be configured with its emission axis normal to the ESBG device. To provide efficient diffraction parallel to the optical axis the blue LED emission axis should be configured at an off axis angle within the plane contained the emission axis of the LEDs.
- the first step comprises switching on the green LED switching off the blue and red LEDS, deactivating the red ESBG using an applied electric field, the green diffracting ESBG remaining in a diffracting state, and updating the display with green picture information.
- the second step comprises switching on the red LED switching off the blue and green LEDs, deactivating the green ESBG using an applied electric field, the red diffracting ESBG now changing to its diffracting state, and updating the display with red picture information.
- the third step comprises switching on the blue LED switching off the green and red LEDs, deactivating the red ESBG using an applied electric field, the green diffracting ESBG remaining in a diffracting state, and updating the display with blue picture information. Note that the switching of the ESBGs would normally take place during the display refresh period.
- FIGS. 7-8 show schematic side elevation and plan views respectively of a further embodiment of the invention.
- the ESBG device comprises a first ESBG 30 d into which two superimposed red and green Bragg gratings have been recorded and a second blue diffracting ESBG 30 c .
- Such a configuration may allow more flexibility in the choice of incident angles.
- the basic principles of recording multiple superimposed gratings will be well known to those skilled in the art of holography and is discussed in textbooks such as “Optical Holography” by R. J. Collier, C. B. Burkhardt and L. H. Lin published by Academic Press, New York (1971). However, as discussed in references such as Collier superimposed Bragg gratings suffer from reduced diffraction efficiency.
- the principles of operation of the illuminator are similar to those of the embodiment of FIGS. 5-6 .
- the green and red ESBGs will be active simultaneously.
- Color sequential illumination of the microdisplay is provided using the following steps.
- the first step comprises switching on the green LED switching off the blue and red LEDs, deactivating the blue ESBG using an applied electric field, the red-green diffracting ESBG remaining in a diffracting state, and updating the display with green picture information.
- the second step comprises switching on the red LED switching off the blue and green LEDs and updating the display with red picture information.
- the third step comprises switching on the blue LED switching off the green and red LEDs, deactivating the red-green ESBG using an applied electric field, the blue diffracting ESBG remaining in a diffracting state, and updating the display with blue picture information. Note that the switching of the ESBGs would normally take place during the display refresh period.
- FIGS. 9-10 show schematic side elevation and plan views respectively of a further embodiment of the invention.
- the ESBG device comprises red and green diffracting layers 30 a , 30 b only.
- the blue LED 10 c is disposed with its emission axis parallel to the optical axis.
- the light from the blue LED is collimated by the lens system 2 but is not deflected by the ESBG instead continuing to propagate without substantial deflection parallel to the optical axis.
- FIGS. 11-12 show schematic side elevation and plan views respectively of a first embodiment of the invention.
- the illuminator comprises the LED module 1 , condenser lens 2 , a group of ESBGs 3 configured as a stack of separately switchable ESBG layers, a DOE 4 and a relay lens 5 .
- Said optical elements are aligned along an optical axis normal to the surface of each element.
- a complete projection system would further comprise the display panel 6 .
- Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied.
- Each ESBG has a diffracting state and a non-diffracting state.
- Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state.
- Each ESBG is operative to diffract at least one wavelength of red, green or blue light.
- the LED module comprises two green emitters 10 a , 10 b , and a blue emitter 10 c .
- the LED module further comprises a red emitter 10 d .
- the collimator lens collimates light 101 a , 101 b , 101 c , 101 d from LEDs 10 a , 10 b , 10 c , 10 d to provide the substantially collimated beams 102 a , 102 b , 102 c , 102 d respectively.
- the ESBG group comprises green diffracting ESBG layers 30 a , 30 b and a red diffracting ESBG layer 30 c .
- the ESBG layers 30 a , 30 b diffract the beam 102 a , 102 b into the directions 103 a , 103 b respectively where directions 103 a , 103 b are substantially parallel to the optical axis.
- the ESBG layers further comprise means for applying a voltage, across the electrodes of each ESBG cell and logic circuits for controlling the sequence in which the ESBGs are activated.
- the light from the blue LED is not deflected by an ESBG after collimation but proceeds parallel to the optical axis.
- Color sequential illumination of the microdisplays is provided using the following steps.
- the first step comprises switching on the green LEDs switching off the blue and red LEDS, deactivating the red ESBG using an applied electric field, the green diffracting ESBGs remaining in a diffracting state, and updating the display with green picture information.
- the second step comprises switching on the red LED switching off the blue and green LEDS, deactivating the green ESBGs using an applied electric field, the red diffracting ESBG now changing to its diffracting state, and updating the display with red picture information.
- the third step comprises switching on the blue LED switching off the green and red LEDS, deactivating the red ESBG using an applied electric field, the green diffracting ESBGs remaining in a diffracting state, and updating the display with blue picture information.
- red and green ESBGs may remain in the diffractive state during each of the above steps.
- the DOE 4 is operative to alter the wavefronts of incident red green and blue light to control the spatial distribution of illumination at the display panel.
- the output from the DOE 4 comprises diffused light as generally indicated by 104. Non-uniformities may be contributed the LED polar distributions, vignetting aberrations and other factors.
- a complete projection display according to any of the above embodiments further comprises a microdisplay 6 and a projection lens, which is not shown. It should be noted that the effect of the elements 2 - 5 is to form a diffused image of the LED die at a surface 7 . Typically said image surface is located close to the microdisplay surface.
- DOE 4 may be eliminated.
- the ESBGs 31 a , 31 b may each comprise an ESBG into which two superimposed red and green Bragg gratings have been recorded.
- Such a configuration may allow more flexibility in the choice of incident angles.
- the basic principles of recording multiple superimposed gratings will be well known to those skilled in the art of holography and is discussed in textbooks such as “Optical Holography” by R. J. Collier, C. B. Burkhardt and L. H. Lin published by Academic Press, New York (1971). However, as discussed in references such as Collier superimposed Bragg gratings suffer from reduced diffraction efficiency.
- FIG. 13 shows an alternative embodiment of the invention similar to that illustrated in FIGS. 11-12 .
- an ESBG that diffracts both red and green light.
- the red LED 10 e is now disposed such that after collimation it provides light at a steeper incidence angle than the green LED 10 a .
- the ESBGs 31 a , 31 b relies on the property of Bragg holograms that high efficiency can be provided in different incidence angle ranges for different wavelengths according to the Bragg diffraction equation.
- the ESBG is designed such that for said incident red and green light 101 e , 101 a the diffracted light directions 102 a , 102 e are substantially parallel to the optical axis.
- the red and green light, which is not diffracted, is trapped by a light-absorbing stop.
- the inventors have found that high diffraction efficiency is obtained when the ESBGs 31 a , 31 b are designed to have incidence angles of 40° for green light and 50° for red light.
- FIGS. 3-5 The inventors have shown that practical implementation of the embodiments of the invention shown in FIGS. 3-5 could provide a projection device having maximum dimensions 120 mm. ⁇ 40 mm. ⁇ 30 mm. where allowance has been made for a projection lens.
- FIGS. 14-17 show examples of practical embodiments of the LED module that may be used in variants of the embodiments illustrated in FIGS. 11-13 .
- FIG. 14 is a front elevation view of a typical commercially available LED device, indicating the dimensions of the substrate and LED die.
- FIGS. 15-17 show alternative methods of configuring red, green and blue LEDs indicated by the symbols R,G,B.
- FIGS. 18-19 illustrate in schematic form a further method of configuring red green and blue LEDs in which FIG. 18 shows a plan view and FIG. 19 shows a side elevation view.
- the blue and green LEDS 15 a , 15 b , 15 c are mounted on a common substrate.
- the red LED 15 d is introduced into the illumination path by means of a dichroic beam splitter 151 .
- FIGS. 20A, 20B and 21 illustrate typical characteristics of an exemplary LED source suitable for use with the invention.
- FIG. 20A defines the angular coordinates.
- FIG. 20B shows typical LED manufacturers data showing the distribution of LED relative intensity as a function of angle. LEDs having the characteristics shown in FIG. 20B are manufactured by Luminus Inc. (USA).
- FIG. 21 is a chart comparing the percentage of light collected at different angles by the LED of FIG. 20B . The percentage of light collected at the same angles by a Lambertian LED is indicated by the dashed line. The invention does not rely on any particular type of LED technology.
- FIG. 22 shows a further embodiment of the invention similar to the one illustrated in FIGS. 11-13 .
- the illuminator comprises LED module 1 , condenser lens 2 , ESBG group 3 , DOE 4 and relay lens 5 .
- the LED module 1 comprises LED die disposed on a curved substrate.
- FIG. 23 shows a further embodiment of the invention similar to the one illustrated in FIG. 22 .
- the illuminator comprises LED module 1 , condenser lens 2 , ESBG group 3 , DOE 4 and relay lens 5 .
- the LEDs are disposed on a curved substrate.
- the embodiment of FIG. 23 further comprises small optical elements such as the one indicated by 8 positioned in front of each LED die. The optical elements modify the LED emission angular distribution.
- One of the well-known attributes of transmission ESBGs is that the liquid crystal molecules tend to align normal to the grating fringe planes.
- FIG. 24 shows an alternative ESBG group that may replace any of the ESBG groups illustrated in the earlier embodiments.
- the modified ESBG group comprises first and second ESBG groups 31 a , 32 a and 31 b , 31 b separated by a half wave plate (HWP) 35 .
- first and second ESBG groups have substantially identical specifications.
- the first ESBG group diffracts incident P-polarized red and green light 100 a , 100 c into a direction parallel to the optical axis
- the portion of incident S-polarized red and green light that is not diffracted continues to propagate away from the optical axis in the directions 120 a , 120 c .
- said diffracted P-polarized red and green light is converted to S-polarized light 120 and is therefore not diffracted by the second ESBG group.
- the ESBGs are disposed on a rotating assembly.
- the LED module comprises a multiplicity of emitters 15 arranged in a circular pattern on a PCB.
- the ESBGs in FIG. 25 are disposed on a rotating substrate 3 containing at least one ESBG 35 , as shown in FIG. 25B
- the ESBG rotates around an axis indicated by 300 in the direction indicated by 5.
- a pancake edge drive motor powers the rotating substrate.
- FIG. 25 One possible operational embodiment is shown in FIG.
- the emitters 15 a , 15 b , 15 c may correspond to red, green and blue sources.
- a LED such as, for example, 15 C flashes when the ESBG 35 overlaps the cross section of the LED beam path.
- the sensing mechanism for determining the position of the ESBG does not form part of the invention.
- the rotating LED assembly many comprise a stack of red, and blue diffracting layers.
- the ESBG comprises two displaced ESBGs 37 , 38 such that while one ESBG overlaps the beam path of a first LED, the second ESBG is ready to overlap the beam path of an adjacent LED.
- the embodiments of FIGS. 25-26 have the advantage that the LEDs may be driven at their maximum rating and heat from the LEDs may be dissipated more effectively using a large area heat sink.
- FIG. 27 shows an alternative embodiment in which two counter rotating ESBGs are provided. The embodiment of FIG. 27 has the advantage of providing more continuous illumination.
- the illuminator comprises an LED module comprising a substrate 1000 and an array of LED die such as 1100 , a PCB 2000 containing apertures 2100 , an array of lens elements 3100 on a substrate 3000 and a stack of ESBGs 4000 .
- Said ESBG stack comprises ESBG layers such as the one indicated by 4200 .
- the substrates 2000 , 3000 are fabricated from ceramic materials. Multiple holograms may be recorded within each ESBG layer.
- the ESBG layers in any of the above embodiments would be combined in a single planar multiplayer device.
- the multilayer ESBG devices may be constructed by first fabricating the separate ESBG devices and then laminating the ESBG devices using an optical adhesive. Suitable adhesives are available from a number of sources, and techniques for bonding optical components are well known.
- the multilayer structures may also comprise additional transparent members, if needed, to control the optical properties of the illuminator.
- the ESBG devices should be substantially transparent when a voltage is applied, and preferably should diffract only the intended color without an applied voltage.
- the ESBGs may be based on any liquid crystal material including nematic and chiral types.
- FIGS. 29-30 are schematic side elevation views of an embodiment of the invention using non-switchable Bragg gratings.
- the green and red diffracting ESBGs 30 a , 30 b , 30 c of FIGS. 11-12 are replaced by the green and red diffracting non-switchable Bragg gratings 32 a , 32 b , 32 c .
- the apparatus illustrated in FIGS. 29-30 is identical to the apparatus illustrated in FIGS. 11-12 .
- FIG. 31 is a schematic side elevation view of a further embodiment of the invention using non-switchable Bragg gratings.
- the green and red diffracting ESBGs 30 a , 30 b , 30 c of FIG. 13 are replaced by the green and red diffracting non-switchable Bragg gratings 33 a , 33 b , 33 c .
- the apparatus illustrated in FIG. 31 is identical to the apparatus illustrated in FIG. 13 .
- FIG. 32 represents the lumen output from two identical LEDS under two different drive schemes.
- the basic principles may be understood by considering the configuration of FIGS. 11-12 in conjunction with FIG. 32 .
- the preferred LED switching scheme represented by the solid lines it will be seen that when the off-axis LED (referred to as LED 1 in FIG. 32 ) is on, light from the off-axis LED is diffracted on axis by the first ESBG.
- the optical axis LED referred to as LED 2 in FIG.
- the ESBG is switched off, that is, into its non-diffracting state.
- light from the on axis LED is not diffracted by the ESBG and continues to propagate on axis after collimation.
- a gain of ⁇ 2 compared with running the same LEDs in continuous mode as indicated by the dashed line may be achieved using the above strategy.
- a further benefit is that the larger effective cooling area resulting from two well separated LEDs allows manufacturers' maximum LED drive current ratings to be maintained more efficiently.
- the illuminator may further comprises a polarization rotating filter operative to rotate the polarization of at least one primary colour through ninety degrees.
- the polarization-rotating filter will typically be disposed in the beam path after the Bragg gratings. By this means it is possible to ensure that the red green and blue components of the illumination have a common polarization direction. This is advantageous in LCD display applications.
- the polarization-rotating filter may be based on a multilayer thin film coating stack. Alternatively the polarization-rotating filter may be based on a stack of retarders where each retarder has a unique in plane optic axis orientation.
- FIGS. 33-34 are schematic side elevation views of an embodiment of the invention similar to that of FIGS. 11-12 .
- FIGS. 33-34 further comprises a polarization-rotating filter 9 .
- the apparatus illustrated in FIGS. 33-34 is identical to the apparatus illustrated in FIGS. 11-12 . It should be noted that the invention does not rely on any particular type of polarization rotation filter.
- the emitting surfaces of the LEDs may be configured to lie on a non-planar surface such as a spherical, conic or other aspheric type of surface.
- the surface need not necessarily be axi symmetric.
- Said surface may be comprised of tilted planes.
- the LEDs may be mounted on pillars attached to a substrate.
- FIG. 35 is a schematic side elevation view of a further embodiment of the invention similar to the embodiment of FIGS. 5-6 .
- the emitting surfaces of the LEDs lie on a spherical surface.
- FIG. 36 is a schematic side elevation view of a further embodiment of the invention in which light from the LEDs is piped to three secondary emissive surfaces by means of light guides 8 a , 8 b , 8 c .
- the embodiment of FIG. 36 is identical to that of FIGS. 5-6 .
- Such light guides may be used with any of the embodiments of the invention.
- the advantage of using light guides is that the LEDs can be configured on a plane substrate allowing more efficient thermal management.
- the waveguides will contribute to the homogenisation of the illumination intensity profile and will make the illuminator much less sensitive to LED defects.
- Using a tapered liquid has the advantage of allowing the illumination beam aspect ratio to be matched to that of the microdisplay panel without using anamorphic lenses.
- FIGS. 37A-37B shows example of light guides that may be used with the invention.
- FIG. 37A is a schematic side elevation view of a tapered light guide 8 d . Light from the LED 10 e is emitted from the light guide with an emission angle 101 e . The emission angle from the light guide 101 e is smaller than the LED emission angle 100 e .
- FIG. 37B is a schematic side elevation view of a non-tapered light guide 8 e . Light from the LED 10 f is emitted from the light guide with an emission angle 101 f . The emission angle from the light guide 101 f is smaller than the LED emission angle 100 f .
- a non-tapered light guide may be based on a rectangular or cylindrical form. Any of the above light guides may be hollow light guides.
- the solid light guides may be fabricated from glass or optical plastics.
- the light guides may rely on the principles of total internal reflection or may use mirror coatings.
- the light guides may be curved.
- the light guides may contain
- FIG. 38 is a schematic side elevation view of an embodiment of the invention in which the lens 2 is replaced by a light guide device, which performs the dual function of light guiding and collimation.
- the light guide device comprises light guides 80 a , 80 b , 80 c coupled to the LEDs 10 a , 10 b , 10 c .
- Said light guides are coupled to a light guiding and collimating element 81 .
- Said element 81 may be a tapered light guide similar to that shown in FIG. 37A .
- the element may incorporate folding mirrors.
- the element 81 may incorporated one or more diffractive surfaces.
- the element may incorporate curved refracting surfaces.
- the element may be air separated from the light guides.
- the light guides may be oriented at angles to the input surface of the element 81 .
- FIG. 39 is a schematic side elevation view of an embodiment of the invention similar to that of FIG. 38 in which the element 8 further comprises a DOE 82 adjacent to the output surface of the element 81 .
- FIG. 40 is a schematic side elevation view of an embodiment of the invention similar to that of FIG. 38 in which the element 8 further comprises a refractive optical element 83 adjacent to the output surface of the element 81 .
- FIG. 41 A schematic side elevation view of a further embodiment of the invention is shown in FIG. 41 .
- An illumination device comprises in series a LED assembly 1 , a collimating lens 2 , a first Bragg grating 3 and a second Bragg grating 4 .
- the LED assembly further comprises the green LEDs 10 , 11 , a red LED 12 and a green LED 13 .
- a general illumination direction is defined by the normal 200 to the surface of the Bragg grating.
- the Bragg grating is recorded by means of a first recording laser beam incident normal to the grating plane and a second recording laser beam incident at an angle to the grating plane.
- the lens 2 collimates and directs light 100 from said first green LED 10 towards said Bragg grating at a first angle.
- the lens collimates and directs light 110 from said second green LED 11 towards said Bragg grating at a second angle.
- the second angle is substantially equal to the incidence angle of said second recording beam.
- Light from the second LED is then diffracted along the direction 111 parallel to the illumination direction 200 .
- the Bragg grating has a maximum acceptance angle for light beams whose average direction corresponds to that of said first recording beam. Said acceptance angle is defined by the angle at which the diffraction efficiency of said grating falls to a predetermined value. Typically said value may be around 10% of the peak diffraction efficiency.
- the first angle should greater than said maximum acceptance angle of the Bragg grating.
- the second Bragg grating is a single layer holographic medium into which superimposed third and fourth gratings have been recorded;
- the basic principles of recording multiple gratings into a holographic medium are well known to those skilled in the art of holography and are explained in texts such as “Optical Holography: Principles, techniques and applications” by P. Hariharan, published in 1996 by Cambridge University Press.
- the collimator collimates and directs light from the red LED 12 at a third angle with respect to said second Bragg grating.
- the collimator also collimates and directs light from the blue LED 13 at a third angle with respect to the second Bragg grating.
- the second Bragg grating then diffracts said red and blue light is diffracted into the illumination direction.
- FIG. 42 the schematic side elevation shown therein illustrates the diffraction efficiency angular bandwidths of a Bragg grating 31 recorded using the procedure described above. Applying etendue constraints to such a Bragg grating gives a narrower beam width 1000 and a wider divergence of rays 300 around the first recording angle and a wider beam width 2000 and smaller ray divergence 400 around the second recording angle. It should be noted that the ray paths are reversible as shown by the ray paths indicated by 301 and 401 in FIG. 43 . FIG. 43 also indicates the path of an undeviated ray 500 that falls outside the angular bandwidth of the grating 31 .
- FIG. 44 is a chart showing the diffraction efficiency as function of angle for the rays 300 represented by the solid line, and the rays 400 represented by the dashed line.
- the SBG has a refractive index modulation equal to 0.085, a first recording angle of 0°, and a second recording angle of 40°.
- the Bragg wavelength is 525 nanometres and the grating thickness is 5 microns.
- the FWHM bandwidth equivalent to the acceptance angle 300 is approximately 14° while the FWHM bandwidth 1400 equivalent to the acceptance angle 400 is approximately 9°.
- the Bragg grating of FIG. 43 is an Electrically Switchable Bragg Grating (ESBG).
- ESBG Electrically Switchable Bragg Grating
- ESBG transmission gratings efficiently diffract P polarized light (ie light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (ie light with the polarization vector normal to the plane of incidence.
- P polarized light ie light with the polarization vector in the plane of incidence
- S polarized light ie light with the polarization vector normal to the plane of incidence.
- the Bragg gratings 3 and 4 are both ESBGs.
- the apparatus further comprises in series a half wave plate 5 , a third ESBG 6 and a fourth ESBG 7 .
- the third ESBG 6 has an identical optical specification to said first ESBG 3 .
- the fourth ESBG 7 has an identical optical specification to said second ESBG 4 . It is well known that half wave plates rotate the polarization of incident light through ninety degrees thereby converted S-polarized light to P-polarized light and vice versa.
- the first grating 3 diffracts incident P-polarized green light 110 into a direction 111 parallel to the illumination direction.
- the portion of incident S-polarized green light that is not diffracted continues to propagate away from the illumination direction in the directions 112 .
- said diffracted P-polarized green light is converted to S-polarized light 111 and is therefore not diffracted by the third and fourth gratings. It emerges as the light 111 .
- said incident S-polarized green light that was not diffracted by the first grating is converted to P-polarized light 113 and is therefore diffracted into the illumination direction by the third grating 6 , which has identical diffracting characteristics to the first grating. Any residual incident light that was not diffracted due to inefficiencies in the gratings is converted to S-polarized light and proceeds without deviation through the third and fourth gratings and then onto a light-absorbing stop, which is not shown.
- the second grating 4 diffracts incident P-polarized red and blue light 120 , 130 into directions 121 , 131 parallel to the illumination direction. In each case the portion of incident S-polarized red and blue light that is not diffracted continues to propagate away from the illumination direction in the directions 122 , 132 . After propagation through the HWP said diffracted P-polarized red and blue light is converted to S-polarized light and is therefore not diffracted by third and fourth grating and emerges as the light 121 , 131 .
- said incident S-polarized red and blue light that was not diffracted by the second grating is converted to P-polarized light 122 , 132 and is therefore diffracted into the viewing direction by the fourth grating 6 , which has identical diffracting characteristics to the second grating.
- Any residual incident light that was not diffracted due to inefficiencies in the gratings is converted to S-polarized light and proceeds without deviation through the third and fourth gratings and then onto a light-absorbing stop, which is not shown.
- Green Light 100 from the LED 10 lies outside the angular diffraction bandwidths of the first and third SBGs and therefore is not affected by any of the gratings.
- FIGS. 41-45 have been described in terms of providing illumination from two green, on blue and one red source, the invention is equally applicable to other illumination schemes in which more than sources of any primary colour are combined.
- any of the above-described embodiments illustrated in FIGS. 3-45 may further comprise in series a diffuser layer designed to scatter incident light rays into a specified distribution of ray directions.
- the diffuser may be fabricated from conventional diffusing materials.
- the diffuser may be a holographic optical element such as, for example, a Light Shaping Diffuser manufactured by Precision Optical Corporation.
- the required diffusion properties may be encoded into one or more of the SBGs described above.
- the diffuser may be a Computer Generated Holograms design to covered input light comprising separated collimated and divergent components into a uniform intensity output beam.
- FIGS. 3-45 are exemplary and that the dimensions have been exaggerated. For example thicknesses of the grating layers have been greatly exaggerated.
- Further operational embodiments of the invention may use a light control film to block stray light that would otherwise reduce contrast and degrade color gamut. Since practical Bragg gratings do not achieve the 100% theoretical diffraction efficiency of Bragg gratings, the displayed imagery may be degraded by zero order (or non-diffracted light) and spurious diffracted light arising from the diffraction of more than one wavelength by the gratings in the illumination-directing device. Further, the diffraction efficiency versus incidence angle characteristic of transmission gratings will exhibit secondary diffraction maximum to both sides of the primary diffraction peak. While the peak diffraction efficiency of these secondary peaks will be small, effect may be sufficient to reduce the color purity of the display.
- One known light control film manufactured by 3 M Inc. comprises an array of micro-sphere lenses embedded in a light-absorbing layer. Each lens provides a small effective aperture such that incident rays substantially normal to the screen, are transmitted with low loss as a divergent beam while incident rays, incident at an off axis angle, are absorbed.
- Other methods of providing a light control film, such as louver screens may be used as an alternative to the light control film described above.
- optical systems used to implement the system may be folded by means of mirrors in order to provide more compact configurations. It will also be clear from consideration of the Figures that mirrors and sliding mechanisms know to those skilled in the art of opto-mechanical systems may be used to compress the optical system into a compact carrying configuration.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Projection Apparatus (AREA)
- Holo Graphy (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
- This application is a Continuation of U.S. application Ser. No. 15/272,483, filed Sep. 22, 2016, which is a Continuation of U.S. application Ser. No. 14/134,681, filed Dec. 19, 2013, issued on Dec. 11, 2016 as U.S. Pat. No. 9,464,779, which is a Divisional of U.S. application Ser. No. 12/444,315, filed Apr. 3, 2009, issued on Jan. 21, 2014 as U.S. Pat. No. 8,634,120, which is a U.S. national stage of PCT Application No. PCT/US2006/041689, filed Oct. 27, 2006, which claims priority to United Kingdom patent application No. GB0516063.5, filed Nov. 11, 2005 and U.S. Provisional Patent Application No. 60/739,690, filed Nov. 25, 2005, the disclosures of which are incorporated herein by reference in their entireties.
- This invention relates to an apparatus for illuminating a display, and more particularly to an illuminator device based on Bragg gratings.
- Recent developments in microdisplays and Light Emitting Diode (LED) technology are driving the development of a range of consumer applications such as compact projectors and thin form factor rear projection televisions. Current microdisplays employ a variety of technologies including liquid crystals, micro-mechanical mirrors (MEMs), micro-mechanical diffraction gratings and others. Liquid Crystal Displays (LCDs) are the most well known examples. The most efficient method of illuminating microdisplays is to present red, green and blue illumination sequentially with the display image data being updated in the same sequence. Such procedures require that the display update rate is fast enough for the sequential single-color images to appear to the observer as a full color image.
- Prior art illumination system have employed color wheels which suffer from the problems of noise and mechanical complexity.
FIG. 1 shows an example of a prior art illumination system. The illumination system comprises anincoherent light source 1001,condenser mirror 1002, focusinglens 1003, color wheel 1004,collimating lens 1005 and filter 1006. The ray directions are generally indicated by the arrowedlines 2000. A projection display would further comprise amicrodisplay 1007 and aprojection lens 1008 forming an image on a screen 1009. Illumination systems based on incoherent sources such as UHP lamps, for example, suffer from the problems of bulk, warm up time lag, high heat dissipation and power consumption, short lamp lifetime, noise (resulting from the color wheel) and poor color saturation. - Many of the above problems can be solved by using LED illumination. One commonly used illuminator architecture uses dichroic beam splitters known as X-cubes. The prior art illuminator shown in
FIG. 2 comprises red, green andblue LED sources X-cube 1011, focusing lens 1012,light integrator 1013, afurther relay lens 1014 which directs light from the integrator onto the surface of amicrodisplay 1015. The ray directions are generally indicated by the arrowed lines 2010. However, illuminators based on LEDs suffer from several problems. Although LEDs provide high lumen output they have large emittance angles, making the task of collecting and relaying light through the narrower acceptance cones of a microdisplay a very challenging optical design problem. LEDs require fairly large collimators, making it difficult to achieve compact form factors. LED triplet configurations using a shared collimation element suffer from thermal problems if the die are configured too closely. In the case of X-cube architectures such as the one shown inFIG. 2 , the resulting image is barely bright enough, with the X-cube itself losing around one third of the light from the LEDs. X-cubes also present alignment, bulk and cost problems. Thus there exists a need for a compact, efficient LED illuminator for microdisplays. - Diffractive optical elements (DOEs) offer a route to solving the problems of conventional optical designs by providing unique compact form factors and high optical efficiency. DOEs may be fabricated from a range of recording materials including dichromated gelatine and photo-polymers.
- An important category of DOE known as an Electrically Switchable Holographic Bragg Gratings (ESBGs) is formed by recording a volume phase grating, or hologram, in a polymer dispersed liquid crystal (PDLC) mixture. Typically, ESBG devices are fabricated by first placing a thin film of a mixture of photopolymerizable monomers and liquid crystal material between parallel glass plates. Techniques for making and filling glass cells are well known in the liquid crystal display industry. One or both glass plates support electrodes, typically transparent indium tin oxide films, for applying an electric field across the PDLC layer. A volume phase grating is then recorded by illuminating the liquid material with two mutually coherent laser beams, which interfere to form the desired grating structure. During the recording process, the monomers polymerize and the HPDLC mixture undergoes a phase separation, creating regions densely populated by liquid crystal micro-droplets, interspersed with regions of clear polymer. The alternating liquid crystal-rich and liquid crystal-depleted regions form the fringe planes of the grating. The resulting volume phase grating can exhibit very high diffraction efficiency, which may be controlled by the magnitude of the electric field applied across the PDLC layer. When an electric field is applied to the hologram via transparent electrodes, the natural orientation of the LC droplets is changed causing the refractive index modulation of the fringes to reduce and the hologram diffraction efficiency to drop to very low levels. Note that the diffraction efficiency of the device can be adjusted, by means of the applied voltage, over a continuous range from near 100% efficiency with no voltage applied to essentially zero efficiency with a sufficiently high voltage applied. U.S. Pat. Nos. 5,942,157 and 5,751,452 describe monomer and liquid crystal material combinations suitable for fabricating ESBG devices. A publication by Butler et al. (“Diffractive properties of highly birefringent volume gratings: investigation”, Journal of the Optical Society of America B, Volume 19 No. 2, February 2002) describes analytical methods useful to design ESBG devices and provides numerous references to prior publications describing the fabrication and application of ESBG devices. DOEs based on HPDLC may also be used as non-switchable devices. Such DOEs benefit from high refractive index modulations.
- Typically, to achieve a satisfactory display white point it is necessary to provide significantly more green than red or blue. For example, to achieve a white point characterised by a colour temperature of 8000K we require the ratio of red:green:blue light to be approximately 39:100:6. It is found in practice that providing adequate lumen throughput and white point simultaneously requires more than one green source. Although DOEs may be designed for any wavelength, providing a separate DOE for each source may be expensive and may lead to unacceptable attenuation and scatter when the elements are stacked. Methods for recording more than one grating into a hologram are well known. For example, one grating may be used to diffract light from two or more different sources. However such devices suffer from reduced diffraction efficiency and throughput limitations imposed by the etendue of a grating.
- Another approach to combining light from more than one LED of a particular colour is to exploit the angle/wavelength selectivity of Bragg gratings. High efficiency can be provided in different incidence angle ranges for different wavelengths according to the well-known Bragg diffraction equation. However, if we consider the wavelength ranges of typical sources the resulting incidence angle range will not be sufficiently large to separate the LED die. For example, if green sources with peak wavelengths at the extremities of the green band of the visible spectrum were provided the resulting incidence angles would differ by just a few degrees. This would make it at best extremely difficult to integrate the LED die and condenser optics into a compact package.
- There is a requirement for a compact, efficient LED illuminator based on Bragg gratings.
- There is a further requirement for a compact and efficient illuminator capable of combining two light sources having similar peak wavelengths using a single grating.
- There is a yet further requirement for a complete colour sequential illumination device in which light of at least one primary colour is provided by means of a single grating that combines light from more than one source.
- It is an object of the present invention to provide compact, efficient LED illuminator based on Bragg gratings.
- It is a further object of the present invention to provide a compact and efficient illuminator capable of combining two light sources having similar peak wavelengths using a single grating.
- It is a yet further object if the present invention to provide a complete colour sequential illumination device in which light of at least one primary colour is provided by means of a single grating that combines light from more than one source.
- The objects of the invention are achieved in a first embodiment comprising a LED module, a condenser lens and an Electrically Switchable Bragg Grating (ESBG) device configured as a stack of separately switchable ESBG layers. Said optical elements are aligned along an optical axis normal to the surface of each element Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. Each ESBG has a diffracting state and a non-diffracting state. Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state. Each ESBG is operative to diffract at least one wavelength of red, green or blue light.
- In a further embodiment of the invention the illuminator further comprises a diffractive optical element (DOE) for beam intensity shaping. The DOE is operative to alter the wavefronts of incident red green and blue light to control the spatial distribution of illumination. Diffusion characteristics may be built into the ESBG devices. The diffusing properties of the ESBGs and the CGH may be combined to produce a desired illumination correction.
- In a further embodiment of the invention the ESBG device comprises a green diffracting ESBG layer, a red diffracting ESBG layer and a blue diffracting ESBG layer. The red and green LEDs are disposed with their emission axes in a common plane. The blue LED is disposed with its emission axis disposed in an orthogonal plane.
- In alternative embodiments of the invention the red, green and blue LEDs may be configured to lie in a common plane.
- In a further embodiment of the invention the ESBG device comprises a first ESBG into which two superimposed red and green Bragg gratings have been recorded and a second ESBG into which a blue Bragg grating has been recorded.
- In a further embodiment of the invention the ESBG device comprises red and green diffracting layers only. The blue LED is disposed with its emission axis parallel to the optical axis. The light from the blue LED is collimated by the lens system but is not deflected by the ESBG instead continuing to propagate without substantial deflection parallel to the optical axis.
- A further embodiment of the invention comprises a LED module, a condenser lens, a group of ESBGs configured as a stack of separately switchable ESBG layers, a DOE and a relay lens. Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. Each ESBG has a diffracting state and a non-diffracting state. Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state. Each ESBG is operative to diffract at least one wavelength of red, green or blue light. The LED module comprises two green emitters, a blue emitter and a red emitter. The ESBG group comprises green diffracting ESBG layers and a red diffracting ESBG. The DOE is operative to alter the wave fronts of incident red green and blue light to control to spatial distribution of illumination at the display panel. The output from the DOE comprises diffused light. Advantageously, the DOE is a Computer Generated Hologram (CGH) operative to diffract and diffuse red green and blue light. The ESBGs may also have diffusing properties that operate on light at the diffraction wavelength. The diffusing properties of the ESBGs and the CGH may be combined to produce a desired illumination correction
- In a further embodiment of the invention light from at least one LED is directed towards the ESBG device by means of a dichroic beam splitter.
- In further embodiments of the invention elements of the illuminator may be configured in folding configurations to provide a compact form factor when the apparatus is not in use.
- In further embodiment of the invention the LED die are disposed on a curved substrate.
- In further embodiment of the invention refracting elements are disposed in front of each LED die to modify the LED emission angular distribution.
- In a further embodiment of the invention a polarization insensitive illuminator is provided in which the ESBG groups in any of the above embodiments further comprise a half wave plate and further ESBG layers.
- In alternative embodiments of the invention the ESBGs may be replaced by non-switchable Bragg gratings. In such alternative embodiments colour sequential illumination is provided by switching red, green and blue LEDs in sequence.
- In preferred operational embodiments of the invention more efficient use of LED emission may be achieved by running two identical pulse sequentially driven LEDs.
- In a further embodiment of the invention the illuminator further comprises a polarization rotating filter operative to rotate the polarization of at least one primary colour through ninety degrees.
- In a further embodiment of the invention the illuminator may incorporate at least one light guide for one or more of the red green and blue lights. The light guide is disposed in the optical path between the LEDs and the ESBG device.
- In further embodiments of the invention diffusing characteristics are encoded within one or more of the Bragg gratings.
- In alternative embodiment of the invention the LED module comprises a multiplicity of emitters arranged in a circular pattern on a substrate. The ESBGs are disposed on a rotating substrate containing at least one ESBG.
- In an alternative embodiment of the invention the ESBGs are disposed on a rotating substrate. The ESBG configuration comprises two displaced ESBGs disposed such that while one ESBG overlaps the beam path of a first LED, the second ESBG is ready to overlap the beam path of an adjacent LED.
- In an alternative embodiment of the invention the illuminator comprises an LED module comprising a substrate and an array of LED die, a printed circuit board containing apertures, an array of lens elements disposed on a substrate and a stack of ESBGs.
- In a further embodiment of the invention directed at providing a compact and efficient illuminator capable of combining two light sources having similar peak wavelengths using a single grating there is provided an illuminator comprising: a first LED characterised by a first wavelength; a second LED characterised by said first wavelength; a collimating lens; and a first Bragg grating. The grating is recorded by means of a first recording beam incident normal to the grating and a second recording beam incident at an angle to the grating. The lens collimates and directs light from the first and second LEDs towards said grating at first and second angles respectively. The second angle is substantially equal to the incidence angle of the second recording beam. The grating has a maximum acceptance angle for light beams whose average direction corresponds to that of said first recording beam, said acceptance angle being defined by the angle at which the diffraction efficiency of said grating falls to a predetermined value. The first angle is greater than said maximum acceptance angle. The normal to the surface of the grating defines an illumination direction. The first grating diffracts light from said second LED into said illumination direction.
- In a further embodiment of the invention directed at providing a compact and efficient illuminator capable of combining two light sources having similar peak wavelengths using a single ESBG there is provided an illuminator comprising: a first LED characterised by a first wavelength; a second LED characterised by said first wavelength; a collimating lens; and a first ESBG. The ESBG is recorded by means of a first recording beam incident normal to the ESBG and a second recording beam incident at an angle to the ESBG. The lens collimates and directs light from the first and second LEDs towards said ESBG at first and second angles respectively.
- The second angle is substantially equal to the incidence angle of the second recording beam. The ESBG has a maximum acceptance angle for light beams whose average direction corresponds to that of said first recording beam, said acceptance angle being defined by the angle at which the diffraction efficiency of said ESBG falls to a predetermined value. The first angle is greater than said maximum acceptance angle. The normal to the surface of the ESBG defines an illumination direction. The first ESBG diffracts light from said second LED into said illumination direction.
- In one particular embodiment of the invention directed at providing a complete colour sequential illumination device in which light of at least one primary colour is provided by means of a single grating that combines light from more than one source there is provide an illuminator comprising: a holographic optical element into which superimposed third and fourth Bragg gratings have been recorded; a third LED emitting light of a second wavelength; and a fourth LED emitting light of a third wavelength. The lens diffracts said second and third wavelength light at a third and fourth angles respectively with respect to said holographic optical element. The second and third wavelength light is diffracted into a direction normal to said holographic optical element.
- In a further embodiment of the invention based on said particular embodiment the Bragg grating is a first ESBG and the holographic optical element is a second ESBG.
- In a further embodiment of the invention based on said particular embodiment the Bragg grating is a first ESBG and the holographic optical element is a second ESBG. The apparatus further comprises in series a half wave plate; a third ESBG and a fourth ESBG. The third ESBG is identical to said first ESBG and the fourth ESBG is identical to said second ESBG.
- A more complete understanding of the invention can be obtained by considering the following detailed description in conjunction with the accompanying drawings wherein like index numerals indicate like parts. For purposes of clarity details relating to technical material that is known in the technical fields related to the invention have not been described in detail.
-
FIG. 1 is a schematic side view of a first prior art illuminator. -
FIG. 2 is a schematic side elevation view of a second prior art illuminator. -
FIG. 3 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 4 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 5 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 6 is a schematic plan view of a further embodiment of the invention. -
FIG. 7 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 8 is a schematic plan view of a further embodiment of the invention. -
FIG. 9 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 10 is a schematic plan view of a further embodiment of the invention. -
FIG. 11 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 12 is a schematic plan view of a further embodiment of the invention. -
FIG. 13 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 14 is a front elevation view of an LED device. -
FIG. 15 is a schematic front elevation view of a first LED configuration. -
FIG. 16 is a schematic front elevation view of a second LED configuration. -
FIG. 17 is a schematic front elevation view of a third LED configuration. -
FIG. 18 is a schematic plan view of a LED configuration incorporating a dichroic beam splitter. -
FIG. 19 is a schematic side view of a LED configuration incorporating a dichroic beam splitter. -
FIG. 20A is a diagram defining LED emission angles used in the charts inFIG. 13 andFIG. 14 -
FIG. 20B is a chart showing normalized LED intensity as a function of angle. -
FIG. 21 is a chart showing normalized LED luminous flux as a function of angle. -
FIG. 22 is a schematic side elevation view of another embodiment of the invention. -
FIG. 23 is a schematic side elevation view of another embodiment of the invention. -
FIG. 24 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 25A is a schematic front elevation view of a further embodiment of the invention. -
FIG. 25B is a schematic front elevation view of a further embodiment of the invention. -
FIG. 25C is a schematic side elevation view of a further embodiment of the invention. -
FIG. 26 is a schematic front elevation view of a further embodiment of the invention. -
FIG. 27 is a schematic three-dimensional view of a further embodiment of the invention. -
FIG. 28 is a schematic three-dimensional view of a further embodiment of the invention. -
FIG. 29 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 30 is a schematic plan view of the further embodiment of the invention inFIG. 27 . -
FIG. 31 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 32 is a chart illustrating a LED drive scheme for use with the invention. -
FIG. 33 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 34 is a schematic plan view of the further embodiment of the invention inFIG. 31 . -
FIG. 35 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 36 is a schematic side elevation view of a further embodiment of the invention. -
FIGS. 37A and 37B are schematic side elevation views of a further embodiment of the invention. -
FIG. 38 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 39 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 40 is a schematic side elevation view of a further embodiment of the invention. -
FIG. 41 is a schematic side elevation view of a yet further embodiment of the invention. -
FIG. 42 is a schematic side elevation view illustrating elements of said yet further embodiment of the invention. -
FIG. 43 is a schematic side elevation view illustrating elements of said yet further embodiment of the invention. -
FIG. 44 is a chart showing characteristics of one particular embodiment of said yet further embodiment of the invention. -
FIG. 45 is a schematic side elevation view of a particular embodiment of the invention. -
FIG. 3 shows a schematic side elevation view of a first embodiment of the invention. The illuminator comprises theLED module 1,condenser lens 2, and an ESBG device configured as a stack of separately switchable ESBG layers. Said optical elements are aligned along an optical axis normal to the surface of each element Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. Each ESBG has a diffracting state and a non-diffracting state. Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state. Each ESBG is operative to diffract at least one wavelength of red, green or blue light. As shown inFIG. 3 the LED module comprisesemitters FIG. 3 more than one LED of a particular primary colour may be used. Embodiments in which, for example, two green LEDs, one red and one blue LED are used will be discussed later. The collimator lens collimates light 101 a, 101 b,101 c fromLEDs beams -
FIG. 4 shows a schematic side elevation view of an illuminator according to the first embodiment of the invention. The apparatus includes the elements ofFIG. 2A and further comprises a Diffractive Optical Element (DOE) 4 and arelay lens 5. A complete display system further comprises themicrodisplay panel 6. The illuminator forms a diffused image of the LED die at asurface 7. Typically said image surface is located close to the surface of the microdisplay. The microdisplay may any type of transmissive or reflective array device. The microdisplay does not form part of the present invention. The DOE 4 is operative to alter the wavefronts of incident red green and blue light to control to spatial distribution of illumination at the display panel. The output from the DOE 4 comprises diffused light as generally indicated by 104. Non-uniformities to be corrected by the DOE may be contributed by the LED polar distributions, vignetting aberrations and other factors. Advantageously, the DOE is a Computer Generated Hologram (CGH) operative to diffract and diffuse red green and blue light. The basic principles of the design and fabrication of CGH devices suitable for use in the present invention are discussed in references such as. “Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology” by B. Kress and P. Meyrueis, published in 2000 by John Wiley & Sons Inc. The ESBGs may also have diffusing properties that operate on light at the diffraction wavelength. The required diffusion characteristics may be built into the ESBG devices using procedures well known to those skilled in the art of Holographic Optical Elements (HOEs). The diffusing properties of the ESBGs and the CGH may be combined to produce a desired illumination correction. -
FIG. 5-6 show a schematic side elevation and plan views respectively of a further embodiment of the invention in which one particular embodiment of the ESBG device is shown in detail. The ESBG group comprises greendiffracting ESBG layer 30 a, a reddiffracting ESBG layer 30 b and a blue diffractingESBG layer 30 c. The red andgreen LEDs blue LED 10 c is disposed in the orthogonal plane. The ESBG layers 30 a,30 b,30 c diffract thebeam directions directions FIGS. 5-6 the three LEDs may be configured to lie in a common plane. In such a configuration it would not be practical for the blue LED to be configured with its emission axis normal to the ESBG device. To provide efficient diffraction parallel to the optical axis the blue LED emission axis should be configured at an off axis angle within the plane contained the emission axis of the LEDs. - Color sequential illumination of the microdisplay is provided using the following steps. The first step comprises switching on the green LED switching off the blue and red LEDS, deactivating the red ESBG using an applied electric field, the green diffracting ESBG remaining in a diffracting state, and updating the display with green picture information. The second step comprises switching on the red LED switching off the blue and green LEDs, deactivating the green ESBG using an applied electric field, the red diffracting ESBG now changing to its diffracting state, and updating the display with red picture information. The third step comprises switching on the blue LED switching off the green and red LEDs, deactivating the red ESBG using an applied electric field, the green diffracting ESBG remaining in a diffracting state, and updating the display with blue picture information. Note that the switching of the ESBGs would normally take place during the display refresh period.
-
FIGS. 7-8 show schematic side elevation and plan views respectively of a further embodiment of the invention. InFIGS. 7-8 the ESBG device comprises afirst ESBG 30 d into which two superimposed red and green Bragg gratings have been recorded and a second blue diffractingESBG 30 c. Such a configuration may allow more flexibility in the choice of incident angles. The basic principles of recording multiple superimposed gratings will be well known to those skilled in the art of holography and is discussed in textbooks such as “Optical Holography” by R. J. Collier, C. B. Burkhardt and L. H. Lin published by Academic Press, New York (1971). However, as discussed in references such as Collier superimposed Bragg gratings suffer from reduced diffraction efficiency. The principles of operation of the illuminator are similar to those of the embodiment ofFIGS. 5-6 . In the case of theFIG. 7 embodiment the green and red ESBGs will be active simultaneously. Color sequential illumination of the microdisplay is provided using the following steps. The first step comprises switching on the green LED switching off the blue and red LEDs, deactivating the blue ESBG using an applied electric field, the red-green diffracting ESBG remaining in a diffracting state, and updating the display with green picture information. The second step comprises switching on the red LED switching off the blue and green LEDs and updating the display with red picture information. The third step comprises switching on the blue LED switching off the green and red LEDs, deactivating the red-green ESBG using an applied electric field, the blue diffracting ESBG remaining in a diffracting state, and updating the display with blue picture information. Note that the switching of the ESBGs would normally take place during the display refresh period. -
FIGS. 9-10 show schematic side elevation and plan views respectively of a further embodiment of the invention. In the embodiment illustrated, the ESBG device comprises red and green diffracting layers 30 a,30 b only. Theblue LED 10 c is disposed with its emission axis parallel to the optical axis. The light from the blue LED is collimated by thelens system 2 but is not deflected by the ESBG instead continuing to propagate without substantial deflection parallel to the optical axis. -
FIGS. 11-12 show schematic side elevation and plan views respectively of a first embodiment of the invention. The illuminator comprises theLED module 1,condenser lens 2, a group ofESBGs 3 configured as a stack of separately switchable ESBG layers, a DOE 4 and arelay lens 5. Said optical elements are aligned along an optical axis normal to the surface of each element. A complete projection system would further comprise thedisplay panel 6. Each ESBG layer is recorded in HPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. Each ESBG has a diffracting state and a non-diffracting state. Each ESBG diffracts light in a direction substantially parallel to the optical axis when in said active state. However, each ESBG is substantially transparent to said light when in said inactive state. Each ESBG is operative to diffract at least one wavelength of red, green or blue light. - As shown in
FIG. 11 the LED module comprises twogreen emitters blue emitter 10 c. As shown inFIG. 12 , the LED module further comprises ared emitter 10 d. The collimator lens collimates light 101 a,101 b,101 c,101 d fromLEDs beams diffracting ESBG layer 30 c. The ESBG layers 30 a,30 b diffract thebeam directions directions FIGS. 11-12 the light from the blue LED is not deflected by an ESBG after collimation but proceeds parallel to the optical axis. Color sequential illumination of the microdisplays is provided using the following steps. The first step comprises switching on the green LEDs switching off the blue and red LEDS, deactivating the red ESBG using an applied electric field, the green diffracting ESBGs remaining in a diffracting state, and updating the display with green picture information. The second step comprises switching on the red LED switching off the blue and green LEDS, deactivating the green ESBGs using an applied electric field, the red diffracting ESBG now changing to its diffracting state, and updating the display with red picture information. The third step comprises switching on the blue LED switching off the green and red LEDS, deactivating the red ESBG using an applied electric field, the green diffracting ESBGs remaining in a diffracting state, and updating the display with blue picture information. - In an alternative embodiment of the invention the red and green ESBGs may remain in the diffractive state during each of the above steps.
- As indicated above, the DOE 4 is operative to alter the wavefronts of incident red green and blue light to control the spatial distribution of illumination at the display panel. The output from the DOE 4 comprises diffused light as generally indicated by 104. Non-uniformities may be contributed the LED polar distributions, vignetting aberrations and other factors.
- A complete projection display according to any of the above embodiments further comprises a
microdisplay 6 and a projection lens, which is not shown. It should be noted that the effect of the elements 2-5 is to form a diffused image of the LED die at asurface 7. Typically said image surface is located close to the microdisplay surface. - In applications where illumination uniformity is not important the DOE 4 may be eliminated.
- In an alternative embodiment of the invention, which is also illustrated by
FIG. 3 , the ESBGs 31 a, 31 b may each comprise an ESBG into which two superimposed red and green Bragg gratings have been recorded. Such a configuration may allow more flexibility in the choice of incident angles. The basic principles of recording multiple superimposed gratings will be well known to those skilled in the art of holography and is discussed in textbooks such as “Optical Holography” by R. J. Collier, C. B. Burkhardt and L. H. Lin published by Academic Press, New York (1971). However, as discussed in references such as Collier superimposed Bragg gratings suffer from reduced diffraction efficiency. -
FIG. 13 shows an alternative embodiment of the invention similar to that illustrated inFIGS. 11-12 . In the embodiment ofFIG. 13 there is provided an ESBG that diffracts both red and green light. Thered LED 10 e is now disposed such that after collimation it provides light at a steeper incidence angle than thegreen LED 10 a. TheESBGs ESBGs green light light directions - The inventors have shown that practical implementation of the embodiments of the invention shown in
FIGS. 3-5 could provide a projection device havingmaximum dimensions 120 mm.×40 mm.×30 mm. where allowance has been made for a projection lens. -
FIGS. 14-17 show examples of practical embodiments of the LED module that may be used in variants of the embodiments illustrated inFIGS. 11-13 .FIG. 14 is a front elevation view of a typical commercially available LED device, indicating the dimensions of the substrate and LED die.FIGS. 15-17 show alternative methods of configuring red, green and blue LEDs indicated by the symbols R,G,B. -
FIGS. 18-19 illustrate in schematic form a further method of configuring red green and blue LEDs in whichFIG. 18 shows a plan view andFIG. 19 shows a side elevation view. In this case the blue andgreen LEDS dichroic beam splitter 151. -
FIGS. 20A, 20B and 21 illustrate typical characteristics of an exemplary LED source suitable for use with the invention.FIG. 20A defines the angular coordinates.FIG. 20B shows typical LED manufacturers data showing the distribution of LED relative intensity as a function of angle. LEDs having the characteristics shown inFIG. 20B are manufactured by Luminus Inc. (USA).FIG. 21 is a chart comparing the percentage of light collected at different angles by the LED ofFIG. 20B . The percentage of light collected at the same angles by a Lambertian LED is indicated by the dashed line. The invention does not rely on any particular type of LED technology. -
FIG. 22 shows a further embodiment of the invention similar to the one illustrated inFIGS. 11-13 . As inFIGS. 11-13 , the illuminator comprisesLED module 1,condenser lens 2,ESBG group 3, DOE 4 andrelay lens 5. However, the case ofFIG. 22 theLED module 1 comprises LED die disposed on a curved substrate. -
FIG. 23 shows a further embodiment of the invention similar to the one illustrated inFIG. 22 . As inFIG. 22 the illuminator comprisesLED module 1,condenser lens 2,ESBG group 3, DOE 4 andrelay lens 5. In the embodiment ofFIG. 23 the LEDs are disposed on a curved substrate. The embodiment ofFIG. 23 further comprises small optical elements such as the one indicated by 8 positioned in front of each LED die. The optical elements modify the LED emission angular distribution. One of the well-known attributes of transmission ESBGs is that the liquid crystal molecules tend to align normal to the grating fringe planes. The effect of the liquid crystal molecule alignment is that ESBG transmission gratings efficiently diffract P polarized light (ie light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (ie light with the polarization vector normal to the plane of incidence. Hence in the embodiments discussed above only P polarized red and green light is transmitted in the viewing direction while the blue light transmitted in the viewing direction will be S-polarized.FIG. 24 shows an alternative ESBG group that may replace any of the ESBG groups illustrated in the earlier embodiments. The modified ESBG group comprises first andsecond ESBG groups green light 100 a,100 c into a direction parallel to the optical axis The portion of incident S-polarized red and green light that is not diffracted continues to propagate away from the optical axis in thedirections light 120 and is therefore not diffracted by the second ESBG group. It emerges as the light 140 a,140 c. However, said incident S-polarized red and green light that was not diffracted by the first ESBG group 110 a,110 c is converted to P-polarized light 120 a,120 c and is therefore diffracted into theviewing direction 150 a,150 c by the second ESBG group, which has identical diffracting characteristics to said first ESBG group. Any residual incident red and green light that was not diffracted due to inefficiencies in the ESBGs is converted to S-polarized light and proceeds without deviation through the second ESBG group and then onto a light absorbing stop. The incident blue light 100 b is not diffracted by the ESBGs and emerges and both S and P components emerge in the direction 140 b. - In an alternative embodiment of the invention shown in
FIG. 25 the ESBGs are disposed on a rotating assembly. As shown in the front elevation view ofFIG. 25A the LED module comprises a multiplicity ofemitters 15 arranged in a circular pattern on a PCB. In contrast to the earlier embodiments the ESBGs inFIG. 25 are disposed on arotating substrate 3 containing at least oneESBG 35, as shown inFIG. 25B The ESBG rotates around an axis indicated by 300 in the direction indicated by 5. Desirably, a pancake edge drive motor powers the rotating substrate. However other rotation mechanisms may be used. One possible operational embodiment is shown inFIG. 25C comprising theLED module 1, acollimator lens 2, rotatingESBG assembly 3, pancake edgedrive motor assembly 36, CGH 4 andrelay lens 5. In one operational embodiment theemitters ESBG 35 overlaps the cross section of the LED beam path. The sensing mechanism for determining the position of the ESBG does not form part of the invention. By providing a multiplicity of LEDs of each primary color and a corresponding multiplicity of ESBGs the entire aperture of the illumination can be filled with light of each said color. Although a circular ESBG is shown inFIG. 25B , other shapes may be used to maximize throughput. The rotating LED assembly many comprise a stack of red, and blue diffracting layers. In an alternative embodiment shown inFIG. 26 the ESBG comprises two displacedESBGs FIGS. 25-26 have the advantage that the LEDs may be driven at their maximum rating and heat from the LEDs may be dissipated more effectively using a large area heat sink.FIG. 27 shows an alternative embodiment in which two counter rotating ESBGs are provided. The embodiment ofFIG. 27 has the advantage of providing more continuous illumination. - In an alternative embodiment of the invention shown in
FIG. 28 the illuminator comprises an LED module comprising asubstrate 1000 and an array of LED die such as 1100, aPCB 2000 containingapertures 2100, an array oflens elements 3100 on asubstrate 3000 and a stack ofESBGs 4000. Said ESBG stack comprises ESBG layers such as the one indicated by 4200. Advantageously, thesubstrates - In preferred practical embodiments of the invention the ESBG layers in any of the above embodiments would be combined in a single planar multiplayer device. The multilayer ESBG devices may be constructed by first fabricating the separate ESBG devices and then laminating the ESBG devices using an optical adhesive. Suitable adhesives are available from a number of sources, and techniques for bonding optical components are well known. The multilayer structures may also comprise additional transparent members, if needed, to control the optical properties of the illuminator.
- It should be noted that in order to ensure efficient use of the available light and a wide color gamut, the ESBG devices should be substantially transparent when a voltage is applied, and preferably should diffract only the intended color without an applied voltage.
- The ESBGs may be based on any liquid crystal material including nematic and chiral types.
- The embodiments described above have relied on ESBGs. In alternative embodiments of the invention it is possible to use non-switchable Bragg gratings. In such embodiments the colour sequential illumination is provided by switching red green and blue LEDs in sequence.
FIGS. 29-30 are schematic side elevation views of an embodiment of the invention using non-switchable Bragg gratings. InFIGS. 29-30 the green and red diffracting ESBGs 30 a,30 b,30 c ofFIGS. 11-12 are replaced by the green and red diffracting non-switchable Bragg gratings 32 a,32 b,32 c. In all other respects the apparatus illustrated inFIGS. 29-30 is identical to the apparatus illustrated inFIGS. 11-12 . -
FIG. 31 is a schematic side elevation view of a further embodiment of the invention using non-switchable Bragg gratings. InFIG. 31 the green and red diffracting ESBGs 30 a,30 b,30 c ofFIG. 13 are replaced by the green and red diffracting non-switchable Bragg gratings 33 a,33 b,33 c. In all other respects the apparatus illustrated inFIG. 31 is identical to the apparatus illustrated inFIG. 13 . - In any of the ESBG embodiments discussed above more efficient use of LED emission may be achieved by running both LEDs simultaneously using 50% duty-cycle pulse-sequential overdrive. The basic principles are illustrated in
FIG. 32 , which represents the lumen output from two identical LEDS under two different drive schemes. The basic principles may be understood by considering the configuration ofFIGS. 11-12 in conjunction withFIG. 32 . In the preferred LED switching scheme represented by the solid lines it will be seen that when the off-axis LED (referred to asLED 1 inFIG. 32 ) is on, light from the off-axis LED is diffracted on axis by the first ESBG. However, when the optical axis LED (referred to asLED 2 inFIG. 32 ) is on, the ESBG is switched off, that is, into its non-diffracting state. Hence light from the on axis LED is not diffracted by the ESBG and continues to propagate on axis after collimation. A gain of ×2 compared with running the same LEDs in continuous mode as indicated by the dashed line may be achieved using the above strategy. A further benefit is that the larger effective cooling area resulting from two well separated LEDs allows manufacturers' maximum LED drive current ratings to be maintained more efficiently. - The diffraction efficiency of Bragg gratings will depend on the polarization of the incident light. In any of the preceding embodiments of the invention the illuminator may further comprises a polarization rotating filter operative to rotate the polarization of at least one primary colour through ninety degrees. The polarization-rotating filter will typically be disposed in the beam path after the Bragg gratings. By this means it is possible to ensure that the red green and blue components of the illumination have a common polarization direction. This is advantageous in LCD display applications. The polarization-rotating filter may be based on a multilayer thin film coating stack. Alternatively the polarization-rotating filter may be based on a stack of retarders where each retarder has a unique in plane optic axis orientation. One example of a polarization-rotating filter is described in U.S Patent Publication No. 20030107809 by Chen et al., published in Jun. 12, 2003. Practical polarization rotating filters are manufactured by ColorLink Inc. (Boulder, Colo.). For example,
FIGS. 33-34 are schematic side elevation views of an embodiment of the invention similar to that ofFIGS. 11-12 .FIGS. 33-34 further comprises a polarization-rotating filter 9. In all other respects the apparatus illustrated inFIGS. 33-34 is identical to the apparatus illustrated inFIGS. 11-12 . It should be noted that the invention does not rely on any particular type of polarization rotation filter. - In of the above embodiments the emitting surfaces of the LEDs may be configured to lie on a non-planar surface such as a spherical, conic or other aspheric type of surface. The surface need not necessarily be axi symmetric. Said surface may be comprised of tilted planes. Alternatively the LEDs may be mounted on pillars attached to a substrate. For example
FIG. 35 is a schematic side elevation view of a further embodiment of the invention similar to the embodiment ofFIGS. 5-6 . In the said embodiment the emitting surfaces of the LEDs lie on a spherical surface. -
FIG. 36 is a schematic side elevation view of a further embodiment of the invention in which light from the LEDs is piped to three secondary emissive surfaces by means oflight guides FIG. 36 is identical to that ofFIGS. 5-6 . Such light guides may be used with any of the embodiments of the invention. The advantage of using light guides is that the LEDs can be configured on a plane substrate allowing more efficient thermal management. The waveguides will contribute to the homogenisation of the illumination intensity profile and will make the illuminator much less sensitive to LED defects. Using a tapered liquid has the advantage of allowing the illumination beam aspect ratio to be matched to that of the microdisplay panel without using anamorphic lenses. -
FIGS. 37A-37B shows example of light guides that may be used with the invention.FIG. 37A is a schematic side elevation view of a taperedlight guide 8 d. Light from theLED 10 e is emitted from the light guide with anemission angle 101 e. The emission angle from thelight guide 101 e is smaller than theLED emission angle 100 e.FIG. 37B is a schematic side elevation view of a non-tapered light guide 8 e. Light from the LED 10 f is emitted from the light guide with anemission angle 101 f. The emission angle from thelight guide 101 f is smaller than theLED emission angle 100 f. A non-tapered light guide may be based on a rectangular or cylindrical form. Any of the above light guides may be hollow light guides. The solid light guides may be fabricated from glass or optical plastics. The light guides may rely on the principles of total internal reflection or may use mirror coatings. The light guides may be curved. The light guides may contain folding mirrors to provide more compact configurations. -
FIG. 38 is a schematic side elevation view of an embodiment of the invention in which thelens 2 is replaced by a light guide device, which performs the dual function of light guiding and collimation. The light guide device comprises light guides 80 a,80 b,80 c coupled to theLEDs element 81. In all other respects the embodiment ofFIG. 38 is identical to that ofFIGS. 5-6 . Saidelement 81 may be a tapered light guide similar to that shown inFIG. 37A . The element may incorporate folding mirrors. Theelement 81 may incorporated one or more diffractive surfaces. The element may incorporate curved refracting surfaces. The element may be air separated from the light guides. The light guides may be oriented at angles to the input surface of theelement 81. -
FIG. 39 is a schematic side elevation view of an embodiment of the invention similar to that ofFIG. 38 in which theelement 8 further comprises a DOE 82 adjacent to the output surface of theelement 81. -
FIG. 40 is a schematic side elevation view of an embodiment of the invention similar to that ofFIG. 38 in which theelement 8 further comprises a refractive optical element 83 adjacent to the output surface of theelement 81. - In each of the embodiments discussed above it is found that the procedure of introducing red and green illumination at different angles to the viewing direction and introducing blue light along the viewing direction is the most desirable in terms of providing high image contrast. However, it should be emphasized that the invention is not restricted to any particular combination of wavelengths and angles. Typically, to achieve a satisfactory display white point it is necessary to provide significantly more green than red or blue. For example to achieve a white point characterised by a colour temperature of 8000K we require the ratio of red:green:blue to be approximately 39:100:6. It is found in practice that providing adequate lumen throughput and white point simultaneously requires more that one green source.
- A schematic side elevation view of a further embodiment of the invention is shown in
FIG. 41 . An illumination device according to the principles of the invention comprises in series aLED assembly 1, acollimating lens 2, a first Bragg grating 3 and a second Bragg grating 4. The LED assembly further comprises thegreen LEDs red LED 12 and agreen LED 13. A general illumination direction is defined by the normal 200 to the surface of the Bragg grating. The Bragg grating is recorded by means of a first recording laser beam incident normal to the grating plane and a second recording laser beam incident at an angle to the grating plane. Thelens 2 collimates and directs light 100 from said firstgreen LED 10 towards said Bragg grating at a first angle. The lens collimates and directs light 110 from said secondgreen LED 11 towards said Bragg grating at a second angle. The second angle is substantially equal to the incidence angle of said second recording beam. Light from the second LED is then diffracted along thedirection 111 parallel to the illumination direction 200. The Bragg grating has a maximum acceptance angle for light beams whose average direction corresponds to that of said first recording beam. Said acceptance angle is defined by the angle at which the diffraction efficiency of said grating falls to a predetermined value. Typically said value may be around 10% of the peak diffraction efficiency. As will be explained below, in order to avoid diffracting light out of the illumination direction the first angle should greater than said maximum acceptance angle of the Bragg grating. - The second Bragg grating is a single layer holographic medium into which superimposed third and fourth gratings have been recorded; The basic principles of recording multiple gratings into a holographic medium are well known to those skilled in the art of holography and are explained in texts such as “Optical Holography: Principles, techniques and applications” by P. Hariharan, published in 1996 by Cambridge University Press. The collimator collimates and directs light from the
red LED 12 at a third angle with respect to said second Bragg grating. The collimator also collimates and directs light from theblue LED 13 at a third angle with respect to the second Bragg grating. The second Bragg grating then diffracts said red and blue light is diffracted into the illumination direction. - The significance of the acceptance angle of the first grating in relation to light from the
first LED 10 may be appreciated by consideringFIGS. 42-43 . Turning first toFIG. 42 , the schematic side elevation shown therein illustrates the diffraction efficiency angular bandwidths of a Bragg grating 31 recorded using the procedure described above. Applying etendue constraints to such a Bragg grating gives anarrower beam width 1000 and a wider divergence ofrays 300 around the first recording angle and awider beam width 2000 andsmaller ray divergence 400 around the second recording angle. It should be noted that the ray paths are reversible as shown by the ray paths indicated by 301 and 401 inFIG. 43 .FIG. 43 also indicates the path of anundeviated ray 500 that falls outside the angular bandwidth of the grating 31. -
FIG. 44 is a chart showing the diffraction efficiency as function of angle for therays 300 represented by the solid line, and therays 400 represented by the dashed line. In the particular example shown inFIG. 44 the SBG has a refractive index modulation equal to 0.085, a first recording angle of 0°, and a second recording angle of 40°. The Bragg wavelength is 525 nanometres and the grating thickness is 5 microns. The FWHM bandwidth equivalent to theacceptance angle 300 is approximately 14° while the FWHM bandwidth 1400 equivalent to theacceptance angle 400 is approximately 9°. - It will be clear from consideration of
FIG. 43 that rays 100 incident at angles close to the first recording angle will be diffracted out of the illumination path. This problem may be avoided by ensuring that the incident rays 100 lie just outside the angular acceptance band represented by therays 300. As indicated inFIG. 43 therays 100 propagate without deviation to emerge from the grating as therays 101. - It should also be clear from consideration of
FIG. 43 that in order to avoid divergence of the two green output beams characterised byrays angular bandwidth 400 as small as possible. According to the Kogelnik theory of Bragg holograms reducing the angular bandwidth requires that the grating thickness is increased and the refractive index modulation decreased. The basic principles of Kogelnik theory are presented in texts such as “Optical Holography: Principles, techniques and applications” by P. Hariharan, published in 1996 by Cambridge University Press. - Desirably the invention the Bragg grating of
FIG. 43 is an Electrically Switchable Bragg Grating (ESBG). - One of the well-known attributes of transmission ESBGs is that the liquid crystal molecules tend to align normal to the grating fringe planes. The effect of the liquid crystal molecule alignment is that ESBG transmission gratings efficiently diffract P polarized light (ie light with the polarization vector in the plane of incidence) but have nearly zero diffraction efficiency for S polarized light (ie light with the polarization vector normal to the plane of incidence. Hence in the embodiments of
FIG. 41 only P polarized red and green light is transmitted in the viewing direction while the blue light transmitted in the viewing direction will be S-polarized. - In a further embodiment of the invention shown in
FIG. 45 theBragg gratings 3 and 4 are both ESBGs. The apparatus further comprises in series ahalf wave plate 5, athird ESBG 6 and afourth ESBG 7. Thethird ESBG 6 has an identical optical specification to saidfirst ESBG 3. Thefourth ESBG 7 has an identical optical specification to said second ESBG 4. It is well known that half wave plates rotate the polarization of incident light through ninety degrees thereby converted S-polarized light to P-polarized light and vice versa. - The
first grating 3 diffracts incident P-polarizedgreen light 110 into adirection 111 parallel to the illumination direction. The portion of incident S-polarized green light that is not diffracted continues to propagate away from the illumination direction in thedirections 112. After propagation through the HWP said diffracted P-polarized green light is converted to S-polarizedlight 111 and is therefore not diffracted by the third and fourth gratings. It emerges as the light 111. However, said incident S-polarized green light that was not diffracted by the first grating is converted to P-polarizedlight 113 and is therefore diffracted into the illumination direction by thethird grating 6, which has identical diffracting characteristics to the first grating. Any residual incident light that was not diffracted due to inefficiencies in the gratings is converted to S-polarized light and proceeds without deviation through the third and fourth gratings and then onto a light-absorbing stop, which is not shown. - The second grating 4 diffracts incident P-polarized red and
blue light directions fourth grating 6, which has identical diffracting characteristics to the second grating. Any residual incident light that was not diffracted due to inefficiencies in the gratings is converted to S-polarized light and proceeds without deviation through the third and fourth gratings and then onto a light-absorbing stop, which is not shown.Green Light 100 from theLED 10 lies outside the angular diffraction bandwidths of the first and third SBGs and therefore is not affected by any of the gratings. - It will be clear from consideration of the embodiments of
FIGS. 41-45 that there are many possible configurations for combining red, green and blue LEDs. The best configuration will be determined from considerations of thermal management, form factor and optical efficiency. - Although the embodiments of
FIGS. 41-45 have been described in terms of providing illumination from two green, on blue and one red source, the invention is equally applicable to other illumination schemes in which more than sources of any primary colour are combined. - Any of the above-described embodiments illustrated in
FIGS. 3-45 may further comprise in series a diffuser layer designed to scatter incident light rays into a specified distribution of ray directions. The diffuser may be fabricated from conventional diffusing materials. Alternatively, the diffuser may be a holographic optical element such as, for example, a Light Shaping Diffuser manufactured by Precision Optical Corporation. Alternatively the required diffusion properties may be encoded into one or more of the SBGs described above. Alternatively, The diffuser may be a Computer Generated Holograms design to covered input light comprising separated collimated and divergent components into a uniform intensity output beam. - It should be emphasized that
FIGS. 3-45 are exemplary and that the dimensions have been exaggerated. For example thicknesses of the grating layers have been greatly exaggerated. - Further operational embodiments of the invention may use a light control film to block stray light that would otherwise reduce contrast and degrade color gamut. Since practical Bragg gratings do not achieve the 100% theoretical diffraction efficiency of Bragg gratings, the displayed imagery may be degraded by zero order (or non-diffracted light) and spurious diffracted light arising from the diffraction of more than one wavelength by the gratings in the illumination-directing device. Further, the diffraction efficiency versus incidence angle characteristic of transmission gratings will exhibit secondary diffraction maximum to both sides of the primary diffraction peak. While the peak diffraction efficiency of these secondary peaks will be small, effect may be sufficient to reduce the color purity of the display. One known light control film manufactured by 3M Inc. (Minnesota) comprises an array of micro-sphere lenses embedded in a light-absorbing layer. Each lens provides a small effective aperture such that incident rays substantially normal to the screen, are transmitted with low loss as a divergent beam while incident rays, incident at an off axis angle, are absorbed. Other methods of providing a light control film, such as louver screens may be used as an alternative to the light control film described above.
- It will be clear from consideration of the Figures that the optical systems used to implement the system may be folded by means of mirrors in order to provide more compact configurations. It will also be clear from consideration of the Figures that mirrors and sliding mechanisms know to those skilled in the art of opto-mechanical systems may be used to compress the optical system into a compact carrying configuration.
- Although the invention has been discussed with reference to LED light sources, all of the embodiments of the invention may be applied with laser light sources.
- Although the invention has been described in relation to what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed arrangements, but rather is intended to cover various modifications and equivalent constructions included within the spirit and scope of the invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/208,050 US20190170321A1 (en) | 2005-11-11 | 2018-12-03 | Compact Holographic Illumination Device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0522968.7A GB0522968D0 (en) | 2005-11-11 | 2005-11-11 | Holographic illumination device |
GB0522968.7 | 2005-11-11 | ||
US73969005P | 2005-11-25 | 2005-11-25 | |
PCT/US2006/041689 WO2007058746A2 (en) | 2005-11-11 | 2006-10-27 | Compact holographic illumination device |
US12/444,315 US8634120B2 (en) | 2005-11-11 | 2006-10-27 | Apparatus for condensing light from multiple sources using Bragg gratings |
US14/134,681 US9464779B2 (en) | 2005-11-11 | 2013-12-19 | Apparatus for condensing light from multiple sources using Bragg gratings |
US15/272,483 US10145533B2 (en) | 2005-11-11 | 2016-09-22 | Compact holographic illumination device |
US16/208,050 US20190170321A1 (en) | 2005-11-11 | 2018-12-03 | Compact Holographic Illumination Device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/272,483 Continuation US10145533B2 (en) | 2005-11-11 | 2016-09-22 | Compact holographic illumination device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190170321A1 true US20190170321A1 (en) | 2019-06-06 |
Family
ID=35516718
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/444,315 Active 2029-09-16 US8634120B2 (en) | 2005-11-11 | 2006-10-27 | Apparatus for condensing light from multiple sources using Bragg gratings |
US14/134,681 Expired - Fee Related US9464779B2 (en) | 2005-11-11 | 2013-12-19 | Apparatus for condensing light from multiple sources using Bragg gratings |
US15/272,483 Active 2026-11-07 US10145533B2 (en) | 2005-11-11 | 2016-09-22 | Compact holographic illumination device |
US16/208,050 Abandoned US20190170321A1 (en) | 2005-11-11 | 2018-12-03 | Compact Holographic Illumination Device |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/444,315 Active 2029-09-16 US8634120B2 (en) | 2005-11-11 | 2006-10-27 | Apparatus for condensing light from multiple sources using Bragg gratings |
US14/134,681 Expired - Fee Related US9464779B2 (en) | 2005-11-11 | 2013-12-19 | Apparatus for condensing light from multiple sources using Bragg gratings |
US15/272,483 Active 2026-11-07 US10145533B2 (en) | 2005-11-11 | 2016-09-22 | Compact holographic illumination device |
Country Status (2)
Country | Link |
---|---|
US (4) | US8634120B2 (en) |
GB (1) | GB0522968D0 (en) |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
GB0718706D0 (en) * | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US7950809B2 (en) * | 2007-03-27 | 2011-05-31 | Seiko Epson Corporation | Hologram element, illumination device, projector, and method of manufacturing hologram element |
WO2010099289A1 (en) * | 2009-02-25 | 2010-09-02 | University Of Iowa Research Foundation | Hybrid laser ophthalmoscope |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US11300795B1 (en) | 2009-09-30 | 2022-04-12 | Digilens Inc. | Systems for and methods of using fold gratings coordinated with output couplers for dual axis expansion |
US10795160B1 (en) | 2014-09-25 | 2020-10-06 | Rockwell Collins, Inc. | Systems for and methods of using fold gratings for dual axis expansion |
US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
US11204540B2 (en) * | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
US20200057353A1 (en) | 2009-10-09 | 2020-02-20 | Digilens Inc. | Compact Edge Illuminated Diffractive Display |
JP4757340B2 (en) * | 2009-10-30 | 2011-08-24 | シャープ株式会社 | Illumination apparatus, image reading apparatus including the illumination apparatus, and image forming apparatus including the image reading apparatus |
CN102262301A (en) * | 2010-11-18 | 2011-11-30 | 宸鸿光电科技股份有限公司 | Holographic three-dimensional image projection device and application and use method thereof in electronic product |
JP6062141B2 (en) * | 2010-11-26 | 2017-01-18 | 大日本印刷株式会社 | Surface illumination device and backlight device |
US10140699B2 (en) | 2010-12-07 | 2018-11-27 | University Of Iowa Research Foundation | Optimal, user-friendly, object background separation |
EP2665406B1 (en) | 2011-01-20 | 2021-03-10 | University of Iowa Research Foundation | Automated determination of arteriovenous ratio in images of blood vessels |
US9274349B2 (en) | 2011-04-07 | 2016-03-01 | Digilens Inc. | Laser despeckler based on angular diversity |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
EP2995986B1 (en) | 2011-08-24 | 2017-04-12 | Rockwell Collins, Inc. | Data display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
US8634139B1 (en) | 2011-09-30 | 2014-01-21 | Rockwell Collins, Inc. | System for and method of catadioptric collimation in a compact head up display (HUD) |
US9507150B1 (en) | 2011-09-30 | 2016-11-29 | Rockwell Collins, Inc. | Head up display (HUD) using a bent waveguide assembly |
WO2013102759A2 (en) | 2012-01-06 | 2013-07-11 | Milan Momcilo Popovich | Contact image sensor using switchable bragg gratings |
US9057926B1 (en) | 2012-01-27 | 2015-06-16 | Rockwell Collins, Inc. | Multi-wavelength emitter array |
WO2013163347A1 (en) * | 2012-04-25 | 2013-10-31 | Rockwell Collins, Inc. | Holographic wide angle display |
WO2013165614A1 (en) | 2012-05-04 | 2013-11-07 | University Of Iowa Research Foundation | Automated assessment of glaucoma loss from optical coherence tomography |
WO2013167864A1 (en) | 2012-05-11 | 2013-11-14 | Milan Momcilo Popovich | Apparatus for eye tracking |
US9383753B1 (en) | 2012-09-26 | 2016-07-05 | Google Inc. | Wide-view LIDAR with areas of special attention |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2014143891A1 (en) | 2013-03-15 | 2014-09-18 | University Of Iowa Research Foundation | Automated separation of binary overlapping trees |
KR102046104B1 (en) * | 2013-03-19 | 2019-11-18 | 삼성전자주식회사 | Holographic 3D Display apparatus and illumination unit for holographic 3D Display apparatus |
WO2014188149A1 (en) | 2013-05-20 | 2014-11-27 | Milan Momcilo Popovich | Holographic waveguide eye tracker |
US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
US10732407B1 (en) | 2014-01-10 | 2020-08-04 | Rockwell Collins, Inc. | Near eye head up display system and method with fixed combiner |
WO2015143435A1 (en) | 2014-03-21 | 2015-09-24 | University Of Iowa Research Foundation | Graph search using non-euclidean deformed graph |
US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
US10088675B1 (en) | 2015-05-18 | 2018-10-02 | Rockwell Collins, Inc. | Turning light pipe for a pupil expansion system and method |
US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
WO2016089726A1 (en) * | 2014-12-02 | 2016-06-09 | Innovations In Optics, Inc. | High radiance light emitting diode light engine |
US20180275402A1 (en) | 2015-01-12 | 2018-09-27 | Digilens, Inc. | Holographic waveguide light field displays |
EP3245444B1 (en) | 2015-01-12 | 2021-09-08 | DigiLens Inc. | Environmentally isolated waveguide display |
CN107533137A (en) | 2015-01-20 | 2018-01-02 | 迪吉伦斯公司 | Holographical wave guide laser radar |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
WO2016156776A1 (en) | 2015-03-31 | 2016-10-06 | Milan Momcilo Popovich | Method and apparatus for contact image sensing |
US10115194B2 (en) | 2015-04-06 | 2018-10-30 | IDx, LLC | Systems and methods for feature detection in retinal images |
US10247943B1 (en) | 2015-05-18 | 2019-04-02 | Rockwell Collins, Inc. | Head up display (HUD) using a light pipe |
US10126552B2 (en) | 2015-05-18 | 2018-11-13 | Rockwell Collins, Inc. | Micro collimator system and method for a head up display (HUD) |
US11366316B2 (en) | 2015-05-18 | 2022-06-21 | Rockwell Collins, Inc. | Head up display (HUD) using a light pipe |
WO2017060665A1 (en) | 2015-10-05 | 2017-04-13 | Milan Momcilo Popovich | Waveguide display |
US10090639B2 (en) * | 2016-01-21 | 2018-10-02 | Luminit Llc | Laser diode enhancement device |
US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
JP6319355B2 (en) * | 2016-02-23 | 2018-05-09 | 株式会社デンソー | Head-up display device |
EP3430309B1 (en) * | 2016-03-15 | 2020-05-06 | Signify Holding B.V. | A light emitting device |
WO2017162999A1 (en) | 2016-03-24 | 2017-09-28 | Popovich Milan Momcilo | Method and apparatus for providing a polarization selective holographic waveguide device |
US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
DE102016220232A1 (en) * | 2016-10-17 | 2018-04-19 | Robert Bosch Gmbh | Optical element for a lidar system |
EP3548939A4 (en) | 2016-12-02 | 2020-11-25 | DigiLens Inc. | WAVE GUIDE DEVICE WITH UNIFORM OUTPUT LIGHTING |
US10473938B2 (en) * | 2016-12-30 | 2019-11-12 | Luminit Llc | Multi-part optical system for light propagation in confined spaces and method of fabrication and use thereof |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
US10295824B2 (en) | 2017-01-26 | 2019-05-21 | Rockwell Collins, Inc. | Head up display with an angled light pipe |
US11054581B2 (en) * | 2017-03-01 | 2021-07-06 | Akonia Holographics Llc | Ducted pupil expansion |
US10930710B2 (en) * | 2017-05-04 | 2021-02-23 | Apple Inc. | Display with nanostructure angle-of-view adjustment structures |
KR102456533B1 (en) * | 2017-05-23 | 2022-10-19 | 삼성전자주식회사 | Apparatus for reconstruction of holograms and method thereof |
EP3698214A4 (en) | 2017-10-16 | 2021-10-27 | Digilens Inc. | SYSTEMS AND METHODS FOR MULTIPLE IMAGE RESOLUTION OF A PIXELED DISPLAY |
CN107589549B (en) * | 2017-10-19 | 2023-10-27 | 四川思创激光科技有限公司 | Fiber laser synthesizer |
US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
WO2019136476A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Waveguide architectures and related methods of manufacturing |
CN116224492A (en) | 2018-01-08 | 2023-06-06 | 迪吉伦斯公司 | System and method for manufacturing waveguide unit |
WO2019178614A1 (en) | 2018-03-16 | 2019-09-19 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
US10546523B2 (en) * | 2018-06-22 | 2020-01-28 | Microsoft Technology Licensing, Llc | Display system with a single plate optical waveguide and independently adjustable micro display arrays |
TWI675224B (en) * | 2018-06-29 | 2019-10-21 | 揚明光學股份有限公司 | Image displacement module and fabrication method thereof |
TWI797142B (en) | 2018-07-12 | 2023-04-01 | 揚明光學股份有限公司 | Optical device and fabrication method thereof |
WO2020023779A1 (en) | 2018-07-25 | 2020-01-30 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
DE102018212735A1 (en) * | 2018-07-31 | 2020-02-06 | Robert Bosch Gmbh | LIDAR device with at least one lens element |
CN109214971B (en) * | 2018-08-08 | 2019-05-28 | 山东科技大学 | A kind of gray level image visual encryption method |
US11333895B1 (en) | 2019-01-11 | 2022-05-17 | Facebook Technologies, Llc | Systems and methods for structured light projector operational safety |
WO2020149956A1 (en) | 2019-01-14 | 2020-07-23 | Digilens Inc. | Holographic waveguide display with light control layer |
US20220283377A1 (en) | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
US20200264378A1 (en) | 2019-02-15 | 2020-08-20 | Digilens Inc. | Methods and Apparatuses for Providing a Holographic Waveguide Display Using Integrated Gratings |
EP3938821A4 (en) | 2019-03-12 | 2023-04-26 | Digilens Inc. | Holographic waveguide backlight and related methods of manufacturing |
US20200386947A1 (en) | 2019-06-07 | 2020-12-10 | Digilens Inc. | Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing |
JP2022543571A (en) | 2019-07-29 | 2022-10-13 | ディジレンズ インコーポレイテッド | Method and Apparatus for Multiplying Image Resolution and Field of View for Pixelated Displays |
KR102775783B1 (en) | 2019-08-29 | 2025-02-28 | 디지렌즈 인코포레이티드. | Vacuum grid and method for manufacturing the same |
US11662511B2 (en) | 2020-07-22 | 2023-05-30 | Samsung Electronics Co., Ltd. | Beam expander and method of operating the same |
US11886022B2 (en) | 2020-11-06 | 2024-01-30 | Samsung Electronics Co., Ltd. | Beam expander and beam expansion method |
WO2022140763A1 (en) | 2020-12-21 | 2022-06-30 | Digilens Inc. | Eye glow suppression in waveguide based displays |
US12158612B2 (en) | 2021-03-05 | 2024-12-03 | Digilens Inc. | Evacuated periodic structures and methods of manufacturing |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4834474A (en) * | 1987-05-01 | 1989-05-30 | The University Of Rochester | Optical systems using volume holographic elements to provide arbitrary space-time characteristics, including frequency-and/or spatially-dependent delay lines, chirped pulse compressors, pulse hirpers, pulse shapers, and laser resonators |
US6115152A (en) * | 1998-09-14 | 2000-09-05 | Digilens, Inc. | Holographic illumination system |
US6535273B1 (en) * | 1998-07-02 | 2003-03-18 | Carl-Zeiss-Stiftung | Microlithographic illumination system with depolarizer |
US20030147112A1 (en) * | 2000-07-05 | 2003-08-07 | Hiroshi Mukawa | Image display element, and image display device |
US20040057091A1 (en) * | 1999-01-07 | 2004-03-25 | Popovich Milan M. | Optical filter employing holographic optical elements and image generating system incorporating the optical filter |
US6897942B2 (en) * | 1990-11-15 | 2005-05-24 | Nikon Corporation | Projection exposure apparatus and method |
US20060291024A1 (en) * | 1996-11-15 | 2006-12-28 | Parker William P | In-line holographic mask for micromachining |
US20080225361A1 (en) * | 2004-01-29 | 2008-09-18 | Matsushita Electric Industrial Co., Ltd. | Light Source Device, and Two-Dimensional Image Display Device |
Family Cites Families (716)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1043938A (en) | 1911-08-17 | 1912-11-12 | Friedrich Huttenlocher | Safety device for gas-lamps. |
US3482498A (en) | 1967-05-09 | 1969-12-09 | Trw Inc | Ridge pattern recording apparatus |
DE2115312C3 (en) | 1971-03-30 | 1975-06-26 | Hoechst Ag, 6000 Frankfurt | Heatable spinning shaft |
US3843231A (en) | 1971-04-22 | 1974-10-22 | Commissariat Energie Atomique | Liquid crystal diffraction grating |
US3965029A (en) | 1974-02-04 | 1976-06-22 | Kent State University | Liquid crystal materials |
US3975711A (en) | 1974-08-30 | 1976-08-17 | Sperry Rand Corporation | Real time fingerprint recording terminal |
US4066334A (en) | 1975-01-06 | 1978-01-03 | National Research Development Corporation | Liquid crystal light deflector |
US4035068A (en) | 1975-06-25 | 1977-07-12 | Xerox Corporation | Speckle minimization in projection displays by reducing spatial coherence of the image light |
US4251137A (en) | 1977-09-28 | 1981-02-17 | Rca Corporation | Tunable diffractive subtractive filter |
US4322163A (en) | 1977-10-25 | 1982-03-30 | Fingermatrix Inc. | Finger identification |
US4248093A (en) | 1979-04-13 | 1981-02-03 | The Boeing Company | Holographic resolution of complex sound fields |
US4389612A (en) | 1980-06-17 | 1983-06-21 | S.H.E. Corporation | Apparatus for reducing low frequency noise in dc biased SQUIDS |
US4403189A (en) | 1980-08-25 | 1983-09-06 | S.H.E. Corporation | Superconducting quantum interference device having thin film Josephson junctions |
US4386361A (en) | 1980-09-26 | 1983-05-31 | S.H.E. Corporation | Thin film SQUID with low inductance |
US4544267A (en) | 1980-11-25 | 1985-10-01 | Fingermatrix, Inc. | Finger identification |
IL62627A (en) | 1981-04-10 | 1984-09-30 | Yissum Res Dev Co | Eye testing system |
US4418993A (en) | 1981-05-07 | 1983-12-06 | Stereographics Corp. | Stereoscopic zoom lens system for three-dimensional motion pictures and television |
US4562463A (en) | 1981-05-15 | 1985-12-31 | Stereographics Corp. | Stereoscopic television system with field storage for sequential display of right and left images |
US4472037A (en) | 1981-08-24 | 1984-09-18 | Stereographics Corporation | Additive color means for the calibration of stereoscopic projection |
US4523226A (en) | 1982-01-27 | 1985-06-11 | Stereographics Corporation | Stereoscopic television system |
US4566758A (en) | 1983-05-09 | 1986-01-28 | Tektronix, Inc. | Rapid starting, high-speed liquid crystal variable optical retarder |
US4884876A (en) | 1983-10-30 | 1989-12-05 | Stereographics Corporation | Achromatic liquid crystal shutter for stereoscopic and other applications |
WO1985004262A1 (en) | 1984-03-19 | 1985-09-26 | Kent State University | Light modulating material comprising a liquid crystal dispersion in a synthetic resin matrix |
US4583117A (en) | 1984-07-17 | 1986-04-15 | Stereographics Corporation | Stereoscopic video camera |
US4729640A (en) | 1984-10-03 | 1988-03-08 | Canon Kabushiki Kaisha | Liquid crystal light modulation device |
US4643515A (en) | 1985-04-01 | 1987-02-17 | Environmental Research Institute Of Michigan | Method and apparatus for recording and displaying edge-illuminated holograms |
US4728547A (en) | 1985-06-10 | 1988-03-01 | General Motors Corporation | Liquid crystal droplets dispersed in thin films of UV-curable polymers |
US4711512A (en) | 1985-07-12 | 1987-12-08 | Environmental Research Institute Of Michigan | Compact head-up display |
JPS6232425A (en) | 1985-08-05 | 1987-02-12 | Brother Ind Ltd | optical deflector |
US4890902A (en) | 1985-09-17 | 1990-01-02 | Kent State University | Liquid crystal light modulating materials with selectable viewing angles |
US5148302A (en) | 1986-04-10 | 1992-09-15 | Akihiko Nagano | Optical modulation element having two-dimensional phase type diffraction grating |
US4970129A (en) | 1986-12-19 | 1990-11-13 | Polaroid Corporation | Holograms |
US4811414A (en) | 1987-02-27 | 1989-03-07 | C.F.A. Technologies, Inc. | Methods for digitally noise averaging and illumination equalizing fingerprint images |
US4848093A (en) | 1987-08-24 | 1989-07-18 | Quantum Design | Apparatus and method for regulating temperature in a cryogenic test chamber |
US4791788A (en) | 1987-08-24 | 1988-12-20 | Quantum Design, Inc. | Method for obtaining improved temperature regulation when using liquid helium cooling |
US5822089A (en) | 1993-01-29 | 1998-10-13 | Imedge Technology Inc. | Grazing incidence holograms and system and method for producing the same |
US5710645A (en) | 1993-01-29 | 1998-01-20 | Imedge Technology, Inc. | Grazing incidence holograms and system and method for producing the same |
US4792850A (en) | 1987-11-25 | 1988-12-20 | Sterographics Corporation | Method and system employing a push-pull liquid crystal modulator |
US5096282A (en) | 1988-01-05 | 1992-03-17 | Hughes Aircraft Co. | Polymer dispersed liquid crystal film devices |
US4938568A (en) | 1988-01-05 | 1990-07-03 | Hughes Aircraft Company | Polymer dispersed liquid crystal film devices, and method of forming the same |
US4933976A (en) | 1988-01-25 | 1990-06-12 | C.F.A. Technologies, Inc. | System for generating rolled fingerprint images |
US5240636A (en) | 1988-04-11 | 1993-08-31 | Kent State University | Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials |
US4994204A (en) | 1988-11-04 | 1991-02-19 | Kent State University | Light modulating materials comprising a liquid crystal phase dispersed in a birefringent polymeric phase |
US5119454A (en) | 1988-05-23 | 1992-06-02 | Polaroid Corporation | Bulk optic wavelength division multiplexer |
US5004323A (en) | 1988-08-30 | 1991-04-02 | Kent State University | Extended temperature range polymer dispersed liquid crystal light shutters |
US4964701A (en) | 1988-10-04 | 1990-10-23 | Raytheon Company | Deflector for an optical beam |
JPH02186319A (en) | 1989-01-13 | 1990-07-20 | Fujitsu Ltd | display system |
US5033814A (en) | 1989-04-10 | 1991-07-23 | Nilford Laboratories, Inc. | Line light source |
US5009483A (en) | 1989-04-12 | 1991-04-23 | Rockwell Iii Marshall A | Optical waveguide display system |
US5099343A (en) | 1989-05-25 | 1992-03-24 | Hughes Aircraft Company | Edge-illuminated liquid crystal display devices |
US4967268A (en) | 1989-07-31 | 1990-10-30 | Stereographics | Liquid crystal shutter system for stereoscopic and other applications |
US4960311A (en) | 1989-08-31 | 1990-10-02 | Hughes Aircraft Company | Holographic exposure system for computer generated holograms |
US4963007A (en) | 1989-09-05 | 1990-10-16 | U.S. Precision Lens, Inc. | Color corrected projection lens |
US4971719A (en) | 1989-09-22 | 1990-11-20 | General Motors Corporation | Polymer dispersed liquid crystal films formed by electron beam curing |
US5198912A (en) | 1990-01-12 | 1993-03-30 | Polaroid Corporation | Volume phase hologram with liquid crystal in microvoids between fringes |
JPH03239384A (en) | 1990-02-16 | 1991-10-24 | Fujitsu Ltd | Semiconductor laser protection circuit |
US5117302A (en) | 1990-04-13 | 1992-05-26 | Stereographics Corporation | High dynamic range electro-optical shutter for steroscopic and other applications |
US5139192A (en) | 1990-08-30 | 1992-08-18 | Quantum Magnetics, Inc. | Superconducting bonds for thin film devices |
US5110034A (en) | 1990-08-30 | 1992-05-05 | Quantum Magnetics, Inc. | Superconducting bonds for thin film devices |
US5053834A (en) | 1990-08-31 | 1991-10-01 | Quantum Magnetics, Inc. | High symmetry dc SQUID system |
DE4028275A1 (en) | 1990-09-06 | 1992-03-12 | Kabelmetal Electro Gmbh | METHOD FOR THE PRODUCTION OF FIBERGLASS FIBER OPTICS WITH INCREASED STRENGTH |
US5142357A (en) | 1990-10-11 | 1992-08-25 | Stereographics Corp. | Stereoscopic video camera with image sensors having variable effective position |
US5063441A (en) | 1990-10-11 | 1991-11-05 | Stereographics Corporation | Stereoscopic video cameras with image sensors having variable effective position |
FR2669744B1 (en) * | 1990-11-23 | 1994-03-25 | Thomson Csf | LIGHTING DEVICE AND APPLICATION TO A VISUALIZATION DEVICE. |
US5619586A (en) | 1990-12-20 | 1997-04-08 | Thorn Emi Plc | Method and apparatus for producing a directly viewable image of a fingerprint |
US5867238A (en) | 1991-01-11 | 1999-02-02 | Minnesota Mining And Manufacturing Company | Polymer-dispersed liquid crystal device having an ultraviolet-polymerizable matrix and a variable optical transmission and a method for preparing same |
US5481321A (en) | 1991-01-29 | 1996-01-02 | Stereographics Corp. | Stereoscopic motion picture projection system |
US5142644A (en) | 1991-03-08 | 1992-08-25 | General Motors Corporation | Electrical contacts for polymer dispersed liquid crystal films |
US5453863A (en) | 1991-05-02 | 1995-09-26 | Kent State University | Multistable chiral nematic displays |
US6104448A (en) | 1991-05-02 | 2000-08-15 | Kent State University | Pressure sensitive liquid crystalline light modulating device and material |
US5695682A (en) | 1991-05-02 | 1997-12-09 | Kent State University | Liquid crystalline light modulating device and material |
US5241337A (en) | 1991-05-13 | 1993-08-31 | Eastman Kodak Company | Real image viewfinder requiring no field lens |
US5181133A (en) | 1991-05-15 | 1993-01-19 | Stereographics Corporation | Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications |
US5268792A (en) | 1991-05-20 | 1993-12-07 | Eastman Kodak Company | Zoom lens |
US5299289A (en) | 1991-06-11 | 1994-03-29 | Matsushita Electric Industrial Co., Ltd. | Polymer dispersed liquid crystal panel with diffraction grating |
US5193000A (en) | 1991-08-28 | 1993-03-09 | Stereographics Corporation | Multiplexing technique for stereoscopic video system |
US5416510A (en) | 1991-08-28 | 1995-05-16 | Stereographics Corporation | Camera controller for stereoscopic video system |
US5621552A (en) | 1991-08-29 | 1997-04-15 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrooptical liquid crystal system containing dual frequency liquid crystal mixture |
US5200861A (en) | 1991-09-27 | 1993-04-06 | U.S. Precision Lens Incorporated | Lens systems |
US5224198A (en) | 1991-09-30 | 1993-06-29 | Motorola, Inc. | Waveguide virtual image display |
US5315440A (en) | 1991-11-04 | 1994-05-24 | Eastman Kodak Company | Zoom lens having weak front lens group |
US5515184A (en) | 1991-11-12 | 1996-05-07 | The University Of Alabama In Huntsville | Waveguide hologram illuminators |
US5218480A (en) | 1991-12-03 | 1993-06-08 | U.S. Precision Lens Incorporated | Retrofocus wide angle lens |
US5239372A (en) | 1991-12-31 | 1993-08-24 | Stereographics Corporation | Stereoscopic video projection system |
US5264950A (en) | 1992-01-06 | 1993-11-23 | Kent State University | Light modulating device with polarizer and liquid crystal interspersed as spherical or randomly distorted droplets in isotropic polymer |
US5295208A (en) | 1992-02-26 | 1994-03-15 | The University Of Alabama In Huntsville | Multimode waveguide holograms capable of using non-coherent light |
US5296967A (en) | 1992-03-02 | 1994-03-22 | U.S. Precision Lens Incorporated | High speed wide angle projection TV lens system |
EP0564869A1 (en) | 1992-03-31 | 1993-10-13 | MERCK PATENT GmbH | Electrooptical liquid crystal systems |
US5284499A (en) | 1992-05-01 | 1994-02-08 | Corning Incorporated | Method and apparatus for drawing optical fibers |
US5327269A (en) | 1992-05-13 | 1994-07-05 | Standish Industries, Inc. | Fast switching 270° twisted nematic liquid crystal device and eyewear incorporating the device |
US5251048A (en) | 1992-05-18 | 1993-10-05 | Kent State University | Method and apparatus for electronic switching of a reflective color display |
KR100320567B1 (en) | 1992-05-18 | 2002-06-20 | Liquid Crystal Light Modulators & Materials | |
ATE179259T1 (en) | 1992-05-18 | 1999-05-15 | Univ Kent State Ohio | LIQUID CRYSTALLINE LIGHT MODULATING DEVICE AND MATERIAL |
US5315419A (en) | 1992-05-19 | 1994-05-24 | Kent State University | Method of producing a homogeneously aligned chiral smectic C liquid crystal having homeotropic alignment layers |
US5368770A (en) | 1992-06-01 | 1994-11-29 | Kent State University | Method of preparing thin liquid crystal films |
US5313330A (en) | 1992-08-31 | 1994-05-17 | U.S. Precision Lens Incorporated | Zoom projection lens systems |
US5343147A (en) | 1992-09-08 | 1994-08-30 | Quantum Magnetics, Inc. | Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements |
US6052540A (en) | 1992-09-11 | 2000-04-18 | Canon Kabushiki Kaisha | Viewfinder device for displaying photographic information relating to operation of a camera |
US5321533A (en) | 1992-09-24 | 1994-06-14 | Kent State Universtiy | Polymer dispersed ferroelectric smectic liquid crystal |
US5455693A (en) | 1992-09-24 | 1995-10-03 | Hughes Aircraft Company | Display hologram |
US5315324A (en) | 1992-12-09 | 1994-05-24 | Delphax Systems | High precision charge imaging cartridge |
US6151142A (en) | 1993-01-29 | 2000-11-21 | Imedge Technology, Inc. | Grazing incidence holograms and system and method for producing the same |
US5371817A (en) | 1993-02-16 | 1994-12-06 | Eastman Kodak Company | Multichannel optical waveguide page scanner with individually addressable electro-optic modulators |
US5428480A (en) | 1993-02-16 | 1995-06-27 | Eastman Kodak Company | Zoom lens having weak plastic element |
US5751452A (en) | 1993-02-22 | 1998-05-12 | Nippon Telegraph And Telephone Corporation | Optical devices with high polymer material and method of forming the same |
US5682255A (en) | 1993-02-26 | 1997-10-28 | Yeda Research & Development Co. Ltd. | Holographic optical devices for the transmission of optical signals of a plurality of channels |
JPH08507879A (en) | 1993-02-26 | 1996-08-20 | イエダ リサーチ アンド デベロツプメント カンパニー リミテツド | Holographic optical device |
US5371626A (en) | 1993-03-09 | 1994-12-06 | Benopcon, Inc. | Wide angle binocular system with variable power capability |
JP2823470B2 (en) | 1993-03-09 | 1998-11-11 | シャープ株式会社 | Optical scanning device, display device using the same, and image information input / output device |
US5309283A (en) | 1993-03-30 | 1994-05-03 | U.S. Precision Lens Incorporated | Hybrid, color-corrected, projection TV lens system |
JP3202831B2 (en) | 1993-04-09 | 2001-08-27 | 日本電信電話株式会社 | Method for manufacturing reflective color liquid crystal display |
GB2292711B (en) | 1993-04-28 | 1997-03-26 | Robert Douglas Mcpheters | Holographic operator interface |
JPH07509754A (en) | 1993-05-03 | 1995-10-26 | ロクタイト.コーポレイション | Polymer-dispersed liquid crystal in norbornene-thiol polymer |
US5329363A (en) | 1993-06-15 | 1994-07-12 | U. S. Precision Lens Incorporated | Projection lens systems having reduced spherochromatism |
US5455713A (en) | 1993-06-23 | 1995-10-03 | Kreitzer; Melvyn H. | High performance, thermally-stabilized projection television lens systems |
US5585035A (en) | 1993-08-06 | 1996-12-17 | Minnesota Mining And Manufacturing Company | Light modulating device having a silicon-containing matrix |
JPH0798439A (en) | 1993-09-29 | 1995-04-11 | Nippon Telegr & Teleph Corp <Ntt> | Three-dimensional stereoscopic display device |
US5686975A (en) | 1993-10-18 | 1997-11-11 | Stereographics Corporation | Polarel panel for stereoscopic displays |
US5485313A (en) | 1993-10-27 | 1996-01-16 | Polaroid Corporation | Zoom lens systems |
US5757546A (en) | 1993-12-03 | 1998-05-26 | Stereographics Corporation | Electronic stereoscopic viewer |
US5677797A (en) | 1994-02-04 | 1997-10-14 | U.S. Precision Lens Inc. | Method for correcting field curvature |
US5559637A (en) | 1994-02-04 | 1996-09-24 | Corning Incorporated | Field curvature corrector |
US5463428A (en) | 1994-02-08 | 1995-10-31 | Stereographics Corporation | Wireless active eyewear for stereoscopic applications |
CA2183567A1 (en) | 1994-02-18 | 1995-08-24 | Michael H. Metz | Method of producing and detecting high-contrast images of the surface topography of objects and a compact system for carrying out the same |
US5986746A (en) | 1994-02-18 | 1999-11-16 | Imedge Technology Inc. | Topographical object detection system |
JPH09512580A (en) | 1994-04-29 | 1997-12-16 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Light modulator with matrix made from acidic reactants |
US5493430A (en) | 1994-08-03 | 1996-02-20 | Kent Display Systems, L.P. | Color, reflective liquid crystal displays |
US5506929A (en) | 1994-10-19 | 1996-04-09 | Clio Technologies, Inc. | Light expanding system for producing a linear or planar light beam from a point-like light source |
US5572250A (en) | 1994-10-20 | 1996-11-05 | Stereographics Corporation | Universal electronic stereoscopic display |
SG47360A1 (en) | 1994-11-14 | 1998-04-17 | Hoffmann La Roche | Colour display with serially-connected lc filters |
US5625495A (en) | 1994-12-07 | 1997-04-29 | U.S. Precision Lens Inc. | Telecentric lens systems for forming an image of an object composed of pixels |
US5745301A (en) | 1994-12-19 | 1998-04-28 | Benopcon, Inc. | Variable power lens systems for producing small images |
US5748277A (en) | 1995-02-17 | 1998-05-05 | Kent State University | Dynamic drive method and apparatus for a bistable liquid crystal display |
US6154190A (en) | 1995-02-17 | 2000-11-28 | Kent State University | Dynamic drive methods and apparatus for a bistable liquid crystal display |
US6061463A (en) | 1995-02-21 | 2000-05-09 | Imedge Technology, Inc. | Holographic fingerprint device |
TW334520B (en) | 1995-02-24 | 1998-06-21 | Matsushita Electric Ind Co Ltd | Display device Liquid crystal display |
JP3658034B2 (en) | 1995-02-28 | 2005-06-08 | キヤノン株式会社 | Image observation optical system and imaging optical system |
US5621529A (en) | 1995-04-05 | 1997-04-15 | Intelligent Automation Systems, Inc. | Apparatus and method for projecting laser pattern with reduced speckle noise |
US5668614A (en) | 1995-05-01 | 1997-09-16 | Kent State University | Pixelized liquid crystal display materials including chiral material adopted to change its chirality upon photo-irradiation |
US5543950A (en) | 1995-05-04 | 1996-08-06 | Kent State University | Liquid crystalline electrooptical device |
US5831700A (en) | 1995-05-19 | 1998-11-03 | Kent State University | Polymer stabilized four domain twisted nematic liquid crystal display |
US5825448A (en) | 1995-05-19 | 1998-10-20 | Kent State University | Reflective optically active diffractive device |
US5680231A (en) | 1995-06-06 | 1997-10-21 | Hughes Aircraft Company | Holographic lenses with wide angular and spectral bandwidths for use in a color display device |
EP0835479A4 (en) | 1995-06-23 | 1999-07-21 | Holoplex | Multiplexed hologram copying system and method |
US5629764A (en) | 1995-07-07 | 1997-05-13 | Advanced Precision Technology, Inc. | Prism fingerprint sensor using a holographic optical element |
DE69629257T2 (en) | 1995-09-21 | 2004-04-22 | 3M Innovative Properties Co., St. Paul | Lens system for television projection device |
JPH0990312A (en) | 1995-09-27 | 1997-04-04 | Olympus Optical Co Ltd | Optical device |
US5999282A (en) | 1995-11-08 | 1999-12-07 | Victor Company Of Japan, Ltd. | Color filter and color image display apparatus employing the filter |
EP0785457A3 (en) | 1996-01-17 | 1998-10-14 | Nippon Telegraph And Telephone Corporation | Optical device and three-dimensional display device |
WO1997027519A1 (en) | 1996-01-29 | 1997-07-31 | Foster-Miller, Inc. | Optical components containing complex diffraction gratings and methods for the fabrication thereof |
US5963375A (en) | 1996-01-31 | 1999-10-05 | U.S. Precision Lens Inc. | Athermal LCD projection lens |
WO1997035223A1 (en) | 1996-03-15 | 1997-09-25 | Retinal Display Cayman Limited | Method of and apparatus for viewing an image |
US6166834A (en) | 1996-03-15 | 2000-12-26 | Matsushita Electric Industrial Co., Ltd. | Display apparatus and method for forming hologram suitable for the display apparatus |
EP0896690B1 (en) | 1996-04-29 | 2003-09-03 | 3M Innovative Properties Company | Projection television lens system |
WO1997041461A1 (en) | 1996-04-29 | 1997-11-06 | U.S. Precision Lens Incorporated | Lcd projection lens |
US5841587A (en) | 1996-04-29 | 1998-11-24 | U.S. Precision Lens Inc. | LCD projection lens |
US6061107A (en) | 1996-05-10 | 2000-05-09 | Kent State University | Bistable polymer dispersed cholesteric liquid crystal displays |
US6583838B1 (en) | 1996-05-10 | 2003-06-24 | Kent State University | Bistable liquid crystal display device using polymer stabilization |
US6133975A (en) | 1996-05-10 | 2000-10-17 | Kent State University | Bistable liquid crystal display device using polymer stabilization |
US5870228A (en) | 1996-05-24 | 1999-02-09 | U.S. Precision Lens Inc. | Projection lenses having larger back focal length to focal length ratios |
US5969874A (en) | 1996-05-30 | 1999-10-19 | U.S. Precision Lens Incorporated | Long focal length projection lenses |
US6821457B1 (en) | 1998-07-29 | 2004-11-23 | Science Applications International Corporation | Electrically switchable polymer-dispersed liquid crystal materials including switchable optical couplers and reconfigurable optical interconnects |
US7077984B1 (en) | 1996-07-12 | 2006-07-18 | Science Applications International Corporation | Electrically switchable polymer-dispersed liquid crystal materials |
US6867888B2 (en) | 1996-07-12 | 2005-03-15 | Science Applications International Corporation | Switchable polymer-dispersed liquid crystal optical elements |
US5942157A (en) | 1996-07-12 | 1999-08-24 | Science Applications International Corporation | Switchable volume hologram materials and devices |
US7312906B2 (en) | 1996-07-12 | 2007-12-25 | Science Applications International Corporation | Switchable polymer-dispersed liquid crystal optical elements |
EP0825474B1 (en) | 1996-08-16 | 2003-11-26 | 3M Innovative Properties Company | Mini-zoom projection lenses for use with pixelized panels |
US5856842A (en) | 1996-08-26 | 1999-01-05 | Kaiser Optical Systems Corporation | Apparatus facilitating eye-contact video communications |
US5936776A (en) | 1996-09-27 | 1999-08-10 | U.S. Precision Lens Inc. | Focusable front projection lens systems for use with large screen formats |
US5745266A (en) | 1996-10-02 | 1998-04-28 | Raytheon Company | Quarter-wave film for brightness enhancement of holographic thin taillamp |
EP0991965A4 (en) | 1996-11-12 | 2000-08-09 | Planop Planar Optics Ltd | Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer |
DE69728183T2 (en) | 1996-11-29 | 2005-03-17 | 3M Innovative Properties Co., St. Paul | LENSES FOR ELECTRONIC PICTURE SYSTEMS |
US6366281B1 (en) | 1996-12-06 | 2002-04-02 | Stereographics Corporation | Synthetic panoramagram |
US5875012A (en) | 1997-01-31 | 1999-02-23 | Xerox Corporation | Broadband reflective display, and methods of forming the same |
US6133971A (en) | 1997-01-31 | 2000-10-17 | Xerox Corporation | Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same |
US5790314A (en) | 1997-01-31 | 1998-08-04 | Jds Fitel Inc. | Grin lensed optical device |
US5956113A (en) | 1997-01-31 | 1999-09-21 | Xerox Corporation | Bistable reflective display and methods of forming the same |
US5877826A (en) | 1997-02-06 | 1999-03-02 | Kent State University | Dual frequency switchable cholesteric liquid crystal light shutter and driving waveform |
US5937115A (en) | 1997-02-12 | 1999-08-10 | Foster-Miller, Inc. | Switchable optical components/structures and methods for the fabrication thereof |
US6567573B1 (en) | 1997-02-12 | 2003-05-20 | Digilens, Inc. | Switchable optical components |
US5900987A (en) | 1997-02-13 | 1999-05-04 | U.S. Precision Lens Inc | Zoom projection lenses for use with pixelized panels |
US5798641A (en) | 1997-03-17 | 1998-08-25 | Quantum Design, Inc. | Torque magnetometer utilizing integrated piezoresistive levers |
US6034752A (en) | 1997-03-22 | 2000-03-07 | Kent Displays Incorporated | Display device reflecting visible and infrared radiation |
US5973727A (en) | 1997-05-13 | 1999-10-26 | New Light Industries, Ltd. | Video image viewing device and method |
US5999089A (en) | 1997-05-13 | 1999-12-07 | Carlson; Lance K. | Alarm system |
GB2325530A (en) | 1997-05-22 | 1998-11-25 | Sharp Kk | Liquid crystal device |
CN1202427C (en) | 1997-07-11 | 2005-05-18 | 3M创新有限公司 | High performance projection television lens systems |
US5930433A (en) | 1997-07-23 | 1999-07-27 | Hewlett-Packard Company | Waveguide array document scanner |
US6417971B1 (en) | 1997-08-05 | 2002-07-09 | U.S. Precision Lens Incorporated | Zoom projection lens having a lens correction unit |
WO1999009440A1 (en) | 1997-08-13 | 1999-02-25 | Foster-Miller, Inc. | Switchable optical components |
US6141154A (en) | 1997-08-22 | 2000-10-31 | U.S. Precision Lens Inc. | Focusable, color corrected, high performance projection lens systems |
US7028899B2 (en) | 1999-06-07 | 2006-04-18 | Metrologic Instruments, Inc. | Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target |
JP2953444B2 (en) | 1997-10-01 | 1999-09-27 | 日本電気株式会社 | Liquid crystal display device and manufacturing method thereof |
US5929960A (en) | 1997-10-17 | 1999-07-27 | Kent State University | Method for forming liquid crystal display cell walls using a patterned electric field |
KR100570392B1 (en) | 1997-11-13 | 2006-04-11 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Optical projection lens for compact projection lens system with pixel panel |
JP3331559B2 (en) | 1997-11-13 | 2002-10-07 | 日本電信電話株式会社 | Optical device |
DE19751190A1 (en) | 1997-11-19 | 1999-05-20 | Bosch Gmbh Robert | Laser display device has a polymer-dispersed liquid crystal disk |
US6437563B1 (en) | 1997-11-21 | 2002-08-20 | Quantum Design, Inc. | Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes |
US6046585A (en) | 1997-11-21 | 2000-04-04 | Quantum Design, Inc. | Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto |
US5949508A (en) | 1997-12-10 | 1999-09-07 | Kent State University | Phase separated composite organic film and methods for the manufacture thereof |
US6975345B1 (en) | 1998-03-27 | 2005-12-13 | Stereographics Corporation | Polarizing modulator for an electronic stereoscopic display |
WO1999052002A1 (en) | 1998-04-02 | 1999-10-14 | Elop Electro-Optics Industries Ltd. | Holographic optical devices |
US6268839B1 (en) | 1998-05-12 | 2001-07-31 | Kent State University | Drive schemes for gray scale bistable cholesteric reflective displays |
US6204835B1 (en) | 1998-05-12 | 2001-03-20 | Kent State University | Cumulative two phase drive scheme for bistable cholesteric reflective displays |
JPH11326617A (en) | 1998-05-13 | 1999-11-26 | Olympus Optical Co Ltd | Optical system including diffraction optical element and its design method |
US6388797B1 (en) | 1998-05-29 | 2002-05-14 | Stereographics Corporation | Electrostereoscopic eyewear |
US6341118B1 (en) | 1998-06-02 | 2002-01-22 | Science Applications International Corporation | Multiple channel scanning device using oversampling and image processing to increase throughput |
WO1999067662A1 (en) | 1998-06-24 | 1999-12-29 | U.S. Precision Lens Incorporated | Projection television lens systems having improved modulation transfer functions |
US6411444B1 (en) | 1998-06-30 | 2002-06-25 | Corning Precision Lens, Incorporated | Lenses for electronic imaging systems having long wavelength filtering properties |
US6064354A (en) | 1998-07-01 | 2000-05-16 | Deluca; Michael Joseph | Stereoscopic user interface method and apparatus |
US6618104B1 (en) | 1998-07-28 | 2003-09-09 | Nippon Telegraph And Telephone Corporation | Optical device having reverse mode holographic PDLC and front light guide |
AU5460899A (en) * | 1998-07-29 | 2000-02-21 | Digilens Inc. | In-line infinity display system employing one or more switchable holographic optical elements |
JP2000056259A (en) | 1998-08-10 | 2000-02-25 | Fuji Xerox Co Ltd | Picture display device |
US6169594B1 (en) | 1998-08-24 | 2001-01-02 | Physical Optics Corporation | Beam deflector and scanner |
US6188462B1 (en) | 1998-09-02 | 2001-02-13 | Kent State University | Diffraction grating with electrically controlled periodicity |
US6278429B1 (en) | 1998-09-11 | 2001-08-21 | Kent State University | Bistable reflective cholesteric liquid crystal displays utilizing super twisted nematic driver chips |
US20020126332A1 (en) * | 1998-09-14 | 2002-09-12 | Popovich Milan M. | System and method for modulating light intesity |
US6082862A (en) | 1998-10-16 | 2000-07-04 | Digilens, Inc. | Image tiling technique based on electrically switchable holograms |
AU4976099A (en) | 1998-10-16 | 2000-05-08 | Digilens Inc. | Autostereoscopic display based on electrically switchable holograms |
US6414760B1 (en) | 1998-10-29 | 2002-07-02 | Hewlett-Packard Company | Image scanner with optical waveguide and enhanced optical sampling rate |
US6529336B1 (en) | 1998-11-12 | 2003-03-04 | U.S. Precision Lens Incorporated | Color corrected projection lenses employing diffractive optical surfaces |
US6850210B1 (en) | 1998-11-12 | 2005-02-01 | Stereographics Corporation | Parallax panoramagram having improved depth and sharpness |
US6191887B1 (en) | 1999-01-20 | 2001-02-20 | Tropel Corporation | Laser illumination with speckle reduction |
US6320563B1 (en) | 1999-01-21 | 2001-11-20 | Kent State University | Dual frequency cholesteric display and drive scheme |
US6301057B1 (en) | 1999-02-02 | 2001-10-09 | Corning Precision Lens | Long focal length projection lenses |
JP2000267042A (en) | 1999-03-17 | 2000-09-29 | Fuji Xerox Co Ltd | Head-mounted type video display device |
US6269203B1 (en) | 1999-03-17 | 2001-07-31 | Radiant Photonics | Holographic optical devices for transmission of optical signals |
JP2000267552A (en) | 1999-03-19 | 2000-09-29 | Sony Corp | Device and method for image recording and recording medium |
US6504629B1 (en) | 1999-03-23 | 2003-01-07 | Digilens, Inc. | Method and apparatus for illuminating a display |
US6909443B1 (en) | 1999-04-06 | 2005-06-21 | Microsoft Corporation | Method and apparatus for providing a three-dimensional task gallery computer interface |
JP4548680B2 (en) | 1999-04-12 | 2010-09-22 | 大日本印刷株式会社 | Color hologram display and method for producing the same |
US6195209B1 (en) | 1999-05-04 | 2001-02-27 | U.S. Precision Lens Incorporated | Projection lenses having reduced lateral color for use with pixelized panels |
JP4341108B2 (en) | 1999-07-14 | 2009-10-07 | ソニー株式会社 | Virtual image observation optical device |
US6646772B1 (en) | 1999-09-14 | 2003-11-11 | Digilens, Inc. | Holographic illumination system |
US6317228B2 (en) | 1999-09-14 | 2001-11-13 | Digilens, Inc. | Holographic illumination system |
US6301056B1 (en) | 1999-11-08 | 2001-10-09 | Corning Precision Lens | High speed retrofocus projection television lens systems |
US20020009299A1 (en) | 1999-12-04 | 2002-01-24 | Lenny Lipton | System for the display of stereoscopic photographs |
WO2001050200A2 (en) | 1999-12-22 | 2001-07-12 | Science Applications International Corp. | Switchable polymer-dispersed liquid crystal optical elements |
US7502003B2 (en) | 2000-01-20 | 2009-03-10 | Real D | Method for eliminating pi-cell artifacts |
US6519088B1 (en) | 2000-01-21 | 2003-02-11 | Stereographics Corporation | Method and apparatus for maximizing the viewing zone of a lenticular stereogram |
JP2001296503A (en) | 2000-04-13 | 2001-10-26 | Mitsubishi Heavy Ind Ltd | Device for reducing speckle |
US6730442B1 (en) | 2000-05-24 | 2004-05-04 | Science Applications International Corporation | System and method for replicating volume holograms |
ES2348532T3 (en) | 2000-06-05 | 2010-12-09 | Lumus Ltd | OPTICAL BEAM DILATOR GUIDED BY A SUBSTRATE. |
US7671889B2 (en) | 2000-06-07 | 2010-03-02 | Real D | Autostereoscopic pixel arrangement techniques |
US20010050756A1 (en) | 2000-06-07 | 2001-12-13 | Lenny Lipton | Software generated color organ for stereoscopic and planar applications |
US6830789B2 (en) | 2000-06-09 | 2004-12-14 | Kent Displays, Inc. | Chiral additives for cholesteric displays |
US20080024598A1 (en) | 2000-07-21 | 2008-01-31 | New York University | Autostereoscopic display |
US7099080B2 (en) | 2000-08-30 | 2006-08-29 | Stereo Graphics Corporation | Autostereoscopic lenticular screen |
JP2002090858A (en) | 2000-09-20 | 2002-03-27 | Olympus Optical Co Ltd | In-finder display device |
DE10051186B4 (en) | 2000-10-16 | 2005-04-07 | Fibermark Gessner Gmbh & Co. Ohg | Dust filter bag with highly porous carrier material layer |
JP2002122906A (en) | 2000-10-17 | 2002-04-26 | Olympus Optical Co Ltd | Display device within finder |
US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
US6738105B1 (en) | 2000-11-02 | 2004-05-18 | Intel Corporation | Coherent light despeckling |
US6791629B2 (en) | 2000-11-09 | 2004-09-14 | 3M Innovative Properties Company | Lens systems for projection televisions |
US6822713B1 (en) | 2000-11-27 | 2004-11-23 | Kent State University | Optical compensation film for liquid crystal display |
JP4727034B2 (en) | 2000-11-28 | 2011-07-20 | オリンパス株式会社 | Observation optical system and imaging optical system |
US7123319B2 (en) | 2000-12-14 | 2006-10-17 | Koninklijke Philips Electronics N.V. | Liquid crystal display laminate and method of manufacturing such comprising a stratified-phase-separated composite |
US6563650B2 (en) | 2001-01-17 | 2003-05-13 | 3M Innovative Properties Company | Compact, telecentric projection lenses for use with pixelized panels |
US6518747B2 (en) | 2001-02-16 | 2003-02-11 | Quantum Design, Inc. | Method and apparatus for quantitative determination of accumulations of magnetic particles |
US6600590B2 (en) | 2001-02-20 | 2003-07-29 | Eastman Kodak Company | Speckle suppressed laser projection system using RF injection |
US6625381B2 (en) | 2001-02-20 | 2003-09-23 | Eastman Kodak Company | Speckle suppressed laser projection system with partial beam reflection |
US6476974B1 (en) | 2001-02-28 | 2002-11-05 | Corning Precision Lens Incorporated | Projection lenses for use with reflective pixelized panels |
US7184002B2 (en) | 2001-03-29 | 2007-02-27 | Stereographics Corporation | Above-and-below stereoscopic format with signifier |
GB0108838D0 (en) | 2001-04-07 | 2001-05-30 | Cambridge 3D Display Ltd | Far field display |
FI20010778L (en) | 2001-04-12 | 2002-10-13 | Nokia Corp | Optical switching arrangement |
US6731434B1 (en) | 2001-05-23 | 2004-05-04 | University Of Central Florida | Compact lens assembly for the teleportal augmented reality system |
US7009773B2 (en) | 2001-05-23 | 2006-03-07 | Research Foundation Of The University Of Central Florida, Inc. | Compact microlenslet arrays imager |
US6999239B1 (en) | 2001-05-23 | 2006-02-14 | Research Foundation Of The University Of Central Florida, Inc | Head-mounted display by integration of phase-conjugate material |
US6963454B1 (en) | 2002-03-01 | 2005-11-08 | Research Foundation Of The University Of Central Florida | Head-mounted display by integration of phase-conjugate material |
US7002618B2 (en) | 2001-06-01 | 2006-02-21 | Stereographics Corporation | Plano-stereoscopic DVD movie |
US6747781B2 (en) | 2001-06-25 | 2004-06-08 | Silicon Light Machines, Inc. | Method, apparatus, and diffuser for reducing laser speckle |
JP2003114347A (en) | 2001-07-30 | 2003-04-18 | Furukawa Electric Co Ltd:The | Single mode optical fiber, method and device for manufacturing the same |
US6791739B2 (en) | 2001-08-08 | 2004-09-14 | Eastman Kodak Company | Electro-optic despeckling modulator and method of use |
US6927694B1 (en) | 2001-08-20 | 2005-08-09 | Research Foundation Of The University Of Central Florida | Algorithm for monitoring head/eye motion for driver alertness with one camera |
JP2003066428A (en) | 2001-08-23 | 2003-03-05 | Toppan Printing Co Ltd | Projector using holographic polymer dispersed liquid crystal |
US6594090B2 (en) | 2001-08-27 | 2003-07-15 | Eastman Kodak Company | Laser projection display system |
US6833955B2 (en) | 2001-10-09 | 2004-12-21 | Planop Planar Optics Ltd. | Compact two-plane optical device |
JP2003139958A (en) | 2001-10-31 | 2003-05-14 | Sony Corp | Transmission type laminated hologram optical element, image display element and image display device |
US6816309B2 (en) | 2001-11-30 | 2004-11-09 | Colorlink, Inc. | Compensated color management systems and methods |
US6773114B2 (en) | 2001-12-07 | 2004-08-10 | Nokia Corporation | Portable multimode display device |
EP1453935B1 (en) | 2001-12-13 | 2006-06-21 | Sony Deutschland GmbH | A method of forming a composite |
US6577429B1 (en) | 2002-01-15 | 2003-06-10 | Eastman Kodak Company | Laser projection display system |
US6952435B2 (en) | 2002-02-11 | 2005-10-04 | Ming Lai | Speckle free laser probe beam |
JP2003270419A (en) | 2002-03-18 | 2003-09-25 | Sony Corp | Diffractive optical element and image display device |
IL148804A (en) | 2002-03-21 | 2007-02-11 | Yaacov Amitai | Optical device |
US6757105B2 (en) | 2002-04-25 | 2004-06-29 | Planop Planar Optics Ltd. | Optical device having a wide field-of-view for multicolor images |
KR20030088217A (en) | 2002-05-13 | 2003-11-19 | 삼성전자주식회사 | Wearable display system enabling adjustment of magnfication |
US7804995B2 (en) | 2002-07-02 | 2010-09-28 | Reald Inc. | Stereoscopic format converter |
ITTO20020625A1 (en) | 2002-07-17 | 2004-01-19 | Fiat Ricerche | LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES |
JP3867634B2 (en) | 2002-07-26 | 2007-01-10 | 株式会社ニコン | Image combiner and image display device |
US7619739B1 (en) | 2002-08-29 | 2009-11-17 | Science Applications International Corporation | Detection and identification of biological agents using Bragg filters |
FI114945B (en) | 2002-09-19 | 2005-01-31 | Nokia Corp | Electrically adjustable diffractive gate element |
AU2003278747A1 (en) | 2002-09-25 | 2004-04-19 | Xponent Photonics Inc | Optical assemblies for free-space optical propagation between waveguide(s) and/or fiber(s) |
US6805490B2 (en) | 2002-09-30 | 2004-10-19 | Nokia Corporation | Method and system for beam expansion in a display device |
DE50212936D1 (en) | 2002-10-24 | 2008-12-04 | L 1 Identity Solutions Ag | Examination of image recordings of persons |
US8786923B2 (en) | 2002-11-22 | 2014-07-22 | Akonia Holographics, Llc | Methods and systems for recording to holographic storage media |
US20040263969A1 (en) | 2002-11-25 | 2004-12-30 | Lenny Lipton | Lenticular antireflection display |
US7018563B1 (en) | 2002-11-26 | 2006-03-28 | Science Applications International Corporation | Tailoring material composition for optimization of application-specific switchable holograms |
US20040112862A1 (en) | 2002-12-12 | 2004-06-17 | Molecular Imprints, Inc. | Planarization composition and method of patterning a substrate using the same |
FI114946B (en) | 2002-12-16 | 2005-01-31 | Nokia Corp | Diffractive grating element for balancing diffraction efficiency |
US7046888B2 (en) | 2002-12-18 | 2006-05-16 | The Regents Of The University Of Michigan | Enhancing fiber-optic sensing technique using a dual-core fiber |
US6853493B2 (en) | 2003-01-07 | 2005-02-08 | 3M Innovative Properties Company | Folded, telecentric projection lenses for use with pixelized panels |
JP3873892B2 (en) | 2003-01-22 | 2007-01-31 | コニカミノルタホールディングス株式会社 | Video display device |
US20040263971A1 (en) | 2003-02-12 | 2004-12-30 | Lenny Lipton | Dual mode autosteroscopic lens sheet |
US7088515B2 (en) | 2003-02-12 | 2006-08-08 | Stereographics Corporation | Autostereoscopic lens sheet with planar areas |
US7119965B1 (en) | 2003-02-24 | 2006-10-10 | University Of Central Florida Research Foundation, Inc. | Head mounted projection display with a wide field of view |
US8230359B2 (en) | 2003-02-25 | 2012-07-24 | Microsoft Corporation | System and method that facilitates computer desktop use via scaling of displayed objects with shifts to the periphery |
WO2004079431A1 (en) | 2003-03-05 | 2004-09-16 | 3M Innovative Properties Company | Diffractive lens |
US7092133B2 (en) | 2003-03-10 | 2006-08-15 | Inphase Technologies, Inc. | Polytopic multiplex holography |
US20040179764A1 (en) | 2003-03-14 | 2004-09-16 | Noureddine Melikechi | Interferometric analog optical modulator for single mode fibers |
US7539330B2 (en) | 2004-06-01 | 2009-05-26 | Lumidigm, Inc. | Multispectral liveness determination |
US7460696B2 (en) | 2004-06-01 | 2008-12-02 | Lumidigm, Inc. | Multispectral imaging biometrics |
US6950173B1 (en) | 2003-04-08 | 2005-09-27 | Science Applications International Corporation | Optimizing performance parameters for switchable polymer dispersed liquid crystal optical elements |
AU2003901797A0 (en) | 2003-04-14 | 2003-05-01 | Agresearch Limited | Manipulation of condensed tannin biosynthesis |
US6985296B2 (en) | 2003-04-15 | 2006-01-10 | Stereographics Corporation | Neutralizing device for autostereoscopic lens sheet |
WO2004102226A2 (en) | 2003-05-09 | 2004-11-25 | Sbg Labs, Inc. | Switchable viewfinder display |
FI115169B (en) | 2003-05-13 | 2005-03-15 | Nokia Corp | Method and optical system for coupling light to a waveguide |
GB0313044D0 (en) | 2003-06-06 | 2003-07-09 | Cambridge Flat Projection | Flat panel scanning illuminator |
WO2004109349A2 (en) | 2003-06-10 | 2004-12-16 | Elop Electro-Optics Industries Ltd. | Method and system for displaying an informative image against a background image |
WO2005001753A1 (en) | 2003-06-21 | 2005-01-06 | Aprilis, Inc. | Acquisition of high resolution boimetric images |
WO2005008378A2 (en) | 2003-07-03 | 2005-01-27 | Holo Touch. Inc | Holographic human-machine interfaces |
ITTO20030530A1 (en) | 2003-07-09 | 2005-01-10 | Infm Istituto Naz Per La Fisi Ca Della Mater | HOLOGRAPHIC DISTRIBUTION NETWORK, PROCEDURE FOR THE |
KR101060829B1 (en) | 2003-08-08 | 2011-08-30 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | Alignment layer with reactive mesogens to align the liquid crystal molecules |
GB2405519A (en) | 2003-08-30 | 2005-03-02 | Sharp Kk | A multiple-view directional display |
IL157838A (en) | 2003-09-10 | 2013-05-30 | Yaakov Amitai | High brightness optical device |
IL157836A (en) | 2003-09-10 | 2009-08-03 | Yaakov Amitai | Optical devices particularly for remote viewing applications |
IL157837A (en) | 2003-09-10 | 2012-12-31 | Yaakov Amitai | Substrate-guided optical device particularly for three-dimensional displays |
US7088457B1 (en) | 2003-10-01 | 2006-08-08 | University Of Central Florida Research Foundation, Inc. | Iterative least-squares wavefront estimation for general pupil shapes |
US7616228B2 (en) | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
US7616227B2 (en) | 2003-10-02 | 2009-11-10 | Real D | Hardware based interdigitation |
JP4266770B2 (en) | 2003-10-22 | 2009-05-20 | アルプス電気株式会社 | Optical image reader |
US7277640B2 (en) | 2003-11-18 | 2007-10-02 | Avago Technologies Fiber Ip (Singapore) Pte Ltd | Optical add/drop multiplexing systems |
US7333685B2 (en) | 2003-11-24 | 2008-02-19 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Variable optical attenuator systems |
IL165376A0 (en) | 2003-12-02 | 2006-01-15 | Electro Optics Ind Ltd | Vehicle display system |
US7034748B2 (en) | 2003-12-17 | 2006-04-25 | Microsoft Corporation | Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters |
US7317449B2 (en) | 2004-03-02 | 2008-01-08 | Microsoft Corporation | Key-based advanced navigation techniques |
US6958868B1 (en) | 2004-03-29 | 2005-10-25 | John George Pender | Motion-free tracking solar concentrator |
CN101174028B (en) | 2004-03-29 | 2015-05-20 | 索尼株式会社 | Optical device and virtual image display device |
US20050232530A1 (en) | 2004-04-01 | 2005-10-20 | Jason Kekas | Electronically controlled volume phase grating devices, systems and fabrication methods |
US7375886B2 (en) | 2004-04-19 | 2008-05-20 | Stereographics Corporation | Method and apparatus for optimizing the viewing distance of a lenticular stereogram |
US6992830B1 (en) | 2004-04-22 | 2006-01-31 | Raytheon Company | Projection display having an angle-selective coating for enhanced image contrast, and method for enhancing image contrast |
US7454103B2 (en) | 2004-04-23 | 2008-11-18 | Parriaux Olivier M | High efficiency optical diffraction device |
WO2005111669A1 (en) | 2004-05-17 | 2005-11-24 | Nikon Corporation | Optical element, combiner optical system, and image display unit |
US7301601B2 (en) | 2004-05-20 | 2007-11-27 | Alps Electric (Usa) Inc. | Optical switching device using holographic polymer dispersed liquid crystals |
US7639208B1 (en) | 2004-05-21 | 2009-12-29 | University Of Central Florida Research Foundation, Inc. | Compact optical see-through head-mounted display with occlusion support |
US8229185B2 (en) | 2004-06-01 | 2012-07-24 | Lumidigm, Inc. | Hygienic biometric sensors |
US7002753B2 (en) | 2004-06-02 | 2006-02-21 | 3M Innovative Properties Company | Color-corrected projection lenses for use with pixelized panels |
IL162572A (en) | 2004-06-17 | 2013-02-28 | Lumus Ltd | High brightness optical device |
IL162573A (en) | 2004-06-17 | 2013-05-30 | Lumus Ltd | Substrate-guided optical device with very wide aperture |
EP1612596A1 (en) | 2004-06-29 | 2006-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production |
US7277210B2 (en) * | 2005-07-21 | 2007-10-02 | C8 Medisensors Inc. | Measuring spectral lines from an analyte using multiplexed holograms and polarization manipulation |
US7230770B2 (en) | 2004-08-04 | 2007-06-12 | 3M Innovative Properties Company | Projection lenses having color-correcting rear lens units |
US7145729B2 (en) | 2004-08-04 | 2006-12-05 | 3M Innovative Properties Company | Foldable projection lenses |
IL163361A (en) | 2004-08-05 | 2011-06-30 | Lumus Ltd | Optical device for light coupling into a guiding substrate |
WO2006017771A1 (en) | 2004-08-06 | 2006-02-16 | University Of Washington | Variable fixation viewing distance scanned light displays |
US7233446B2 (en) | 2004-08-19 | 2007-06-19 | 3Dtl, Inc. | Transformable, applicable material and methods for using same for optical effects |
US7075273B2 (en) | 2004-08-24 | 2006-07-11 | Motorola, Inc. | Automotive electrical system configuration using a two bus structure |
EP1801798B1 (en) | 2004-10-08 | 2010-01-06 | Pioneer Corporation | Diffraction optical element, objective lens module, optical pickup, and optical information recording/reproducing apparatus |
WO2006041278A1 (en) | 2004-10-15 | 2006-04-20 | Stichting Dutch Polymer Institute | Waveguide comprising an anisotropic diffracting layer |
WO2006044652A1 (en) | 2004-10-16 | 2006-04-27 | Identix Incorporated | Diffractive imaging system for the reading and analysis of skin topology |
US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
WO2006064334A1 (en) | 2004-12-13 | 2006-06-22 | Nokia Corporation | General diffractive optics method for expanding an exit pupil |
US7206107B2 (en) | 2004-12-13 | 2007-04-17 | Nokia Corporation | Method and system for beam expansion in a display device |
EP1825306B1 (en) | 2004-12-13 | 2012-04-04 | Nokia Corporation | System and method for beam expansion with near focus in a display device |
IL166799A (en) | 2005-02-10 | 2014-09-30 | Lumus Ltd | Substrate-guided optical device utilizing beam splitters |
US10073264B2 (en) | 2007-08-03 | 2018-09-11 | Lumus Ltd. | Substrate-guide optical device |
US7724443B2 (en) | 2005-02-10 | 2010-05-25 | Lumus Ltd. | Substrate-guided optical device utilizing thin transparent layer |
JP2008533507A (en) | 2005-02-10 | 2008-08-21 | ラマス リミテッド | Substrate guiding optical device especially for vision enhancement optical system |
CA2537751A1 (en) | 2005-02-28 | 2006-08-28 | Weatherford/Lamb, Inc. | Furnace and process for drawing radiation resistant optical fiber |
WO2006102073A2 (en) | 2005-03-18 | 2006-09-28 | Sbg Labs, Inc. | Spatial light modulator |
WO2006110646A2 (en) | 2005-04-08 | 2006-10-19 | Real D | Autostereoscopic display with planar pass-through |
US7123421B1 (en) | 2005-04-22 | 2006-10-17 | Panavision International, L.P. | Compact high performance zoom lens system |
WO2006128066A2 (en) | 2005-05-26 | 2006-11-30 | Real D | Ghost-compensation for improved stereoscopic projection |
WO2006132614A1 (en) | 2005-06-03 | 2006-12-14 | Nokia Corporation | General diffractive optics method for expanding and exit pupil |
JP5465430B2 (en) | 2005-06-07 | 2014-04-09 | リアルディー インコーポレイテッド | Control of angle range of autostereoscopic viewing zone |
JP4655771B2 (en) | 2005-06-17 | 2011-03-23 | ソニー株式会社 | Optical device and virtual image display device |
EP1902343B1 (en) | 2005-06-24 | 2011-05-18 | RealD Inc. | Autostereoscopic display with increased sharpness for non-primary viewing zones |
WO2007015141A2 (en) | 2005-08-04 | 2007-02-08 | Milan Momcilo Popovich | Laser illuminator |
WO2007029032A1 (en) | 2005-09-07 | 2007-03-15 | Bae Systems Plc | A projection display with two plate-like, co-planar waveguides including gratings |
EP1922580B1 (en) | 2005-09-07 | 2009-11-04 | BAE Systems PLC | A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating |
US20080043334A1 (en) | 2006-08-18 | 2008-02-21 | Mirage Innovations Ltd. | Diffractive optical relay and method for manufacturing the same |
EP1932051A1 (en) | 2005-09-14 | 2008-06-18 | Mirage Innovations Ltd. | Diffraction grating with a spatially varying duty-cycle |
GB0518912D0 (en) | 2005-09-16 | 2005-10-26 | Light Blue Optics Ltd | Methods and apparatus for displaying images using holograms |
JP2007086145A (en) | 2005-09-20 | 2007-04-05 | Sony Corp | Three-dimensional display |
US8018579B1 (en) | 2005-10-21 | 2011-09-13 | Apple Inc. | Three-dimensional imaging and display system |
KR101335172B1 (en) | 2005-10-27 | 2013-12-05 | 리얼디 인크. | Temperature compensation for the differential expansion of an autostereoscopic lenticular array and display screen |
US10048499B2 (en) | 2005-11-08 | 2018-08-14 | Lumus Ltd. | Polarizing optical system |
IL171820A (en) | 2005-11-08 | 2014-04-30 | Lumus Ltd | Polarizing optical device for light coupling |
EP1946179B1 (en) | 2005-11-10 | 2012-12-05 | BAE Systems PLC | Method of modifying a display apparatus |
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
WO2007058746A2 (en) | 2005-11-11 | 2007-05-24 | Sbg Labs Inc. | Compact holographic illumination device |
KR20080070854A (en) | 2005-11-14 | 2008-07-31 | 리얼 디 | Monitor with integrated interlocking |
US7477206B2 (en) | 2005-12-06 | 2009-01-13 | Real D | Enhanced ZScreen modulator techniques |
US7583437B2 (en) | 2005-12-08 | 2009-09-01 | Real D | Projection screen with virtual compound curvature |
US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
US7953308B2 (en) | 2005-12-30 | 2011-05-31 | General Electric Company | System and method for fiber optic bundle-based illumination for imaging system |
US8384504B2 (en) | 2006-01-06 | 2013-02-26 | Quantum Design International, Inc. | Superconducting quick switch |
US20070160325A1 (en) | 2006-01-11 | 2007-07-12 | Hyungbin Son | Angle-tunable transmissive grating |
ES2605367T3 (en) | 2006-01-26 | 2017-03-14 | Nokia Technologies Oy | Eye tracking device |
US7760429B2 (en) | 2006-01-27 | 2010-07-20 | Reald Inc. | Multiple mode display device |
IL173715A0 (en) | 2006-02-14 | 2007-03-08 | Lumus Ltd | Substrate-guided imaging lens |
US8363298B2 (en) | 2006-02-27 | 2013-01-29 | Nokia Corporation | Diffraction gratings with tunable efficiency |
US20070206155A1 (en) | 2006-03-03 | 2007-09-06 | Real D | Steady state surface mode device for stereoscopic projection |
US7499217B2 (en) | 2006-03-03 | 2009-03-03 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
WO2007130130A2 (en) | 2006-04-06 | 2007-11-15 | Sbg Labs Inc. | Method and apparatus for providing a transparent display |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US7679641B2 (en) | 2006-04-07 | 2010-03-16 | Real D | Vertical surround parallax correction |
WO2007127758A2 (en) | 2006-04-24 | 2007-11-08 | Displaytech, Inc | Spatial light modulators with changeable phase masks for use in holographic data storage |
US7843642B2 (en) | 2006-05-04 | 2010-11-30 | University Of Central Florida Research Foundation | Systems and methods for providing compact illumination in head mounted displays |
US7524053B2 (en) | 2006-05-12 | 2009-04-28 | Real D | 3-D eyewear |
US7740387B2 (en) | 2006-05-24 | 2010-06-22 | 3M Innovative Properties Company | Backlight wedge with side mounted light source |
WO2007141588A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Split exit pupil expander |
EP2033040B1 (en) | 2006-06-02 | 2020-04-29 | Magic Leap, Inc. | Stereoscopic exit pupil expander display |
EP2035881B8 (en) | 2006-06-02 | 2013-11-13 | Nokia Corporation | Color distribution in exit pupil expanders |
US7517081B2 (en) | 2006-07-20 | 2009-04-14 | Real D | Low-cost circular polarizing eyewear |
IL177618A (en) | 2006-08-22 | 2015-02-26 | Lumus Ltd | Substrate- guided optical device |
US8736672B2 (en) | 2006-08-24 | 2014-05-27 | Reald Inc. | Algorithmic interaxial reduction |
US8493433B2 (en) | 2006-09-12 | 2013-07-23 | Reald Inc. | Shuttering eyewear for use with stereoscopic liquid crystal display |
DE102006046555B4 (en) | 2006-09-28 | 2010-12-16 | Grintech Gmbh | Miniaturized optical imaging system with high lateral and axial resolution |
WO2008038058A1 (en) | 2006-09-28 | 2008-04-03 | Nokia Corporation | Beam expansion with three-dimensional diffractive elements |
GB0619226D0 (en) | 2006-09-29 | 2006-11-08 | Cambridge Flat Projection | Efficient wedge projection |
GB0619366D0 (en) | 2006-10-02 | 2006-11-08 | Cambridge Flat Projection | Distortionless wedge projection |
GB0620014D0 (en) | 2006-10-10 | 2006-11-22 | Cambridge Flat Projection | Prismatic film backlight |
US7670004B2 (en) | 2006-10-18 | 2010-03-02 | Real D | Dual ZScreen® projection |
US7857455B2 (en) | 2006-10-18 | 2010-12-28 | Reald Inc. | Combining P and S rays for bright stereoscopic projection |
US8155489B2 (en) | 2006-11-02 | 2012-04-10 | Nokia Corporation | Method for coupling light into a thin planar waveguide |
US20080106779A1 (en) | 2006-11-02 | 2008-05-08 | Infocus Corporation | Laser Despeckle Device |
US7775387B2 (en) | 2006-12-21 | 2010-08-17 | Reald Inc. | Eyewear receptacle |
US20080151370A1 (en) | 2006-12-21 | 2008-06-26 | Real D | Method of recycling eyewear |
US20080155426A1 (en) | 2006-12-21 | 2008-06-26 | Microsoft Corporation | Visualization and navigation of search results |
JP5303928B2 (en) | 2006-12-26 | 2013-10-02 | 東レ株式会社 | Reflective polarizing plate, method for producing the same, and liquid crystal display device using the same |
US8160411B2 (en) | 2006-12-28 | 2012-04-17 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
US8134434B2 (en) | 2007-01-05 | 2012-03-13 | Quantum Design, Inc. | Superconducting quick switch |
US7508589B2 (en) | 2007-02-01 | 2009-03-24 | Real D | Soft aperture correction for lenticular screens |
US7808708B2 (en) | 2007-02-01 | 2010-10-05 | Reald Inc. | Aperture correction for lenticular screens |
US20080273081A1 (en) | 2007-03-13 | 2008-11-06 | Lenny Lipton | Business system for two and three dimensional snapshots |
US20080226281A1 (en) | 2007-03-13 | 2008-09-18 | Real D | Business system for three-dimensional snapshots |
WO2008114502A1 (en) | 2007-03-19 | 2008-09-25 | Panasonic Corporation | Laser illuminating device and image display device |
US20080239068A1 (en) | 2007-04-02 | 2008-10-02 | Real D | Color and polarization timeplexed stereoscopic display apparatus |
US8014050B2 (en) | 2007-04-02 | 2011-09-06 | Vuzix Corporation | Agile holographic optical phased array device and applications |
US20080239067A1 (en) | 2007-04-02 | 2008-10-02 | Real D | Optical concatenation for field sequential stereoscpoic displays |
US8643948B2 (en) | 2007-04-22 | 2014-02-04 | Lumus Ltd. | Collimating optical device and system |
DE102007021036A1 (en) | 2007-05-04 | 2008-11-06 | Carl Zeiss Ag | Display device and display method for binocular display of a multicolor image |
US8493630B2 (en) | 2007-05-10 | 2013-07-23 | L-I Indentity Solutions, Inc. | Identification reader |
US20080297731A1 (en) | 2007-06-01 | 2008-12-04 | Microvision, Inc. | Apparent speckle reduction apparatus and method for mems laser projection system |
EP3667399A1 (en) | 2007-06-04 | 2020-06-17 | Magic Leap, Inc. | A diffractive beam expander |
US8373744B2 (en) | 2007-06-07 | 2013-02-12 | Reald Inc. | Stereoplexing for video and film applications |
US8487982B2 (en) | 2007-06-07 | 2013-07-16 | Reald Inc. | Stereoplexing for film and video applications |
US20080316303A1 (en) | 2007-06-08 | 2008-12-25 | Joseph Chiu | Display Device |
EP2156447B1 (en) | 2007-06-11 | 2016-02-17 | Moog Limited | Low-profile transformer |
US7633666B2 (en) | 2007-06-20 | 2009-12-15 | Real D | ZScreen® modulator with wire grid polarizer for stereoscopic projection |
US7589901B2 (en) | 2007-07-10 | 2009-09-15 | Microvision, Inc. | Substrate-guided relays for use with scanned beam light sources |
JP5092609B2 (en) | 2007-08-01 | 2012-12-05 | ソニー株式会社 | Image display apparatus and driving method thereof |
US7672549B2 (en) | 2007-09-10 | 2010-03-02 | Banyan Energy, Inc. | Solar energy concentrator |
WO2009034694A1 (en) | 2007-09-14 | 2009-03-19 | Panasonic Corporation | Projector |
WO2009050504A1 (en) | 2007-10-18 | 2009-04-23 | Bae Systems Plc | Improvements in or relating to head mounted display systems |
US7969657B2 (en) | 2007-10-25 | 2011-06-28 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
US7866869B2 (en) | 2007-10-26 | 2011-01-11 | Corporation For Laser Optics Research | Laser illuminated backlight for flat panel displays |
US20090128495A1 (en) | 2007-11-20 | 2009-05-21 | Microsoft Corporation | Optical input device |
JP4450058B2 (en) | 2007-11-29 | 2010-04-14 | ソニー株式会社 | Image display device |
JP4395802B2 (en) | 2007-11-29 | 2010-01-13 | ソニー株式会社 | Image display device |
US8830584B2 (en) | 2007-12-17 | 2014-09-09 | Nokia Corporation | Exit pupil expanders with spherical and aspheric substrates |
WO2009077772A1 (en) | 2007-12-18 | 2009-06-25 | Bae Systems Plc | Improvemements in or relating to display projectors |
EP2225601A1 (en) | 2007-12-18 | 2010-09-08 | BAE Systems PLC | Improvements in or relating to projection displays |
EP2225592B1 (en) | 2007-12-18 | 2015-04-22 | Nokia Technologies OY | Exit pupil expanders with wide field-of-view |
DE102008005817A1 (en) | 2008-01-24 | 2009-07-30 | Carl Zeiss Ag | Optical display device |
PL2242419T3 (en) | 2008-02-14 | 2016-05-31 | Nokia Technologies Oy | Device and method for determining gaze direction |
US7884593B2 (en) | 2008-03-26 | 2011-02-08 | Quantum Design, Inc. | Differential and symmetrical current source |
US20090242021A1 (en) | 2008-03-31 | 2009-10-01 | Noribachi Llc | Solar cell with colorization layer |
US20100149073A1 (en) | 2008-11-02 | 2010-06-17 | David Chaum | Near to Eye Display System and Appliance |
RU2556129C2 (en) | 2008-04-11 | 2015-07-10 | Сиэтл Дженетикс, Инк. | Diagnostics and treatment of malignant tumours of pancreas, ovaries and other malignant tumours |
ES2538731T3 (en) | 2008-04-14 | 2015-06-23 | Bae Systems Plc | Improvements in waveguides or related to them |
EP2110701A1 (en) | 2008-04-14 | 2009-10-21 | BAE Systems PLC | Improvements in or relating to waveguides |
US20110032618A1 (en) | 2008-04-14 | 2011-02-10 | Bae Systems Plc | Lamination of optical substrates |
EP2286144A2 (en) | 2008-05-05 | 2011-02-23 | 3M Innovative Properties Company | Light source module |
JP4518193B2 (en) | 2008-06-10 | 2010-08-04 | ソニー株式会社 | Optical device and virtual image display device |
US8087698B2 (en) | 2008-06-18 | 2012-01-03 | L-1 Secure Credentialing, Inc. | Personalizing ID document images |
US8167173B1 (en) | 2008-07-21 | 2012-05-01 | 3Habto, Llc | Multi-stream draught beer dispensing system |
JP4706737B2 (en) | 2008-08-18 | 2011-06-22 | ソニー株式会社 | Image display device |
JP4858512B2 (en) | 2008-08-21 | 2012-01-18 | ソニー株式会社 | Head-mounted display |
WO2010023444A1 (en) | 2008-08-27 | 2010-03-04 | Milan Momcilo Popovich | Laser display incorporating speckle reduction |
US8520309B2 (en) | 2008-09-04 | 2013-08-27 | Innovega Inc. | Method and apparatus to process display and non-display information |
US8441731B2 (en) | 2008-09-04 | 2013-05-14 | Innovega, Inc. | System and apparatus for pixel matrix see-through display panels |
US8142016B2 (en) | 2008-09-04 | 2012-03-27 | Innovega, Inc. | Method and apparatus for constructing a contact lens with optics |
US8482858B2 (en) | 2008-09-04 | 2013-07-09 | Innovega Inc. | System and apparatus for deflection optics |
EP2329302B1 (en) | 2008-09-16 | 2019-11-06 | BAE Systems PLC | Improvements in or relating to waveguides |
US20100079865A1 (en) | 2008-09-26 | 2010-04-01 | Nokia Corporation | Near-to-eye scanning display with exit-pupil expansion |
FR2936613B1 (en) | 2008-09-30 | 2011-03-18 | Commissariat Energie Atomique | LIGHT COUPLER BETWEEN AN OPTICAL FIBER AND A WAVEGUIDE MADE ON A SOIL SUBSTRATE. |
US8132948B2 (en) | 2008-10-17 | 2012-03-13 | Microsoft Corporation | Method and apparatus for directing light around an obstacle using an optical waveguide for uniform lighting of a cylindrical cavity |
JP4636164B2 (en) | 2008-10-23 | 2011-02-23 | ソニー株式会社 | Head-mounted display |
US7949214B2 (en) | 2008-11-06 | 2011-05-24 | Microvision, Inc. | Substrate guided relay with pupil expanding input coupler |
WO2010057219A1 (en) | 2008-11-17 | 2010-05-20 | Luminit Llc | Holographic substrate-guided wave-based see-through display |
US9465213B2 (en) | 2008-12-12 | 2016-10-11 | Bae Systems Plc | Waveguides |
EP2373924B2 (en) | 2008-12-12 | 2022-01-05 | BAE Systems PLC | Improvements in or relating to waveguides |
US8654420B2 (en) | 2008-12-12 | 2014-02-18 | Bae Systems Plc | Waveguides |
JP4674634B2 (en) | 2008-12-19 | 2011-04-20 | ソニー株式会社 | Head-mounted display |
EP2219073B1 (en) | 2009-02-17 | 2020-06-03 | Covestro Deutschland AG | Holographic media and photopolymer compositions |
KR20100102774A (en) | 2009-03-12 | 2010-09-27 | 삼성전자주식회사 | Touch sensing system and display apparatus employing the same |
US20100231498A1 (en) | 2009-03-13 | 2010-09-16 | Microsoft Corporation | Image display via multiple light guide sections |
US8746008B1 (en) | 2009-03-29 | 2014-06-10 | Montana Instruments Corporation | Low vibration cryocooled system for low temperature microscopy and spectroscopy applications |
CA2758633C (en) | 2009-04-14 | 2017-09-26 | Bae Systems Plc | Optical waveguide and display device |
AU2010240707B2 (en) | 2009-04-20 | 2014-01-30 | Snap Inc. | Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface |
EP2422228B1 (en) | 2009-04-20 | 2023-01-25 | BAE Systems PLC | Improvements in optical waveguides |
EP2244114A1 (en) | 2009-04-20 | 2010-10-27 | BAE Systems PLC | Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface |
US8323854B2 (en) | 2009-04-23 | 2012-12-04 | Akonia Holographics, Llc | Photopolymer media with enhanced dynamic range |
WO2010125337A2 (en) | 2009-04-27 | 2010-11-04 | Milan Momcilo Popovich | Compact holographic edge illuminated wearable display |
US8639072B2 (en) | 2011-10-19 | 2014-01-28 | Milan Momcilo Popovich | Compact wearable display |
CA2760382C (en) | 2009-04-29 | 2017-11-07 | Bae Systems Plc | Head mounted display |
US8194325B2 (en) | 2009-06-30 | 2012-06-05 | Nokia Corporation | Optical apparatus and method |
US8184363B2 (en) | 2009-08-07 | 2012-05-22 | Northrop Grumman Systems Corporation | All-fiber integrated high power coherent beam combination |
US20110044582A1 (en) | 2009-08-21 | 2011-02-24 | Microsoft Corporation | Efficient collimation of light with optical wedge |
US8354640B2 (en) | 2009-09-11 | 2013-01-15 | Identix Incorporated | Optically based planar scanner |
US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
US9075184B2 (en) | 2012-04-17 | 2015-07-07 | Milan Momcilo Popovich | Compact edge illuminated diffractive display |
US20200057353A1 (en) | 2009-10-09 | 2020-02-20 | Digilens Inc. | Compact Edge Illuminated Diffractive Display |
US8885112B2 (en) | 2009-10-27 | 2014-11-11 | Sbg Labs, Inc. | Compact holographic edge illuminated eyeglass display |
WO2011055109A2 (en) | 2009-11-03 | 2011-05-12 | Milan Momcilo Popovich | Apparatus for reducing laser speckle |
ES2453267T3 (en) | 2009-11-03 | 2014-04-07 | Bayer Intellectual Property Gmbh | Manufacturing procedure of a holographic film |
CN102667936B (en) | 2009-11-03 | 2016-03-30 | 拜尔材料科学股份公司 | Method for producing holographic media |
US8698705B2 (en) | 2009-12-04 | 2014-04-15 | Vuzix Corporation | Compact near eye display with scanned image generation |
WO2011073673A1 (en) | 2009-12-17 | 2011-06-23 | Bae Systems Plc | Projector lens assembly |
WO2011085233A1 (en) | 2010-01-07 | 2011-07-14 | Holotouch, Inc. | Compact holographic human-machine interface |
WO2011089433A1 (en) | 2010-01-25 | 2011-07-28 | Bae Systems Plc | Projection display |
US8659826B1 (en) | 2010-02-04 | 2014-02-25 | Rockwell Collins, Inc. | Worn display system and method without requiring real time tracking for boresight precision |
CA2789607C (en) | 2010-02-16 | 2018-05-01 | Midmark Corporation | Led light for examinations and procedures |
US9366862B2 (en) | 2010-02-28 | 2016-06-14 | Microsoft Technology Licensing, Llc | System and method for delivering content to a group of see-through near eye display eyepieces |
US8472120B2 (en) | 2010-02-28 | 2013-06-25 | Osterhout Group, Inc. | See-through near-eye display glasses with a small scale image source |
US9128281B2 (en) | 2010-09-14 | 2015-09-08 | Microsoft Technology Licensing, Llc | Eyepiece with uniformly illuminated reflective display |
US20120194420A1 (en) | 2010-02-28 | 2012-08-02 | Osterhout Group, Inc. | Ar glasses with event triggered user action control of ar eyepiece facility |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US8488246B2 (en) | 2010-02-28 | 2013-07-16 | Osterhout Group, Inc. | See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film |
US9129295B2 (en) | 2010-02-28 | 2015-09-08 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear |
US9341843B2 (en) | 2010-02-28 | 2016-05-17 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with a small scale image source |
US20140063055A1 (en) | 2010-02-28 | 2014-03-06 | Osterhout Group, Inc. | Ar glasses specific user interface and control interface based on a connected external device type |
US8964298B2 (en) | 2010-02-28 | 2015-02-24 | Microsoft Corporation | Video display modification based on sensor input for a see-through near-to-eye display |
WO2011107831A1 (en) | 2010-03-04 | 2011-09-09 | Nokia Corporation | Optical apparatus and method for expanding an exit pupil |
US8725001B2 (en) | 2010-03-10 | 2014-05-13 | Ofs Fitel, Llc | Multicore fiber transmission systems and methods |
WO2011110821A1 (en) | 2010-03-12 | 2011-09-15 | Milan Momcilo Popovich | Biometric sensor |
EP2372454A1 (en) | 2010-03-29 | 2011-10-05 | Bayer MaterialScience AG | Photopolymer formulation for producing visible holograms |
US8697346B2 (en) | 2010-04-01 | 2014-04-15 | The Regents Of The University Of Colorado | Diffraction unlimited photolithography |
US9946068B2 (en) | 2010-04-23 | 2018-04-17 | Bae Systems Plc | Optical waveguide and display device |
US8631333B2 (en) | 2010-06-07 | 2014-01-14 | Microsoft Corporation | Feature set differentiation by tenant and user |
JP5488226B2 (en) | 2010-06-10 | 2014-05-14 | 富士通オプティカルコンポーネンツ株式会社 | Mach-Zehnder type optical modulator |
EP2614518A4 (en) | 2010-09-10 | 2016-02-10 | VerLASE TECHNOLOGIES LLC | METHODS OF MANUFACTURING OPTOELECTRONIC DEVICES USING SEMICONDUCTOR DONOR DETACHED LAYERS AND DEVICES MANUFACTURED THEREBY |
US8649099B2 (en) | 2010-09-13 | 2014-02-11 | Vuzix Corporation | Prismatic multiple waveguide for near-eye display |
US8582206B2 (en) | 2010-09-15 | 2013-11-12 | Microsoft Corporation | Laser-scanning virtual image display |
US8376548B2 (en) | 2010-09-22 | 2013-02-19 | Vuzix Corporation | Near-eye display with on-axis symmetry |
US20150015946A1 (en) | 2010-10-08 | 2015-01-15 | SoliDDD Corp. | Perceived Image Depth for Autostereoscopic Displays |
US9507149B2 (en) | 2010-10-19 | 2016-11-29 | Bae Systems Plc | Image combiner |
WO2012061702A1 (en) | 2010-11-04 | 2012-05-10 | The Regents Of The University Of Colorado, A Body Corporate | Dual-cure polymer systems |
EP2450893A1 (en) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer formula for producing of holographic media with highly networked matrix polymers |
EP2450387A1 (en) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Photopolymer formulation for producing holographic media |
US20130021586A1 (en) | 2010-12-07 | 2013-01-24 | Laser Light Engines | Frequency Control of Despeckling |
WO2012088478A1 (en) | 2010-12-24 | 2012-06-28 | Chunyu Gao | An ergonomic head mounted display device and optical system |
JP5741901B2 (en) | 2010-12-27 | 2015-07-01 | Dic株式会社 | Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device |
BRPI1100786A2 (en) | 2011-01-19 | 2015-08-18 | André Jacobovitz | Photopolymer for volume hologram engraving and process to produce it |
US8619062B2 (en) | 2011-02-03 | 2013-12-31 | Microsoft Corporation | Touch-pressure sensing in a display panel |
WO2012138414A1 (en) | 2011-04-06 | 2012-10-11 | Versatilis Llc | Optoelectronic device containing at least one active device layer having a wurtzite crystal structure, and methods of making same |
CA2835120C (en) | 2011-05-06 | 2019-05-28 | Magic Leap, Inc. | Massive simultaneous remote digital presence world |
EP2710695A4 (en) | 2011-05-16 | 2015-07-15 | VerLASE TECHNOLOGIES LLC | RESONATOR ENHANCED OPTOELECTRONIC DEVICES AND METHODS OF MAKING THE SAME |
EP2710582A4 (en) | 2011-05-17 | 2014-12-31 | Cross Match Technologies Inc | Fingerprint sensors |
WO2012172295A1 (en) | 2011-06-16 | 2012-12-20 | Milan Momcilo Popovich | Holographic beam deflector for autostereoscopic displays |
US8672486B2 (en) | 2011-07-11 | 2014-03-18 | Microsoft Corporation | Wide field-of-view projector |
US8988474B2 (en) | 2011-07-18 | 2015-03-24 | Microsoft Technology Licensing, Llc | Wide field-of-view virtual image projector |
US8754831B2 (en) | 2011-08-02 | 2014-06-17 | Microsoft Corporation | Changing between display device viewing modes |
US9983361B2 (en) | 2011-08-08 | 2018-05-29 | Greg S. Laughlin | GRIN-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby |
GB201114149D0 (en) | 2011-08-17 | 2011-10-05 | Bae Systems Plc | Projection display |
US8548290B2 (en) | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
EP2995986B1 (en) | 2011-08-24 | 2017-04-12 | Rockwell Collins, Inc. | Data display |
WO2013027006A1 (en) | 2011-08-24 | 2013-02-28 | Milan Momcilo Popovich | Improvements to holographic polymer dispersed liquid crystal materials and devices |
GB201114771D0 (en) | 2011-08-26 | 2011-10-12 | Bae Systems Plc | A display |
WO2013033274A1 (en) | 2011-08-29 | 2013-03-07 | Vuzix Corporation | Controllable waveguide for near-eye display applications |
WO2013034879A1 (en) | 2011-09-07 | 2013-03-14 | Milan Momcilo Popovich | Method and apparatus for switching electro optical arrays |
WO2013036925A2 (en) | 2011-09-08 | 2013-03-14 | President And Fellows Of Harvard College | Isolated orthosis for thumb actuation |
US9035344B2 (en) | 2011-09-14 | 2015-05-19 | VerLASE TECHNOLOGIES LLC | Phosphors for use with LEDs and other optoelectronic devices |
US20140330159A1 (en) | 2011-09-26 | 2014-11-06 | Beth Israel Deaconess Medical Center, Inc. | Quantitative methods and systems for neurological assessment |
US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
US8903207B1 (en) | 2011-09-30 | 2014-12-02 | Rockwell Collins, Inc. | System for and method of extending vertical field of view in head up display utilizing a waveguide combiner |
GB201117029D0 (en) | 2011-10-04 | 2011-11-16 | Bae Systems Plc | Optical waveguide and display device |
CA3164530C (en) | 2011-10-28 | 2023-09-19 | Magic Leap, Inc. | System and method for augmented and virtual reality |
CN104067316B (en) | 2011-11-23 | 2017-10-27 | 奇跃公司 | Three-dimensional and augmented reality show system |
US8651678B2 (en) | 2011-11-29 | 2014-02-18 | Massachusetts Institute Of Technology | Polarization fields for dynamic light field display |
MX337573B (en) | 2011-12-23 | 2016-03-10 | Johnson & Johnson Vision Care | Variable optic ophthalmic device including liquid crystal elements. |
US8917453B2 (en) | 2011-12-23 | 2014-12-23 | Microsoft Corporation | Reflective array waveguide |
WO2013102759A2 (en) | 2012-01-06 | 2013-07-11 | Milan Momcilo Popovich | Contact image sensor using switchable bragg gratings |
US9001030B2 (en) | 2012-02-15 | 2015-04-07 | Google Inc. | Heads up display |
US9274338B2 (en) | 2012-03-21 | 2016-03-01 | Microsoft Technology Licensing, Llc | Increasing field of view of reflective waveguide |
US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
US8736963B2 (en) | 2012-03-21 | 2014-05-27 | Microsoft Corporation | Two-dimensional exit-pupil expansion |
US11068049B2 (en) | 2012-03-23 | 2021-07-20 | Microsoft Technology Licensing, Llc | Light guide display and field of view |
GB2500631B (en) | 2012-03-27 | 2017-12-27 | Bae Systems Plc | Improvements in or relating to optical waveguides |
US10191515B2 (en) | 2012-03-28 | 2019-01-29 | Microsoft Technology Licensing, Llc | Mobile device light guide display |
US9558590B2 (en) | 2012-03-28 | 2017-01-31 | Microsoft Technology Licensing, Llc | Augmented reality light guide display |
US9717981B2 (en) | 2012-04-05 | 2017-08-01 | Microsoft Technology Licensing, Llc | Augmented reality and physical games |
NZ700887A (en) | 2012-04-05 | 2016-11-25 | Magic Leap Inc | Wide-field of view (fov) imaging devices with active foveation capability |
WO2013163347A1 (en) | 2012-04-25 | 2013-10-31 | Rockwell Collins, Inc. | Holographic wide angle display |
US9389415B2 (en) | 2012-04-27 | 2016-07-12 | Leia Inc. | Directional pixel for use in a display screen |
KR101918038B1 (en) | 2012-04-27 | 2018-11-13 | 레이아 인코포레이티드 | Directional pixel for use in a display screen |
WO2013167864A1 (en) | 2012-05-11 | 2013-11-14 | Milan Momcilo Popovich | Apparatus for eye tracking |
US9459461B2 (en) | 2012-05-31 | 2016-10-04 | Leia Inc. | Directional backlight |
KR101788776B1 (en) | 2012-05-31 | 2017-10-20 | 레이아 인코포레이티드 | Directional backlight |
PT2859402T (en) | 2012-06-01 | 2018-02-08 | Leia Inc | Directional backlight with a modulation layer |
US9201270B2 (en) | 2012-06-01 | 2015-12-01 | Leia Inc. | Directional backlight with a modulation layer |
US8989535B2 (en) | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US10629003B2 (en) | 2013-03-11 | 2020-04-21 | Magic Leap, Inc. | System and method for augmented and virtual reality |
AU2013274359B2 (en) | 2012-06-11 | 2017-05-25 | Magic Leap, Inc. | Multiple depth plane three-dimensional display using a wave guide reflector array projector |
US9098111B2 (en) | 2012-06-22 | 2015-08-04 | Microsoft Technology Licensing, Llc | Focus guidance within a three-dimensional interface |
US9841537B2 (en) | 2012-07-02 | 2017-12-12 | Nvidia Corporation | Near-eye microlens array displays |
US8885997B2 (en) | 2012-08-31 | 2014-11-11 | Microsoft Corporation | NED polarization system for wavelength pass-through |
US9563062B2 (en) | 2012-09-04 | 2017-02-07 | SoliDDD Corp. | Switchable lenticular array for autostereoscopic video display |
DE102012108424A1 (en) | 2012-09-10 | 2014-03-13 | Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover | Optical system for endoscopic applications, has image interface that is oriented parallel to object interface with surface geometry and is oriented orthogonally to optical axis of gradient index (GRIN) lens |
US8731350B1 (en) | 2012-09-11 | 2014-05-20 | The United States Of America As Represented By The Secretary Of The Navy | Planar-waveguide Bragg gratings in curved waveguides |
US10025089B2 (en) | 2012-10-05 | 2018-07-17 | Microsoft Technology Licensing, Llc | Backlight for viewing three-dimensional images from a display from variable viewing angles |
GB201219126D0 (en) | 2012-10-24 | 2012-12-05 | Oxford Energy Technologies Ltd | Low refractive index particles |
JP2014089294A (en) | 2012-10-30 | 2014-05-15 | Toshiba Corp | Liquid crystal lens device and method for driving the same |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2014080155A1 (en) | 2012-11-20 | 2014-05-30 | Milan Momcilo Popovich | Waveguide device for homogenizing illumination light |
US20140146394A1 (en) | 2012-11-28 | 2014-05-29 | Nigel David Tout | Peripheral display for a near-eye display device |
WO2014085029A1 (en) | 2012-11-28 | 2014-06-05 | VerLASE TECHNOLOGIES LLC | Optically surface-pumped edge-emitting devices and systems and methods of making same |
EP2929378A1 (en) | 2012-12-10 | 2015-10-14 | BAE Systems PLC | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
WO2014091200A1 (en) | 2012-12-10 | 2014-06-19 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
GB2508661A (en) | 2012-12-10 | 2014-06-11 | Bae Systems Plc | Improved display |
US8937771B2 (en) | 2012-12-12 | 2015-01-20 | Microsoft Corporation | Three piece prism eye-piece |
US20140168260A1 (en) | 2012-12-13 | 2014-06-19 | Paul M. O'Brien | Waveguide spacers within an ned device |
US10386556B2 (en) | 2012-12-14 | 2019-08-20 | Merck Patent Gmbh | Birefringent RM lens |
US10146053B2 (en) | 2012-12-19 | 2018-12-04 | Microsoft Technology Licensing, Llc | Multiplexed hologram tiling in a waveguide display |
US10192358B2 (en) | 2012-12-20 | 2019-01-29 | Microsoft Technology Licensing, Llc | Auto-stereoscopic augmented reality display |
GB2509536A (en) | 2013-01-08 | 2014-07-09 | Bae Systems Plc | Diffraction grating |
US10422934B2 (en) | 2013-01-08 | 2019-09-24 | Bae Systems Plc | Diffraction gratings and the manufacture thereof |
US9842562B2 (en) | 2013-01-13 | 2017-12-12 | Qualcomm Incorporated | Dynamic zone plate augmented vision eyeglasses |
KR102274413B1 (en) | 2013-01-15 | 2021-07-07 | 매직 립, 인코포레이티드 | Ultra-high resolution scanning fiber display |
US20140204437A1 (en) | 2013-01-23 | 2014-07-24 | Akonia Holographics Llc | Dynamic aperture holographic multiplexing |
US8873149B2 (en) | 2013-01-28 | 2014-10-28 | David D. Bohn | Projection optical system for coupling image light to a near-eye display |
US9298168B2 (en) | 2013-01-31 | 2016-03-29 | Leia Inc. | Multiview 3D wrist watch |
WO2014120194A1 (en) | 2013-01-31 | 2014-08-07 | Leia Inc. | Multiview 3d wrist watch |
US20140240842A1 (en) | 2013-02-22 | 2014-08-28 | Ian Nguyen | Alignment-insensitive image input coupling |
US20140268277A1 (en) | 2013-03-14 | 2014-09-18 | Andreas Georgiou | Image correction using reconfigurable phase mask |
KR102318391B1 (en) | 2013-03-15 | 2021-10-26 | 매직 립, 인코포레이티드 | Display system and method |
WO2014150705A1 (en) | 2013-03-15 | 2014-09-25 | Station 4 Llc | Devices and methods for bending a tab on a container |
GB2512077B (en) | 2013-03-19 | 2019-10-23 | Univ Erasmus Med Ct Rotterdam | Intravascular optical imaging system |
WO2014155096A1 (en) | 2013-03-28 | 2014-10-02 | Bae Systems Plc | Improvements in and relating to displays |
GB201305691D0 (en) | 2013-03-28 | 2013-05-15 | Bae Systems Plc | Improvements in and relating to displays |
WO2014176695A1 (en) | 2013-04-30 | 2014-11-06 | Lensvector Inc. | Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor |
US9488836B2 (en) | 2013-05-02 | 2016-11-08 | Microsoft Technology Licensing, Llc | Spherical interface for binocular display |
WO2014188149A1 (en) | 2013-05-20 | 2014-11-27 | Milan Momcilo Popovich | Holographic waveguide eye tracker |
USD701206S1 (en) | 2013-06-04 | 2014-03-18 | Oculus VR, Inc. | Virtual reality headset |
US9639985B2 (en) | 2013-06-24 | 2017-05-02 | Microsoft Technology Licensing, Llc | Active binocular alignment for near eye displays |
US9625723B2 (en) | 2013-06-25 | 2017-04-18 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism |
US20140375542A1 (en) | 2013-06-25 | 2014-12-25 | Steve Robbins | Adjusting a near-eye display device |
US10228561B2 (en) | 2013-06-25 | 2019-03-12 | Microsoft Technology Licensing, Llc | Eye-tracking system using a freeform prism and gaze-detection light |
US8913865B1 (en) | 2013-06-27 | 2014-12-16 | Microsoft Corporation | Waveguide including light turning gaps |
US9664905B2 (en) | 2013-06-28 | 2017-05-30 | Microsoft Technology Licensing, Llc | Display efficiency optimization by color filtering |
ITTO20130541A1 (en) | 2013-06-28 | 2014-12-29 | St Microelectronics Srl | SEMICONDUCTOR DEVICE INTEGRATING A RESISTIVE PARTNER AND PROCESS OF MANUFACTURING A SEMICONDUCTOR DEVICE |
US9952042B2 (en) | 2013-07-12 | 2018-04-24 | Magic Leap, Inc. | Method and system for identifying a user location |
WO2015006784A2 (en) | 2013-07-12 | 2015-01-15 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
KR101660911B1 (en) | 2013-07-30 | 2016-09-28 | 레이아 인코포레이티드 | Multibeam diffraction grating-based backlighting |
US10345903B2 (en) | 2013-07-30 | 2019-07-09 | Microsoft Technology Licensing, Llc | Feedback for optic positioning in display devices |
US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
US9164290B2 (en) | 2013-11-06 | 2015-10-20 | Microsoft Corporation | Grating configurations for a tiled waveguide display |
DE102013223964B3 (en) | 2013-11-22 | 2015-05-13 | Carl Zeiss Ag | Imaging optics and display device with such imaging optics |
CN113568175B (en) | 2013-11-27 | 2023-06-27 | 奇跃公司 | Virtual and augmented reality systems and methods |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
JP6321180B2 (en) | 2013-12-19 | 2018-05-09 | ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc | Improvements in and related to waveguides |
US10042096B2 (en) | 2013-12-19 | 2018-08-07 | Bae Systems Plc | Waveguides |
US9459451B2 (en) | 2013-12-26 | 2016-10-04 | Microsoft Technology Licensing, Llc | Eye tracking apparatus, method and system |
CA2938264C (en) | 2014-01-31 | 2020-09-22 | Magic Leap, Inc. | Multi-focal display system and method |
US10203762B2 (en) | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
JP6201836B2 (en) | 2014-03-14 | 2017-09-27 | ソニー株式会社 | Optical device and method for assembling the same, hologram diffraction grating, display device and alignment device |
WO2015145119A1 (en) | 2014-03-24 | 2015-10-01 | Wave Optics Ltd | Display system |
US10048647B2 (en) | 2014-03-27 | 2018-08-14 | Microsoft Technology Licensing, Llc | Optical waveguide including spatially-varying volume hologram |
AU2015266586B2 (en) | 2014-05-30 | 2020-07-23 | Magic Leap, Inc. | Methods and systems for generating virtual content display with a virtual or augmented reality apparatus |
TWI540401B (en) | 2014-06-26 | 2016-07-01 | 雷亞有限公司 | Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch |
WO2016010289A1 (en) | 2014-07-15 | 2016-01-21 | Samsung Electronics Co., Ltd. | Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system |
PT3175267T (en) | 2014-07-30 | 2021-03-24 | Leia Inc | Multibeam diffraction grating-based color backlighting |
US9557466B2 (en) | 2014-07-30 | 2017-01-31 | Leia, Inc | Multibeam diffraction grating-based color backlighting |
GB2529003B (en) | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
US9377623B2 (en) | 2014-08-11 | 2016-06-28 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing volume Bragg grating |
US20160077338A1 (en) | 2014-09-16 | 2016-03-17 | Steven John Robbins | Compact Projection Light Engine For A Diffractive Waveguide Display |
US9494799B2 (en) | 2014-09-24 | 2016-11-15 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing switchable diffraction gratings |
US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
KR102688893B1 (en) | 2014-09-29 | 2024-07-29 | 매직 립, 인코포레이티드 | Architectures and methods for outputting different wavelength light out of waveguides |
JP2016085430A (en) | 2014-10-29 | 2016-05-19 | セイコーエプソン株式会社 | Virtual image display device |
IL236491B (en) | 2014-12-25 | 2020-11-30 | Lumus Ltd | A method for fabricating substrate-guided optical device |
ES2959422T3 (en) | 2015-01-10 | 2024-02-26 | Leia Inc | Network coupled light guide |
EP3243093A4 (en) | 2015-01-10 | 2018-09-19 | LEIA Inc. | Diffraction grating-based backlighting having controlled diffractive coupling efficiency |
CN107111084A (en) | 2015-01-10 | 2017-08-29 | 镭亚股份有限公司 | Polarization mixing light guide and use its backlight based on multi-beam grating |
CN107209406B (en) | 2015-01-10 | 2021-07-27 | 镭亚股份有限公司 | Two-dimensional/three-dimensional (2D/3D) switchable display backlight and electronic display |
EP3245444B1 (en) | 2015-01-12 | 2021-09-08 | DigiLens Inc. | Environmentally isolated waveguide display |
CN107209415B (en) | 2015-01-19 | 2021-06-01 | 镭亚股份有限公司 | Unidirectional grating-based backlight using reflective islands |
EP3250960B1 (en) | 2015-01-28 | 2023-06-07 | LEIA Inc. | Three-dimensional (3d) electronic display |
US9372347B1 (en) | 2015-02-09 | 2016-06-21 | Microsoft Technology Licensing, Llc | Display system |
US9423360B1 (en) | 2015-02-09 | 2016-08-23 | Microsoft Technology Licensing, Llc | Optical components |
US9513480B2 (en) | 2015-02-09 | 2016-12-06 | Microsoft Technology Licensing, Llc | Waveguide |
US10088689B2 (en) | 2015-03-13 | 2018-10-02 | Microsoft Technology Licensing, Llc | Light engine with lenticular microlenslet arrays |
JP2018510379A (en) | 2015-03-20 | 2018-04-12 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Optical combiner for augmented reality display systems |
US10690826B2 (en) | 2015-06-15 | 2020-06-23 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US10670862B2 (en) | 2015-07-02 | 2020-06-02 | Microsoft Technology Licensing, Llc | Diffractive optical elements with asymmetric profiles |
AU2016296723B2 (en) | 2015-07-20 | 2021-03-04 | Magic Leap, Inc. | Collimating fiber scanner design with inward pointing angles in virtual/augmented reality system |
US9864208B2 (en) | 2015-07-30 | 2018-01-09 | Microsoft Technology Licensing, Llc | Diffractive optical elements with varying direction for depth modulation |
US10038840B2 (en) | 2015-07-30 | 2018-07-31 | Microsoft Technology Licensing, Llc | Diffractive optical element using crossed grating for pupil expansion |
US10180520B2 (en) | 2015-08-24 | 2019-01-15 | Akonia Holographics, Llc | Skew mirrors, methods of use, and methods of manufacture |
WO2017060665A1 (en) | 2015-10-05 | 2017-04-13 | Milan Momcilo Popovich | Waveguide display |
US10429645B2 (en) | 2015-10-07 | 2019-10-01 | Microsoft Technology Licensing, Llc | Diffractive optical element with integrated in-coupling, exit pupil expansion, and out-coupling |
US10067346B2 (en) | 2015-10-23 | 2018-09-04 | Microsoft Technology Licensing, Llc | Holographic display |
US9946072B2 (en) | 2015-10-29 | 2018-04-17 | Microsoft Technology Licensing, Llc | Diffractive optical element with uncoupled grating structures |
US11231544B2 (en) | 2015-11-06 | 2022-01-25 | Magic Leap, Inc. | Metasurfaces for redirecting light and methods for fabricating |
US9915825B2 (en) | 2015-11-10 | 2018-03-13 | Microsoft Technology Licensing, Llc | Waveguides with embedded components to improve intensity distributions |
US9791696B2 (en) | 2015-11-10 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguide gratings to improve intensity distributions |
US9800607B2 (en) | 2015-12-21 | 2017-10-24 | Bank Of America Corporation | System for determining effectiveness and allocation of information security technologies |
US10038710B2 (en) | 2015-12-22 | 2018-07-31 | Sap Se | Efficient identification of log events in enterprise threat detection |
WO2017162999A1 (en) | 2016-03-24 | 2017-09-28 | Popovich Milan Momcilo | Method and apparatus for providing a polarization selective holographic waveguide device |
US10025093B2 (en) | 2016-04-13 | 2018-07-17 | Microsoft Technology Licensing, Llc | Waveguide-based displays with exit pupil expander |
US9791703B1 (en) | 2016-04-13 | 2017-10-17 | Microsoft Technology Licensing, Llc | Waveguides with extended field of view |
-
2005
- 2005-11-11 GB GBGB0522968.7A patent/GB0522968D0/en not_active Ceased
-
2006
- 2006-10-27 US US12/444,315 patent/US8634120B2/en active Active
-
2013
- 2013-12-19 US US14/134,681 patent/US9464779B2/en not_active Expired - Fee Related
-
2016
- 2016-09-22 US US15/272,483 patent/US10145533B2/en active Active
-
2018
- 2018-12-03 US US16/208,050 patent/US20190170321A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4834474A (en) * | 1987-05-01 | 1989-05-30 | The University Of Rochester | Optical systems using volume holographic elements to provide arbitrary space-time characteristics, including frequency-and/or spatially-dependent delay lines, chirped pulse compressors, pulse hirpers, pulse shapers, and laser resonators |
US6897942B2 (en) * | 1990-11-15 | 2005-05-24 | Nikon Corporation | Projection exposure apparatus and method |
US20060291024A1 (en) * | 1996-11-15 | 2006-12-28 | Parker William P | In-line holographic mask for micromachining |
US6535273B1 (en) * | 1998-07-02 | 2003-03-18 | Carl-Zeiss-Stiftung | Microlithographic illumination system with depolarizer |
US6115152A (en) * | 1998-09-14 | 2000-09-05 | Digilens, Inc. | Holographic illumination system |
US20040057091A1 (en) * | 1999-01-07 | 2004-03-25 | Popovich Milan M. | Optical filter employing holographic optical elements and image generating system incorporating the optical filter |
US20030147112A1 (en) * | 2000-07-05 | 2003-08-07 | Hiroshi Mukawa | Image display element, and image display device |
US20080225361A1 (en) * | 2004-01-29 | 2008-09-18 | Matsushita Electric Industrial Co., Ltd. | Light Source Device, and Two-Dimensional Image Display Device |
Also Published As
Publication number | Publication date |
---|---|
US9464779B2 (en) | 2016-10-11 |
US20140185286A1 (en) | 2014-07-03 |
US20100284180A1 (en) | 2010-11-11 |
US8634120B2 (en) | 2014-01-21 |
GB0522968D0 (en) | 2005-12-21 |
US20170030550A1 (en) | 2017-02-02 |
US10145533B2 (en) | 2018-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10145533B2 (en) | Compact holographic illumination device | |
US20230359146A1 (en) | Methods for Fabricating Optical Waveguides | |
US20230168514A1 (en) | Waveguide Device with Uniform Output Illumination | |
US20240012242A1 (en) | Methods and Apparatuses for Providing a Single Grating Layer Color Holographic Waveguide Display | |
KR100384570B1 (en) | High resolution subtractive color projection system | |
EP0726681B1 (en) | Projection type image display apparatus | |
US6646636B1 (en) | Display system utilizing ambient light and a dedicated light source | |
US7364305B2 (en) | Projector | |
US7012730B2 (en) | Optics arrangements including light source arrangements for an active matrix liquid crystal image generator | |
KR100515743B1 (en) | High-brightness color crystal display panel employing sysmetic light recycling | |
US7859610B2 (en) | Planar lighting and LCD device with a laser light source emitting a linearly-polarized laser beam, optical member to parallelize the beam and a plate-shaped light guide for emitting part of the beam | |
WO2006102073A2 (en) | Spatial light modulator | |
US20010024177A1 (en) | Holographic display system | |
US20070053032A1 (en) | Polarisation converter | |
JP2004163817A (en) | projector | |
JP2002517781A (en) | Projection display | |
US6115151A (en) | Method for producing a multi-layer holographic device | |
US20080192501A1 (en) | System and method for displaying images | |
JP2002023107A (en) | Picture display element and picture display device | |
WO2007058746A2 (en) | Compact holographic illumination device | |
JP2007052086A (en) | Image display apparatus and head mount display | |
JP2020160456A (en) | Polarization beam splitter, surface light source device and display | |
Sagan et al. | Electrically switchable Bragg grating technology for projection displays | |
WO2000068715A1 (en) | Image generating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SBG LABS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPOVICH, MILAN MOMCILO;WALDERN, JONATHAN DAVID;SIGNING DATES FROM 20180220 TO 20180221;REEL/FRAME:048564/0387 Owner name: DIGILENS INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:SBG LABS, INC.;REEL/FRAME:048564/0486 Effective date: 20150514 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |