US20190163389A1 - Requester specified transformations of encoded data in dispersed storage network memory - Google Patents
Requester specified transformations of encoded data in dispersed storage network memory Download PDFInfo
- Publication number
- US20190163389A1 US20190163389A1 US16/251,831 US201916251831A US2019163389A1 US 20190163389 A1 US20190163389 A1 US 20190163389A1 US 201916251831 A US201916251831 A US 201916251831A US 2019163389 A1 US2019163389 A1 US 2019163389A1
- Authority
- US
- United States
- Prior art keywords
- data
- format
- data segment
- segment
- recovered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000844 transformation Methods 0.000 title description 2
- 230000009466 transformation Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims description 62
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 230000006870 function Effects 0.000 description 33
- 238000010586 diagram Methods 0.000 description 25
- 239000011159 matrix material Substances 0.000 description 23
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000000638 solvent extraction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 208000033748 Device issues Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0635—Configuration or reconfiguration of storage systems by changing the path, e.g. traffic rerouting, path reconfiguration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/0727—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a storage system, e.g. in a DASD or network based storage system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1076—Parity data used in redundant arrays of independent storages, e.g. in RAID systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1076—Parity data used in redundant arrays of independent storages, e.g. in RAID systems
- G06F11/1092—Rebuilding, e.g. when physically replacing a failing disk
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/258—Data format conversion from or to a database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/061—Improving I/O performance
- G06F3/0611—Improving I/O performance in relation to response time
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0617—Improving the reliability of storage systems in relation to availability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0619—Improving the reliability of storage systems in relation to data integrity, e.g. data losses, bit errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0631—Configuration or reconfiguration of storage systems by allocating resources to storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0638—Organizing or formatting or addressing of data
- G06F3/064—Management of blocks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
- G06F3/0659—Command handling arrangements, e.g. command buffers, queues, command scheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/067—Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/1515—Reed-Solomon codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/3761—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 using code combining, i.e. using combining of codeword portions which may have been transmitted separately, e.g. Digital Fountain codes, Raptor codes or Luby Transform [LT] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/615—Use of computational or mathematical techniques
- H03M13/616—Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1001—Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
- H04L67/1004—Server selection for load balancing
- H04L67/1008—Server selection for load balancing based on parameters of servers, e.g. available memory or workload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1097—Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
-
- H04L67/2823—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/565—Conversion or adaptation of application format or content
Definitions
- This invention relates generally to computer networks and more particularly to dispersing error encoded data.
- Computing devices are known to communicate data, process data, and/or store data. Such computing devices range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, and video game devices, to data centers that support millions of web searches, stock trades, or on-line purchases every day.
- a computing device includes a central processing unit (CPU), a memory system, user input/output interfaces, peripheral device interfaces, and an interconnecting bus structure.
- a computer may effectively extend its CPU by using “cloud computing” to perform one or more computing functions (e.g., a service, an application, an algorithm, an arithmetic logic function, etc.) on behalf of the computer.
- cloud computing may be performed by multiple cloud computing resources in a distributed manner to improve the response time for completion of the service, application, and/or function.
- Hadoop is an open source software framework that supports distributed applications enabling application execution by thousands of computers.
- a computer may use “cloud storage” as part of its memory system.
- cloud storage enables a user, via its computer, to store files, applications, etc. on an Internet storage system in various formats (e.g., docx, Moving Picture Experts Group Layer-4 (MPEG-4), PDF, etc.).
- the Internet storage system may include a RAID (redundant array of independent disks) system and/or a dispersed storage system that uses an error correction scheme to encode data for storage.
- FIG. 1 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention
- FIG. 2 is a schematic block diagram of an embodiment of a computing core in accordance with the present invention.
- FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data in accordance with the present invention.
- FIG. 4 is a schematic block diagram of a generic example of an error encoding function in accordance with the present invention.
- FIG. 5 is a schematic block diagram of a specific example of an error encoding function in accordance with the present invention.
- FIG. 6 is a schematic block diagram of an example of a slice name of an encoded data slice (EDS) in accordance with the present invention.
- FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of data in accordance with the present invention.
- FIG. 8 is a schematic block diagram of a generic example of an error decoding function in accordance with the present invention.
- FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) in accordance with the present invention.
- DSN dispersed storage network
- FIG. 10 is a flowchart illustrating an example of formatting recovered data in accordance with the present invention.
- FIG. 11 is a schematic block diagram of video data in accordance with the present invention.
- FIG. 12 is a schematic block diagram of grouping rows of pixel data in accordance with the present invention.
- FIG. 13 is a schematic block diagram of a data matrix in accordance with the present invention.
- FIG. 14 is a flowchart illustrating an example of receiving a data access request that includes a requested return data format in accordance with the present invention.
- FIG. 1 is a schematic block diagram of an embodiment of a dispersed, or distributed, storage network (DSN) 10 that includes a plurality of computing devices 12 - 16 , a managing unit 18 , an integrity processing unit 20 , and a DSN memory 22 .
- the components of the DSN 10 are coupled to a network 24 , which may include one or more wireless and/or wire lined communication systems; one or more non-public intranet systems and/or public internet systems; and/or one or more local area networks (LAN) and/or wide area networks (WAN).
- LAN local area network
- WAN wide area network
- the DSN memory 22 includes a plurality of storage units 36 that may be located at geographically different sites (e.g., one in Chicago, one in Milwaukee, etc.), at a common site, or a combination thereof. For example, if the DSN memory 22 includes eight storage units 36 , each storage unit is located at a different site. As another example, if the DSN memory 22 includes eight storage units 36 , all eight storage units are located at the same site. As yet another example, if the DSN memory 22 includes eight storage units 36 , a first pair of storage units are at a first common site, a second pair of storage units are at a second common site, a third pair of storage units are at a third common site, and a fourth pair of storage units are at a fourth common site.
- geographically different sites e.g., one in Chicago, one in Milwaukee, etc.
- each storage unit is located at a different site.
- all eight storage units are located at the same site.
- a first pair of storage units are at a first common site
- a DSN memory 22 may include more or less than eight storage units 36 . Further note that each storage unit 36 includes a computing core (as shown in FIG. 2 , or components thereof) and a plurality of memory devices for storing dispersed error encoded data.
- Each of the computing devices 12 - 16 , the managing unit 18 , and the integrity processing unit 20 include a computing core 26 , which includes network interfaces 30 - 33 .
- Computing devices 12 - 16 may each be a portable computing device and/or a fixed computing device.
- a portable computing device may be a social networking device, a gaming device, a cell phone, a smart phone, a digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, and/or any other portable device that includes a computing core.
- a fixed computing device may be a computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game console, and/or any type of home or office computing equipment.
- each of the managing unit 18 and the integrity processing unit 20 may be separate computing devices, may be a common computing device, and/or may be integrated into one or more of the computing devices 12 - 16 and/or into one or more of the storage units 36 .
- Each interface 30 , 32 , and 33 includes software and hardware to support one or more communication links via the network 24 indirectly and/or directly.
- interface 30 supports a communication link (e.g., wired, wireless, direct, via a LAN, via the network 24 , etc.) between computing devices 14 and 16 .
- interface 32 supports communication links (e.g., a wired connection, a wireless connection, a LAN connection, and/or any other type of connection to/from the network 24 ) between computing devices 12 and 16 and the DSN memory 22 .
- interface 33 supports a communication link for each of the managing unit 18 and the integrity processing unit 20 to the network 24 .
- Computing devices 12 and 16 include a dispersed storage (DS) client module 34 , which enables the computing device to dispersed storage error encode and decode data (e.g., data 40 ) as subsequently described with reference to one or more of FIGS. 3-8 .
- computing device 16 functions as a dispersed storage processing agent for computing device 14 .
- computing device 16 dispersed storage error encodes and decodes data on behalf of computing device 14 .
- the DSN 10 is tolerant of a significant number of storage unit failures (the number of failures is based on parameters of the dispersed storage error encoding function) without loss of data and without the need for a redundant or backup copies of the data. Further, the DSN 10 stores data for an indefinite period of time without data loss and in a secure manner (e.g., the system is very resistant to unauthorized attempts at accessing the data).
- the managing unit 18 performs DS management services. For example, the managing unit 18 establishes distributed data storage parameters (e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.) for computing devices 12 - 14 individually or as part of a group of user devices. As a specific example, the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSN memory 22 for a user device, a group of devices, or for public access and establishes per vault dispersed storage (DS) error encoding parameters for a vault.
- distributed data storage parameters e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.
- the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the DSN memory 22 for a user device, a group of devices, or for public access and establishes
- the managing unit 18 facilitates storage of DS error encoding parameters for each vault by updating registry information of the DSN 10 , where the registry information may be stored in the DSN memory 22 , a computing device 12 - 16 , the managing unit 18 , and/or the integrity processing unit 20 .
- the managing unit 18 creates and stores user profile information (e.g., an access control list (ACL)) in local memory and/or within memory of the DSN memory 22 .
- the user profile information includes authentication information, permissions, and/or the security parameters.
- the security parameters may include encryption/decryption scheme, one or more encryption keys, key generation scheme, and/or data encoding/decoding scheme.
- the managing unit 18 creates billing information for a particular user, a user group, a vault access, public vault access, etc. For instance, the managing unit 18 tracks the number of times a user accesses a non-public vault and/or public vaults, which can be used to generate a per-access billing information. In another instance, the managing unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group, which can be used to generate a per-data-amount billing information.
- the managing unit 18 performs network operations, network administration, and/or network maintenance.
- Network operations includes authenticating user data allocation requests (e.g., read and/or write requests), managing creation of vaults, establishing authentication credentials for user devices, adding/deleting components (e.g., user devices, storage units, and/or computing devices with a DS client module 34 ) to/from the DSN 10 , and/or establishing authentication credentials for the storage units 36 .
- Network administration includes monitoring devices and/or units for failures, maintaining vault information, determining device and/or unit activation status, determining device and/or unit loading, and/or determining any other system level operation that affects the performance level of the DSN 10 .
- Network maintenance includes facilitating replacing, upgrading, repairing, and/or expanding a device and/or unit of the DSN 10 .
- the integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded data slices.
- the integrity processing unit 20 performs rebuilding by periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded data slices, from the DSN memory 22 .
- retrieved encoded slices they are checked for errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged as a ‘bad’ slice.
- encoded data slices that were not received and/or not listed they are flagged as missing slices.
- Bad and/or missing slices are subsequently rebuilt using other retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices.
- the rebuilt slices are stored in the DSN memory 22 .
- FIG. 2 is a schematic block diagram of an embodiment of a computing core 26 that includes a processing module 50 , a memory controller 52 , main memory 54 , a video graphics processing unit 55 , an input/output (IO) controller 56 , a peripheral component interconnect (PCI) interface 58 , an IO interface module 60 , at least one IO device interface module 62 , a read only memory (ROM) basic input output system (BIOS) 64 , and one or more memory interface modules.
- IO input/output
- PCI peripheral component interconnect
- IO interface module 60 at least one IO device interface module 62
- ROM read only memory
- BIOS basic input output system
- the one or more memory interface module(s) includes one or more of a universal serial bus (USB) interface module 66 , a host bus adapter (HBA) interface module 68 , a network interface module 70 , a flash interface module 72 , a hard drive interface module 74 , and a DSN interface module 76 .
- USB universal serial bus
- HBA host bus adapter
- the DSN interface module 76 functions to mimic a conventional operating system (OS) file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet small computer system interface (iSCSI), etc.).
- OS operating system
- the DSN interface module 76 and/or the network interface module 70 may function as one or more of the interface 30 - 33 of FIG. 1 .
- the IO device interface module 62 and/or the memory interface modules 66 - 76 may be collectively or individually referred to as IO ports.
- FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data.
- a computing device 12 or 16 When a computing device 12 or 16 has data to store it disperse storage error encodes the data in accordance with a dispersed storage error encoding process based on dispersed storage error encoding parameters.
- the dispersed storage error encoding parameters include an encoding function (e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.), a data segmenting protocol (e.g., data segment size, fixed, variable, etc.), and per data segment encoding values.
- an encoding function e.g., information dispersal algorithm, Reed-Solomon, Cauchy Reed-Solomon, systematic encoding, non-systematic encoding, on-line codes, etc.
- a data segmenting protocol e.g., data segment size
- the per data segment encoding values include a total, or pillar width, number (T) of encoded data slices per encoding of a data segment (i.e., in a set of encoded data slices); a decode threshold number (D) of encoded data slices of a set of encoded data slices that are needed to recover the data segment; a read threshold number (R) of encoded data slices to indicate a number of encoded data slices per set to be read from storage for decoding of the data segment; and/or a write threshold number (W) to indicate a number of encoded data slices per set that must be accurately stored before the encoded data segment is deemed to have been properly stored.
- T total, or pillar width, number
- D decode threshold number
- R read threshold number
- W write threshold number
- the dispersed storage error encoding parameters may further include slicing information (e.g., the number of encoded data slices that will be created for each data segment) and/or slice security information (e.g., per encoded data slice encryption, compression, integrity checksum, etc.).
- slicing information e.g., the number of encoded data slices that will be created for each data segment
- slice security information e.g., per encoded data slice encryption, compression, integrity checksum, etc.
- the encoding function has been selected as Cauchy Reed-Solomon (a generic example is shown in FIG. 4 and a specific example is shown in FIG. 5 );
- the data segmenting protocol is to divide the data object into fixed sized data segments; and the per data segment encoding values include: a pillar width of 5, a decode threshold of 3, a read threshold of 4, and a write threshold of 4.
- the computing device 12 or 16 divides the data (e.g., a file (e.g., text, video, audio, etc.), a data object, or other data arrangement) into a plurality of fixed sized data segments (e.g., 1 through Y of a fixed size in range of Kilo-bytes to Tera-bytes or more).
- the number of data segments created is dependent of the size of the data and the data segmenting protocol.
- FIG. 4 illustrates a generic Cauchy Reed-Solomon encoding function, which includes an encoding matrix (EM), a data matrix (DM), and a coded matrix (CM).
- the size of the encoding matrix (EM) is dependent on the pillar width number (T) and the decode threshold number (D) of selected per data segment encoding values.
- EM encoding matrix
- T pillar width number
- D decode threshold number
- Z is a function of the number of data blocks created from the data segment and the decode threshold number (D).
- the coded matrix is produced by matrix multiplying the data matrix by the encoding matrix.
- FIG. 5 illustrates a specific example of Cauchy Reed-Solomon encoding with a pillar number (T) of five and decode threshold number of three.
- a first data segment is divided into twelve data blocks (D 1 -D 12 ).
- the coded matrix includes five rows of coded data blocks, where the first row of X 11 -X 14 corresponds to a first encoded data slice (EDS 1 _ 1 ), the second row of X 21 -X 24 corresponds to a second encoded data slice (EDS 2 _ 1 ), the third row of X 31 -X 34 corresponds to a third encoded data slice (EDS 3 _ 1 ), the fourth row of X 41 -X 44 corresponds to a fourth encoded data slice (EDS 4 _ 1 ), and the fifth row of X 51 -X 54 corresponds to a fifth encoded data slice (EDS 5 _ 1 ).
- the second number of the EDS designation corresponds to the data segment number.
- the computing device also creates a slice name (SN) for each encoded data slice (EDS) in the set of encoded data slices.
- a typical format for a slice name 80 is shown in FIG. 6 .
- the slice name (SN) 80 includes a pillar number of the encoded data slice (e.g., one of 1 -T), a data segment number (e.g., one of 1 -Y), a vault identifier (ID), a data object identifier (ID), and may further include revision level information of the encoded data slices.
- the slice name functions as, at least part of, a DSN address for the encoded data slice for storage and retrieval from the DSN memory 22 .
- the computing device 12 or 16 produces a plurality of sets of encoded data slices, which are provided with their respective slice names to the storage units for storage.
- the first set of encoded data slices includes EDS 1 _ 1 through EDS 5 _ 1 and the first set of slice names includes SN 1 _ 1 through SN 5 _ 1 and the last set of encoded data slices includes EDS 1 _Y through EDS 5 _Y and the last set of slice names includes SN 1 _Y through SN 5 _Y.
- FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of a data object that was dispersed storage error encoded and stored in the example of FIG. 4 .
- the computing device 12 or 16 retrieves from the storage units at least the decode threshold number of encoded data slices per data segment. As a specific example, the computing device retrieves a read threshold number of encoded data slices.
- the computing device uses a decoding function as shown in FIG. 8 .
- the decoding function is essentially an inverse of the encoding function of FIG. 4 .
- the coded matrix includes a decode threshold number of rows (e.g., three in this example) and the decoding matrix in an inversion of the encoding matrix that includes the corresponding rows of the coded matrix. For example, if the coded matrix includes rows 1, 2, and 4, the encoding matrix is reduced to rows 1, 2, and 4, and then inverted to produce the decoding matrix.
- FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) that includes the computing device 14 of FIG. 1 , a DS processing unit 17 , the network 24 of FIG. 1 , and a set of storage units 1 -n.
- the DS processing unit 17 includes a processing module 82 , a de-grouping 84 , a dispersed storage (DS) error decoding 86 , a data de-partitioning 88 , and a data converter 90 .
- the data converter 90 may be implemented utilizing one or more of the processing module 82 and the DS client module 34 of FIG. 1 .
- the DSN functions to format recovered data.
- the processing module 82 receives a data format request A from the computing device 14 to recover data and convert the recovered data into formatted data, where the data is dispersed storage error encoded (e.g., previously by the computing device 16 or another entity) to produce a plurality of N sets of encoded data slices that are stored in the set of storage units, and where the data format request includes one or more of a data identifier (ID), a data type indicator (e.g., document, image, video, sound, etc.), an expected data format, a desired data format (e.g., document type, video format, image format, another format), and a conversion option (e.g., docx, pdf, postscript, png, bmp, gif, jpeg, frame rate, video codec identifier, fidelity level, x-y dimensions, compression level, version number, etc.).
- ID data identifier
- a data type indicator e.g., document, image, video, sound, etc.
- an expected data format
- the processing module 82 issues one or more sets of slice requests 1 -n to the set of storage units to retrieve at least a decode threshold number of encoded data slices for each set of encoded data slices. For example, the processing module 82 generates the one or more sets of slice requests based on the data ID and sends, via the network 24 , the one or more sets of slice requests to corresponding storage units of the set of storage units, i.e., slice requests 1 - 1 through 1 -N to storage unit 1 , etc.
- the de-grouping 84 groups received encoded data slices into the at least a decode threshold number of encoded data slices for each of the sets of encoded data slices. For example, the de-grouping 84 interprets slice names of the received slices and lines the decode threshold number of slices by segment numbers of the slice names, i.e., slices for segment 1 , slices for segment 2 , through slices for segment N.
- the DS error decoding 86 for each set of encoded data slices, dispersed storage error decodes the received decode threshold number of encoded data slices to reproduce a data segment of data segments 1 -N.
- the data de-partitioning 88 aggregates the N data segments to reproduce data A. For example, the data de-partitioning 88 combines reproduced data segments sequentially to reproduce the data A. As another example, the data de-partitioning 88 combines the reproduced data segments in an order based on the data format request A.
- the data converter converts the reproduced data A in accordance with the data format request to produce the formatted data A. For example, the data converter identifies the desired data format and conversion option of the data format request, processes the reproduced data A in accordance with the identified desired data format and conversion option to produce the formatted data A, and sends the formatted data A to the computing device 14 .
- the computing device includes a video decoder and requests data in a video format (e.g., Moving Pictures Expert Group 4 (MP4), Audio Video Interleave (AVI), Flash Video Format (FLV), Apple QuickTime Movie (MOV), etc.).
- a video format e.g., Moving Pictures Expert Group 4 (MP4), Audio Video Interleave (AVI), Flash Video Format (FLV), Apple QuickTime Movie (MOV), etc.
- an audio decoder and requests data in an audio format (e.g., Waveform Audio File Format (WAV), MPEG-1 Audio Layer 3 (MP3), Apple Lossless Audio Codec (ALAC), etc.).
- WAV Waveform Audio File Format
- MP3 MPEG-1 Audio Layer 3
- LAC Apple Lossless Audio Codec
- FIG. 10 is a flowchart illustrating an example of formatting recovered data.
- the method includes step 100 where a processing module (e.g., of a distributed storage and task (DST) processing unit) receives a data format request to initiate recovery of data for conversion in accordance with the data format request to produce formatted data.
- the data format request includes one or more of a data identifier, a data type indicator, an expected data format, a desire data format, and a conversion option.
- DST distributed storage and task
- step 102 the processing module issues one or more sets of slice requests to a set of storage units to retrieve stored encoded data slices, where the data was dispersed storage error encoded to produce a plurality of sets of encoded data slices.
- the issuing includes generating one or more sets of slice requests based on the data identifier and sending the one or more sets of slice requests to corresponding storage units of the set of storage units.
- the method continues at step 104 where the processing module dispersed storage error decodes a decode threshold number of received encoded data slices to reproduce a corresponding data segment of a plurality of data segments.
- the decoding includes one of combining decoded segments sequentially and combining decoded segments in an order based on the data format request.
- the method continues at step 106 where the processing module converts the at least some of the reproduced corresponding plurality of data segments in accordance with data format information of the data format request to produce the formatted data.
- the processing module identifies the desire data format and conversion option of the data format request, processes the reproduced data segments in accordance with the identified desired data format and conversion option to produce the formatted data (e.g., one segment a time, of segments together, as one data block that includes all of the data segments), and sends the formatted data to a requesting entity.
- FIG. 11 is a schematic block diagram of video data.
- the video data includes frames that are stored as encoded data slices in a set of storage units.
- the frames include MPEG I-Frames, P-Frames and B-Frames.
- the I-Frames contain macroblocks are coded without prediction and are stored as rows of pixel data in the set of storage units.
- the P-Frames contain macroblocks coded with forward prediction and are stored as rows of predictive data in the set of storage units.
- the B-Frames are coded with one or more of forward, backward, interpolated and no prediction and are stored as rows of bi-directional predictive data in the set of storage units. Note that other formats of video data may be stored.
- a spatially distinct region of a frame that is encoded separately from any other region in the same frame is called a slice, thus the set of storage units would also store I-slices, P-slices, and B-slices as encoded data slices.
- the computing device 14 includes a video encoder (e.g., DivX) and requests formatted data from a DS processing unit 17 to be received from in a video format (e.g., MPEG).
- the DS processing unit 17 sends slice requests to storage units for the video data and receives at least a decode threshold number of encoded data slices.
- the decode threshold number of encoded data slices are then de-grouped, DS error decoded, data de-partitioned and converted by data converter 90 into formatted (e.g., MPEG) video data.
- the formatted video data is then sent to the computing device 14 .
- FIG. 12 is a schematic block diagram of grouping rows of pixel data of an MPEG I-Frame into data segments.
- Data segments 1 - 40 store the MPEG I-Frame as encoded data slices in a set of storage units.
- each data segment includes portions (e.g., rows) of pixel data.
- data segment 1 stores rows 1 - 12 of I-Frame pixel data 1 - 720 up to data segment 40 which stores rows 469 - 480 of I-Frame pixel data 1 - 720 .
- the MPEG P-Frames and B-Frames of FIG. 11 may also be stored by grouping rows of data (e.g., predictive, bi-directional predictive, etc.).
- grouping of rows is only an example and other groupings may also be used (e.g., sub-row, sub-column, etc.).
- columns e.g., rows 1 - 480
- data segment 1 stores rows 1 - 480 of pixel data 1 - 10
- data segment 2 stores rows 1 - 480 of pixel data 11 - 20
- data segment 48 stores rows 1 - 480 of pixel data 711 - 720 .
- FIG. 13 is a schematic block diagram of a data matrix.
- the data matrix (D) includes blocks of data D 1 -D 12 , where each block of data D 1 -D 12 represents a corresponding row of pixel data of the MPEG I-Frame.
- the data matrix (D) is then multiplied by an encoding matrix as shown in FIG. 5 to produce coded data and is then stored as encoded data slices in a set of storage unit of the DSN.
- the data blocks (D 1 -D 12 ) may be arranged in other configurations to create a desired data matrix.
- FIG. 14 is a flowchart illustrating an example of receiving a data access request that includes a requested return data format.
- the method for execution by a computing device of a dispersed storage network begins with step 110 , where the computing device receives, from a requesting device of the DSN, a data access request regarding a set of encoded data slices, wherein the data access request includes a requested return data format.
- DSN dispersed storage network
- the requested return data format includes one of word processing document, Portable Document Format (PDF), and postscript when the recovered data segment is a portion of text file
- the requested return data format includes one of Portable Network Graphics (PNG), Bitmap (BMP), Graphics Interchange Format (GIF), and Joint Photographic Experts Group (JPEG) when the recovered data segment is a portion of an image file
- the requested data format includes one of Moving Picture Experts Group Layer-3 Audio (MP3), Waveform Audio File (WAVE), Advanced Audio Coding (AAC), and Windows Media Audio (WMA) when the recovered data segment is a portion of an audio file
- the requested data format includes one of Moving Picture Experts Group (MPEG), Moving Picture Experts Group 4 Part 10 Advanced Video Coding (MPEG-4 AVC), and Windows Media Video (WMV) when the recovered data segment is a portion of a video file.
- the requested return data format may also include one or more of a frame rate, a fidelity level, x-y dimensions, compression level, and version number.
- step 112 the computing device determines whether the requested return data format is a valid format. For example, the computing device determines whether the requested return data format is the valid format by at least one of, determining whether the requested return format is on a list of format options capable of being performed by the computing device and determining whether the requested return format is a standardized format.
- the method continues at step 122 , where the computing device sends a format request error message to the requesting device.
- the method continues at step 114 , where the computing device issues data access requests to storage units of the DSN, wherein a set of storage units stores the set of encoded data slices and the set of storage units includes the storage units.
- the method continues at step 116 where the computing device decodes the decode threshold number of encoded data slices to recover a data segment.
- step 118 the computing device determines whether a data type of the data segment is consistent with the requested return data format. For example, the computing device determines whether the data type of the data segment is consistent with the requested return data format by one or more of, determining the data type to be text and verifying that the requested return data format is a text format, determining the data type to be video and verifying that the requested return data format is a video format, determining the data type to be audio and verifying that the requested return data format is an audio format, and determining the data type to be an image and verifying that the requested return data format is an image format.
- step 124 the computing device sends a format request error message to the requesting device.
- step 120 the computing device formats the recovered data segment in accordance with the requested return data format and sends the formatted and received data segment to the requested device.
- the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences.
- the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level.
- inferred coupling i.e., where one element is coupled to another element by inference
- the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items.
- the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
- the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2 , a favorable comparison may be achieved when the magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1 .
- the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship.
- processing module may be a single processing device or a plurality of processing devices.
- a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions.
- the processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit.
- a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
- processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
- the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures.
- Such a memory device or memory element can be included in an article of manufacture.
- a flow diagram may include a “start” and/or “continue” indication.
- the “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines.
- start indicates the beginning of the first step presented and may be preceded by other activities not specifically shown.
- continue indicates that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown.
- a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
- the one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples.
- a physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein.
- the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
- signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential.
- signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential.
- a signal path is shown as a single-ended path, it also represents a differential signal path.
- a signal path is shown as a differential path, it also represents a single-ended signal path.
- module is used in the description of one or more of the embodiments.
- a module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions.
- a module may operate independently and/or in conjunction with software and/or firmware.
- a module may contain one or more sub-modules, each of which may be one or more modules.
- a computer readable memory includes one or more memory elements.
- a memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device.
- Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
- the memory device may be in a form a solid state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Quality & Reliability (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Detection And Correction Of Errors (AREA)
- Retry When Errors Occur (AREA)
- Storage Device Security (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Description
- The present U.S. Utility Patent Application claims priority pursuant to 35 U. S.C. § 120 as a continuation of U.S. Utility application Ser. No. 15/353,024, entitled “REQUESTER SPECIFIED TRANSFORMATIONS OF ENCODED DATA IN DISPERSED STORAGE NETWORK MEMORY”, filed Nov. 16, 2016, which claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/260,743, entitled “COMMUNICATING DISPERSED STORAGE NETWORK STORAGE UNIT TASK EXECUTION STATUS”, filed Nov. 30, 2015, expired, all of which are hereby incorporated herein by reference in their entirety and made part of the present U.S. Utility Patent Application for all purposes.
- Not applicable.
- Not applicable.
- This invention relates generally to computer networks and more particularly to dispersing error encoded data.
- Computing devices are known to communicate data, process data, and/or store data. Such computing devices range from wireless smart phones, laptops, tablets, personal computers (PC), work stations, and video game devices, to data centers that support millions of web searches, stock trades, or on-line purchases every day. In general, a computing device includes a central processing unit (CPU), a memory system, user input/output interfaces, peripheral device interfaces, and an interconnecting bus structure.
- As is further known, a computer may effectively extend its CPU by using “cloud computing” to perform one or more computing functions (e.g., a service, an application, an algorithm, an arithmetic logic function, etc.) on behalf of the computer. Further, for large services, applications, and/or functions, cloud computing may be performed by multiple cloud computing resources in a distributed manner to improve the response time for completion of the service, application, and/or function. For example, Hadoop is an open source software framework that supports distributed applications enabling application execution by thousands of computers.
- In addition to cloud computing, a computer may use “cloud storage” as part of its memory system. As is known, cloud storage enables a user, via its computer, to store files, applications, etc. on an Internet storage system in various formats (e.g., docx, Moving Picture Experts Group Layer-4 (MPEG-4), PDF, etc.). The Internet storage system may include a RAID (redundant array of independent disks) system and/or a dispersed storage system that uses an error correction scheme to encode data for storage.
-
FIG. 1 is a schematic block diagram of an embodiment of a dispersed or distributed storage network (DSN) in accordance with the present invention; -
FIG. 2 is a schematic block diagram of an embodiment of a computing core in accordance with the present invention; -
FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data in accordance with the present invention; -
FIG. 4 is a schematic block diagram of a generic example of an error encoding function in accordance with the present invention; -
FIG. 5 is a schematic block diagram of a specific example of an error encoding function in accordance with the present invention; -
FIG. 6 is a schematic block diagram of an example of a slice name of an encoded data slice (EDS) in accordance with the present invention; -
FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of data in accordance with the present invention; -
FIG. 8 is a schematic block diagram of a generic example of an error decoding function in accordance with the present invention; -
FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) in accordance with the present invention; -
FIG. 10 is a flowchart illustrating an example of formatting recovered data in accordance with the present invention; -
FIG. 11 is a schematic block diagram of video data in accordance with the present invention; -
FIG. 12 is a schematic block diagram of grouping rows of pixel data in accordance with the present invention; -
FIG. 13 is a schematic block diagram of a data matrix in accordance with the present invention; and -
FIG. 14 is a flowchart illustrating an example of receiving a data access request that includes a requested return data format in accordance with the present invention. -
FIG. 1 is a schematic block diagram of an embodiment of a dispersed, or distributed, storage network (DSN) 10 that includes a plurality of computing devices 12-16, a managing unit 18, anintegrity processing unit 20, and aDSN memory 22. The components of the DSN 10 are coupled to anetwork 24, which may include one or more wireless and/or wire lined communication systems; one or more non-public intranet systems and/or public internet systems; and/or one or more local area networks (LAN) and/or wide area networks (WAN). - The DSN
memory 22 includes a plurality ofstorage units 36 that may be located at geographically different sites (e.g., one in Chicago, one in Milwaukee, etc.), at a common site, or a combination thereof. For example, if the DSNmemory 22 includes eightstorage units 36, each storage unit is located at a different site. As another example, if the DSNmemory 22 includes eightstorage units 36, all eight storage units are located at the same site. As yet another example, if the DSNmemory 22 includes eightstorage units 36, a first pair of storage units are at a first common site, a second pair of storage units are at a second common site, a third pair of storage units are at a third common site, and a fourth pair of storage units are at a fourth common site. Note that aDSN memory 22 may include more or less than eightstorage units 36. Further note that eachstorage unit 36 includes a computing core (as shown inFIG. 2 , or components thereof) and a plurality of memory devices for storing dispersed error encoded data. - Each of the computing devices 12-16, the managing unit 18, and the
integrity processing unit 20 include acomputing core 26, which includes network interfaces 30-33. Computing devices 12-16 may each be a portable computing device and/or a fixed computing device. A portable computing device may be a social networking device, a gaming device, a cell phone, a smart phone, a digital assistant, a digital music player, a digital video player, a laptop computer, a handheld computer, a tablet, a video game controller, and/or any other portable device that includes a computing core. A fixed computing device may be a computer (PC), a computer server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game console, and/or any type of home or office computing equipment. Note that each of the managing unit 18 and theintegrity processing unit 20 may be separate computing devices, may be a common computing device, and/or may be integrated into one or more of the computing devices 12-16 and/or into one or more of thestorage units 36. - Each
interface network 24 indirectly and/or directly. For example,interface 30 supports a communication link (e.g., wired, wireless, direct, via a LAN, via thenetwork 24, etc.) betweencomputing devices interface 32 supports communication links (e.g., a wired connection, a wireless connection, a LAN connection, and/or any other type of connection to/from the network 24) betweencomputing devices DSN memory 22. As yet another example,interface 33 supports a communication link for each of the managing unit 18 and theintegrity processing unit 20 to thenetwork 24. -
Computing devices client module 34, which enables the computing device to dispersed storage error encode and decode data (e.g., data 40) as subsequently described with reference to one or more ofFIGS. 3-8 . In this example embodiment,computing device 16 functions as a dispersed storage processing agent forcomputing device 14. In this role,computing device 16 dispersed storage error encodes and decodes data on behalf ofcomputing device 14. With the use of dispersed storage error encoding and decoding, the DSN 10 is tolerant of a significant number of storage unit failures (the number of failures is based on parameters of the dispersed storage error encoding function) without loss of data and without the need for a redundant or backup copies of the data. Further, the DSN 10 stores data for an indefinite period of time without data loss and in a secure manner (e.g., the system is very resistant to unauthorized attempts at accessing the data). - In operation, the managing unit 18 performs DS management services. For example, the managing unit 18 establishes distributed data storage parameters (e.g., vault creation, distributed storage parameters, security parameters, billing information, user profile information, etc.) for computing devices 12-14 individually or as part of a group of user devices. As a specific example, the managing unit 18 coordinates creation of a vault (e.g., a virtual memory block associated with a portion of an overall namespace of the DSN) within the
DSN memory 22 for a user device, a group of devices, or for public access and establishes per vault dispersed storage (DS) error encoding parameters for a vault. The managing unit 18 facilitates storage of DS error encoding parameters for each vault by updating registry information of the DSN 10, where the registry information may be stored in theDSN memory 22, a computing device 12-16, the managing unit 18, and/or theintegrity processing unit 20. - The managing unit 18 creates and stores user profile information (e.g., an access control list (ACL)) in local memory and/or within memory of the
DSN memory 22. The user profile information includes authentication information, permissions, and/or the security parameters. The security parameters may include encryption/decryption scheme, one or more encryption keys, key generation scheme, and/or data encoding/decoding scheme. - The managing unit 18 creates billing information for a particular user, a user group, a vault access, public vault access, etc. For instance, the managing unit 18 tracks the number of times a user accesses a non-public vault and/or public vaults, which can be used to generate a per-access billing information. In another instance, the managing unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group, which can be used to generate a per-data-amount billing information.
- As another example, the managing unit 18 performs network operations, network administration, and/or network maintenance. Network operations includes authenticating user data allocation requests (e.g., read and/or write requests), managing creation of vaults, establishing authentication credentials for user devices, adding/deleting components (e.g., user devices, storage units, and/or computing devices with a DS client module 34) to/from the
DSN 10, and/or establishing authentication credentials for thestorage units 36. Network administration includes monitoring devices and/or units for failures, maintaining vault information, determining device and/or unit activation status, determining device and/or unit loading, and/or determining any other system level operation that affects the performance level of theDSN 10. Network maintenance includes facilitating replacing, upgrading, repairing, and/or expanding a device and/or unit of theDSN 10. - The
integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded data slices. At a high level, theintegrity processing unit 20 performs rebuilding by periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded data slices, from theDSN memory 22. For retrieved encoded slices, they are checked for errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged as a ‘bad’ slice. For encoded data slices that were not received and/or not listed, they are flagged as missing slices. Bad and/or missing slices are subsequently rebuilt using other retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices. The rebuilt slices are stored in theDSN memory 22. -
FIG. 2 is a schematic block diagram of an embodiment of acomputing core 26 that includes aprocessing module 50, amemory controller 52,main memory 54, a videographics processing unit 55, an input/output (IO)controller 56, a peripheral component interconnect (PCI)interface 58, anIO interface module 60, at least one IOdevice interface module 62, a read only memory (ROM) basic input output system (BIOS) 64, and one or more memory interface modules. The one or more memory interface module(s) includes one or more of a universal serial bus (USB) interface module 66, a host bus adapter (HBA)interface module 68, anetwork interface module 70, aflash interface module 72, a hard drive interface module 74, and a DSN interface module 76. - The DSN interface module 76 functions to mimic a conventional operating system (OS) file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet small computer system interface (iSCSI), etc.). The DSN interface module 76 and/or the
network interface module 70 may function as one or more of the interface 30-33 ofFIG. 1 . Note that the IOdevice interface module 62 and/or the memory interface modules 66-76 may be collectively or individually referred to as IO ports. -
FIG. 3 is a schematic block diagram of an example of dispersed storage error encoding of data. When acomputing device - In the present example, Cauchy Reed-Solomon has been selected as the encoding function (a generic example is shown in
FIG. 4 and a specific example is shown inFIG. 5 ); the data segmenting protocol is to divide the data object into fixed sized data segments; and the per data segment encoding values include: a pillar width of 5, a decode threshold of 3, a read threshold of 4, and a write threshold of 4. In accordance with the data segmenting protocol, thecomputing device - The
computing device FIG. 4 illustrates a generic Cauchy Reed-Solomon encoding function, which includes an encoding matrix (EM), a data matrix (DM), and a coded matrix (CM). The size of the encoding matrix (EM) is dependent on the pillar width number (T) and the decode threshold number (D) of selected per data segment encoding values. To produce the data matrix (DM), the data segment is divided into a plurality of data blocks and the data blocks are arranged into D number of rows with Z data blocks per row. Note that Z is a function of the number of data blocks created from the data segment and the decode threshold number (D). The coded matrix is produced by matrix multiplying the data matrix by the encoding matrix. -
FIG. 5 illustrates a specific example of Cauchy Reed-Solomon encoding with a pillar number (T) of five and decode threshold number of three. In this example, a first data segment is divided into twelve data blocks (D1-D12). The coded matrix includes five rows of coded data blocks, where the first row of X11-X14 corresponds to a first encoded data slice (EDS 1_1), the second row of X21-X24 corresponds to a second encoded data slice (EDS 2_1), the third row of X31-X34 corresponds to a third encoded data slice (EDS 3_1), the fourth row of X41-X44 corresponds to a fourth encoded data slice (EDS 4_1), and the fifth row of X51-X54 corresponds to a fifth encoded data slice (EDS 5_1). Note that the second number of the EDS designation corresponds to the data segment number. - Returning to the discussion of
FIG. 3 , the computing device also creates a slice name (SN) for each encoded data slice (EDS) in the set of encoded data slices. A typical format for aslice name 80 is shown inFIG. 6 . As shown, the slice name (SN) 80 includes a pillar number of the encoded data slice (e.g., one of 1-T), a data segment number (e.g., one of 1-Y), a vault identifier (ID), a data object identifier (ID), and may further include revision level information of the encoded data slices. The slice name functions as, at least part of, a DSN address for the encoded data slice for storage and retrieval from theDSN memory 22. - As a result of encoding, the
computing device -
FIG. 7 is a schematic block diagram of an example of dispersed storage error decoding of a data object that was dispersed storage error encoded and stored in the example ofFIG. 4 . In this example, thecomputing device - To recover a data segment from a decode threshold number of encoded data slices, the computing device uses a decoding function as shown in
FIG. 8 . As shown, the decoding function is essentially an inverse of the encoding function ofFIG. 4 . The coded matrix includes a decode threshold number of rows (e.g., three in this example) and the decoding matrix in an inversion of the encoding matrix that includes the corresponding rows of the coded matrix. For example, if the coded matrix includesrows rows -
FIG. 9 is a schematic block diagram of another embodiment of a dispersed storage network (DSN) that includes thecomputing device 14 ofFIG. 1 , aDS processing unit 17, thenetwork 24 ofFIG. 1 , and a set of storage units 1-n. TheDS processing unit 17 includes aprocessing module 82, a de-grouping 84, a dispersed storage (DS)error decoding 86, adata de-partitioning 88, and adata converter 90. Thedata converter 90 may be implemented utilizing one or more of theprocessing module 82 and theDS client module 34 ofFIG. 1 . The DSN functions to format recovered data. - In an example of operation of the formatting of the recovered data, the
processing module 82 receives a data format request A from thecomputing device 14 to recover data and convert the recovered data into formatted data, where the data is dispersed storage error encoded (e.g., previously by thecomputing device 16 or another entity) to produce a plurality of N sets of encoded data slices that are stored in the set of storage units, and where the data format request includes one or more of a data identifier (ID), a data type indicator (e.g., document, image, video, sound, etc.), an expected data format, a desired data format (e.g., document type, video format, image format, another format), and a conversion option (e.g., docx, pdf, postscript, png, bmp, gif, jpeg, frame rate, video codec identifier, fidelity level, x-y dimensions, compression level, version number, etc.). - Having received the data format request A, the
processing module 82 issues one or more sets of slice requests 1-n to the set of storage units to retrieve at least a decode threshold number of encoded data slices for each set of encoded data slices. For example, theprocessing module 82 generates the one or more sets of slice requests based on the data ID and sends, via thenetwork 24, the one or more sets of slice requests to corresponding storage units of the set of storage units, i.e., slice requests 1-1 through 1-N tostorage unit 1, etc. - The de-grouping 84 groups received encoded data slices into the at least a decode threshold number of encoded data slices for each of the sets of encoded data slices. For example, the de-grouping 84 interprets slice names of the received slices and lines the decode threshold number of slices by segment numbers of the slice names, i.e., slices for
segment 1, slices forsegment 2, through slices for segment N. - The
DS error decoding 86, for each set of encoded data slices, dispersed storage error decodes the received decode threshold number of encoded data slices to reproduce a data segment of data segments 1-N. The data de-partitioning 88 aggregates the N data segments to reproduce data A. For example, thedata de-partitioning 88 combines reproduced data segments sequentially to reproduce the data A. As another example, thedata de-partitioning 88 combines the reproduced data segments in an order based on the data format request A. - With the data A reproduced, the data converter converts the reproduced data A in accordance with the data format request to produce the formatted data A. For example, the data converter identifies the desired data format and conversion option of the data format request, processes the reproduced data A in accordance with the identified desired data format and conversion option to produce the formatted data A, and sends the formatted data A to the
computing device 14. - As a specific example, the computing device includes a video decoder and requests data in a video format (e.g., Moving Pictures Expert Group 4 (MP4), Audio Video Interleave (AVI), Flash Video Format (FLV), Apple QuickTime Movie (MOV), etc.). As another specific example, the computing device includes an audio decoder and requests data in an audio format (e.g., Waveform Audio File Format (WAV), MPEG-1 Audio Layer 3 (MP3), Apple Lossless Audio Codec (ALAC), etc.).
-
FIG. 10 is a flowchart illustrating an example of formatting recovered data. The method includesstep 100 where a processing module (e.g., of a distributed storage and task (DST) processing unit) receives a data format request to initiate recovery of data for conversion in accordance with the data format request to produce formatted data. The data format request includes one or more of a data identifier, a data type indicator, an expected data format, a desire data format, and a conversion option. - The method continues at
step 102 where the processing module issues one or more sets of slice requests to a set of storage units to retrieve stored encoded data slices, where the data was dispersed storage error encoded to produce a plurality of sets of encoded data slices. The issuing includes generating one or more sets of slice requests based on the data identifier and sending the one or more sets of slice requests to corresponding storage units of the set of storage units. - For each set of encoded data slices, the method continues at
step 104 where the processing module dispersed storage error decodes a decode threshold number of received encoded data slices to reproduce a corresponding data segment of a plurality of data segments. The decoding includes one of combining decoded segments sequentially and combining decoded segments in an order based on the data format request. - For at least some of the reproduce corresponding plurality of data segments, the method continues at
step 106 where the processing module converts the at least some of the reproduced corresponding plurality of data segments in accordance with data format information of the data format request to produce the formatted data. For example, the processing module identifies the desire data format and conversion option of the data format request, processes the reproduced data segments in accordance with the identified desired data format and conversion option to produce the formatted data (e.g., one segment a time, of segments together, as one data block that includes all of the data segments), and sends the formatted data to a requesting entity. -
FIG. 11 is a schematic block diagram of video data. In this example, the video data includes frames that are stored as encoded data slices in a set of storage units. The frames include MPEG I-Frames, P-Frames and B-Frames. The I-Frames contain macroblocks are coded without prediction and are stored as rows of pixel data in the set of storage units. The P-Frames contain macroblocks coded with forward prediction and are stored as rows of predictive data in the set of storage units. The B-Frames are coded with one or more of forward, backward, interpolated and no prediction and are stored as rows of bi-directional predictive data in the set of storage units. Note that other formats of video data may be stored. For example, in the H.264/MPEG-4 AVC standard, a spatially distinct region of a frame that is encoded separately from any other region in the same frame is called a slice, thus the set of storage units would also store I-slices, P-slices, and B-slices as encoded data slices. - As an example, the
computing device 14 includes a video encoder (e.g., DivX) and requests formatted data from aDS processing unit 17 to be received from in a video format (e.g., MPEG). TheDS processing unit 17 sends slice requests to storage units for the video data and receives at least a decode threshold number of encoded data slices. The decode threshold number of encoded data slices are then de-grouped, DS error decoded, data de-partitioned and converted bydata converter 90 into formatted (e.g., MPEG) video data. The formatted video data is then sent to thecomputing device 14. -
FIG. 12 is a schematic block diagram of grouping rows of pixel data of an MPEG I-Frame into data segments. Data segments 1-40 store the MPEG I-Frame as encoded data slices in a set of storage units. In this example, each data segment includes portions (e.g., rows) of pixel data. For example,data segment 1 stores rows 1-12 of I-Frame pixel data 1-720 up todata segment 40 which stores rows 469-480 of I-Frame pixel data 1-720. The MPEG P-Frames and B-Frames ofFIG. 11 may also be stored by grouping rows of data (e.g., predictive, bi-directional predictive, etc.). Note that grouping of rows is only an example and other groupings may also be used (e.g., sub-row, sub-column, etc.). For example, columns (e.g., rows 1-480) of pixel data are grouped into data segments. In this example,data segment 1 stores rows 1-480 of pixel data 1-10,data segment 2 stores rows 1-480 of pixel data 11-20, and so on up to data segment 48 stores rows 1-480 of pixel data 711-720. -
FIG. 13 is a schematic block diagram of a data matrix. For example, the data matrix (D) includes blocks of data D1-D12, where each block of data D1-D12 represents a corresponding row of pixel data of the MPEG I-Frame. The data matrix (D) is then multiplied by an encoding matrix as shown inFIG. 5 to produce coded data and is then stored as encoded data slices in a set of storage unit of the DSN. Note the data blocks (D1-D12) may be arranged in other configurations to create a desired data matrix. -
FIG. 14 is a flowchart illustrating an example of receiving a data access request that includes a requested return data format. The method for execution by a computing device of a dispersed storage network (DSN) begins withstep 110, where the computing device receives, from a requesting device of the DSN, a data access request regarding a set of encoded data slices, wherein the data access request includes a requested return data format. For example, the requested return data format includes one of word processing document, Portable Document Format (PDF), and postscript when the recovered data segment is a portion of text file, the requested return data format includes one of Portable Network Graphics (PNG), Bitmap (BMP), Graphics Interchange Format (GIF), and Joint Photographic Experts Group (JPEG) when the recovered data segment is a portion of an image file, the requested data format includes one of Moving Picture Experts Group Layer-3 Audio (MP3), Waveform Audio File (WAVE), Advanced Audio Coding (AAC), and Windows Media Audio (WMA) when the recovered data segment is a portion of an audio file, and the requested data format includes one of Moving Picture Experts Group (MPEG), MovingPicture Experts Group 4Part 10 Advanced Video Coding (MPEG-4 AVC), and Windows Media Video (WMV) when the recovered data segment is a portion of a video file. As another example, the requested return data format may also include one or more of a frame rate, a fidelity level, x-y dimensions, compression level, and version number. - The method continues with
step 112, where the computing device determines whether the requested return data format is a valid format. For example, the computing device determines whether the requested return data format is the valid format by at least one of, determining whether the requested return format is on a list of format options capable of being performed by the computing device and determining whether the requested return format is a standardized format. - When the requested return data format is an invalid format, the method continues at
step 122, where the computing device sends a format request error message to the requesting device. When the requested return data format is the valid format, the method continues atstep 114, where the computing device issues data access requests to storage units of the DSN, wherein a set of storage units stores the set of encoded data slices and the set of storage units includes the storage units. When a decode threshold number of encoded data slices of the set of encoded data slices have been received from the storage units, the method continues atstep 116 where the computing device decodes the decode threshold number of encoded data slices to recover a data segment. - The method continues at
step 118, where the computing device determines whether a data type of the data segment is consistent with the requested return data format. For example, the computing device determines whether the data type of the data segment is consistent with the requested return data format by one or more of, determining the data type to be text and verifying that the requested return data format is a text format, determining the data type to be video and verifying that the requested return data format is a video format, determining the data type to be audio and verifying that the requested return data format is an audio format, and determining the data type to be an image and verifying that the requested return data format is an image format. - When the data type of the data segment is inconsistent with the requested returned data format, the method continues to step 124, where the computing device sends a format request error message to the requesting device. When the data type of the data segment is consistent with the requested returned data format, the method continues at
step 120, where the computing device formats the recovered data segment in accordance with the requested return data format and sends the formatted and received data segment to the requested device. - It is noted that terminologies as may be used herein such as bit stream, stream, signal sequence, etc. (or their equivalents) have been used interchangeably to describe digital information whose content corresponds to any of a number of desired types (e.g., data, video, speech, audio, etc. any of which may generally be referred to as ‘data’).
- As may be used herein, the terms “substantially” and “approximately” provides an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a difference of a few percent to magnitude differences. As may also be used herein, the term(s) “configured to”, “operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a module) where, for an example of indirect coupling, the intervening item does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two items in the same manner as “coupled to”. As may even further be used herein, the term “configured to”, “operable to”, “coupled to”, or “operably coupled to” indicates that an item includes one or more of power connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding functions and may further include inferred coupling to one or more other items. As may still further be used herein, the term “associated with”, includes direct and/or indirect coupling of separate items and/or one item being embedded within another item.
- As may be used herein, the term “compares favorably”, indicates that a comparison between two or more items, signals, etc., provides a desired relationship. For example, when the desired relationship is that
signal 1 has a greater magnitude thansignal 2, a favorable comparison may be achieved when the magnitude ofsignal 1 is greater than that ofsignal 2 or when the magnitude ofsignal 2 is less than that ofsignal 1. As may be used herein, the term “compares unfavorably”, indicates that a comparison between two or more items, signals, etc., fails to provide the desired relationship. - As may also be used herein, the terms “processing module”, “processing circuit”, “processor”, and/or “processing unit” may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or operational instructions. The processing module, module, processing circuit, and/or processing unit may be, or further include, memory and/or an integrated memory element, which may be a single memory device, a plurality of memory devices, and/or embedded circuitry of another processing module, module, processing circuit, and/or processing unit. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. Note that if the processing module, module, processing circuit, and/or processing unit includes more than one processing device, the processing devices may be centrally located (e.g., directly coupled together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect coupling via a local area network and/or a wide area network). Further note that if the processing module, module, processing circuit, and/or processing unit implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still further note that, the memory element may store, and the processing module, module, processing circuit, and/or processing unit executes, hard coded and/or operational instructions corresponding to at least some of the steps and/or functions illustrated in one or more of the Figures. Such a memory device or memory element can be included in an article of manufacture.
- One or more embodiments have been described above with the aid of method steps illustrating the performance of specified functions and relationships thereof. The boundaries and sequence of these functional building blocks and method steps have been arbitrarily defined herein for convenience of description. Alternate boundaries and sequences can be defined so long as the specified functions and relationships are appropriately performed. Any such alternate boundaries or sequences are thus within the scope and spirit of the claims. Further, the boundaries of these functional building blocks have been arbitrarily defined for convenience of description. Alternate boundaries could be defined as long as the certain significant functions are appropriately performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to illustrate certain significant functionality.
- To the extent used, the flow diagram block boundaries and sequence could have been defined otherwise and still perform the certain significant functionality. Such alternate definitions of both functional building blocks and flow diagram blocks and sequences are thus within the scope and spirit of the claims. One of average skill in the art will also recognize that the functional building blocks, and other illustrative blocks, modules and components herein, can be implemented as illustrated or by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof.
- In addition, a flow diagram may include a “start” and/or “continue” indication. The “start” and “continue” indications reflect that the steps presented can optionally be incorporated in or otherwise used in conjunction with other routines. In this context, “start” indicates the beginning of the first step presented and may be preceded by other activities not specifically shown. Further, the “continue” indication reflects that the steps presented may be performed multiple times and/or may be succeeded by other activities not specifically shown. Further, while a flow diagram indicates a particular ordering of steps, other orderings are likewise possible provided that the principles of causality are maintained.
- The one or more embodiments are used herein to illustrate one or more aspects, one or more features, one or more concepts, and/or one or more examples. A physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process may include one or more of the aspects, features, concepts, examples, etc. described with reference to one or more of the embodiments discussed herein. Further, from figure to figure, the embodiments may incorporate the same or similarly named functions, steps, modules, etc. that may use the same or different reference numbers and, as such, the functions, steps, modules, etc. may be the same or similar functions, steps, modules, etc. or different ones.
- Unless specifically stated to the contra, signals to, from, and/or between elements in a figure of any of the figures presented herein may be analog or digital, continuous time or discrete time, and single-ended or differential. For instance, if a signal path is shown as a single-ended path, it also represents a differential signal path. Similarly, if a signal path is shown as a differential path, it also represents a single-ended signal path. While one or more particular architectures are described herein, other architectures can likewise be implemented that use one or more data buses not expressly shown, direct connectivity between elements, and/or indirect coupling between other elements as recognized by one of average skill in the art.
- The term “module” is used in the description of one or more of the embodiments. A module implements one or more functions via a device such as a processor or other processing device or other hardware that may include or operate in association with a memory that stores operational instructions. A module may operate independently and/or in conjunction with software and/or firmware. As also used herein, a module may contain one or more sub-modules, each of which may be one or more modules.
- As may further be used herein, a computer readable memory includes one or more memory elements. A memory element may be a separate memory device, multiple memory devices, or a set of memory locations within a memory device. Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information. The memory device may be in a form a solid state memory, a hard drive memory, cloud memory, thumb drive, server memory, computing device memory, and/or other physical medium for storing digital information.
- While particular combinations of various functions and features of the one or more embodiments have been expressly described herein, other combinations of these features and functions are likewise possible. The present disclosure is not limited by the particular examples disclosed herein and expressly incorporates these other combinations.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/251,831 US20190163389A1 (en) | 2015-11-30 | 2019-01-18 | Requester specified transformations of encoded data in dispersed storage network memory |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562260743P | 2015-11-30 | 2015-11-30 | |
US15/353,024 US10216444B2 (en) | 2015-11-30 | 2016-11-16 | Requester specified transformations of encoded data in dispersed storage network memory |
US16/251,831 US20190163389A1 (en) | 2015-11-30 | 2019-01-18 | Requester specified transformations of encoded data in dispersed storage network memory |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/353,024 Continuation US10216444B2 (en) | 2015-11-30 | 2016-11-16 | Requester specified transformations of encoded data in dispersed storage network memory |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190163389A1 true US20190163389A1 (en) | 2019-05-30 |
Family
ID=58776974
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/332,557 Active 2037-05-05 US10409514B2 (en) | 2015-11-30 | 2016-10-24 | IP multicast message transmission for event notifications |
US15/340,017 Expired - Fee Related US10216443B2 (en) | 2015-11-30 | 2016-11-01 | Proactively deselect storage units for access during major geographic events |
US15/340,628 Abandoned US20170155719A1 (en) | 2015-11-30 | 2016-11-01 | Selectively setting dsn slice data in motion within dsn memory based on conditions at the final data rest points |
US15/340,310 Expired - Fee Related US10496308B2 (en) | 2015-11-30 | 2016-11-01 | Using pseudo DSN memory units to handle data in motion within a DSN memory |
US15/353,024 Active US10216444B2 (en) | 2015-11-30 | 2016-11-16 | Requester specified transformations of encoded data in dispersed storage network memory |
US15/356,929 Active US9971538B2 (en) | 2015-11-30 | 2016-11-21 | Load balancing and service differentiation within a dispersed storage network |
US15/357,670 Abandoned US20170155709A1 (en) | 2015-11-30 | 2016-11-21 | Dynamic resource selection for uploading multi-part data in a dispersed storage network |
US15/357,293 Expired - Fee Related US9933969B2 (en) | 2015-11-30 | 2016-11-21 | Securing encoding data slices using an integrity check value list |
US15/363,622 Expired - Fee Related US10073645B2 (en) | 2015-11-30 | 2016-11-29 | Initiating rebuild actions from DS processing unit errors |
US15/899,626 Expired - Fee Related US10387063B2 (en) | 2015-11-30 | 2018-02-20 | Securing encoding data slices using an integrity check value list |
US16/251,831 Abandoned US20190163389A1 (en) | 2015-11-30 | 2019-01-18 | Requester specified transformations of encoded data in dispersed storage network memory |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/332,557 Active 2037-05-05 US10409514B2 (en) | 2015-11-30 | 2016-10-24 | IP multicast message transmission for event notifications |
US15/340,017 Expired - Fee Related US10216443B2 (en) | 2015-11-30 | 2016-11-01 | Proactively deselect storage units for access during major geographic events |
US15/340,628 Abandoned US20170155719A1 (en) | 2015-11-30 | 2016-11-01 | Selectively setting dsn slice data in motion within dsn memory based on conditions at the final data rest points |
US15/340,310 Expired - Fee Related US10496308B2 (en) | 2015-11-30 | 2016-11-01 | Using pseudo DSN memory units to handle data in motion within a DSN memory |
US15/353,024 Active US10216444B2 (en) | 2015-11-30 | 2016-11-16 | Requester specified transformations of encoded data in dispersed storage network memory |
US15/356,929 Active US9971538B2 (en) | 2015-11-30 | 2016-11-21 | Load balancing and service differentiation within a dispersed storage network |
US15/357,670 Abandoned US20170155709A1 (en) | 2015-11-30 | 2016-11-21 | Dynamic resource selection for uploading multi-part data in a dispersed storage network |
US15/357,293 Expired - Fee Related US9933969B2 (en) | 2015-11-30 | 2016-11-21 | Securing encoding data slices using an integrity check value list |
US15/363,622 Expired - Fee Related US10073645B2 (en) | 2015-11-30 | 2016-11-29 | Initiating rebuild actions from DS processing unit errors |
US15/899,626 Expired - Fee Related US10387063B2 (en) | 2015-11-30 | 2018-02-20 | Securing encoding data slices using an integrity check value list |
Country Status (1)
Country | Link |
---|---|
US (11) | US10409514B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10802915B2 (en) * | 2015-01-30 | 2020-10-13 | Pure Storage, Inc. | Time based storage of encoded data slices |
US10409514B2 (en) * | 2015-11-30 | 2019-09-10 | International Business Machines Corporation | IP multicast message transmission for event notifications |
US10394650B2 (en) * | 2016-06-03 | 2019-08-27 | International Business Machines Corporation | Multiple writes using inter-site storage unit relationship |
US10387079B2 (en) * | 2016-09-09 | 2019-08-20 | International Business Machines Corporation | Placement of dispersed storage data based on requestor properties |
US10481977B2 (en) * | 2016-10-27 | 2019-11-19 | International Business Machines Corporation | Dispersed storage of error encoded data objects having multiple resolutions |
JP6399127B2 (en) * | 2017-03-08 | 2018-10-03 | 日本電気株式会社 | System management apparatus, system management method, program, information processing system |
US10509699B2 (en) | 2017-08-07 | 2019-12-17 | International Business Machines Corporation | Zone aware request scheduling and data placement |
KR102488149B1 (en) * | 2018-01-08 | 2023-01-16 | 삼성전자주식회사 | Display apparatus and control method thereof |
CN110597453A (en) * | 2018-06-13 | 2019-12-20 | 杭州海康威视系统技术有限公司 | Video data storage method and device in cloud storage system |
US11122120B2 (en) | 2019-05-28 | 2021-09-14 | International Business Machines Corporation | Object notification wherein compare and swap is performed |
US11429418B2 (en) * | 2019-07-31 | 2022-08-30 | Rubrik, Inc. | Asynchronous input and output for snapshots of virtual machines |
US11429417B2 (en) | 2019-07-31 | 2022-08-30 | Rubrik, Inc. | Asynchronous input and output for snapshots of virtual machines |
CN111263184B (en) * | 2020-02-27 | 2021-04-16 | 腾讯科技(深圳)有限公司 | Method, device and equipment for detecting coding and decoding consistency |
US11734117B2 (en) * | 2021-04-29 | 2023-08-22 | Vast Data Ltd. | Data recovery in a storage system |
CN114239811B (en) * | 2021-12-21 | 2024-05-31 | 支付宝(杭州)信息技术有限公司 | Multiparty joint convolution processing method, device and system based on privacy protection |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110072210A1 (en) * | 2007-10-09 | 2011-03-24 | Cleversafe, Inc. | Pessimistic data reading in a dispersed storage network |
US20110314072A1 (en) * | 2010-06-22 | 2011-12-22 | Cleversafe, Inc. | Metadata access in a dispersed storage network |
US20120030371A1 (en) * | 2010-08-02 | 2012-02-02 | Cleversafe, Inc. | Resolving a protocol issue within a dispersed storage network |
US20130086452A1 (en) * | 2011-10-04 | 2013-04-04 | Cleversafe, Inc. | Sending a zero information gain formatted encoded data slice |
US20130283094A1 (en) * | 2010-04-26 | 2013-10-24 | Cleversafe, Inc. | Indicating an error within a dispersed storage network |
US20140351632A1 (en) * | 2010-02-27 | 2014-11-27 | Cleversafe, Inc. | Storing data in multiple formats including a dispersed storage format |
US20140380124A1 (en) * | 2011-11-01 | 2014-12-25 | Cleversafe, Inc. | Acquiring a trusted set of encoded data slices |
Family Cites Families (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092732A (en) | 1977-05-31 | 1978-05-30 | International Business Machines Corporation | System for recovering data stored in failed memory unit |
US5485474A (en) | 1988-02-25 | 1996-01-16 | The President And Fellows Of Harvard College | Scheme for information dispersal and reconstruction |
US5454101A (en) | 1992-09-15 | 1995-09-26 | Universal Firmware Industries, Ltd. | Data storage system with set lists which contain elements associated with parents for defining a logical hierarchy and general record pointers identifying specific data sets |
US5987622A (en) | 1993-12-10 | 1999-11-16 | Tm Patents, Lp | Parallel computer system including parallel storage subsystem including facility for correction of data in the event of failure of a storage device in parallel storage subsystem |
US6175571B1 (en) | 1994-07-22 | 2001-01-16 | Network Peripherals, Inc. | Distributed memory switching hub |
US5848230A (en) | 1995-05-25 | 1998-12-08 | Tandem Computers Incorporated | Continuously available computer memory systems |
US5774643A (en) | 1995-10-13 | 1998-06-30 | Digital Equipment Corporation | Enhanced raid write hole protection and recovery |
US5809285A (en) | 1995-12-21 | 1998-09-15 | Compaq Computer Corporation | Computer system having a virtual drive array controller |
US6012159A (en) | 1996-01-17 | 2000-01-04 | Kencast, Inc. | Method and system for error-free data transfer |
US5802364A (en) | 1996-04-15 | 1998-09-01 | Sun Microsystems, Inc. | Metadevice driver rename/exchange technique for a computer system incorporating a plurality of independent device drivers |
US5890156A (en) | 1996-05-02 | 1999-03-30 | Alcatel Usa, Inc. | Distributed redundant database |
US6058454A (en) | 1997-06-09 | 2000-05-02 | International Business Machines Corporation | Method and system for automatically configuring redundant arrays of disk memory devices |
US6088330A (en) | 1997-09-09 | 2000-07-11 | Bruck; Joshua | Reliable array of distributed computing nodes |
US5991414A (en) | 1997-09-12 | 1999-11-23 | International Business Machines Corporation | Method and apparatus for the secure distributed storage and retrieval of information |
US6272658B1 (en) | 1997-10-27 | 2001-08-07 | Kencast, Inc. | Method and system for reliable broadcasting of data files and streams |
JPH11161505A (en) | 1997-12-01 | 1999-06-18 | Matsushita Electric Ind Co Ltd | Media send-out device |
JPH11167443A (en) | 1997-12-02 | 1999-06-22 | Casio Comput Co Ltd | Interface device |
US6415373B1 (en) | 1997-12-24 | 2002-07-02 | Avid Technology, Inc. | Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner |
US6374336B1 (en) | 1997-12-24 | 2002-04-16 | Avid Technology, Inc. | Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner |
AU1513899A (en) | 1998-08-19 | 2000-03-14 | Boris Nikolaevich Vilkov | A system and method for identification of transformation of memory device addresses |
US6356949B1 (en) | 1999-01-29 | 2002-03-12 | Intermec Ip Corp. | Automatic data collection device that receives data output instruction from data consumer |
US6609223B1 (en) | 1999-04-06 | 2003-08-19 | Kencast, Inc. | Method for packet-level fec encoding, in which on a source packet-by-source packet basis, the error correction contributions of a source packet to a plurality of wildcard packets are computed, and the source packet is transmitted thereafter |
US6571282B1 (en) | 1999-08-31 | 2003-05-27 | Accenture Llp | Block-based communication in a communication services patterns environment |
US6826711B2 (en) | 2000-02-18 | 2004-11-30 | Avamar Technologies, Inc. | System and method for data protection with multidimensional parity |
US6718361B1 (en) | 2000-04-07 | 2004-04-06 | Network Appliance Inc. | Method and apparatus for reliable and scalable distribution of data files in distributed networks |
ATE381191T1 (en) | 2000-10-26 | 2007-12-15 | Prismedia Networks Inc | METHOD AND SYSTEM FOR MANAGING DISTRIBUTED CONTENT AND CORRESPONDING METADATA |
US7140044B2 (en) | 2000-11-13 | 2006-11-21 | Digital Doors, Inc. | Data security system and method for separation of user communities |
US7103915B2 (en) | 2000-11-13 | 2006-09-05 | Digital Doors, Inc. | Data security system and method |
US7146644B2 (en) | 2000-11-13 | 2006-12-05 | Digital Doors, Inc. | Data security system and method responsive to electronic attacks |
US8176563B2 (en) | 2000-11-13 | 2012-05-08 | DigitalDoors, Inc. | Data security system and method with editor |
GB2369206B (en) | 2000-11-18 | 2004-11-03 | Ibm | Method for rebuilding meta-data in a data storage system and a data storage system |
US6785783B2 (en) | 2000-11-30 | 2004-08-31 | International Business Machines Corporation | NUMA system with redundant main memory architecture |
US7080101B1 (en) | 2000-12-01 | 2006-07-18 | Ncr Corp. | Method and apparatus for partitioning data for storage in a database |
US20030084020A1 (en) | 2000-12-22 | 2003-05-01 | Li Shu | Distributed fault tolerant and secure storage |
WO2002065275A1 (en) | 2001-01-11 | 2002-08-22 | Yottayotta, Inc. | Storage virtualization system and methods |
US20020156973A1 (en) | 2001-01-29 | 2002-10-24 | Ulrich Thomas R. | Enhanced disk array |
US20030037261A1 (en) | 2001-03-26 | 2003-02-20 | Ilumin Corporation | Secured content delivery system and method |
US6879596B1 (en) | 2001-04-11 | 2005-04-12 | Applied Micro Circuits Corporation | System and method for systolic array sorting of information segments |
US7024609B2 (en) | 2001-04-20 | 2006-04-04 | Kencast, Inc. | System for protecting the transmission of live data streams, and upon reception, for reconstructing the live data streams and recording them into files |
US6876656B2 (en) * | 2001-06-15 | 2005-04-05 | Broadcom Corporation | Switch assisted frame aliasing for storage virtualization |
GB2377049A (en) | 2001-06-30 | 2002-12-31 | Hewlett Packard Co | Billing for utilisation of a data storage array |
US6944785B2 (en) | 2001-07-23 | 2005-09-13 | Network Appliance, Inc. | High-availability cluster virtual server system |
US7636724B2 (en) | 2001-08-31 | 2009-12-22 | Peerify Technologies LLC | Data storage system and method by shredding and deshredding |
US7024451B2 (en) | 2001-11-05 | 2006-04-04 | Hewlett-Packard Development Company, L.P. | System and method for maintaining consistent independent server-side state among collaborating servers |
US7003688B1 (en) | 2001-11-15 | 2006-02-21 | Xiotech Corporation | System and method for a reserved memory area shared by all redundant storage controllers |
US7171493B2 (en) | 2001-12-19 | 2007-01-30 | The Charles Stark Draper Laboratory | Camouflage of network traffic to resist attack |
US7321926B1 (en) * | 2002-02-11 | 2008-01-22 | Extreme Networks | Method of and system for allocating resources to resource requests |
EP1547252A4 (en) | 2002-07-29 | 2011-04-20 | Robert Halford | Multi-dimensional data protection and mirroring method for micro level data |
US7051155B2 (en) | 2002-08-05 | 2006-05-23 | Sun Microsystems, Inc. | Method and system for striping data to accommodate integrity metadata |
US20040122917A1 (en) | 2002-12-18 | 2004-06-24 | Menon Jaishankar Moothedath | Distributed storage system for data-sharing among client computers running defferent operating system types |
EP1618478A4 (en) | 2003-03-13 | 2007-10-03 | Drm Technologies L L C | CONTINUOUSLY CONTINUOUS CONTAINER |
US7185144B2 (en) | 2003-11-24 | 2007-02-27 | Network Appliance, Inc. | Semi-static distribution technique |
GB0308262D0 (en) | 2003-04-10 | 2003-05-14 | Ibm | Recovery from failures within data processing systems |
GB0308264D0 (en) | 2003-04-10 | 2003-05-14 | Ibm | Recovery from failures within data processing systems |
US7415115B2 (en) | 2003-05-14 | 2008-08-19 | Broadcom Corporation | Method and system for disaster recovery of data from a storage device |
US7613945B2 (en) | 2003-08-14 | 2009-11-03 | Compellent Technologies | Virtual disk drive system and method |
US7899059B2 (en) | 2003-11-12 | 2011-03-01 | Agere Systems Inc. | Media delivery using quality of service differentiation within a media stream |
US8332483B2 (en) | 2003-12-15 | 2012-12-11 | International Business Machines Corporation | Apparatus, system, and method for autonomic control of grid system resources |
US7206899B2 (en) | 2003-12-29 | 2007-04-17 | Intel Corporation | Method, system, and program for managing data transfer and construction |
US7222133B1 (en) | 2004-02-05 | 2007-05-22 | Unisys Corporation | Method for reducing database recovery time |
US7240236B2 (en) | 2004-03-23 | 2007-07-03 | Archivas, Inc. | Fixed content distributed data storage using permutation ring encoding |
US7231578B2 (en) | 2004-04-02 | 2007-06-12 | Hitachi Global Storage Technologies Netherlands B.V. | Techniques for detecting and correcting errors using multiple interleave erasure pointers |
JP4446839B2 (en) | 2004-08-30 | 2010-04-07 | 株式会社日立製作所 | Storage device and storage management device |
US7680771B2 (en) | 2004-12-20 | 2010-03-16 | International Business Machines Corporation | Apparatus, system, and method for database provisioning |
US7386758B2 (en) | 2005-01-13 | 2008-06-10 | Hitachi, Ltd. | Method and apparatus for reconstructing data in object-based storage arrays |
US7672930B2 (en) | 2005-04-05 | 2010-03-02 | Wal-Mart Stores, Inc. | System and methods for facilitating a linear grid database with data organization by dimension |
US7546427B2 (en) | 2005-09-30 | 2009-06-09 | Cleversafe, Inc. | System for rebuilding dispersed data |
US8171101B2 (en) | 2005-09-30 | 2012-05-01 | Cleversafe, Inc. | Smart access to a dispersed data storage network |
US7953937B2 (en) | 2005-09-30 | 2011-05-31 | Cleversafe, Inc. | Systems, methods, and apparatus for subdividing data for storage in a dispersed data storage grid |
US8285878B2 (en) | 2007-10-09 | 2012-10-09 | Cleversafe, Inc. | Block based access to a dispersed data storage network |
US7574579B2 (en) | 2005-09-30 | 2009-08-11 | Cleversafe, Inc. | Metadata management system for an information dispersed storage system |
US9063881B2 (en) * | 2010-04-26 | 2015-06-23 | Cleversafe, Inc. | Slice retrieval in accordance with an access sequence in a dispersed storage network |
US7574570B2 (en) | 2005-09-30 | 2009-08-11 | Cleversafe Inc | Billing system for information dispersal system |
US7904475B2 (en) | 2007-10-09 | 2011-03-08 | Cleversafe, Inc. | Virtualized data storage vaults on a dispersed data storage network |
US20070214285A1 (en) | 2006-03-08 | 2007-09-13 | Omneon Video Networks | Gateway server |
JP5167243B2 (en) * | 2006-04-04 | 2013-03-21 | パーマビット テクノロジー コーポレイション | Storage Allocation and Erasure Coding Techniques for Scalable and Fault Tolerant Storage Systems |
WO2009109684A1 (en) * | 2008-03-05 | 2009-09-11 | Media Patents, S. L. | Method for monitoring or managing devices connected to a data network |
US10395054B2 (en) * | 2011-06-06 | 2019-08-27 | Pure Storage, Inc. | Updating distributed storage network software |
US9191721B2 (en) * | 2009-06-16 | 2015-11-17 | Harman International Industries, Incorporated | Networked audio/video system |
US8914598B2 (en) * | 2009-09-24 | 2014-12-16 | Vmware, Inc. | Distributed storage resource scheduler and load balancer |
US10389845B2 (en) * | 2009-10-29 | 2019-08-20 | Pure Storage, Inc. | Determining how to service requests based on several indicators |
US8464133B2 (en) * | 2009-10-30 | 2013-06-11 | Cleversafe, Inc. | Media content distribution in a social network utilizing dispersed storage |
US8589637B2 (en) * | 2009-10-30 | 2013-11-19 | Cleversafe, Inc. | Concurrent set storage in distributed storage network |
US8769035B2 (en) * | 2009-10-30 | 2014-07-01 | Cleversafe, Inc. | Distributed storage network for storing a data object based on storage requirements |
US9311185B2 (en) * | 2009-10-30 | 2016-04-12 | Cleversafe, Inc. | Dispersed storage unit solicitation method and apparatus |
US10158648B2 (en) * | 2009-12-29 | 2018-12-18 | International Business Machines Corporation | Policy-based access in a dispersed storage network |
US8909858B2 (en) * | 2010-06-09 | 2014-12-09 | Cleversafe, Inc. | Storing encoded data slices in a dispersed storage network |
US8782106B2 (en) * | 2010-07-02 | 2014-07-15 | Code Systems Corporation | Method and system for managing execution of virtual applications |
US9571230B2 (en) * | 2010-10-06 | 2017-02-14 | International Business Machines Corporation | Adjusting routing of data within a network path |
US8694752B2 (en) * | 2011-02-01 | 2014-04-08 | Cleversafe, Inc. | Transferring data in response to detection of a memory system imbalance |
US8627091B2 (en) * | 2011-04-01 | 2014-01-07 | Cleversafe, Inc. | Generating a secure signature utilizing a plurality of key shares |
US8880978B2 (en) * | 2011-04-01 | 2014-11-04 | Cleversafe, Inc. | Utilizing a local area network memory and a dispersed storage network memory to access data |
US8683286B2 (en) * | 2011-11-01 | 2014-03-25 | Cleversafe, Inc. | Storing data in a dispersed storage network |
US9584326B2 (en) * | 2011-11-28 | 2017-02-28 | International Business Machines Corporation | Creating a new file for a dispersed storage network |
US9015556B2 (en) * | 2011-12-12 | 2015-04-21 | Cleversafe, Inc. | Transforming data in a distributed storage and task network |
US9229645B2 (en) * | 2012-02-10 | 2016-01-05 | Hitachi, Ltd. | Storage management method and storage system in virtual volume having data arranged astride storage devices |
US8554963B1 (en) * | 2012-03-23 | 2013-10-08 | DSSD, Inc. | Storage system with multicast DMA and unified address space |
US8370567B1 (en) * | 2012-03-23 | 2013-02-05 | DSSD, Inc. | Storage system with self describing data |
US9110833B2 (en) * | 2012-06-25 | 2015-08-18 | Cleversafe, Inc. | Non-temporarily storing temporarily stored data in a dispersed storage network |
US9438675B2 (en) * | 2013-08-29 | 2016-09-06 | International Business Machines Corporation | Dispersed storage with variable slice length and methods for use therewith |
CA2867585A1 (en) * | 2013-10-15 | 2015-04-15 | Coho Data Inc. | Methods, devices and systems for coordinating network-based communication in distributed server systems with sdn switching |
KR20150121560A (en) * | 2014-04-21 | 2015-10-29 | 삼성전자주식회사 | Storage device, storage system and operating method of storage system |
US9819722B2 (en) * | 2014-12-23 | 2017-11-14 | Dell Products, L.P. | System and method for controlling an information handling system in response to environmental events |
US20170083603A1 (en) * | 2015-09-18 | 2017-03-23 | Qualcomm Incorporated | Co-derived data storage patterns for distributed storage systems |
US10409514B2 (en) * | 2015-11-30 | 2019-09-10 | International Business Machines Corporation | IP multicast message transmission for event notifications |
-
2016
- 2016-10-24 US US15/332,557 patent/US10409514B2/en active Active
- 2016-11-01 US US15/340,017 patent/US10216443B2/en not_active Expired - Fee Related
- 2016-11-01 US US15/340,628 patent/US20170155719A1/en not_active Abandoned
- 2016-11-01 US US15/340,310 patent/US10496308B2/en not_active Expired - Fee Related
- 2016-11-16 US US15/353,024 patent/US10216444B2/en active Active
- 2016-11-21 US US15/356,929 patent/US9971538B2/en active Active
- 2016-11-21 US US15/357,670 patent/US20170155709A1/en not_active Abandoned
- 2016-11-21 US US15/357,293 patent/US9933969B2/en not_active Expired - Fee Related
- 2016-11-29 US US15/363,622 patent/US10073645B2/en not_active Expired - Fee Related
-
2018
- 2018-02-20 US US15/899,626 patent/US10387063B2/en not_active Expired - Fee Related
-
2019
- 2019-01-18 US US16/251,831 patent/US20190163389A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110072210A1 (en) * | 2007-10-09 | 2011-03-24 | Cleversafe, Inc. | Pessimistic data reading in a dispersed storage network |
US20140351632A1 (en) * | 2010-02-27 | 2014-11-27 | Cleversafe, Inc. | Storing data in multiple formats including a dispersed storage format |
US20130283094A1 (en) * | 2010-04-26 | 2013-10-24 | Cleversafe, Inc. | Indicating an error within a dispersed storage network |
US20110314072A1 (en) * | 2010-06-22 | 2011-12-22 | Cleversafe, Inc. | Metadata access in a dispersed storage network |
US20120030371A1 (en) * | 2010-08-02 | 2012-02-02 | Cleversafe, Inc. | Resolving a protocol issue within a dispersed storage network |
US20130086452A1 (en) * | 2011-10-04 | 2013-04-04 | Cleversafe, Inc. | Sending a zero information gain formatted encoded data slice |
US20140380124A1 (en) * | 2011-11-01 | 2014-12-25 | Cleversafe, Inc. | Acquiring a trusted set of encoded data slices |
Also Published As
Publication number | Publication date |
---|---|
US10216444B2 (en) | 2019-02-26 |
US20170153837A1 (en) | 2017-06-01 |
US10387063B2 (en) | 2019-08-20 |
US20170153948A1 (en) | 2017-06-01 |
US10409514B2 (en) | 2019-09-10 |
US20170153828A1 (en) | 2017-06-01 |
US10073645B2 (en) | 2018-09-11 |
US20170155709A1 (en) | 2017-06-01 |
US20170155520A1 (en) | 2017-06-01 |
US9971538B2 (en) | 2018-05-15 |
US20180188992A1 (en) | 2018-07-05 |
US10216443B2 (en) | 2019-02-26 |
US9933969B2 (en) | 2018-04-03 |
US20170153943A1 (en) | 2017-06-01 |
US20170153937A1 (en) | 2017-06-01 |
US10496308B2 (en) | 2019-12-03 |
US20170153853A1 (en) | 2017-06-01 |
US20170155719A1 (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10216444B2 (en) | Requester specified transformations of encoded data in dispersed storage network memory | |
US10678472B2 (en) | Generating additional slices based on data access frequency | |
US10001950B2 (en) | Maintaining storage thresholds in a distributed storage network | |
US10203999B2 (en) | Spreading load for highly popular content with asynchronous counted writes | |
US10606700B2 (en) | Enhanced dispersed storage error encoding using multiple encoding layers | |
US20170212803A1 (en) | Consolidating data access in a dispersed storage network | |
US9760286B2 (en) | Adaptive dispersed storage network (DSN) and system | |
US10505915B2 (en) | Determining whether to compress a data segment in a dispersed storage network | |
US10120574B2 (en) | Reversible data modifications within DS units | |
US10007575B2 (en) | Alternative multiple memory format storage in a storage network | |
US10104168B2 (en) | Method for managing throughput in a distributed storage network | |
US20180365261A1 (en) | Fingerprinting data for more aggressive de-duplication | |
US10805042B2 (en) | Creating transmission data slices for use in a dispersed storage network | |
US11463420B1 (en) | Storage unit partial task processing | |
US11153384B2 (en) | Rebuilding derived content | |
US20160357646A1 (en) | Multiple memory format storage in a storage network | |
US10409678B2 (en) | Self-optimizing read-ahead | |
US10481977B2 (en) | Dispersed storage of error encoded data objects having multiple resolutions | |
US10409661B2 (en) | Slice metadata for optimized dispersed storage network memory storage strategies | |
US10523241B2 (en) | Object fan out write operation | |
US20190034272A1 (en) | Utilizing concentric storage pools in a dispersed storage network | |
US20180060174A1 (en) | Multiplying width and threshold for improved performance and efficiency | |
US20180052735A1 (en) | Efficient, secure, storage of meaningful content as part of a dsn memory | |
US20170322734A1 (en) | Using locks to prevent multiple rebuilds of the same source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEGGETTE, WESLEY B.;RESCH, JASON K.;REEL/FRAME:048060/0376 Effective date: 20161114 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: PURE STORAGE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:050451/0549 Effective date: 20190906 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |