US20190045793A1 - Antiviral agent, coating composition, resin composition and antiviral product - Google Patents
Antiviral agent, coating composition, resin composition and antiviral product Download PDFInfo
- Publication number
- US20190045793A1 US20190045793A1 US16/078,534 US201716078534A US2019045793A1 US 20190045793 A1 US20190045793 A1 US 20190045793A1 US 201716078534 A US201716078534 A US 201716078534A US 2019045793 A1 US2019045793 A1 US 2019045793A1
- Authority
- US
- United States
- Prior art keywords
- antiviral
- acid
- antiviral agent
- coating composition
- agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003443 antiviral agent Substances 0.000 title claims abstract description 164
- 230000000840 anti-viral effect Effects 0.000 title claims description 172
- 239000008199 coating composition Substances 0.000 title claims description 77
- 239000011342 resin composition Substances 0.000 title claims description 31
- 239000002253 acid Substances 0.000 claims abstract description 103
- 229910003480 inorganic solid Inorganic materials 0.000 claims abstract description 64
- 239000011973 solid acid Substances 0.000 claims abstract description 61
- -1 phosphoric acid compound Chemical class 0.000 claims abstract description 30
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 8
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000000047 product Substances 0.000 description 57
- 241000700605 Viruses Species 0.000 description 48
- 239000000843 powder Substances 0.000 description 47
- 229920005989 resin Polymers 0.000 description 46
- 239000011347 resin Substances 0.000 description 46
- 230000000052 comparative effect Effects 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- 239000000835 fiber Substances 0.000 description 36
- 238000000576 coating method Methods 0.000 description 35
- 239000011248 coating agent Substances 0.000 description 34
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 27
- 239000007788 liquid Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 25
- 239000004744 fabric Substances 0.000 description 24
- 239000002245 particle Substances 0.000 description 23
- 239000002585 base Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 19
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 19
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 19
- 230000008859 change Effects 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 13
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 13
- 239000000391 magnesium silicate Substances 0.000 description 13
- 229910052919 magnesium silicate Inorganic materials 0.000 description 13
- 235000019792 magnesium silicate Nutrition 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 12
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000002270 dispersing agent Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- RZTYEUCBTNJJIW-UHFFFAOYSA-K silver;zirconium(4+);phosphate Chemical compound [Zr+4].[Ag+].[O-]P([O-])([O-])=O RZTYEUCBTNJJIW-UHFFFAOYSA-K 0.000 description 11
- 239000004753 textile Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000000049 pigment Substances 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000005060 rubber Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000004448 titration Methods 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000004566 building material Substances 0.000 description 5
- ULLASJXJTPGSFV-UHFFFAOYSA-H copper zirconium(4+) diphosphate Chemical compound P(=O)([O-])([O-])[O-].[Zr+4].[Cu+2].P(=O)([O-])([O-])[O-] ULLASJXJTPGSFV-UHFFFAOYSA-H 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000011081 inoculation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000005749 Copper compound Substances 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 241000712431 Influenza A virus Species 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 239000004594 Masterbatch (MB) Substances 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000001880 copper compounds Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 230000000415 inactivating effect Effects 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000025 natural resin Substances 0.000 description 4
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 239000004606 Fillers/Extenders Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000002781 deodorant agent Substances 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 239000000417 fungicide Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- IICHURGZQPGTRD-UHFFFAOYSA-N 4-phenyldiazenylnaphthalen-1-amine Chemical compound C12=CC=CC=C2C(N)=CC=C1N=NC1=CC=CC=C1 IICHURGZQPGTRD-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 208000001528 Coronaviridae Infections Diseases 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229920009204 Methacrylate-butadiene-styrene Polymers 0.000 description 2
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Substances CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 2
- 150000004056 anthraquinones Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000002519 antifouling agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- JCYPECIVGRXBMO-FOCLMDBBSA-N methyl yellow Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1 JCYPECIVGRXBMO-FOCLMDBBSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- VXLFYNFOITWQPM-UHFFFAOYSA-N n-phenyl-4-phenyldiazenylaniline Chemical compound C=1C=C(N=NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 VXLFYNFOITWQPM-UHFFFAOYSA-N 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 150000003016 phosphoric acids Chemical class 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 150000003378 silver Chemical group 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- VYNIYUVRASGDDE-UHFFFAOYSA-N silver zirconium Chemical compound [Zr].[Ag] VYNIYUVRASGDDE-UHFFFAOYSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 2
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- QLCJOAMJPCOIDI-UHFFFAOYSA-N 1-(butoxymethoxy)butane Chemical compound CCCCOCOCCCC QLCJOAMJPCOIDI-UHFFFAOYSA-N 0.000 description 1
- KPAPHODVWOVUJL-UHFFFAOYSA-N 1-benzofuran;1h-indene Chemical compound C1=CC=C2CC=CC2=C1.C1=CC=C2OC=CC2=C1 KPAPHODVWOVUJL-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- PFRYFZZSECNQOL-UHFFFAOYSA-N 2-methyl-4-[(2-methylphenyl)diazenyl]aniline Chemical compound C1=C(N)C(C)=CC(N=NC=2C(=CC=CC=2)C)=C1 PFRYFZZSECNQOL-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 239000004859 Copal Substances 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241000782205 Guibourtia conjugata Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229940081735 acetylcellulose Drugs 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- WOLHOYHSEKDWQH-UHFFFAOYSA-N amantadine hydrochloride Chemical compound [Cl-].C1C(C2)CC3CC2CC1([NH3+])C3 WOLHOYHSEKDWQH-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- VZWXIQHBIQLMPN-UHFFFAOYSA-N chromane Chemical compound C1=CC=C2CCCOC2=C1 VZWXIQHBIQLMPN-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- XMYLSWOTJKUSHE-UHFFFAOYSA-N cyanamide;lead Chemical compound [Pb].NC#N XMYLSWOTJKUSHE-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical class OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- YPDKFMYSITXPDU-UHFFFAOYSA-B hafnium(4+) tetraphosphate Chemical compound [Hf+4].[Hf+4].[Hf+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YPDKFMYSITXPDU-UHFFFAOYSA-B 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- BRWIZMBXBAOCCF-UHFFFAOYSA-N hydrazinecarbothioamide Chemical compound NNC(N)=S BRWIZMBXBAOCCF-UHFFFAOYSA-N 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052585 phosphate mineral Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052572 stoneware Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- FRPJTGXMTIIFIT-UHFFFAOYSA-N tetraacetylethylenediamine Chemical compound CC(=O)C(N)(C(C)=O)C(N)(C(C)=O)C(C)=O FRPJTGXMTIIFIT-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- XJUNLJFOHNHSAR-UHFFFAOYSA-J zirconium(4+);dicarbonate Chemical compound [Zr+4].[O-]C([O-])=O.[O-]C([O-])=O XJUNLJFOHNHSAR-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/06—Aluminium; Calcium; Magnesium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/08—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
- A01N25/10—Macromolecular compounds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/16—Heavy metals; Compounds thereof
- A01N59/20—Copper
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
- A01N59/26—Phosphorus; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/37—Phosphates of heavy metals
- C01B25/372—Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/22—Magnesium silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
Definitions
- the present invention relates to an antiviral agent containing an inorganic solid acid, and a coating composition, a resin composition, and an antiviral product each containing the antiviral agent.
- the antiviral agent of the present invention can be sprayed or coated onto textile products such as clothing, bedclothes and masks, filters for use in air purifiers, air conditioners, and the like, interior products such as curtains, carpets and furniture, automobile interior materials, and the like, or spread on surface layers of building materials such as wallpapers and flooring materials, thereby imparting the effect of reducing the virus activity.
- ethanol, sodium hypochlorite, iodohole, peracetic acid, formaldehyde, glutaraldehyde, and ethylene oxide gas have been reported to be effective as disinfectants.
- 1-adamantanamine hydrochloride, thiosemicarbazide, arabinosyl nucleoside, nucleoside, 2,3-dideoxynucleoside, pyrophosphoric acid derivatives, and the like are known as antiviral agents.
- drugs having these antiviral properties have only a temporary effect and also involve a problem with heat resistance. Therefore, sustained effects on antiviral products cannot be expected.
- Patent Literature 1 discloses an inorganic antiviral agent composition containing inorganic peroxide, tetraacetylethylenediamine, and alkali metal salt of inorganic acid and/or alkaline earth metal salt of inorganic acid.
- this inorganic antiviral agent is an inorganic peroxide-based agent, and thus still has problems in sustainability, processability, and the like.
- Patent Literature 2 discloses inorganic oxide fine particles containing a specific metal component and having an average particle diameter of 500 nm or less.
- Patent Literature 3 discloses a copper- and titanium-containing composition.
- Patent Literature 4 discloses an antibacterial antiviral composition containing cuprous oxide particles having a BET specific surface area of from 5 to 100 m 2 /g and a saccharide having an aldehyde group.
- Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2001-72519
- Patent Literature 2 Japanese Unexamined Patent Application Publication No. 2003-221304
- Patent Literature 3 Japanese Unexamined Patent Application Publication No. 2010-168578
- Patent Literature 4 Japanese Unexamined Patent Application Publication No. 2011-153163
- An object of the present invention is to provide an antiviral agent excellent in antiviral performance, and, for example, to provide an antiviral agent that does not cause alteration or the like by melt kneading with a resin, is excellent in heat resistance and processability, and maintains the inactivating effect on viruses.
- Another object of the present invention is to provide a coating composition, a resin composition and an antiviral product that give a coating or the like containing the antiviral agent that would not be released by contact with water or the like.
- the present invention relates to an antiviral agent containing an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g, and a coating composition, a resin composition, and an antiviral product each containing the antiviral agent.
- the antiviral agent of the present invention not only exhibits a high antiviral activity as compared with existing antiviral agents, but also is an inorganic substance and thus has heat resistance. Further, it can be a light color material, and thus is less colored or discolored, excellent in processability, and suitable, for example, for the production of a coating composition that gives a coating or the like that would not be detached by contact with water or the like and for the production of a resin composition.
- the antiviral product of the present invention containing the antiviral agent of the present invention for example, a resin molded product and an article having a coating containing the antiviral agent exhibit a high antiviral activity, and, besides, since the antiviral agent contained therein would not be released or flow out with water, such antiviral products are also excellent in durability.
- the present invention is as follows.
- An antiviral agent comprising an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g.
- the inorganic solid acid comprises an inorganic phosphoric acid compound, an inorganic silicic acid compound, or an inorganic oxide.
- a coating composition comprising the antiviral agent according to any one of (1) to (4).
- a resin composition comprising the antiviral agent according to any one of (1) to (4).
- An antiviral product comprising the antiviral agent according to any one of (1) to (4).
- the inorganic solid acid is a substance having an acid site on an inorganic solid surface.
- the “acid site” is a site showing the property of giving a proton to a base or the property of receiving an electron pair from a base.
- the number of the acid sites can be indicated by the acid site concentration, and the number of acid sites or acidic centers on the solid surface, is normally expressed as the number or number of moles per unit weight or unit surface area of the solid.
- the concentration of the acid site (acid site concentration) on the inorganic solid surface is defined as more than 0.005 mmol/g to suitably exhibit the effect of inactivating viruses (hereinafter referred to as “antiviral effect”).
- the upper limit is usually 10 mmol/g.
- the preferred acid site concentration in the present invention is 0.008 mmol/g or more, more preferably 0.01 mmol/g or more.
- inorganic solid acids having an acid site concentration of 0.01 mmol/g or more provide an excellent antiviral effect and show a high effect against various viruses.
- the antiviral agent of the present invention exhibits an antiviral effect at the acid site on the surface of the inorganic solid acid having an acid site concentration of more than 0.005 mmol/g.
- viruses grow proliferously through the stages of: (1) adsorption onto a cell surface; (2) invasion into cells; (3) uncoating; (4) synthesis of parts; (5) assembly of the parts and (6) release from the infected cells. It is inferred that the above inorganic solid acid exhibits antiviral effect by inactivating the adsorption of viruses brought into contact with the acid site on the inorganic solid surface onto a cell surface.
- the acid site concentration can be obtained by measuring the amount of a base to be reacted with a powder (inorganic solid acid).
- the acid site concentration can be measured in the liquid phase or gas phase.
- a titration method is known.
- a gas chemisorption method for measuring the difference between the amount of the adsorbed/desorbed He or hydrogen gas and the amount of the adsorbed/desorbed basic gas.
- a titration method in the liquid phase is suitable for the acid site concentration measurement.
- a concrete method of measuring the acid site concentration of the inorganic solid acid by the titration method in the liquid phase is as follows.
- the inorganic solid acid dispersed in a nonpolar solvent is titrated with n-butylamine, and the end point of the titration is confirmed based on the color change of an acid-base conversion indicator.
- the indicator before the reaction exhibits a color of the base form, but, when adsorbing onto the inorganic solid acid, shows a color of its conjugate acid form.
- the acid site concentration is determined from the titer of n-butylamine required for the conjugate acid form color returning to the base form color.
- One solid acid site corresponds to one n-butylamine molecule.
- the base for titration has basicity stronger than basicity of the indicator because the indicator reacted with the acid site of the solid is to be replaced.
- n-butylamine is added dropwise, and the acid site concentration is calculated from the amount of n-butylamine when the color of the indicator returns to the original color, i.e., the basic color.
- n-Butylamine with a normality of 0.1 N is added, in different amounts, to the respective sample bottles, and the samples are stirred by a shaker to prepare 20 kinds of mixed liquids.
- the amount of the added n-butylamine of the system with the largest amount of the added n-butylamine, in which color change of the indicator is not confirmed, is defined as the amount of the base reacted with the acid site, which is expressed as the acid site concentration (mmol/g).
- the inorganic solid acid is preferably an inorganic compound having a structure in which a substituent having proton donating property or proton receiving property is disposed on the surface with which viruses contact.
- the inorganic solid acid include phosphoric acid compounds of titanium group elements such as zirconium phosphate, hafnium phosphate and titanium phosphate; inorganic phosphoric acid compounds such as aluminum phosphate and hydroxyapatite (phosphate mineral); inorganic silicic acid compounds such as magnesium silicate, silica gel, aluminosilicate, sepiolite (hydrous magnesium silicate), montmorillonite (silicate mineral), and zeolite (aluminosilicate); and inorganic oxides, such as alumina, titania, and hydrated titanium oxide, having an acid site concentration of 0.005 mmol/g or more.
- ⁇ -type or ⁇ -type zirconium phosphate, ⁇ -type or ⁇ -type titanium phosphate, amorphous magnesium silicate, activated titanium oxide, and the like have an acid site concentration of more than 0.005 mmol/g, and are preferable as the inorganic solid acid contained in the antiviral agent of the present invention.
- the acid site on the inorganic solid surface has strength. That is, in addition to a high acid site concentration of the inorganic solid acid itself, when the strength of each acid site is high, a higher antiviral effect can be obtained. Therefore, preferably, the inorganic solid acid contained in the antiviral agent of the present invention has high acid site strength. This strength of the acid site can be expressed as pKa as acid strength.
- the acid strength, pKa, of the inorganic solid acid in the present invention is preferably 3.3 or less, more preferably pKa 1.5 or less, still more preferably 0.8 or less.
- the acid strength of the acid site is low, that is, the pKa is high, the ability to inactivate viruses tends to decrease.
- the pKa is 0.8 or less, a particularly excellent antiviral performance is obtained.
- the strength of the property of giving a proton to a base or the property of receiving an electron pair from a base i.e., the acid strength becomes stronger.
- the acid strength of the inorganic solid acid in the present invention is the ability of the acid site on the inorganic solid acid surface to give a proton to a base or the ability to receive an electron pair from a base.
- the acid strength (pKa) of the inorganic solid acid can be measured as the ability to convert the base form to its conjugate acid form using various acid-base conversion indicators whose pKa has been revealed. The fact that the base form has been changed to the conjugate acid form can be discriminated based on the color change of the acid-base conversion indicator.
- Examples of the acid-base conversion indicator (pKa value) that can be used in the measurement of the acid strength can include methyl red (+4.8), 4-phenylazo-1-naphthylamine (+4.0), dimethyl yellow (+3.3), 2-amino-5-azotoluene (+2.0), 4-phenylazo-diphenylamine (+1.5), 4-dimethylaminoazo-1-naphthalene (+1.2), crystal violet (+0.8), p-nitrobenzeneazo-p′-nitro-diphenylamine (+0.43), dicinnamyl acetone ( ⁇ 3.0), benzalacetophenone ( ⁇ 5.6), and anthraquinone ( ⁇ 8.2).
- a method for measuring the acid strength (pKa) of the inorganic solid acid using the acid-base conversion indicator will be exemplified below.
- the acid strength (pKa) of the inorganic solid acid is not greater than the strongest acid strength (that is, the lowest pKa value) at which color change of the indicator is confirmed, and is greater than the weakest acid strength (that is, the highest pKa value) at which color change of the indicator is not confirmed. Therefore, the pKa value of the inorganic solid acid is expressed as from (the highest pKa value at which color change is not confirmed) to (the lowest pKa value at which color change is confirmed). Also, in the case where there is no suitable indicator showing the lower limit, the acid strength is “not greater than the lowest pKa value at which color change is confirmed”. In the case where there is no suitable indicator showing the upper limit, the acid strength is “greater than the highest pKa value at which color change is not confirmed”.
- the antiviral agent of the present invention can contain silver or copper, or both.
- the antiviral agent of the present invention may contain an inorganic solid acid having a silver ion (silver atom) or a copper ion (copper atom) in its structure, and may be a mixture of silver or copper, or compounds thereof, with an inorganic solid acid containing no silver or copper.
- Antiviral agents containing silver or copper have an excellent antiviral effect.
- the total content rate of silver or copper, or compounds thereof in such an antiviral agent is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 1% by mass or more.
- Examples of the inorganic solid acid having a silver ion (silver atom) or a copper ion (copper atom) in its structure include silver zirconium phosphate and copper zirconium phosphate.
- the antiviral agent of the present invention is preferably in a powder form in order that the antiviral agent is applied to processing to various materials and forms.
- a powdery antiviral agent contains this antiviral agent and a binder, and is suitable for the preparation of a coating composition excellent in dispersibility and for the preparation of a resin composition that contains the antiviral agent and a molding resin and provides a resin molded product excellent in dispersibility.
- the average particle diameter of the powdery antiviral agent is preferably 0.01 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m.
- a powder having an average particle size of 0.01 ⁇ m or more is difficult to aggregate and thus has an advantage of easy handling.
- a coating composition containing a powder having an average particle size of 50 ⁇ m or less has good dispersibility. Accordingly, when applied to surfaces of fibers, the coating composition does not impair the texture of the coated fibers. Further, when fibers are prepared by spinning from a resin composition, the coating composition can avoid the occurrence of yarn breakage.
- the average particle diameter can be measured with a laser diffraction type grain size distribution measuring device or the like, and is a median diameter analyzed on a volume basis.
- the color tone of the antiviral agent of the present invention is not limited, but white or a light color with high lightness is preferable in order that the antiviral agent is applied to processing to various materials and forms.
- the lightness is an L value of preferably 80 or more, more preferably 85 or more, still more preferably 95 or more, as measured by a color difference meter.
- the antiviral agent of the present invention When the antiviral agent of the present invention has a certain moisture content, it easily exhibits antiviral effect.
- the water content of the antiviral agent is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more.
- the inorganic solid acid having hygroscopicity can keep moisture inside the inorganic solid acid even when it is mixed with other materials or even when the humidity of the atmosphere changes, and thus is excellent in that the antiviral agent itself has moisture necessary for inactivation of viruses.
- the antiviral effect there is used a method for measuring the amount of viruses (infectivity) by utilizing the phenomenon of cell degeneration in which the shape of cells infected with the viruses changes.
- the method for measuring the infectivity include plaque count measurement method, 50% tissue culture infectious dose (TCID 50 ) measurement method, and 50% viral titer (EID 50 ) measurement method.
- the antiviral effect can be evaluated as the antiviral activity value obtained by the following formula (1).
- the “initial virus infectivity” means the amount of viruses in the virus fluid immediately after inoculation used for evaluation
- the “residual virus infectivity” means the amount of viruses after a lapse of a certain period of time from the contact with an antiviral sample.
- the antiviral activity value is preferably 2 or more, more preferably 3 or more.
- Antiviral activity value Log (initial virus infectivity) ⁇ Log (residual virus infectivity) (1)
- the use form of the antiviral agent of the present invention is not particularly limited, and the antiviral agent can be used singly or can be mixed with other ingredients or compounded with other materials as appropriate.
- the powdery antiviral agent can be used in various forms such as a powder-containing dispersion, a powder-containing particle, a powder-containing coating material, a powder-containing fiber, a powder-containing paper, a powder-containing plastic, a powder-containing film, and a power-containing aerosol. Further, according to need, it can be used in combination with various additives such as deodorants, antibacterial agents, antifungal agents, flame retardants, corrosion inhibitors, and fertilizers; and materials such as building materials.
- antiviral agent of the present invention to resins, papers, plastic, rubber, glass, metals, concrete, wood, coating materials, fibers, leather, stone, and the like, as materials with which a human can come in contact, thereby inactivating viruses in living spaces.
- the coating composition of the present invention is a composition containing the above-mentioned antiviral agent of the present invention and, according to need, containing a binder, a dispersant, and the like.
- the coating composition of the present invention may further contain an additive. When the coating composition of the present invention is used, it can be diluted with a solvent or water before it is applied onto articles having various shapes.
- the concentration of the antiviral agent in the coating composition is preferably from 0.5 to 50% by mass, more preferably from 1 to 30% by mass, because it provides easy dispersion and good storage stability. Normally, the antiviral effect is exhibited by the contact between the antiviral agent and viruses on surfaces of antiviral products in various shapes. Thus, it is preferable to immobilize the antiviral agent on the surface of the antiviral product with the coating composition of the present invention because a great effect can be obtained by a smaller amount of the antiviral agent.
- binder usable in the coating composition of the present invention examples include natural resins, natural resin derivatives, phenol resins, xylene resins, urea resins, melamine resins, ketone resins, coumarone-indene resins, petroleum resins, terpene resins, cyclized rubber, chlorinated rubber, alkyd resins, polyamide resins, polyvinyl chloride, acrylic resins, vinyl chloride/vinyl acetate copolymer resins, polyvinyl acetate, polyvinyl alcohol, polyvinyl butylal, chlorinated polypropylene, styrene resins, epoxy resins, urethane resins, and cellulose derivatives.
- urethane resins acrylic resins, polyvinyl chloride, and vinyl chloride/vinyl acetate copolymer resins are preferable, and emulsion type resins are particularly preferable because they are low-pollution and easy to handle.
- the dispersant usable in the coating composition of the present invention is not particularly limited as long as it ensures uniform dispersion of the antiviral agent according to the present invention in the coating composition.
- the dispersant include polymer type dispersants such as polycarboxylic acid-based, polyethylene glycol, polyether-based, and polyalkylene polyamine-based dispersants; surfactant type dispersants such as alkyl sulfonic acid-based, quaternary ammonium-based, higher alcohol alkylene oxide-based, polyhydric alcohol ester-based, and alkyl polyamine-based dispersants; inorganic type dispersants such as polyphosphate-based dispersants; water, alcohol solutions, lime, soda ash, sodium silicate, starch, glue, gelatin, and tannin.
- Examples of the additive usable in the coating composition of the present invention include pigments such as zinc oxide and titanium oxide, dyes, antioxidants, light stabilizers, flame retardants, antistatic agents, foaming agents, impact resistance enhancers, glass fibers, lubricants such as metal soaps, thickeners, moisture-proofing agents and extenders, coupling agents, nucleating agents, fluidity improvers, deodorants, wood flour, fungicides, antibacterial agents, antifouling agents, rust inhibitors, metal powders, ultraviolet absorbers, and ultraviolet shielding agents.
- pigments such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as zinc oxide and titanium oxide
- dyes such as antioxidant
- the coating composition of the present invention is useful for forming a coating having antiviral effect on a surface of an article containing an inorganic material or an organic material.
- the main use of the coating composition according to the present invention is processing to fibers or textile products (woven fabrics, nonwoven fabrics, knitted fabrics, etc.).
- the coating composition As a method of applying the coating composition to a fiber or textile product, there is exemplified a method involving applying, dipping or spraying, to a fiber or textile product, the coating composition as it is or a liquid obtained by diluting the composition with a solvent or the like.
- the fiber is not limited and includes natural fibers such as cotton, silk, and wool; synthetic fibers such as polyester, nylon (polyamide synthetic fibers) and acrylonitrile; semisynthetic fibers such as triacetate and diacetate; and regenerated fibers such as viscose rayon. Further, composite fibers containing two or more of these fibers may be used. In the case of a nonwoven fabric, polyethylene fibers, polypropylene fibers, and the like can be contained therein.
- the method for producing an antiviral product by the coating composition is not particularly limited, but, even when any applying method such as dipping treatment, printing treatment, or spraying treatment is adopted, the coating film is to be dried after application of the coating composition.
- the drying method any of natural drying, hot air drying, vacuum drying, and the like can be used, but, preferably, the coating is dried by heat.
- the drying conditions are preferably from 40° C. to 250° C., more preferably from 50° C. to 180° C., and preferably from 1 minute to 5 hours, more preferably from 5 minutes to 3 hours. This allows the antiviral agent to be settled on the fiber or textile product.
- the amount of the antiviral agent spread on the fiber or fiber product is preferably 0.05 g or more per m 2 of the surface area of the fiber or textile product, from the viewpoint that the antiviral effect can be exhibited suitably.
- the amount of the spread antiviral agent is preferably 10 g/m 2 or less, more preferably 0.3 to 5 g/m 2 .
- the coating composition of the present invention when applied to an article such as a fiber or textile product, the coating composition, when being strongly acidic, can cause corrosion of the metal of the production machine, deterioration of the treatment liquid, or deterioration of the stability.
- the coating composition when the coating composition is strongly alkaline, the inorganic solid acid may be neutralized so that the antiviral effect may decrease. Therefore, the pH of the coating composition of the present invention is preferably 3 or more and 9 or less, more preferably 5 or more and 8 or less.
- the pKa of the inorganic solid acid greatly affects the determination of the pH of the coating composition, but, additionally, the acid site concentration, solubility when the antiviral agent is dissolved in a medium, hydrophilicity, and the like also have influences thereon.
- the coating composition of the present invention can also be used as a coating material.
- resin components for the coating material include oils and fats such as soybean oil, linseed oil, safflower oil, and castor oil; natural resins such as rosin, copal and shellac; processed resins such as chroman resins and petroleum resins; synthetic resins such as alkyd resins, acrylic resins, epoxy resins, polyurethane resins, vinyl chloride resins, silicone resins, and fluororesins; rubber derivatives such as chlorinated rubber and cyclized rubber; and cellulose derivatives such as nitrocellulose (lacquer) and acetyl cellulose.
- oils and fats such as soybean oil, linseed oil, safflower oil, and castor oil
- natural resins such as rosin, copal and shellac
- processed resins such as chroman resins and petroleum resins
- synthetic resins such as alkyd resins, acrylic resins, epoxy resins, polyurethane resins, vinyl chloride resins, silicone resins, and fluororesins
- the above coating material may contain an additive such as a pigment that is conventionally contained in known coating materials, a UV curing agent, a plasticizer, a dispersant, an anti-settling agent, an emulsifying agent, a thickener, a antifoaming agent, a fungicide, an antiseptic agent, a skinning preventing agent, a desiccant, an anti-drip agent, a delustering agent, an antistatic agent, a conductive agent, a flame retardant, or a graffiti preventing agent, and/or a solvent.
- an additive such as a pigment that is conventionally contained in known coating materials, a UV curing agent, a plasticizer, a dispersant, an anti-settling agent, an emulsifying agent, a thickener, a antifoaming agent, a fungicide, an antiseptic agent, a skinning preventing agent, a desiccant, an anti-drip agent, a delustering agent, an anti
- the pigment examples include coloring pigments such as (white) titanium, (black) carbon, (blown) red iron oxide, (vermilion) chromium vermillion, (blue) iron blue, (yellow) yellow lead and (red) iron oxide, extender pigments such as calcium carbonate, talc, and baryte powder; rust preventive pigments such as red lead, lead suboxide, and lead cyanamide; and functional pigments such as aluminum powder and zinc sulfide (fluorescent pigment).
- coloring pigments such as (white) titanium, (black) carbon, (blown) red iron oxide, (vermilion) chromium vermillion, (blue) iron blue, (yellow) yellow lead and (red) iron oxide
- extender pigments such as calcium carbonate, talc, and baryte powder
- rust preventive pigments such as red lead, lead suboxide, and lead cyanamide
- functional pigments such as aluminum powder and zinc sulfide (fluorescent pigment).
- solvent examples include water, alcohol, and thinners such as paint thinner, lacquer thinner, and polyurethane resin thinner.
- the coating material as it is or a liquid coating material obtained by diluting the coating material with a solvent or the like is coated onto a substrate or the like by brush coating method, roller coating method, spray coating method, troweling method, or the like, and dried according to need.
- the content of the antiviral agent in the coating film is preferably 0.05 g or more per m 2 of the surface area of the substrate.
- the obtained coating film may be cured by irradiation with radiation such as UV.
- the substrate examples include plastic molded products such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyester, polycarbonate, acrylic resin, polystyrene, polyacrylonitrile, ABS resins, MBS resins, polyamide resins, and cellophane, sealing materials such as modified silicone and urethane, metals, alloys, ceramic sidings, porcelain, stoneware, pottery, glazed tiles, marble, granite, and glass.
- plastic molded products such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyester, polycarbonate, acrylic resin, polystyrene, polyacrylonitrile, ABS resins, MBS resins, polyamide resins, and cellophane
- sealing materials such as modified silicone and urethane, metals, alloys, ceramic sidings, porcelain, stoneware, pottery, glazed tiles, marble, granite, and glass.
- the lower limit on the content ratio of the antiviral agent is preferably 10% by mass, based on 100% by mass of the total content of the antiviral agent and the solid content such as the resin component, from the viewpoint that the antiviral effect due to the coating containing the antiviral agent can be exhibited suitably.
- the upper limit is preferably 50% by mass for economic reasons and from the viewpoint that the physical properties of the substrate to be coated with the coating material and the texture of the antiviral product to be obtained are not impaired, and that the physical properties and function of the coating material are not significantly impaired.
- a particularly preferable content of the antiviral agent is 20 to 40% by mass.
- the resin composition of the present invention includes a resin and the antiviral agent of the present invention.
- the resin may be any of a natural resin, a synthetic resin, and a semi-synthetic resin, and may be either a thermoplastic resin or a thermosetting resin.
- the resin include molding or fiber resins including olefin resins (polyethylene, polypropylene, etc.), vinyl chloride, ABS resins, AS resins, MBS resins, nylon resins (polyamide synthetic resins), polyesters (PET, PBT, etc.), polyvinylidene chloride, polystyrene, polyacetal, polycarbonate, acrylic resins, fluororesins, polyurethane elastomers, polyester elastomers, melamine, urea resins, tetrafluoroethylene resins, unsaturated polyester resins, rayon, acetate, polyvinyl alcohol, cupra, triacetate and vinylidene; and rubber-like resins such as natural rubber, silicone rubber, styrene butadiene rubber, ethylene propylene rubber, fluororubber, nitrile rubber, chlorosulfonated polyethylene rubber, butadiene rubber, synthetic natural rubber, butyl rubber, urethane rubber, and acrylic rubber
- the resin composition of the present invention may also contain an additive.
- the additive include pigments such as zinc oxide and titanium oxide, dyes, antioxidants, light stabilizers, flame retardants, antistatic agents, foaming agents, impact resistance enhancers, glass fibers, lubricants such as metal soaps, moisture-proofing agents, extenders, coupling agents, nucleating agents, fluidity improvers, deodorants, wood flour, fungicides, antifouling agents, rust inhibitors, metal powders, ultraviolet absorbers, and ultraviolet shielding agents. Any of these additives can be preferably used.
- a method for producing the resin composition of the present invention is not particularly limited, a conventionally known method can be employed.
- a thermoplastic resin composition can be produced by kneading a raw material mixture containing a resin and an antiviral agent.
- an antiviral agent having a special functional group on its surface or the like there are used, for example: (1) a method involving directly mixing a pellet-like resin or a powdery resin, in a mixer, using an adhesive for facilitating adhesion between the antiviral agent and a resin or a dispersant for improving the dispersibility of the antiviral agent; (2) a method involving performing mixing in the manner as in (1), molding the mixture into a pellet shape by means of an extrusion molding machine, and then blending the molded product in a pellet-like resin; (3) a method involving dispersing and mixing the antiviral agent, for example, in wax to mold the mixture into a pellet shape, and then blending the pellet-like molded product in a
- the antiviral product of the present invention is an article containing the antiviral agent of the present invention.
- Examples of the antiviral product of the present invention include those obtained by molding the resin composition of the present invention into a predetermined shape and those obtained by applying the coating composition of the present invention to a predetermined portion of a substrate, drying the coating to form a coating film.
- the shape of the molded product may be a block, a sponge, a film, a sheet, a thread, a pipe, a composite thereof, or the like.
- Examples of the antiviral product obtained by applying the coating composition of the present invention include articles having a coating that contains the antiviral agent on at least a part of a surface of a substrate such as a fiber, a textile product (a woven fabric, a nonwoven fabric, a knitted fabric, etc.) or a film.
- antiviral products requiring virus reduction include indoor products, beddings, filters, furniture, car interior goods, textile products, home building materials products, paper products, toys, leather products, and toiletry products. More specifically, examples of such antiviral products include, but is not limited to, indoor products such as carpets, curtains, wallpapers, tatami mats, shoji paper, floor wax and calendar; beddings such as futons, beds, sheets, pillows and pillow cases; filters of air purifiers, air conditioners and the like; furniture such as sofas and chairs; car interior goods such as child seats and seats; dust bags of electric vacuum cleaners, clothing items, masks, stuffed toys, and kitchen utensils
- the antiviral agent of the present invention When the antiviral agent of the present invention is incorporated in a nonaqueous coating composition, resin composition, or the like to form an antiviral product, the antiviral agent contained in the antiviral product, when brought into contact with other articles, may corrode a metal part in the other articles or discolor a resin part therein.
- the present inventors have confirmed, in a test on an aqueous dispersion system, that such defects can be suppressed by setting the pH of the coating composition within a predetermined range.
- a simple method of the test on the aqueous dispersion system is to disperse the antiviral agent in water and measure the pH of the resultant aqueous dispersion.
- the antiviral agent is dispersed in deionized water so that the amount thereof is 5% by mass, and the pH after stirring at 25° C. for 5 minutes with a stirrer is measured using a glass electrode pH meter.
- the pH of the aqueous dispersion at that time is preferably 3 or more and 9 or less, more preferably 5 or more and 8 or less.
- the antiviral agent is preferably used in the coating compositions, coating material, resin composition, and the like.
- % is % by mass.
- the measurement of the physical properties of antiviral agents and evaluation of the heat resistance thereof, production and evaluation of coating compositions containing the antiviral agents, and production and evaluation of resin compositions containing the antiviral agents were carried out.
- the method for measuring the acid site concentration of the inorganic solid acid powder constituting the antiviral agent is as follows. In each of twenty 20-mL sample bottles, 0.5 g of an inorganic solid acid powder is placed. Ten (10) mL of benzene is added to them, and the liquids are gently shaken and mixed. Then, 0.1 N n-butylamine is added, in different amounts, to the respective sample bottles to make 20 kinds of mixed liquids, and the mixed liquids are stirred by a shaker. After 24 hours, 0.5 mL of a 0.1% methyl red solution diluted with benzene is added to the respective mixed liquids, and color change of methyl red is visually observed.
- the amount of the added n-butylamine with the largest amount of the added n-butylamine, in which color change of the indicator is not confirmed, is defined as the amount of the base reacted with the acid site, which is expressed as the acid site concentration (mmol/g).
- the method for measuring the acid strength of the inorganic solid acid powder constituting the antiviral agent is as follows. In a test tube, 0.1 g of the sample is taken. Two (2) mL of benzene and 2 drops of a 0.1% benzene solution of each of the following indicators are added to the sample. The liquid is lightly shaken and mixed, and observed in terms of color change. In the case of crystal violet, a 0.1% ethanol solution is used. Since the acid strength is considered to be greater than the strongest acid strength (lowest pKa value) at which color change of the indicator is confirmed and not greater than the weakest acid strength (highest pKa) at which there is no color change of the indicator, the range is recoded as a pKa value.
- the average particle diameter of the inorganic solid acid powder constituting the antiviral agent is a volume-based median diameter ( ⁇ m) measured with a laser diffraction type grain size distribution measuring instrument.
- the method for measuring the water content of the inorganic solid acid powder constituting the antiviral agent is as follows. Approximately 5 g of the sample was weighed in an aluminum cup that was constantly weighted at 250° C. in a dryer for 1 hour, dried at 250° C. for 2 hours, and weighed again. A value obtained by dividing the drying decrement by the mass before drying, expressed as %, was defined as the water content of the inorganic solid acid powder.
- the method of evaluating the antiviral effect of the antiviral agent is as follows. Purified water is added to the antiviral agent to adjust the concentration of the inorganic solid acid powder to 0.5 mg/mL. To 900 ⁇ L of this liquid, 100 ⁇ L of an influenza A virus fluid having a virus infectivity of 2 ⁇ 10 4 PFU/mL was added, and the mixed liquid is allowed to stand still at 25° C. for 2 hours. Thereafter, the mixed liquid is recovered, and the recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the mixed liquid before standing still for 2 hours is also measured.
- the antiviral effect was determined based on these virus infectivities. Cases where the virus infectivity after standing still for 2 hours was the detection limit or less were ranked as “++”; cases where the antiviral activity value after standing still for 2 hours, i.e., cases where the calculated value of Log (virus infectivity immediately after inoculation) ⁇ Log (virus infectivity after 2 hours) was decreased by 1 or more were ranked as “+”; and cases other than “++” and “+” after standing still for 2 hours were ranked as “ ⁇ ”.
- the evaluation of the coating composition 1 was carried out by evaluating the antiviral effect of an antiviral product (antiviral processed fabric) obtained by dip coating this composition on a polyester fabric.
- an antiviral product antiviral processed fabric obtained by dip coating this composition on a polyester fabric.
- 0.2 mL of an influenza A virus fluid having a virus infectivity of 2 ⁇ 10 4 PFU/mL is penetrated and inoculated and allowed to stand still at 25° C. for 2 hours. Thereafter, the virus fluid is recovered, and this recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the contact liquid before standing still for 2 hours is also measured.
- the antiviral effect was evaluated based on the antiviral activity value obtained by the following formula.
- Antiviral activity value log (virus infectivity immediately after inoculation) ⁇ Log (virus infectivity after 2 hours)
- Another evaluation of the coating composition was carried out by evaluating the antiviral effect of an antiviral product (antiviral processed film) obtained by applying this composition to a polyester film.
- an antiviral processed film Onto a surface of the antiviral processed film having a size of 5 cm ⁇ 5 cm, 0.4 mL of an influenza A virus fluid having a virus infectivity of 2 ⁇ 10 4 PFU/mL was dropped. Then, the liquid portion is covered with a polyethylene film having a size of 4 cm x 4 cm. After standing still at 25° C. for 2 hours, the virus fluid dropped on the surface of the antiviral processed film is recovered, and this recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the contact liquid before standing still for 2 hours is also measured.
- the antiviral effect was evaluated based on the antiviral activity value obtained by the following formula.
- Antiviral activity value log (virus infectivity immediately after inoculation) ⁇ Log (virus infectivity after 2 hours)
- the evaluation of the resin composition containing the antiviral agent was carried out by evaluating the antiviral effect of an antiviral fiber obtained by spinning this composition.
- an antiviral fiber obtained by spinning this composition.
- 0.2 mL of an influenza A virus fluid having a virus infectivity of 2 ⁇ 10 4 PFU/mL is penetrated and inoculated, and allowed to stand still at 25° C. for 2 hours. Thereafter, the virus fluid is recovered, and this recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the contact liquid before standing still for 2 hours is also measured.
- the antiviral effect was evaluated based on the antiviral activity value obtained by the following formula.
- Antiviral activity value log (virus infectivity immediately after inoculation) ⁇ Log (virus infectivity after 2 hours)
- titanium oxide powder As raw materials, titanyl sulfate and oxalic acid were used, and they were mixed and reacted. Next, the resulting precipitate was filtered and dried, and baked at 500° C. Thereafter, it was pulverized to obtain a white active titanium oxide powder. Using the obtained titanium oxide powder as an antiviral agent (V6), the color L value, average particle size, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- Oxalic acid and a 75% aqueous phosphoric acid solution were added to an aqueous zirconium oxychloride solution.
- the pH of the mixed liquid was adjusted to 2.7 with caustic soda, and the mixed liquid was heated under reflux at 98° C. for 12 hours. Thereafter, the obtained precipitate was filtered, washed with water, dried and crushed to obtain a NASICON-type zirconium phosphate powder.
- the obtained NASICON-type zirconium phosphate powder as an antiviral agent (V9), the average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- Example 1 Average Color particle Water Acid site Antiviral (L diameter content concentration Acid strength Antiviral agent Inorganic solid acid powder value) ( ⁇ m) (%) (mmol/g) (pKa) activity
- Example 1 Amorphous magnesium silicate 97 5.5 9.8 0.07 0.8 to 1.5 +
- Example 2 V2 ⁇ -Type zirconium phosphate 96 0.9 2.2 0.02 ⁇ 8.2 to ⁇ 5.6 ++
- Example 3 V3 ⁇ -Type silver zirconium phosphate 96 0.2 5 0.02 ⁇ 8.2 to ⁇ 5.6 ++
- Example 4 V4 ⁇ -Type copper zirconium 88 0.2 5 0.01 ⁇ 8.2 to ⁇ 5.6 ++ phosphate
- Example 5 V5 ⁇ -Type zirconium phosphate 96 1 4.3 0.007 ⁇ 5.6 to ⁇ 3.0 +
- Example 6 V6 Active titanium oxide 97 0.01 1.5 0.02 1.5 to 3.3 + Comparative V7 Crystalline magnesium silicate 96 2.3 8.1 ⁇ 0.001
- Comparative Examples 1 to 5 using an antiviral agent composed of an inorganic solid acid having an acid site concentration of 0.005 mmol/g or less did not show antiviral activity.
- the antiviral agent (V1) composed of amorphous magnesium silicate of Example 1 and a urethane emulsion binder having a nonvolatile content of 30% (hereinafter referred to as “NV 30”) were mixed in a solid content mass ratio of 1:1 to produce a coating composition (C1).
- the antiviral effect was evaluated for the antiviral processed fabric and the antiviral processed fabric after washing three times by the JIS L0217 103 method. The results are shown in Table 2.
- a coating composition (C2) was produced in the same manner as in Example 7 except that the antiviral agent (V2) composed of ⁇ -type zirconium phosphate of Example 2 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C2) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C3) was produced in the same manner as in Example 7 except that the antiviral agent (V3) composed of ⁇ -type silver zirconium phosphate of Example 3 was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C3) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C4) was produced in the same manner as in Example 7 except that the antiviral agent (V4) composed of ⁇ -type copper zirconium phosphate of Example 4 was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C4) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C5) was produced in the same manner as in Example 7 except that the antiviral agent (V5) composed of ⁇ -type zirconium phosphate of Example 5 was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C5) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C6) was produced in the same manner as in Example 7, except that the antiviral agent (V6) composed of the active titanium oxide of Example 6 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C6) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C7) was produced in the same manner as in Example 7 except that the antiviral agent (V7) composed of crystalline magnesium silicate of Comparative Example 1 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C7) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C8) was produced in the same manner as in Example 7 except that the antiviral agent (V8) composed of crystalline silver copper aluminum silicate of Comparative Example 2 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C8) to evaluate the antiviral effect. The results are shown in Table 2.
- a coating composition (C9) was produced in the same manner as in Example 7 except that dodecylbenzyldimethylammonium chloride (quaternary ammonium salt) was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C9) to evaluate the antiviral effect. The results are shown in Table 2.
- the antiviral processed fabrics of Comparative Examples 6 and 7 showed a low antiviral activity value both in non-washing and after washing three times, and the formed coating did not exhibit antiviral effect.
- Comparative Example 8 showed the antiviral activity value in non-washing, the formed coating exhibited antiviral effect, but the antiviral activity value after washing three times became very small, and thus it is thought that the antiviral agent in the coating composition flowed out with water.
- the antiviral agent (V3) composed of ⁇ -type silver zirconium phosphate of Example 3 and the urethane emulsion binder of NV 30 were mixed so that the solid content mass ratio was 1:1 to produce a coating composition (C11). Then, the coating composition (C11) was coated onto a polyester film so that the amount of the spread antiviral agent (V3) was 0.5 g/m 2 and air-dried to obtain an antiviral processed film. Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- a coating composition (C12) was obtained in the same manner as in Example 13 except that the antiviral agent (V8) composed of crystalline silver copper aluminum silicate of Comparative Example 2 was used instead of the antiviral agent (V3). Then, an antiviral processed film was produced using this coating composition (C12). Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- a coating composition (C13) was obtained in the same manner as in Example 13 except that the antiviral agent (V10) composed of titanium oxide of Comparative Example 4 was used instead of the antiviral agent (V3). Then, an antiviral processed film was produced using this coating composition (C13). Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- a coating composition (C14) was obtained in the same manner as in Example 13 except that the antiviral agent (V11) composed of activated alumina of Comparative Example 5 was used in place of the antiviral agent (V3). Next, an antiviral processed film was produced using this coating composition (C14). Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- the urethane emulsion binder was coated onto a polyester film so that the amount of the spread urethane resin was 1 g/m 2 , and air-dried to produce a film having a coating made of a urethane resin. Then, the antiviral activity value was measured. The results are shown in Table 3.
- the antiviral processed film of Example 13 showed an antiviral activity value of more than 4.4, and it was seen that the coating composition containing the antiviral agent of the present invention suitably forms a coating exhibiting antiviral effect.
- the antiviral activity values of the antiviral processed films of Comparative Examples 10 to 12 were less than 0.3, and it was seen that the antiviral effect was insufficient.
- the antiviral agent (V2) composed of ⁇ -type zirconium phosphate of Example 2 was blended in a proportion of 20% in a polyester resin “MA 2101” manufactured by Mitsubishi Rayon Co., Ltd., and the blend was kneaded at a temperature of 290° C. using a twin screw extrusion molding machine to prepare a master batch in a pellet form. Then, the master batch and the polyester resin were mixed to produce a resin composition (R1) containing 3% of ⁇ -type zirconium phosphate. Thereafter, the obtained resin composition (R1) was melt-spun to produce a 36f multifilament at 290° C. Further, this filament was stretched to produce a 2-denier antiviral processed fiber as an antiviral product. Then, the antiviral activity value of this antiviral processed fiber was measured. The results are shown in Table 4.
- a master batch was produced in the same manner as in Example 14 except that the antiviral agent (V3) composed of ⁇ -type silver zirconium phosphate of Example 3 was used instead of the antiviral agent (V2).
- a resin composition (R2) containing 2% of the antiviral agent (V3) was obtained. Thereafter, this resin composition (R2) was used to produce a 2-denier antiviral processed fiber as an antiviral product. Then, the antiviral activity value of this antiviral processed fiber was measured. The results are shown in Table 4.
- a master batch was produced in the same manner as in Example 14, except that the antiviral agent (V9) composed of NASICON-type silver zirconium phosphate of Comparative Example 3 was used instead of the antiviral agent (V2).
- the antiviral agent (V9) composed of NASICON-type silver zirconium phosphate of Comparative Example 3 was used instead of the antiviral agent (V2).
- a resin composition (R3) containing 3% of the antiviral agent (V9) was obtained. Thereafter, this resin composition (R3) was used to produce a 2-denier processed fiber. Then, the antiviral activity value of this processed fiber was measured. The results are shown in Table 4.
- the polyester resin alone was used for spinning to obtain a 2-denier fiber. Thereafter, the antiviral activity value of this fiber was measured. The results are shown in Table 4.
- the resin composition of the present invention gives an antiviral product exhibiting antiviral effect.
- the resin composition was melt-spun, it can be seen that the antiviral agent of the present invention is excellent in heat resistance and processability.
- the antiviral agent (V2) composed of the ⁇ -type zirconium phosphate powder of Example 2 was heated at 350° C. for 1 hour by using an electric furnace and then cooled to room temperature. With respect to this heat-treated product, the color L value, average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 5.
- the antiviral agent (V3) composed of the ⁇ -type silver zirconium phosphate powder of Example 3 was heated at 350° C. for 1 hour by using an electric furnace and then cooled to room temperature. With respect to this heat-treated product, the color L value, average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 5.
- ⁇ -type zirconium phosphate and ⁇ -type silver zirconium phosphate are hardly changed in physical properties other than the water content even when heated at 350° C. and also have antiviral activity, and thus it can be seen that they are excellent in heat resistance.
- the antiviral agent, coating composition, and resin composition of the present invention exhibit excellent antiviral effect.
- the antiviral agent of the present invention has excellent processability and heat resistance.
- Influenza viruses and the like can be inactivated by using the antiviral agent of the present invention in materials related to human living spaces, such as textile products and home building materials.
- the coating composition or resin composition containing the antiviral agent of the present invention are suitable for the production of antiviral products including textile products such as clothing, beddings and masks; filters used in air purifiers, air conditioners and the like; interior products such as wallpapers, curtains and carpets and furniture; automotive interior materials; building materials, and the like.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Agronomy & Crop Science (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Organic Chemistry (AREA)
- Toxicology (AREA)
- Oncology (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Virology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Communicable Diseases (AREA)
- Veterinary Medicine (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Paints Or Removers (AREA)
Abstract
Description
- The present invention relates to an antiviral agent containing an inorganic solid acid, and a coating composition, a resin composition, and an antiviral product each containing the antiviral agent. The antiviral agent of the present invention can be sprayed or coated onto textile products such as clothing, bedclothes and masks, filters for use in air purifiers, air conditioners, and the like, interior products such as curtains, carpets and furniture, automobile interior materials, and the like, or spread on surface layers of building materials such as wallpapers and flooring materials, thereby imparting the effect of reducing the virus activity.
- In recent years, demands for sanitary and safe living environments have been increasing, for example, due to epidemics of Middle East Respiratory Syndrome (MERS) and influenza, and the development of various antiviral agents and antiviral products is being studied.
- Against coronaviruses, ethanol, sodium hypochlorite, iodohole, peracetic acid, formaldehyde, glutaraldehyde, and ethylene oxide gas have been reported to be effective as disinfectants. In addition, 1-adamantanamine hydrochloride, thiosemicarbazide, arabinosyl nucleoside, nucleoside, 2,3-dideoxynucleoside, pyrophosphoric acid derivatives, and the like are known as antiviral agents. However, drugs having these antiviral properties have only a temporary effect and also involve a problem with heat resistance. Therefore, sustained effects on antiviral products cannot be expected.
- Patent Literature 1 discloses an inorganic antiviral agent composition containing inorganic peroxide, tetraacetylethylenediamine, and alkali metal salt of inorganic acid and/or alkaline earth metal salt of inorganic acid. However, this inorganic antiviral agent is an inorganic peroxide-based agent, and thus still has problems in sustainability, processability, and the like.
- There is also a problem that products containing these conventional antiviral agents, when brought into direct contact with a human body, irritate the skin.
- In contrast, Patent Literature 2 discloses inorganic oxide fine particles containing a specific metal component and having an average particle diameter of 500 nm or less. Patent Literature 3 discloses a copper- and titanium-containing composition. Patent Literature 4 discloses an antibacterial antiviral composition containing cuprous oxide particles having a BET specific surface area of from 5 to 100 m2/g and a saccharide having an aldehyde group.
- Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2001-72519
- Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2003-221304
- Patent Literature 3: Japanese Unexamined Patent Application Publication No. 2010-168578
- Patent Literature 4: Japanese Unexamined Patent Application Publication No. 2011-153163
- However, these copper compounds are easily oxidized into divalent copper compounds in the air, with the result that the antiviral effect is reduced. In addition, when these inorganic antiviral agents are used alone, antiviral effect can be confirmed. However, they may not exhibit any sufficient antiviral effect when kneaded in resins. Furthermore, many of the copper compounds listed in Patent Literatures 3 and 4 are originally colored, and, when kneaded in resins, deteriorate the resins due to their copper ions, thereby causing discoloration of resin processed articles and generation of abnormal odor. Accordingly, the applications and processing conditions of the copper compounds are restricted.
- An object of the present invention is to provide an antiviral agent excellent in antiviral performance, and, for example, to provide an antiviral agent that does not cause alteration or the like by melt kneading with a resin, is excellent in heat resistance and processability, and maintains the inactivating effect on viruses. Another object of the present invention is to provide a coating composition, a resin composition and an antiviral product that give a coating or the like containing the antiviral agent that would not be released by contact with water or the like.
- As a result of intensive studies to solve the above problems, the present inventor has found that an inorganic solid acid having a specific acid site concentration exhibits a high antiviral activity, and has completed the present invention. The present invention relates to an antiviral agent containing an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g, and a coating composition, a resin composition, and an antiviral product each containing the antiviral agent.
- The antiviral agent of the present invention not only exhibits a high antiviral activity as compared with existing antiviral agents, but also is an inorganic substance and thus has heat resistance. Further, it can be a light color material, and thus is less colored or discolored, excellent in processability, and suitable, for example, for the production of a coating composition that gives a coating or the like that would not be detached by contact with water or the like and for the production of a resin composition.
- Furthermore, as the antiviral product of the present invention containing the antiviral agent of the present invention, for example, a resin molded product and an article having a coating containing the antiviral agent exhibit a high antiviral activity, and, besides, since the antiviral agent contained therein would not be released or flow out with water, such antiviral products are also excellent in durability.
- The present invention is as follows.
- (1) An antiviral agent comprising an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g.
- (2) The antiviral agent according to (1), wherein an acid strength (pKa) of an acid site in the inorganic solid acid is 3.3 or less.
- (3) The antiviral agent according to (1) or (2), wherein the inorganic solid acid comprises an inorganic phosphoric acid compound, an inorganic silicic acid compound, or an inorganic oxide.
- (4) The antiviral agent according to any one of (1) to (3), comprising at least one selected from the group consisting of silver, copper, and compounds thereof.
- (5) A coating composition comprising the antiviral agent according to any one of (1) to (4).
- (6) A resin composition comprising the antiviral agent according to any one of (1) to (4).
- (7) An antiviral product comprising the antiviral agent according to any one of (1) to (4).
- In the present invention, the inorganic solid acid is a substance having an acid site on an inorganic solid surface. The “acid site” is a site showing the property of giving a proton to a base or the property of receiving an electron pair from a base. The number of the acid sites can be indicated by the acid site concentration, and the number of acid sites or acidic centers on the solid surface, is normally expressed as the number or number of moles per unit weight or unit surface area of the solid.
- In the inorganic solid acid contained in the antiviral agent of the present invention, the concentration of the acid site (acid site concentration) on the inorganic solid surface is defined as more than 0.005 mmol/g to suitably exhibit the effect of inactivating viruses (hereinafter referred to as “antiviral effect”).
- Incidentally, as the acid site concentration is higher, the antiviral effect increases, so there is no upper limit on the acid site concentration of the inorganic solid acid. However, since those having an acid site concentration of more than 10 mmol/g are generally unknown, the upper limit is usually 10 mmol/g.
- The preferred acid site concentration in the present invention is 0.008 mmol/g or more, more preferably 0.01 mmol/g or more. Particularly, inorganic solid acids having an acid site concentration of 0.01 mmol/g or more provide an excellent antiviral effect and show a high effect against various viruses.
- As described above, the antiviral agent of the present invention exhibits an antiviral effect at the acid site on the surface of the inorganic solid acid having an acid site concentration of more than 0.005 mmol/g.
- Normally, viruses grow proliferously through the stages of: (1) adsorption onto a cell surface; (2) invasion into cells; (3) uncoating; (4) synthesis of parts; (5) assembly of the parts and (6) release from the infected cells. It is inferred that the above inorganic solid acid exhibits antiviral effect by inactivating the adsorption of viruses brought into contact with the acid site on the inorganic solid surface onto a cell surface.
- The acid site concentration can be obtained by measuring the amount of a base to be reacted with a powder (inorganic solid acid).
- The acid site concentration can be measured in the liquid phase or gas phase. As a method of measurement in the liquid phase, a titration method is known. As a method of measurement in the gas phase, there is known a gas chemisorption method for measuring the difference between the amount of the adsorbed/desorbed He or hydrogen gas and the amount of the adsorbed/desorbed basic gas.
- Since the reaction between the antiviral agent of the present invention and viruses is mediated by a liquid, a titration method in the liquid phase is suitable for the acid site concentration measurement.
- A concrete method of measuring the acid site concentration of the inorganic solid acid by the titration method in the liquid phase is as follows.
- The inorganic solid acid dispersed in a nonpolar solvent is titrated with n-butylamine, and the end point of the titration is confirmed based on the color change of an acid-base conversion indicator. The indicator before the reaction exhibits a color of the base form, but, when adsorbing onto the inorganic solid acid, shows a color of its conjugate acid form. The acid site concentration is determined from the titer of n-butylamine required for the conjugate acid form color returning to the base form color. One solid acid site corresponds to one n-butylamine molecule. The base for titration has basicity stronger than basicity of the indicator because the indicator reacted with the acid site of the solid is to be replaced.
- In a common titration method, when an indicator is added to an inorganic solid acid/benzene dispersion, the indicator shows an acidic color due to the solid acidity. It is preferable to keep a sufficient time until the reaction is completed. Next, n-butylamine is added dropwise, and the acid site concentration is calculated from the amount of n-butylamine when the color of the indicator returns to the original color, i.e., the basic color.
- Specific procedures for measuring the acid site concentration of the inorganic solid acid are as follows.
- (1) Ten (10) mL of benzene and 0.5 g of an inorganic solid acid are placed in a 20-mL sample bottle and stirred to disperse the inorganic solid acid. For example, 20 mixed dispersions are prepared.
- (2) n-Butylamine with a normality of 0.1 N is added, in different amounts, to the respective sample bottles, and the samples are stirred by a shaker to prepare 20 kinds of mixed liquids.
- (3) After 24 hours, 0.5 mL of a 0.1% indicator methyl red solution is added to each of the mixed liquids, and the color change of the indicator is observed.
- (4) The amount of the added n-butylamine of the system with the largest amount of the added n-butylamine, in which color change of the indicator is not confirmed, is defined as the amount of the base reacted with the acid site, which is expressed as the acid site concentration (mmol/g).
- The inorganic solid acid is preferably an inorganic compound having a structure in which a substituent having proton donating property or proton receiving property is disposed on the surface with which viruses contact. Specific examples of the inorganic solid acid include phosphoric acid compounds of titanium group elements such as zirconium phosphate, hafnium phosphate and titanium phosphate; inorganic phosphoric acid compounds such as aluminum phosphate and hydroxyapatite (phosphate mineral); inorganic silicic acid compounds such as magnesium silicate, silica gel, aluminosilicate, sepiolite (hydrous magnesium silicate), montmorillonite (silicate mineral), and zeolite (aluminosilicate); and inorganic oxides, such as alumina, titania, and hydrated titanium oxide, having an acid site concentration of 0.005 mmol/g or more. Among these, α-type or γ-type zirconium phosphate, α-type or γ-type titanium phosphate, amorphous magnesium silicate, activated titanium oxide, and the like have an acid site concentration of more than 0.005 mmol/g, and are preferable as the inorganic solid acid contained in the antiviral agent of the present invention.
- In the inorganic solid acid, the acid site on the inorganic solid surface has strength. That is, in addition to a high acid site concentration of the inorganic solid acid itself, when the strength of each acid site is high, a higher antiviral effect can be obtained. Therefore, preferably, the inorganic solid acid contained in the antiviral agent of the present invention has high acid site strength. This strength of the acid site can be expressed as pKa as acid strength.
- The acid strength, pKa, of the inorganic solid acid in the present invention is preferably 3.3 or less, more preferably pKa 1.5 or less, still more preferably 0.8 or less. When the acid strength of the acid site is low, that is, the pKa is high, the ability to inactivate viruses tends to decrease. When the pKa is 0.8 or less, a particularly excellent antiviral performance is obtained.
- As the pKa is lower, the strength of the property of giving a proton to a base or the property of receiving an electron pair from a base, i.e., the acid strength becomes stronger. The stronger the acid strength is, the higher the ability to inactivate viruses is.
- The acid strength of the inorganic solid acid in the present invention is the ability of the acid site on the inorganic solid acid surface to give a proton to a base or the ability to receive an electron pair from a base. The acid strength (pKa) of the inorganic solid acid can be measured as the ability to convert the base form to its conjugate acid form using various acid-base conversion indicators whose pKa has been revealed. The fact that the base form has been changed to the conjugate acid form can be discriminated based on the color change of the acid-base conversion indicator. Examples of the acid-base conversion indicator (pKa value) that can be used in the measurement of the acid strength can include methyl red (+4.8), 4-phenylazo-1-naphthylamine (+4.0), dimethyl yellow (+3.3), 2-amino-5-azotoluene (+2.0), 4-phenylazo-diphenylamine (+1.5), 4-dimethylaminoazo-1-naphthalene (+1.2), crystal violet (+0.8), p-nitrobenzeneazo-p′-nitro-diphenylamine (+0.43), dicinnamyl acetone (−3.0), benzalacetophenone (−5.6), and anthraquinone (−8.2).
- A method for measuring the acid strength (pKa) of the inorganic solid acid using the acid-base conversion indicator will be exemplified below.
- (1) Two (2) mL of benzene and 0.1 g of an inorganic solid acid are placed in a test tube and stirred to disperse an inorganic solid acid. The dispersions are prepared as many as the types of acid-base conversion indicators to be tested.
- (2) Approximately 2 drops of a 0.1% benzene solution of each of the various acid-base conversion indicators (in the case of crystal violet, not a benzene solution, but a 0.1% ethanol solution is used) are added to the respective dispersions. The dispersions are lightly shaken and mixed, and observed in terms of color change.
- (3) The acid strength (pKa) of the inorganic solid acid is not greater than the strongest acid strength (that is, the lowest pKa value) at which color change of the indicator is confirmed, and is greater than the weakest acid strength (that is, the highest pKa value) at which color change of the indicator is not confirmed. Therefore, the pKa value of the inorganic solid acid is expressed as from (the highest pKa value at which color change is not confirmed) to (the lowest pKa value at which color change is confirmed). Also, in the case where there is no suitable indicator showing the lower limit, the acid strength is “not greater than the lowest pKa value at which color change is confirmed”. In the case where there is no suitable indicator showing the upper limit, the acid strength is “greater than the highest pKa value at which color change is not confirmed”.
- The antiviral agent of the present invention can contain silver or copper, or both. The antiviral agent of the present invention may contain an inorganic solid acid having a silver ion (silver atom) or a copper ion (copper atom) in its structure, and may be a mixture of silver or copper, or compounds thereof, with an inorganic solid acid containing no silver or copper. Antiviral agents containing silver or copper have an excellent antiviral effect. The total content rate of silver or copper, or compounds thereof in such an antiviral agent is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 1% by mass or more. Examples of the inorganic solid acid having a silver ion (silver atom) or a copper ion (copper atom) in its structure include silver zirconium phosphate and copper zirconium phosphate.
- The antiviral agent of the present invention is preferably in a powder form in order that the antiviral agent is applied to processing to various materials and forms. A powdery antiviral agent contains this antiviral agent and a binder, and is suitable for the preparation of a coating composition excellent in dispersibility and for the preparation of a resin composition that contains the antiviral agent and a molding resin and provides a resin molded product excellent in dispersibility.
- The average particle diameter of the powdery antiviral agent is preferably 0.01 to 50 μm, more preferably 0.1 to 20 μm. A powder having an average particle size of 0.01 μm or more is difficult to aggregate and thus has an advantage of easy handling. Further, a coating composition containing a powder having an average particle size of 50 μm or less has good dispersibility. Accordingly, when applied to surfaces of fibers, the coating composition does not impair the texture of the coated fibers. Further, when fibers are prepared by spinning from a resin composition, the coating composition can avoid the occurrence of yarn breakage.
- The average particle diameter can be measured with a laser diffraction type grain size distribution measuring device or the like, and is a median diameter analyzed on a volume basis.
- The color tone of the antiviral agent of the present invention is not limited, but white or a light color with high lightness is preferable in order that the antiviral agent is applied to processing to various materials and forms. The lightness is an L value of preferably 80 or more, more preferably 85 or more, still more preferably 95 or more, as measured by a color difference meter.
- When the antiviral agent of the present invention has a certain moisture content, it easily exhibits antiviral effect.
- The water content of the antiviral agent is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more. In addition, the inorganic solid acid having hygroscopicity can keep moisture inside the inorganic solid acid even when it is mixed with other materials or even when the humidity of the atmosphere changes, and thus is excellent in that the antiviral agent itself has moisture necessary for inactivation of viruses.
- Generally, in order to measure the antiviral effect, there is used a method for measuring the amount of viruses (infectivity) by utilizing the phenomenon of cell degeneration in which the shape of cells infected with the viruses changes. Examples of the method for measuring the infectivity include plaque count measurement method, 50% tissue culture infectious dose (TCID50) measurement method, and 50% viral titer (EID50) measurement method.
- The antiviral effect can be evaluated as the antiviral activity value obtained by the following formula (1). In the formula (1), the “initial virus infectivity” means the amount of viruses in the virus fluid immediately after inoculation used for evaluation, and the “residual virus infectivity” means the amount of viruses after a lapse of a certain period of time from the contact with an antiviral sample. The higher the antiviral activity value is, the higher the antiviral effect is. The antiviral activity value is preferably 2 or more, more preferably 3 or more.
-
Antiviral activity value=Log (initial virus infectivity)−Log (residual virus infectivity) (1) - The use form of the antiviral agent of the present invention is not particularly limited, and the antiviral agent can be used singly or can be mixed with other ingredients or compounded with other materials as appropriate.
- The powdery antiviral agent can be used in various forms such as a powder-containing dispersion, a powder-containing particle, a powder-containing coating material, a powder-containing fiber, a powder-containing paper, a powder-containing plastic, a powder-containing film, and a power-containing aerosol. Further, according to need, it can be used in combination with various additives such as deodorants, antibacterial agents, antifungal agents, flame retardants, corrosion inhibitors, and fertilizers; and materials such as building materials.
- It is also possible to add the antiviral agent of the present invention to resins, papers, plastic, rubber, glass, metals, concrete, wood, coating materials, fibers, leather, stone, and the like, as materials with which a human can come in contact, thereby inactivating viruses in living spaces.
- Among the use forms of the antiviral agent of the present invention, a coating composition containing the antiviral agent is preferred. The coating composition of the present invention is a composition containing the above-mentioned antiviral agent of the present invention and, according to need, containing a binder, a dispersant, and the like. The coating composition of the present invention may further contain an additive. When the coating composition of the present invention is used, it can be diluted with a solvent or water before it is applied onto articles having various shapes.
- The concentration of the antiviral agent in the coating composition is preferably from 0.5 to 50% by mass, more preferably from 1 to 30% by mass, because it provides easy dispersion and good storage stability. Normally, the antiviral effect is exhibited by the contact between the antiviral agent and viruses on surfaces of antiviral products in various shapes. Thus, it is preferable to immobilize the antiviral agent on the surface of the antiviral product with the coating composition of the present invention because a great effect can be obtained by a smaller amount of the antiviral agent.
- Examples of the binder usable in the coating composition of the present invention include natural resins, natural resin derivatives, phenol resins, xylene resins, urea resins, melamine resins, ketone resins, coumarone-indene resins, petroleum resins, terpene resins, cyclized rubber, chlorinated rubber, alkyd resins, polyamide resins, polyvinyl chloride, acrylic resins, vinyl chloride/vinyl acetate copolymer resins, polyvinyl acetate, polyvinyl alcohol, polyvinyl butylal, chlorinated polypropylene, styrene resins, epoxy resins, urethane resins, and cellulose derivatives. Of these, urethane resins, acrylic resins, polyvinyl chloride, and vinyl chloride/vinyl acetate copolymer resins are preferable, and emulsion type resins are particularly preferable because they are low-pollution and easy to handle.
- The dispersant usable in the coating composition of the present invention is not particularly limited as long as it ensures uniform dispersion of the antiviral agent according to the present invention in the coating composition. Examples of the dispersant include polymer type dispersants such as polycarboxylic acid-based, polyethylene glycol, polyether-based, and polyalkylene polyamine-based dispersants; surfactant type dispersants such as alkyl sulfonic acid-based, quaternary ammonium-based, higher alcohol alkylene oxide-based, polyhydric alcohol ester-based, and alkyl polyamine-based dispersants; inorganic type dispersants such as polyphosphate-based dispersants; water, alcohol solutions, lime, soda ash, sodium silicate, starch, glue, gelatin, and tannin.
- Examples of the additive usable in the coating composition of the present invention include pigments such as zinc oxide and titanium oxide, dyes, antioxidants, light stabilizers, flame retardants, antistatic agents, foaming agents, impact resistance enhancers, glass fibers, lubricants such as metal soaps, thickeners, moisture-proofing agents and extenders, coupling agents, nucleating agents, fluidity improvers, deodorants, wood flour, fungicides, antibacterial agents, antifouling agents, rust inhibitors, metal powders, ultraviolet absorbers, and ultraviolet shielding agents. In addition, it is also possible to improve antiviral effect by using an organic antiviral agent or the like in combination.
- The coating composition of the present invention is useful for forming a coating having antiviral effect on a surface of an article containing an inorganic material or an organic material.
- The main use of the coating composition according to the present invention is processing to fibers or textile products (woven fabrics, nonwoven fabrics, knitted fabrics, etc.).
- As a method of applying the coating composition to a fiber or textile product, there is exemplified a method involving applying, dipping or spraying, to a fiber or textile product, the coating composition as it is or a liquid obtained by diluting the composition with a solvent or the like. The fiber is not limited and includes natural fibers such as cotton, silk, and wool; synthetic fibers such as polyester, nylon (polyamide synthetic fibers) and acrylonitrile; semisynthetic fibers such as triacetate and diacetate; and regenerated fibers such as viscose rayon. Further, composite fibers containing two or more of these fibers may be used. In the case of a nonwoven fabric, polyethylene fibers, polypropylene fibers, and the like can be contained therein.
- Incidentally, the method for producing an antiviral product by the coating composition is not particularly limited, but, even when any applying method such as dipping treatment, printing treatment, or spraying treatment is adopted, the coating film is to be dried after application of the coating composition. As the drying method, any of natural drying, hot air drying, vacuum drying, and the like can be used, but, preferably, the coating is dried by heat. The drying conditions are preferably from 40° C. to 250° C., more preferably from 50° C. to 180° C., and preferably from 1 minute to 5 hours, more preferably from 5 minutes to 3 hours. This allows the antiviral agent to be settled on the fiber or textile product.
- When the coating composition of the present invention is used, the amount of the antiviral agent spread on the fiber or fiber product is preferably 0.05 g or more per m2 of the surface area of the fiber or textile product, from the viewpoint that the antiviral effect can be exhibited suitably. From the viewpoint of suppressing impairment of the physical properties and texture of the obtained antiviral product, the amount of the spread antiviral agent is preferably 10 g/m2 or less, more preferably 0.3 to 5 g/m2.
- When the coating composition of the present invention is applied to an article such as a fiber or textile product, the coating composition, when being strongly acidic, can cause corrosion of the metal of the production machine, deterioration of the treatment liquid, or deterioration of the stability. On the other hand, when the coating composition is strongly alkaline, the inorganic solid acid may be neutralized so that the antiviral effect may decrease. Therefore, the pH of the coating composition of the present invention is preferably 3 or more and 9 or less, more preferably 5 or more and 8 or less.
- The pKa of the inorganic solid acid greatly affects the determination of the pH of the coating composition, but, additionally, the acid site concentration, solubility when the antiviral agent is dissolved in a medium, hydrophilicity, and the like also have influences thereon.
- The coating composition of the present invention can also be used as a coating material.
- Examples of resin components for the coating material include oils and fats such as soybean oil, linseed oil, safflower oil, and castor oil; natural resins such as rosin, copal and shellac; processed resins such as chroman resins and petroleum resins; synthetic resins such as alkyd resins, acrylic resins, epoxy resins, polyurethane resins, vinyl chloride resins, silicone resins, and fluororesins; rubber derivatives such as chlorinated rubber and cyclized rubber; and cellulose derivatives such as nitrocellulose (lacquer) and acetyl cellulose.
- The above coating material may contain an additive such as a pigment that is conventionally contained in known coating materials, a UV curing agent, a plasticizer, a dispersant, an anti-settling agent, an emulsifying agent, a thickener, a antifoaming agent, a fungicide, an antiseptic agent, a skinning preventing agent, a desiccant, an anti-drip agent, a delustering agent, an antistatic agent, a conductive agent, a flame retardant, or a graffiti preventing agent, and/or a solvent.
- Examples of the pigment include coloring pigments such as (white) titanium, (black) carbon, (blown) red iron oxide, (vermilion) chromium vermillion, (blue) iron blue, (yellow) yellow lead and (red) iron oxide, extender pigments such as calcium carbonate, talc, and baryte powder; rust preventive pigments such as red lead, lead suboxide, and lead cyanamide; and functional pigments such as aluminum powder and zinc sulfide (fluorescent pigment).
- Examples of the solvent include water, alcohol, and thinners such as paint thinner, lacquer thinner, and polyurethane resin thinner.
- When an antiviral product is produced using the coating material that is the coating composition of the present invention, the coating material as it is or a liquid coating material obtained by diluting the coating material with a solvent or the like is coated onto a substrate or the like by brush coating method, roller coating method, spray coating method, troweling method, or the like, and dried according to need. The content of the antiviral agent in the coating film is preferably 0.05 g or more per m2 of the surface area of the substrate. Further, after coating, the obtained coating film may be cured by irradiation with radiation such as UV.
- Examples of the substrate include plastic molded products such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyester, polycarbonate, acrylic resin, polystyrene, polyacrylonitrile, ABS resins, MBS resins, polyamide resins, and cellophane, sealing materials such as modified silicone and urethane, metals, alloys, ceramic sidings, porcelain, stoneware, pottery, glazed tiles, marble, granite, and glass.
- In the coating material that is the coating composition of the present invention, the lower limit on the content ratio of the antiviral agent is preferably 10% by mass, based on 100% by mass of the total content of the antiviral agent and the solid content such as the resin component, from the viewpoint that the antiviral effect due to the coating containing the antiviral agent can be exhibited suitably. The upper limit is preferably 50% by mass for economic reasons and from the viewpoint that the physical properties of the substrate to be coated with the coating material and the texture of the antiviral product to be obtained are not impaired, and that the physical properties and function of the coating material are not significantly impaired. A particularly preferable content of the antiviral agent is 20 to 40% by mass.
- The resin composition of the present invention includes a resin and the antiviral agent of the present invention.
- There are no limitations on the kind of resin usable in the resin composition, and the resin may be any of a natural resin, a synthetic resin, and a semi-synthetic resin, and may be either a thermoplastic resin or a thermosetting resin.
- Specific examples of the resin include molding or fiber resins including olefin resins (polyethylene, polypropylene, etc.), vinyl chloride, ABS resins, AS resins, MBS resins, nylon resins (polyamide synthetic resins), polyesters (PET, PBT, etc.), polyvinylidene chloride, polystyrene, polyacetal, polycarbonate, acrylic resins, fluororesins, polyurethane elastomers, polyester elastomers, melamine, urea resins, tetrafluoroethylene resins, unsaturated polyester resins, rayon, acetate, polyvinyl alcohol, cupra, triacetate and vinylidene; and rubber-like resins such as natural rubber, silicone rubber, styrene butadiene rubber, ethylene propylene rubber, fluororubber, nitrile rubber, chlorosulfonated polyethylene rubber, butadiene rubber, synthetic natural rubber, butyl rubber, urethane rubber, and acrylic rubber.
- The resin composition of the present invention may also contain an additive. Examples of the additive include pigments such as zinc oxide and titanium oxide, dyes, antioxidants, light stabilizers, flame retardants, antistatic agents, foaming agents, impact resistance enhancers, glass fibers, lubricants such as metal soaps, moisture-proofing agents, extenders, coupling agents, nucleating agents, fluidity improvers, deodorants, wood flour, fungicides, antifouling agents, rust inhibitors, metal powders, ultraviolet absorbers, and ultraviolet shielding agents. Any of these additives can be preferably used.
- A method for producing the resin composition of the present invention is not particularly limited, a conventionally known method can be employed. For example, a thermoplastic resin composition can be produced by kneading a raw material mixture containing a resin and an antiviral agent. When a modified resin, an antiviral agent having a special functional group on its surface or the like is used, there are used, for example: (1) a method involving directly mixing a pellet-like resin or a powdery resin, in a mixer, using an adhesive for facilitating adhesion between the antiviral agent and a resin or a dispersant for improving the dispersibility of the antiviral agent; (2) a method involving performing mixing in the manner as in (1), molding the mixture into a pellet shape by means of an extrusion molding machine, and then blending the molded product in a pellet-like resin; (3) a method involving dispersing and mixing the antiviral agent, for example, in wax to mold the mixture into a pellet shape, and then blending the pellet-like molded product in a pellet-like resin; and (4) a method involving dispersing and mixing the antiviral agent in a highly viscous liquid material such as a polyol to prepare a paste-like composition and then blending this past-like composition in a pellet-like resin.
- The antiviral product of the present invention is an article containing the antiviral agent of the present invention.
- Examples of the antiviral product of the present invention include those obtained by molding the resin composition of the present invention into a predetermined shape and those obtained by applying the coating composition of the present invention to a predetermined portion of a substrate, drying the coating to form a coating film.
- When the resin composition of the present invention is used for molding, known molding techniques and mechanical devices can be applied according to the properties of the resin. The shape of the molded product may be a block, a sponge, a film, a sheet, a thread, a pipe, a composite thereof, or the like.
- Examples of the antiviral product obtained by applying the coating composition of the present invention include articles having a coating that contains the antiviral agent on at least a part of a surface of a substrate such as a fiber, a textile product (a woven fabric, a nonwoven fabric, a knitted fabric, etc.) or a film.
- Examples of the uses of antiviral products requiring virus reduction include indoor products, beddings, filters, furniture, car interior goods, textile products, home building materials products, paper products, toys, leather products, and toiletry products. More specifically, examples of such antiviral products include, but is not limited to, indoor products such as carpets, curtains, wallpapers, tatami mats, shoji paper, floor wax and calendar; beddings such as futons, beds, sheets, pillows and pillow cases; filters of air purifiers, air conditioners and the like; furniture such as sofas and chairs; car interior goods such as child seats and seats; dust bags of electric vacuum cleaners, clothing items, masks, stuffed toys, and kitchen utensils
- When the antiviral agent of the present invention is incorporated in a nonaqueous coating composition, resin composition, or the like to form an antiviral product, the antiviral agent contained in the antiviral product, when brought into contact with other articles, may corrode a metal part in the other articles or discolor a resin part therein. For example, the present inventors have confirmed, in a test on an aqueous dispersion system, that such defects can be suppressed by setting the pH of the coating composition within a predetermined range.
- A simple method of the test on the aqueous dispersion system is to disperse the antiviral agent in water and measure the pH of the resultant aqueous dispersion. For example, the antiviral agent is dispersed in deionized water so that the amount thereof is 5% by mass, and the pH after stirring at 25° C. for 5 minutes with a stirrer is measured using a glass electrode pH meter. The pH of the aqueous dispersion at that time is preferably 3 or more and 9 or less, more preferably 5 or more and 8 or less. When the pH of the aqueous dispersion falls within the above range, metal corrosion and resin discoloration are hardly caused in the antiviral product containing the antiviral agent. Thus, the antiviral agent is preferably used in the coating compositions, coating material, resin composition, and the like.
- Hereinafter, the present invention will be described more specifically with reference to Examples, but is not limited thereto. Incidentally, “%” is % by mass. In Examples and Comparative Examples, the measurement of the physical properties of antiviral agents and evaluation of the heat resistance thereof, production and evaluation of coating compositions containing the antiviral agents, and production and evaluation of resin compositions containing the antiviral agents were carried out.
- The method for measuring the acid site concentration of the inorganic solid acid powder constituting the antiviral agent is as follows. In each of twenty 20-mL sample bottles, 0.5 g of an inorganic solid acid powder is placed. Ten (10) mL of benzene is added to them, and the liquids are gently shaken and mixed. Then, 0.1 N n-butylamine is added, in different amounts, to the respective sample bottles to make 20 kinds of mixed liquids, and the mixed liquids are stirred by a shaker. After 24 hours, 0.5 mL of a 0.1% methyl red solution diluted with benzene is added to the respective mixed liquids, and color change of methyl red is visually observed. The amount of the added n-butylamine with the largest amount of the added n-butylamine, in which color change of the indicator is not confirmed, is defined as the amount of the base reacted with the acid site, which is expressed as the acid site concentration (mmol/g).
- The method for measuring the acid strength of the inorganic solid acid powder constituting the antiviral agent is as follows. In a test tube, 0.1 g of the sample is taken. Two (2) mL of benzene and 2 drops of a 0.1% benzene solution of each of the following indicators are added to the sample. The liquid is lightly shaken and mixed, and observed in terms of color change. In the case of crystal violet, a 0.1% ethanol solution is used. Since the acid strength is considered to be greater than the strongest acid strength (lowest pKa value) at which color change of the indicator is confirmed and not greater than the weakest acid strength (highest pKa) at which there is no color change of the indicator, the range is recoded as a pKa value. The indicators are methyl red (pKa=4.8), 4-phenylazo-1-naphthylamine (pKa=4.0), dimethyl yellow (pKa=3.3), 4-phenylazo-diphenylamine (pKa=1.5), crystal violet (pKa=0.8), dicinnamyl acetone (pKa=-3.0), benzalacetophenone (pKa=-5.6), and anthraquinone (pKa=-8.2).
- The average particle diameter of the inorganic solid acid powder constituting the antiviral agent is a volume-based median diameter (μm) measured with a laser diffraction type grain size distribution measuring instrument.
- The method for measuring the water content of the inorganic solid acid powder constituting the antiviral agent is as follows. Approximately 5 g of the sample was weighed in an aluminum cup that was constantly weighted at 250° C. in a dryer for 1 hour, dried at 250° C. for 2 hours, and weighed again. A value obtained by dividing the drying decrement by the mass before drying, expressed as %, was defined as the water content of the inorganic solid acid powder.
- The method of evaluating the antiviral effect of the antiviral agent is as follows. Purified water is added to the antiviral agent to adjust the concentration of the inorganic solid acid powder to 0.5 mg/mL. To 900 μL of this liquid, 100 μL of an influenza A virus fluid having a virus infectivity of 2×104 PFU/mL was added, and the mixed liquid is allowed to stand still at 25° C. for 2 hours. Thereafter, the mixed liquid is recovered, and the recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the mixed liquid before standing still for 2 hours is also measured.
- The antiviral effect was determined based on these virus infectivities. Cases where the virus infectivity after standing still for 2 hours was the detection limit or less were ranked as “++”; cases where the antiviral activity value after standing still for 2 hours, i.e., cases where the calculated value of Log (virus infectivity immediately after inoculation)−Log (virus infectivity after 2 hours) was decreased by 1 or more were ranked as “+”; and cases other than “++” and “+” after standing still for 2 hours were ranked as “−”.
- The evaluation of the coating composition 1 was carried out by evaluating the antiviral effect of an antiviral product (antiviral processed fabric) obtained by dip coating this composition on a polyester fabric. In 0.4 g of the antiviral processed fabric before or after washing, 0.2 mL of an influenza A virus fluid having a virus infectivity of 2×104 PFU/mL is penetrated and inoculated and allowed to stand still at 25° C. for 2 hours. Thereafter, the virus fluid is recovered, and this recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the contact liquid before standing still for 2 hours is also measured.
- The antiviral effect was evaluated based on the antiviral activity value obtained by the following formula.
-
Antiviral activity value=Log (virus infectivity immediately after inoculation)−Log (virus infectivity after 2 hours) - Another evaluation of the coating composition was carried out by evaluating the antiviral effect of an antiviral product (antiviral processed film) obtained by applying this composition to a polyester film. Onto a surface of the antiviral processed film having a size of 5 cm×5 cm, 0.4 mL of an influenza A virus fluid having a virus infectivity of 2×104 PFU/mL was dropped. Then, the liquid portion is covered with a polyethylene film having a size of 4 cm x 4 cm. After standing still at 25° C. for 2 hours, the virus fluid dropped on the surface of the antiviral processed film is recovered, and this recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the contact liquid before standing still for 2 hours is also measured.
- The antiviral effect was evaluated based on the antiviral activity value obtained by the following formula.
-
Antiviral activity value=Log (virus infectivity immediately after inoculation)−Log (virus infectivity after 2 hours) - The evaluation of the resin composition containing the antiviral agent was carried out by evaluating the antiviral effect of an antiviral fiber obtained by spinning this composition. In 0.4 g of the antiviral fiber, 0.2 mL of an influenza A virus fluid having a virus infectivity of 2×104 PFU/mL is penetrated and inoculated, and allowed to stand still at 25° C. for 2 hours. Thereafter, the virus fluid is recovered, and this recovered liquid is subjected to the plaque count measurement method to measure the virus infectivity. In addition, the virus infectivity of the contact liquid before standing still for 2 hours is also measured.
- The antiviral effect was evaluated based on the antiviral activity value obtained by the following formula.
-
Antiviral activity value=Log (virus infectivity immediately after inoculation)−Log (virus infectivity after 2 hours) - 1. Production and Evaluation of Antiviral Agent
- As raw materials, sulfuric acid, magnesium sulfate, and water glass were used, and they were mixed and reacted together. Next, the obtained precipitate was filtered, washed with water, dried, and pulverized to obtain a white amorphous magnesium silicate (SiO2/MgO=1.3) powder. Using the obtained amorphous magnesium silicate powder as an antiviral agent (V1), the color L value, average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- A 15% aqueous zirconium oxychloride solution was added to a 75% aqueous phosphoric acid solution, and the mixed solution was aged at 100° C. for 12 hours. Thereafter, the obtained precipitate was filtered, washed with water, dried and crushed to obtain white α-type zirconium phosphate powder. Using the obtained α-type zirconium phosphate powder as an antiviral agent (V2), the color L value, average particle size, water content, acid strength and acid site concentration were measured to evaluate antiviral effect. The results are shown in Table 1.
- A 15% aqueous zirconium oxychloride solution was added to a 75% aqueous phosphoric acid solution, and the mixed solution was aged at 100° C. for 12 hours. Thereafter, the obtained precipitate was washed with water and recovered. Next, this precipitate was stirred in an aqueous silver nitrate solution at 100° C. for 2 hours. Thereafter, the obtained precipitate was filtered, washed with water, dried, and crushed to obtain a white α-type silver zirconium phosphate powder containing 4.2% of silver. Using the obtained α-type silver zirconium phosphate powder as an antiviral agent (V3), the color L value, average particle size, water content, acid strength and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- A 15% aqueous zirconium oxychloride solution was added to a 75% aqueous phosphoric acid solution, and the mixed solution was aged at 100° C. for 12 hours. Thereafter, the obtained precipitate was washed with water and recovered. Next, this precipitate was stirred in an aqueous copper sulfate solution at 100° C. for 2 hours. Thereafter, the resulting precipitate was filtered, washed with water, dried, and crushed to obtain a light blue α-type copper zirconium phosphate powder containing 2.8% of copper. Using the obtained α-type copper zirconium phosphate powder as an antiviral agent (V4), the color L value, average particle diameter, water content, acid strength and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- An aqueous zirconium carbonate solution was added to a 75% aqueous phosphoric acid solution, and the mixed solution was heated under reflux at 98° C. for 24 hours. Thereafter, the resultant precipitate was filtered, washed with water, dried and crushed to obtain a white γ-type zirconium phosphate powder. Using the obtained γ-type zirconium phosphate powder as an antiviral agent (V5), the color L value, average particle size, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- As raw materials, titanyl sulfate and oxalic acid were used, and they were mixed and reacted. Next, the resulting precipitate was filtered and dried, and baked at 500° C. Thereafter, it was pulverized to obtain a white active titanium oxide powder. Using the obtained titanium oxide powder as an antiviral agent (V6), the color L value, average particle size, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- As raw materials, sulfuric acid, magnesium sulfate, and water glass were used, and they were mixed and reacted together. Then, the obtained precipitate was filtered, washed with water, hydrothermally treated, dried and pulverized to obtain a crystalline magnesium silicate (SiO2/MgO=1.3) powder. Using the obtained crystalline magnesium silicate powder as an antiviral agent (V7), the color L value, average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- Sodium hydroxide and sodium silicate were added to aluminum hydroxide, and the mixture was aged at 100° C. for 6 hours. Thereafter, the obtained precipitate was washed with water and recovered. The precipitate was then placed in an aqueous solution of silver nitrate and copper nitrate and stirred at 100° C. for 2 hours. Thereafter, the obtained precipitate was filtered, washed with water, dried, and crushed to obtain a crystalline silver copper aluminum silicate powder containing 2.2% of silver and 6.2% of copper. Using the obtained crystalline silver copper aluminum silicate powder as an antiviral agent (V8), the average particle diameter, water content, acid strength and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- Oxalic acid and a 75% aqueous phosphoric acid solution were added to an aqueous zirconium oxychloride solution. Next, the pH of the mixed liquid was adjusted to 2.7 with caustic soda, and the mixed liquid was heated under reflux at 98° C. for 12 hours. Thereafter, the obtained precipitate was filtered, washed with water, dried and crushed to obtain a NASICON-type zirconium phosphate powder. Using the obtained NASICON-type zirconium phosphate powder as an antiviral agent (V9), the average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 1.
- A powder of titanium oxide “MC-50” (trade name) manufactured by Ishihara Sangyo Kaisha, Ltd. was used as an antiviral agent (V10). The average particle size and acid strength of this powder were measured to evaluate the antiviral effect. The results are shown in Table 1.
- A powder of activated alumina “GNDY-2” (trade name) manufactured by Mizusawa Industrial Chemicals, Ltd. was used as an antiviral agent (V11). The average particle size and acid strength of this powder were measured to evaluate the antiviral effect. The results are shown in Table 1.
-
TABLE 1 Average Color particle Water Acid site Antiviral (L diameter content concentration Acid strength Antiviral agent Inorganic solid acid powder value) (μm) (%) (mmol/g) (pKa) activity Example 1 V1 Amorphous magnesium silicate 97 5.5 9.8 0.07 0.8 to 1.5 + Example 2 V2 α-Type zirconium phosphate 96 0.9 2.2 0.02 −8.2 to −5.6 ++ Example 3 V3 α-Type silver zirconium phosphate 96 0.2 5 0.02 −8.2 to −5.6 ++ Example 4 V4 α-Type copper zirconium 88 0.2 5 0.01 −8.2 to −5.6 ++ phosphate Example 5 V5 γ-Type zirconium phosphate 96 1 4.3 0.007 −5.6 to −3.0 + Example 6 V6 Active titanium oxide 97 0.01 1.5 0.02 1.5 to 3.3 + Comparative V7 Crystalline magnesium silicate 96 2.3 8.1 <0.001 0.8 to 1.5 − Example 1 Comparative V8 Crystalline silver copper aluminum 84 2.9 7.8 <0.001 0.8 to 1.5 − Example 2 silicate Comparative V9 NASICON-type silver zirconium 97 1 0.4 <0.001 −8.2 to −5.6 − Example 3 phosphate Comparative V10 Titanium oxide 98 0.02 0.4 0.003 −5.6 to −3.0 − Example 4 Comparative V11 Activated alumina 95 0.4 1.8 <0.001 0.8 to 1.5 − Example 5 - From Table 1, Examples 1 to 6 using the antiviral agents (V1) to (V6) composed of an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g showed an excellent antiviral activity.
- On the other hand, Comparative Examples 1 to 5 using an antiviral agent composed of an inorganic solid acid having an acid site concentration of 0.005 mmol/g or less did not show antiviral activity.
- From the above, the usefulness of an antiviral agent containing an inorganic solid acid having an acid site concentration of more than 0.005 mmol/g was shown.
- 2. Production and Evaluation of Coating Composition (1)
- The antiviral agent (V1) composed of amorphous magnesium silicate of Example 1 and a urethane emulsion binder having a nonvolatile content of 30% (hereinafter referred to as “NV 30”) were mixed in a solid content mass ratio of 1:1 to produce a coating composition (C1).
- Then, 185 g/m2 of a polyester fabric was immersed in this coating composition (C1) so that the amount of the spread antiviral agent (V1) was 3 g/m2 and dried at 105° C. to produce an antiviral processed fabric.
- The antiviral effect was evaluated for the antiviral processed fabric and the antiviral processed fabric after washing three times by the JIS L0217 103 method. The results are shown in Table 2.
- A coating composition (C2) was produced in the same manner as in Example 7 except that the antiviral agent (V2) composed of α-type zirconium phosphate of Example 2 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C2) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C3) was produced in the same manner as in Example 7 except that the antiviral agent (V3) composed of α-type silver zirconium phosphate of Example 3 was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C3) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C4) was produced in the same manner as in Example 7 except that the antiviral agent (V4) composed of α-type copper zirconium phosphate of Example 4 was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C4) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C5) was produced in the same manner as in Example 7 except that the antiviral agent (V5) composed of γ-type zirconium phosphate of Example 5 was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C5) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C6) was produced in the same manner as in Example 7, except that the antiviral agent (V6) composed of the active titanium oxide of Example 6 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C6) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C7) was produced in the same manner as in Example 7 except that the antiviral agent (V7) composed of crystalline magnesium silicate of Comparative Example 1 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C7) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C8) was produced in the same manner as in Example 7 except that the antiviral agent (V8) composed of crystalline silver copper aluminum silicate of Comparative Example 2 was used instead of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C8) to evaluate the antiviral effect. The results are shown in Table 2.
- A coating composition (C9) was produced in the same manner as in Example 7 except that dodecylbenzyldimethylammonium chloride (quaternary ammonium salt) was used in place of the antiviral agent (V1). Thereafter, an antiviral processed fabric was produced using the coating composition (C9) to evaluate the antiviral effect. The results are shown in Table 2.
- The antiviral effect of an unprocessed polyester fabric was evaluated. The results are shown in Table 2.
-
TABLE 2 Antiviral activity value of antiviral processed fabric Coating After washing composition Non-washing three times Example 7 C1 2.8 2.3 Example 8 C2 4.2< 4.2< Example 9 C3 4.2< 4.2< Example 10 C4 4.2< 4.2< Example 11 C5 4.0 3.5 Example 12 C6 1.1 1.1 Comparative C7 0.2 0.4 Example 6 Comparative C8 0.4 0.4 Example 7 Comparative C9 3.0 0.6 Example 8 Comparative — 0.2 0.3 Example 9 - As can be seen from Table 2, since the antiviral processed fabrics of Examples 7 to 12 exhibit higher antiviral activity values than that of the polyester fabric of Comparative Example 9, the coating composition is useful. In addition, from the fact that the antiviral processed fabrics after washing three times of these fabrics also show high antiviral activity values, it was shown that the antiviral agent in the coating is hard to flow out with water.
- On the other hand, the antiviral processed fabrics of Comparative Examples 6 and 7 showed a low antiviral activity value both in non-washing and after washing three times, and the formed coating did not exhibit antiviral effect. In addition, since Comparative Example 8 showed the antiviral activity value in non-washing, the formed coating exhibited antiviral effect, but the antiviral activity value after washing three times became very small, and thus it is thought that the antiviral agent in the coating composition flowed out with water.
- 3. Production and Evaluation of Coating Composition (2)
- The antiviral agent (V3) composed of α-type silver zirconium phosphate of Example 3 and the urethane emulsion binder of NV 30 were mixed so that the solid content mass ratio was 1:1 to produce a coating composition (C11). Then, the coating composition (C11) was coated onto a polyester film so that the amount of the spread antiviral agent (V3) was 0.5 g/m2 and air-dried to obtain an antiviral processed film. Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- A coating composition (C12) was obtained in the same manner as in Example 13 except that the antiviral agent (V8) composed of crystalline silver copper aluminum silicate of Comparative Example 2 was used instead of the antiviral agent (V3). Then, an antiviral processed film was produced using this coating composition (C12). Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- A coating composition (C13) was obtained in the same manner as in Example 13 except that the antiviral agent (V10) composed of titanium oxide of Comparative Example 4 was used instead of the antiviral agent (V3). Then, an antiviral processed film was produced using this coating composition (C13). Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- A coating composition (C14) was obtained in the same manner as in Example 13 except that the antiviral agent (V11) composed of activated alumina of Comparative Example 5 was used in place of the antiviral agent (V3). Next, an antiviral processed film was produced using this coating composition (C14). Then, the antiviral activity value of this antiviral processed film was measured. The results are shown in Table 3.
- The urethane emulsion binder was coated onto a polyester film so that the amount of the spread urethane resin was 1 g/m2, and air-dried to produce a film having a coating made of a urethane resin. Then, the antiviral activity value was measured. The results are shown in Table 3.
-
TABLE 3 Antiviral activity Antiviral activity value Coating value of antiviral of film containing no composition processed film antiviral agent Example 13 C11 4.4< — Comparative C12 0.3 — Example 10 Comparative C13 0.3 — Example 11 Comparative C14 0.3 — Example 12 Comparative — — 0.1 Example 13 - From Table 3, the antiviral processed film of Example 13 showed an antiviral activity value of more than 4.4, and it was seen that the coating composition containing the antiviral agent of the present invention suitably forms a coating exhibiting antiviral effect.
- On the other hand, the antiviral activity values of the antiviral processed films of Comparative Examples 10 to 12 were less than 0.3, and it was seen that the antiviral effect was insufficient.
- 4. Production and Evaluation of Resin Composition
- The antiviral agent (V2) composed of α-type zirconium phosphate of Example 2 was blended in a proportion of 20% in a polyester resin “MA 2101” manufactured by Mitsubishi Rayon Co., Ltd., and the blend was kneaded at a temperature of 290° C. using a twin screw extrusion molding machine to prepare a master batch in a pellet form. Then, the master batch and the polyester resin were mixed to produce a resin composition (R1) containing 3% of α-type zirconium phosphate. Thereafter, the obtained resin composition (R1) was melt-spun to produce a 36f multifilament at 290° C. Further, this filament was stretched to produce a 2-denier antiviral processed fiber as an antiviral product. Then, the antiviral activity value of this antiviral processed fiber was measured. The results are shown in Table 4.
- A master batch was produced in the same manner as in Example 14 except that the antiviral agent (V3) composed of α-type silver zirconium phosphate of Example 3 was used instead of the antiviral agent (V2). Next, similarly, a resin composition (R2) containing 2% of the antiviral agent (V3) was obtained. Thereafter, this resin composition (R2) was used to produce a 2-denier antiviral processed fiber as an antiviral product. Then, the antiviral activity value of this antiviral processed fiber was measured. The results are shown in Table 4.
- A master batch was produced in the same manner as in Example 14, except that the antiviral agent (V9) composed of NASICON-type silver zirconium phosphate of Comparative Example 3 was used instead of the antiviral agent (V2). Next, similarly, a resin composition (R3) containing 3% of the antiviral agent (V9) was obtained. Thereafter, this resin composition (R3) was used to produce a 2-denier processed fiber. Then, the antiviral activity value of this processed fiber was measured. The results are shown in Table 4.
- The polyester resin alone was used for spinning to obtain a 2-denier fiber. Thereafter, the antiviral activity value of this fiber was measured. The results are shown in Table 4.
-
TABLE 4 Antiviral activity Antiviral activity value Resin value of antiviral of fiber containing no composition processed fiber antiviral agent Example 14 R1 4.2< — Example 15 R2 3.2 — Comparative R3 0.2 — Example 14 Comparative — — 0.1 Example 15 - As can be seen from Table 4, since the antiviral processed fibers of Examples 14 and 15 have excellent antiviral activity values of 3.0 or more, the resin composition of the present invention gives an antiviral product exhibiting antiviral effect. In addition, since the resin composition was melt-spun, it can be seen that the antiviral agent of the present invention is excellent in heat resistance and processability.
- 5. Heat Resistance Test on Antiviral Agent
- The antiviral agent (V2) composed of the α-type zirconium phosphate powder of Example 2 was heated at 350° C. for 1 hour by using an electric furnace and then cooled to room temperature. With respect to this heat-treated product, the color L value, average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 5.
- The antiviral agent (V3) composed of the α-type silver zirconium phosphate powder of Example 3 was heated at 350° C. for 1 hour by using an electric furnace and then cooled to room temperature. With respect to this heat-treated product, the color L value, average particle diameter, water content, acid strength, and acid site concentration were measured to evaluate the antiviral effect. The results are shown in Table 5.
-
TABLE 5 Average particle Water Acid site Acid Antiviral agent Color diameter content concentration strength Antiviral (Inorganic solid acid powder) (L value) (μm) (%) (mmol/g) (pKa) activity Example V2 (α-type zirconium 96 0.9 0.7 0.02 −8.2 to −5.6 ++ 16 phosphate) Example V3 (α-type silver zirconium 95 0.2 1.7 0.02 −8.2 to −5.6 ++ 17 phosphate) - From Table 5, α-type zirconium phosphate and α-type silver zirconium phosphate are hardly changed in physical properties other than the water content even when heated at 350° C. and also have antiviral activity, and thus it can be seen that they are excellent in heat resistance.
- As is apparent from the above examples, the antiviral agent, coating composition, and resin composition of the present invention exhibit excellent antiviral effect. In addition, it was shown that the antiviral agent of the present invention has excellent processability and heat resistance.
- Influenza viruses and the like can be inactivated by using the antiviral agent of the present invention in materials related to human living spaces, such as textile products and home building materials. The coating composition or resin composition containing the antiviral agent of the present invention are suitable for the production of antiviral products including textile products such as clothing, beddings and masks; filters used in air purifiers, air conditioners and the like; interior products such as wallpapers, curtains and carpets and furniture; automotive interior materials; building materials, and the like.
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-039362 | 2016-03-01 | ||
JP2016039362 | 2016-03-01 | ||
PCT/JP2017/003686 WO2017150063A1 (en) | 2016-03-01 | 2017-02-02 | Antiviral agent, coating composition, resin composition and antiviral product |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/003686 A-371-Of-International WO2017150063A1 (en) | 2016-03-01 | 2017-02-02 | Antiviral agent, coating composition, resin composition and antiviral product |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/238,281 Division US12041936B2 (en) | 2016-03-01 | 2021-04-23 | Antiviral agent, coating composition, resin composition and antiviral product |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190045793A1 true US20190045793A1 (en) | 2019-02-14 |
Family
ID=59743750
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/078,534 Abandoned US20190045793A1 (en) | 2016-03-01 | 2017-02-02 | Antiviral agent, coating composition, resin composition and antiviral product |
US17/238,281 Active 2037-09-30 US12041936B2 (en) | 2016-03-01 | 2021-04-23 | Antiviral agent, coating composition, resin composition and antiviral product |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/238,281 Active 2037-09-30 US12041936B2 (en) | 2016-03-01 | 2021-04-23 | Antiviral agent, coating composition, resin composition and antiviral product |
Country Status (7)
Country | Link |
---|---|
US (2) | US20190045793A1 (en) |
EP (1) | EP3424326A4 (en) |
JP (1) | JP6721035B2 (en) |
KR (1) | KR102704673B1 (en) |
CN (2) | CN108697094A (en) |
TW (1) | TWI801335B (en) |
WO (1) | WO2017150063A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020137157A1 (en) * | 2018-12-27 | 2020-07-02 | 東亞合成株式会社 | Anti-non-enveloped virus agent and composition containing same, and anti-viral product and method for producing same |
JP6799200B1 (en) * | 2019-04-04 | 2020-12-09 | リケンテクノス株式会社 | Antiviral coating film forming paints, coating films, and laminated films |
CN110934153B (en) * | 2019-12-04 | 2021-06-15 | 上海朗亿功能材料有限公司 | Zirconium phosphate carrier, zirconium phosphate copper-carrying antibacterial agent, zirconium phosphate antibacterial agent, preparation method and application thereof |
CN111150139A (en) * | 2020-02-17 | 2020-05-15 | 深圳市令加信息技术有限公司 | Face mask |
CN112871133A (en) * | 2020-04-21 | 2021-06-01 | 中国科学院大连化学物理研究所 | Preparation method and application of macroporous inorganic functional material for adsorbing inactivated viruses |
CN112890322B (en) * | 2020-04-21 | 2023-04-07 | 中国科学院大连化学物理研究所 | Mask product for adsorbing inactivated virus |
CN112878037B (en) * | 2020-04-21 | 2023-06-06 | 中国科学院大连化学物理研究所 | Polypropylene melt-blown cloth for adsorbing inactivated virus and production method and application thereof |
GB2596076B (en) * | 2020-06-15 | 2024-09-18 | Louver Lite Ltd | Coating composition |
CN111500140A (en) * | 2020-06-19 | 2020-08-07 | 广东润立新材科技有限公司 | Novel antibacterial and antiviral multifunctional coating and preparation method thereof |
JPWO2022075438A1 (en) * | 2020-10-08 | 2022-04-14 | ||
JP2022093249A (en) * | 2020-12-11 | 2022-06-23 | 東亞合成株式会社 | Active energy ray-curable antiviral composition |
JP7575285B2 (en) | 2021-02-04 | 2024-10-29 | 古河電気工業株式会社 | Polyolefin-based extruded resin foam with excellent foamability in which an antiviral phosphate compound is exposed on the surface of the skin layer, and laminate using said polyolefin-based extruded resin foam |
JP6973835B1 (en) * | 2021-03-19 | 2021-12-01 | 株式会社Yooコーポレーション | Antiviral agent |
KR102335588B1 (en) * | 2021-03-23 | 2021-12-06 | 주식회사 케미슈티칼 | Antimicrobial water dispersion composition including copper citrate as an active ingredient |
JP7545359B2 (en) | 2021-04-01 | 2024-09-04 | Tbカワシマ株式会社 | Antibacterial and antiviral sheets |
JP2022171189A (en) * | 2021-04-30 | 2022-11-11 | 株式会社コトブキ | Artificially regenerated wood |
WO2023286642A1 (en) * | 2021-07-16 | 2023-01-19 | 国立研究開発法人物質・材料研究機構 | Antiviral coating agent, antiviral agent, laminate, and packaging or container |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5919422A (en) * | 1995-07-28 | 1999-07-06 | Toyoda Gosei Co., Ltd. | Titanium dioxide photo-catalyzer |
US20100272828A1 (en) * | 2007-10-05 | 2010-10-28 | Toagosei Co., Ltd. | Silver-containing inorganic antibacterial |
US20150351386A1 (en) * | 2013-03-13 | 2015-12-10 | Panasonci Intellectual Property Management Co.,Ltd. | Copper complex titanium oxide dispersion liquid, coating agent composition, and antibacterial/antiviral member |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03190806A (en) * | 1989-12-21 | 1991-08-20 | Rasa Kogyo Kk | Antibacterial agent having deodorant property |
US5296238A (en) * | 1991-02-26 | 1994-03-22 | Toagosei Chemical Industry Co., Inc. | Microbicides |
CN1085709C (en) * | 1997-09-09 | 2002-05-29 | 赵全玺 | Inorganic coating |
JP4879386B2 (en) | 1999-06-30 | 2012-02-22 | 花王株式会社 | Viricide composition |
EP1064845B1 (en) | 1999-06-30 | 2003-09-10 | Kao Corporation | Virucidal and sporicidal composition |
CN1128188C (en) * | 1999-07-21 | 2003-11-19 | 赵全玺 | Modified inorganic phosphate coating material |
JP2001233719A (en) * | 1999-12-13 | 2001-08-28 | Natl Inst Of Advanced Industrial Science & Technology Meti | Disinfectant and disinfection method |
JP2003221304A (en) | 2002-01-28 | 2003-08-05 | Catalysts & Chem Ind Co Ltd | Antiviral agent, paint and substrate containing the same |
US20060210500A1 (en) | 2003-04-18 | 2006-09-21 | Merck Patent Gmbh | Formulations |
WO2004091567A2 (en) * | 2003-04-18 | 2004-10-28 | Merck Patent Gmbh | Cosmetic formulations comprising antimicrobial pigments |
WO2005037296A1 (en) * | 2003-10-16 | 2005-04-28 | Toagosei Co., Ltd. | Anti-coronavirus agent |
EP1880213A4 (en) | 2005-01-05 | 2010-06-23 | Robert Holladay | Silver/water, silver gels and silver-based compositions; and methods for making and using the same |
JP4646210B2 (en) * | 2005-02-24 | 2011-03-09 | 多木化学株式会社 | Phage virus inactivator |
JP4775376B2 (en) * | 2005-04-28 | 2011-09-21 | 東亞合成株式会社 | Silver inorganic antibacterial agents and antibacterial products |
US20070243263A1 (en) * | 2006-04-14 | 2007-10-18 | Agion Technologies, Inc. | Antiviral Methods |
NZ567962A (en) * | 2006-04-24 | 2011-05-27 | Nm Tech Ltd Nanomaterials And Microdevices Technology | Functional nanomaterials with antibacterial and antiviral activity |
JP2007307540A (en) * | 2006-05-22 | 2007-11-29 | Ichiro Moriya | Photocatalyst showing high activity under exposure to white fluorescent lighting |
MX2008014905A (en) | 2006-05-24 | 2009-03-05 | Dial Corp | Composition and method for controlling the transmission of noroviruses. |
WO2007139847A2 (en) | 2006-05-25 | 2007-12-06 | The Dial Corporation | Method of enhancing the control of viruses on skin |
WO2008054545A2 (en) | 2006-05-26 | 2008-05-08 | The Dial Corporation | Method of inhibiting the transmission of viruses |
CN101453888A (en) * | 2006-05-30 | 2009-06-10 | 日晷公司 | Alcohol-containing antimicrobial compositions having improved efficacy |
US8034844B2 (en) | 2006-05-30 | 2011-10-11 | The Dial Corporation | Compositions having a high antiviral efficacy |
MX2008015336A (en) | 2006-06-02 | 2008-12-16 | Dial Corp | Method of inhibiting the transmission of influenza virus. |
MX2008015455A (en) | 2006-06-05 | 2009-01-12 | Dial Corp | Methods and articles having a high antiviral and antibacterial efficacy. |
EP2029148A2 (en) | 2006-06-16 | 2009-03-04 | Merck Patent GmbH | Antimicrobial carbon |
CN101622016B (en) * | 2007-03-01 | 2014-01-29 | 夏普株式会社 | Method for regulation of biological activity, and various apparatuses utilizing the method |
JP2009267338A (en) * | 2007-09-28 | 2009-11-12 | Nippon Chemicon Corp | Electrode body, and electric double layer capacitor |
JP4265685B2 (en) * | 2007-11-26 | 2009-05-20 | 住友化学株式会社 | Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same |
JP5723097B2 (en) | 2008-12-25 | 2015-05-27 | 株式会社Nbcメッシュテック | Antiviral paint and parts coated with antiviral paint and dried |
US8313780B2 (en) | 2009-05-21 | 2012-11-20 | Toagosei Co., Ltd. | Silver-based inorganic antimicrobial agent, method for preparing the same and antimicrobial product |
JP5570006B2 (en) | 2009-12-24 | 2014-08-13 | 国立大学法人 東京大学 | Virus inactivating agent |
US20130273798A1 (en) | 2010-10-14 | 2013-10-17 | Toagosei Co., Ltd. | Anti-allergen agent |
US20130260370A1 (en) | 2010-12-06 | 2013-10-03 | Manjiri T. Kshirsagar | Microorganism concentration process and device |
WO2013094573A1 (en) | 2011-12-22 | 2013-06-27 | 昭和電工株式会社 | Copper-and-titanium-containing composition and production method therefor |
JP5194185B1 (en) * | 2012-06-20 | 2013-05-08 | 株式会社Nbcメッシュテック | Antiviral composition |
CN105008049A (en) * | 2013-03-15 | 2015-10-28 | 昭和电工株式会社 | Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same |
JP2015059089A (en) * | 2013-09-17 | 2015-03-30 | 昭和電工株式会社 | Antiviral composition, method for preparing the same, and method for inactivating virus |
CN105899077A (en) * | 2014-02-20 | 2016-08-24 | 昭和电工株式会社 | Antiviral composition, antiviral agent, photocatalyst and virus inactivation method |
JP6023933B1 (en) | 2015-03-31 | 2016-11-09 | 本田技研工業株式会社 | Textile products and textile processing agents |
-
2017
- 2017-02-02 US US16/078,534 patent/US20190045793A1/en not_active Abandoned
- 2017-02-02 CN CN201780013766.5A patent/CN108697094A/en active Pending
- 2017-02-02 CN CN202110958031.8A patent/CN113647408B/en active Active
- 2017-02-02 EP EP17759534.5A patent/EP3424326A4/en active Pending
- 2017-02-02 JP JP2018502963A patent/JP6721035B2/en active Active
- 2017-02-02 KR KR1020187026980A patent/KR102704673B1/en active Active
- 2017-02-02 WO PCT/JP2017/003686 patent/WO2017150063A1/en active Application Filing
- 2017-02-16 TW TW106105115A patent/TWI801335B/en active
-
2021
- 2021-04-23 US US17/238,281 patent/US12041936B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5919422A (en) * | 1995-07-28 | 1999-07-06 | Toyoda Gosei Co., Ltd. | Titanium dioxide photo-catalyzer |
US20100272828A1 (en) * | 2007-10-05 | 2010-10-28 | Toagosei Co., Ltd. | Silver-containing inorganic antibacterial |
US20150351386A1 (en) * | 2013-03-13 | 2015-12-10 | Panasonci Intellectual Property Management Co.,Ltd. | Copper complex titanium oxide dispersion liquid, coating agent composition, and antibacterial/antiviral member |
Also Published As
Publication number | Publication date |
---|---|
EP3424326A4 (en) | 2019-08-14 |
TWI801335B (en) | 2023-05-11 |
JPWO2017150063A1 (en) | 2019-01-24 |
TW201736526A (en) | 2017-10-16 |
CN113647408A (en) | 2021-11-16 |
US12041936B2 (en) | 2024-07-23 |
JP6721035B2 (en) | 2020-07-08 |
WO2017150063A1 (en) | 2017-09-08 |
CN113647408B (en) | 2024-05-28 |
EP3424326A1 (en) | 2019-01-09 |
US20210235702A1 (en) | 2021-08-05 |
KR20180117644A (en) | 2018-10-29 |
KR102704673B1 (en) | 2024-09-10 |
CN108697094A (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12041936B2 (en) | Antiviral agent, coating composition, resin composition and antiviral product | |
KR101893232B1 (en) | Anti-allergen agent | |
JP5434192B2 (en) | Anti-allergenic composition and anti-allergenic product | |
US20100209530A1 (en) | Anti-allergen agent | |
JP3956973B2 (en) | Deodorant with excellent water resistance | |
JP2007320977A (en) | Chitosan powder and water-based coating agent | |
KR20100008647A (en) | Composition for coating textile and textile product comprising zeolite | |
JP4534454B2 (en) | Deodorant suitable for deodorization of sulfurous malodor | |
JP5854590B2 (en) | Antibacterial / deodorant treatment agent and antibacterial / deodorant treatment article | |
JP3371460B2 (en) | Antibacterial agent and antibacterial resin composition | |
JP2018099659A (en) | Absorbent for acidic gas and deodorant processed product | |
JP6667866B2 (en) | Aqueous composition and powder composition | |
JP6392430B2 (en) | Antiviral agent | |
JP3571554B2 (en) | Deodorant / antibacterial agent composition, deodorant / antibacterial resin composition and deodorant / antibacterial resin molded product | |
JP2020110765A (en) | Gas adsorbent | |
JP6765730B2 (en) | Aqueous and powder compositions | |
JP2008202195A (en) | Wet wiper | |
US20070116783A1 (en) | Silver-based inorganic antibacterial agent dispersion | |
KR100421707B1 (en) | Deodorant and antimicrobial compositions | |
JP3084340B2 (en) | Antimicrobial composition | |
KR20240145994A (en) | Method for producing a resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOAGOSEI CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUGIURA, KOJI;REEL/FRAME:046652/0951 Effective date: 20180713 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |