US20190030374A1 - Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device - Google Patents
Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device Download PDFInfo
- Publication number
- US20190030374A1 US20190030374A1 US15/536,996 US201515536996A US2019030374A1 US 20190030374 A1 US20190030374 A1 US 20190030374A1 US 201515536996 A US201515536996 A US 201515536996A US 2019030374 A1 US2019030374 A1 US 2019030374A1
- Authority
- US
- United States
- Prior art keywords
- transducers
- ultrasound
- implantable
- holder
- ultrasound generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0092—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0021—Neural system treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0021—Neural system treatment
- A61N2007/0026—Stimulation of nerve tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0043—Ultrasound therapy intra-cavitary
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0047—Ultrasound therapy interstitial
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0073—Ultrasound therapy using multiple frequencies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0078—Ultrasound therapy with multiple treatment transducers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
Definitions
- the present invention relates to a device, an apparatus and a method for the treatment of brain disorders.
- DBS Deep Brain Stimulation
- TES Transcranial Electrical Stimulation
- TMS Transcranial Magnetic Stimulation
- WO 2006/092061 A1 implantable devices to cause lasting changes in neural functions through several types of physical stimulation (mechanical impulsion on cortex, electrical deep brain stimulation, drug infusion, for neurological deficit rehabilitation). It has also been suggested in WO 2009/067323 A1 devices for creating a skull/brain interface, which devices (implantable into the skull) are totally passive windows or channels permeable to external physical means (electric ionic current, radiofrequency . . . ) in order to neuromodulate brain activity for movement disorder or epilepsy pathologies.
- Surgical treatments of the brain require open surgical procedures in the skull of patients.
- Such open surgical procedures comprise a craniotomy, which includes performing a bone flap.
- the surgeon firstly performs a trepanation in the skull by piercing several burr holes, and secondly unsticks the durra matter underneath.
- burr holes are usually 10 to 12 mm diameter each.
- the fragmented bone chip of each burr hole is kept and used at the end of the surgery to fill bone defects, which suffer poor, long-term, ossification.
- the bone flap is repositioned and fixed either with trans-skull stitches or with titanium micro-plates.
- the bone defect areas are filled up either with a synthetic copolymer or with bone powder obtained from the drilling of the burr holes at the beginning of the procedure.
- Ultra keyhole surgical procedures do not require performing a bone flap, but only a burr hole.
- This burr hole can be very slight (4 mm diameter) in cases of stereotactic biopsy, but can be larger (between 8 to 12 mm diameter) for endoscopic procedures required for partial ablation of tumors.
- these treatments include intravenous administration of highly active drugs to the patients.
- these drugs are not specifically active onto the tumors and they also have considerable negative effects in the whole body of patients, with very unpleasant side-effects like nausea, hair loss etc. . . . .
- BBB blood-brain barrier
- WO-2011/101492 describes a small rigid apparatus for the treatment of brain disorders which comprises an implantable generator having an ultrasound generating device positioned inside a casing and means for fastening the casing into the skull thickness.
- Such a device is well adapted for applications where a zone of the brain to be treated is of limited extension, for example less than 10 cubic centimetres.
- a zone of the brain to be treated is of limited extension, for example less than 10 cubic centimetres.
- WO-2011/101492 might not be adequate to address such an extension of the treatment zone.
- U.S. Pat. No. 7,878,977 describes a flexible ultrasound transducer array for imaging applications. It discloses a condensed ultrasound transducer arrangement. Such a design is ideal for its ultrasound focusing properties, which is useful for imaging applications, but is not suitable for a diffuse unfocused treatment.
- the present invention aims at offering an improved apparatus which can be used for addressing larger zones of the brain in view of providing treatments for brain tumors and other brain disorders (i.e. Alzheimer's Disease).
- Large zones may be addressed by an apparatus having several transducers.
- the presence of several transducers may be problematic in view of the risk that the ultrasound waves generated by such transducers may combine in such a way to create, locally in the treatment zone, unacceptably high pressures zones and/or the deposition of too much ultrasound power within a given tissue volume, resulting in unwanted or excessive heating of the tissue.
- An originality of the present disclosure is based on an ultrasound device designed to be placed and slid under the skull on the brain and meninges surface.
- the invention provides for an apparatus for the treatment of brain disorders, comprising:
- the group of transducers consists of several transducers which are commonly driven by a same electrical drive signal, and which are therefore connected to the generator system by a common electrical connection circuit of the implantable ultrasound generating treating device, where the electric drive signal serves both as power signal and as a control signal for operating selectively at least one or the other of a first transducer or sub-group of transducers within said group of transducers, and of a second transducer or sub-group of transducers within said group of transducers.
- the same electric drive signal in the common electrical connection circuit of the implantable ultrasound generating treating device serves both as power signal and as a control signal for selectively activating at least one or the other of a first transducer or sub-group of transducers within said group of transducers, and of a second transducer or sub-group of transducers within said group of transducers.
- the invention provides an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, wherein the implantable ultrasound generating device comprises at least one group of several ultrasound generating transducers which are connectable by a common electrical connection circuit to a generator system delivering electric drive signals driving the ultrasound generation of the transducers, and wherein the ultrasound generating transducers each have one or several operating frequencies.
- the ultrasound generating transducers may comprise, within said at least one group of transducers, at least
- the invention provides an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, characterized in that:
- the invention provides an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, characterized in that:
- first and second flexing axis have directions forming an acute angle of at least 30°. More typically said first and second flexing axis have perpendicular directions.
- any of such apparatus and/or implantable device as above may further comprise one or several of the following features:
- the invention also relates to a method for treating brain disorders, characterized in that it comprises the steps of:
- the method of the invention can be carried out at the end of a traditional neurosurgical procedure.
- the implantable generator is introduced in a burr hole performed in the skull of a patient or, when needed, in holes performed for a craniotomy procedure just before the skin closure of the patient.
- Such generating treating device emits ultrasound waves for treating the brain, for example an area of the brain previously accessed by the surgeon to treat a brain pathology, and for example a brain tumor.
- the emission of ultrasound waves in the method of the present invention proves particularly efficient in providing blood brain barrier opening, which forms a first prominent application of said method.
- a second prominent application is to activate ultrasound sensitive nanoparticles.
- Other prominent applications include inducing slight continuous hyperthermia to induce vasodilation, stimulate local immunity, and/or activate thermosensitive nanoparticles.
- the implantable treating device being implanted under the patient's skull, the ultrasound energy emitted in the brain is not absorbed by the cranial bone wall.
- a method according to the invention may further include injecting at least one contrast agent in the patient's blood before or during ultrasound waves' emission to trigger and/or enhance opening of the haematoencephalic barrier (also called blood brain barrier, alias BBB) of the treated brain.
- the haematoencephalic barrier also called blood brain barrier, alias BBB
- the method may further comprise a step of intravenously injecting a drug, such as an anti-tumorous drug, in the blood of a patient before, during, or immediately after ultrasound emission in the brain.
- a drug such as an anti-tumorous drug
- a drug thus injected may comprise therapeutic agents coated with ultrasound sensitive and/or thermosensitive release or carrier agents.
- emitting ultrasound waves with the implantable treating device into the brain once the drug treatment has diffused in the patient's blood allows releasing the therapeutic agents only into the selected area of the brain to be treated, this area being defined as the area covered by the ultrasound emission.
- intravenous systemic anti-tumorous chemotherapy is usually administered after surgery with products like Temodal (Registered Trademark) or Avastin (Registered Trademark).
- FIG. 1 represents schematically a first embodiment of the apparatus of the present invention
- FIG. 2 represents schematically an example of the implantation of a device according to the invention in the head of patient
- FIGS. 3 to 6 represent various variants of an ultrasound emitting grid for a device according to the invention when viewed in cross section;
- FIGS. 7 and 8 represent schematic top views of two further variants of a grid for a device according to the invention.
- FIG. 9 represents a schematic side view of a further variant of a grid for a device according to the invention.
- FIG. 10 represents a schematic top view of a further variant of a grid for a device according to the invention.
- FIGS. 11A and 11B represent two further variants of an ultrasound emitting grid for a device according to the invention when viewed in cross section;
- FIG. 12 is a time chart showing sequential activation of different transducers or sub-groups of transducers
- FIG. 13 represents schematically an example of the implantation of an apparatus according to the invention, comprising an implantable generator
- FIGS. 14, 15 and 16 represent schematically a further embodiment of an implantable ultrasound emitting grid according to the invention.
- FIG. 17 represents schematically an implantable switch for an implantable ultrasound emitting grid and/or apparatus of the present invention
- FIG. 18 represents schematically an example of an electric drive signal voltage
- FIG. 19 represents schematically an example of an electric drive signal voltage comprising a switch energizing signal
- FIG. 20 represents schematically an example of a switch energizing signal voltage generated from an electric drive signal
- FIG. 21 represents schematically an example of a clock signal voltage generated from an electric drive signal.
- FIG. 1 On FIG. 1 are shown the main components of an apparatus for the treatment of a brain disorder, comprising an exemplary embodiment of an implantable ultrasound generating treating device 12 according to the invention.
- This embodiment of an apparatus for the treatment of brain disorders comprises an extracorporeal generator system 10 , which may for example have a generator and a power controller, to supply electricity to the ultrasound generating treating device 12 and to set and control its working parameters.
- the implantable ultrasound generating treating device 12 is suitable for implantation under the skull of a patient, preferably under the skull bone, for example in the sub-dural space and/or at least partly in place of a portion of the dura-mater, whereas the generator system may be maintained external to the skull.
- the generator system 10 and the implantable ultrasound generating treating device 12 are to be connected electrically.
- the electrical connection of the shown example is a more conventional cable connection. Such electrical connection could be permanent.
- electrical connection is preferably achieved through a connector device 14 of the generator system 10 and a connection receiver 16 of the implantable device 12 which can be connected and disconnected.
- the connector device 14 and the connection receiver 16 may be physically coupled to achieve electrical connection and may be decoupled without the need to remove the implantable device 12 from the skull of the patient.
- the connection receiver 16 thus forms a socket of a plug-and-socket connection, while the connector device 14 forms the plug of a plug-and-socket connection.
- the generator system 10 does not need to be adjacent to the head of the patient, including during operation of the apparatus.
- the connector device 14 may thus be connected to generator system 10 by a cable 18 having a suitable length allowing for example for the generator system 10 to be arranged near the patient's chest during operation of the apparatus.
- the cable may thus be at least 50 centimetres long, preferably longer than one meter.
- the implantable ultrasound generating treating device 12 comprises several ultrasound generating transducers 20 held by a common holder 22 extending along a surface of extension.
- the ultrasound generating transducers 20 and the common holder 22 form together an ultrasound emitting grid.
- the ultrasound generating transducers 20 are arranged on the common holder 22 so as to be spread, preferably at regular intervals, along most of the surface of extension of the ultrasound emitting grid.
- the ultrasound generating transducers 20 are preferably spaced apart from each other by a non-zero distance on the common holder.
- the implantable ultrasound generating treating device 12 also comprises an electrical connection network for connecting the ultrasound generating transducers 20 to the generator system 10 delivering electric drive signals.
- the electrical connection network starts from the connection receiver 16 and delivers electric signals to the transducers for driving the ultrasound generation of the transducers.
- an electric drive signal may serve both as power signal and as a control signal.
- the electric connection network may comprise one or several electrically independent electric connection circuits 24 , where it will be understood that a given electric connection circuit 24 is a circuit where a common electric drive signal is circulating.
- the electric connection network will comprise only one independent electric connection circuit 24 , so that the electric connection between implantable ultrasound generating device 12 and the generator system, here through the connector 14 and the connection receiver 16 can be made as simple as possible.
- the electric connection network may comprise several independent electric connection circuits. This may be useful for example in case of a great number of transducers or in a case where the implantable ultrasound generating device 12 comprises several independent holders. In such a case, each independent electric connection circuit will have its own independent electric connection to the generator system 10 and the generator system may deliver separate and different electric drive signals to each independent electric connection circuit.
- connection receiver 16 is separate from the holder 22 . Therefore, the electric connection circuit 24 comprises at least one cable 26 , most commonly made of one pair of wires where one wire corresponds to one independent electrical channel, which extends from the holder 20 to the connection receiver 16 . Preferably, there is a single cable 26 , although it may comprise several electrically separate wires bundled together.
- the cable 26 of electric connection circuit 24 separates into connection lines 28 for delivering an electric drive signal to the individual transducers 20 of a given group of transducers.
- a group of transducers will be defined as several transducers which are commonly driven by a same electrical drive signal, and which are therefore connected by a common electrical connection circuit 24 to the generator system.
- the connection lines 28 form ramifications of a single electric circuit which is common for one group of transducers, as illustrated in FIG. 1 .
- connection lines 28 can be mounted on a surface of the holder 22 or can be at least partly, but preferably fully, embedded in the holder 22 , thus forming part of the ultrasound emitting grid.
- the generator 10 and preferably the entire generator system could also be implantable. It could be implanted in the chest of a patient.
- the implantable ultrasound generating device 12 and the implantable generator 10 could be electrically connected by a cable with at least one disconnectable connection, such as a plug- and socket connection.
- the cable 26 could be implanted within the patient's body, along all its length from the ultrasound generating device 12 and the implantable generator 10 , i.e. under the skin.
- the cable could be permanently connected to the ultrasound generating device 12 and could comprise a plug to be connected on a socket of the generator.
- the cable could also be, in part, external to the body between the implantable ultrasound generating device 12 and the implantable generator system.
- FIG. 2 is a schematic section view of a portion of an animal or human head where have been represented the skull bone 1 , covering the brain 2 , into which a burr hole 3 has been drilled to perform a regular craniotomy.
- the skull bone 1 covering the brain 2 , into which a burr hole 3 has been drilled to perform a regular craniotomy.
- the meninges 4 which may typically include, from the skull 1 to the brain 2 , the dura-mater 5 , the arachnoid mater 6 and of the pia mater 7 .
- the holder 22 and its ultrasound generating transducers 20 is to be implanted under the skull, preferably under the skull bone 1 .
- the connection receiver 16 is of course implantable in the skull, but it may more particularly, as shown in FIG. 2 , be designed to be received within the aperture of the burr hole 3 .
- the connection receiver is preferably to be located below the skin 8 which covers the skull.
- the holder 22 extends along a surface of extension which is preferably parallel, or essentially parallel, to an internal surface of the skull bone 1 .
- the holder 22 is an element which holds several ultrasound generating transducers 20 which are to be located at different locations along the surface of extension of the holder.
- the holder 22 is able to maintain a relative distance between the various transducers 20 .
- the holder 22 may allow some amount of displacement between the transducers 20 it holds.
- the ultrasound emitting grid may be a rigid system such as the exemplary embodiments described in WO-2011/101492.
- the grid may be received in a burr-hole made in the skull bone. This grid is then received at least in part within the thickness of the skull bone.
- the holder shown in the figures of this application could be rigid, i.e. not flexible.
- the holder 22 is advantageously flexible.
- the ultrasound emitting grid as a whole, including the ultrasound generating transducers 20 and, when applicable, the connection lines 28 for delivering electric current to the individual transducers is flexible.
- the holder 22 and the ultrasound emitting grid are preferably manually deformable between at least a first spatial configuration, or shape, to at least a second spatial configuration or shape, meaning that, before its implantation or during its implantation, the holder 22 may be deformed to a desired shape by the mere application of biasing or deformation forces which are comparable to those which may be easily applied by hand.
- a surgeon implanting such ultrasound emitting grid should be able to deform the holder 22 to give it a certain spatial configuration without resort to any kind of tool. This does not prevent however that deformation and/or implantation of the holder 22 can be deformed/implanted using tools typically employed in brain surgery, especially tools for performing remote-control surgery.
- the holder 22 and thus the ultrasound emitting grid, is reversibly deformable such that, after it has been deformed from a first spatial configuration to a second spatial configuration, it can be deformed back to its first spatial configuration or very near to such spatial configuration.
- the amount of manual reversible deformation of the holder 22 , and thus of ultrasound emitting grid 12 , which may be obtained is substantial, meaning optically visible with the naked eye.
- the amount of manual reversible deformation possible for a given holder may be evaluated as a deformation percentage X %.
- This deformation percentage X % can be evaluated as follows: for at least two locations of the holder 22 which are distant by L mm along a direction in the surface of extension of the holder 22 , the two locations of the holder 22 can be displaced one with respect to the other along a direction perpendicular to the surface of extension of the holder 22 , by manual reversible deformation, by a distance of at least L ⁇ X % mm.
- the amount of manual reversible deformation is at least of 10%, more preferably of at least 25%.
- the possible manual reversible deformation should be of at least 10 mm along a direction perpendicular to the surface of extension.
- the ultrasound emitting grid is flexible enough to be folded on itself by manual deformation so that two opposite borders of the holder may be brought into contact.
- the holder 22 and thus the ultrasound emitting grid, is manually reversibly deformable between a non-finite number of spatial configurations, meaning that the deformation is continuous and not step by step.
- the holder 22 and/or the ultrasound emitting grid may be conformable, meaning that it is not entirely elastic and maintains a certain deformation even after any significant biasing or deformation force has been stopped.
- the holder 22 may be deformed from an initial spatial configuration to a temporary spatial configuration upon application of a biasing or deformation force, and then may attain a final spatial configuration upon release of the biasing or deformation force.
- the deformation of the final spatial configuration compared to the initial spatial configuration is nevertheless preferably substantial, i.e. optically visible with the naked eye, preferably with a deformation percentage of at least 10%, preferably more that 25%.
- the deformation of the final spatial configuration compared to the temporary spatial configuration is for example less than one fourth of the deformation amount between the initial and the temporary spatial configurations, for example less than on the tenth.
- the holder 22 is conformable in a non-finite number of spatial configurations.
- the conformability of the ultrasound emitting grid may result for example from the conformability of the electric connection lines 28 which may be non-elastic for the deformations which are envisioned for the ultrasound emitting grid while the holder 22 in itself may be somewhat elastic.
- the holder 22 and/or the ultrasound emitting grid may be elastic and may thus have at least one stable spatial configuration to which it returns or tends to return when non-biased. More precisely, as perfect elasticity does not exist, such elastic ultrasound emitting grid should return to a spatial configuration close to the initial spatial configuration, with a residual deformation between the final deformation and the initial deformation which is, after application of the biasing or deformation effort has ceased, preferably less than 10%, more preferably less than 5%. Such elasticity is preferably maintained after a temporary deformation of up 25%, preferably up to 40%. Elasticity of the ultrasound emitting grid as a whole may derive from elasticity of the connecting lines, while the holder in itself could be substantially non elastic or ultra-flexible as defined hereunder.
- the stable spatial configuration may be a flat configuration where the surface of extension of the holder extends essentially along a plane.
- the stable spatial configuration may be three dimensional, for example exhibiting a dome shape.
- the surface of extension of the holder 22 may be configured as a three dimensional surface, for example as a dome (see FIG. 9 ).
- the ultrasound emitting grid and thus the holder 22 , may be ultra-flexible, i.e. exhibiting a very low degree of rigidity.
- Such an ultrasound emitting grid cannot hold its own weight.
- a flat ultrasound emitting grid will be considered ultra-flexible if, along at least one test direction, when the ultrasound emitting grid is clamped at one extremity of the holder so that the clamped extremity extends substantially horizontally, the holder exhibits, by virtue of its sole weight, at least 50% of deformation between the clamped extremity and the free opposed extremity along that direction, meaning that the vertical deflection of the free opposed extremity is at least 50% of the length of the holder between its two extremities along that direction.
- Such an ultra-flexible ultrasound emitting grid will have the advantage of generating the least possible pressure on the brain which may be due to its deformation.
- Such ultra-flexible holder may also be defined by the fact that it automatically adopts the shape of a surface it is in contact with, without generating any pressure, or at least without generating any substantial pressure, which pressure would be due to its own elasticity. Of course, it may generate some pressure, for example due to its weight, and/or due to its thickness if sandwiched between two surfaces. In such a case, not only the holder 22 should be ultra-flexible, but also the electric connection lines 28 , if any, should not impair the ultra-flexibility of the ultrasound emitting grid as a whole.
- the holder 22 comprises a unitary body of flexible material holding the ultrasound generating transducers.
- a body can be considered unitary if it exhibits continuity of matter along it surface of extension.
- such unitary body is a single unitary body holding all the ultrasound generating transducers.
- the holder 22 may be in the form of at least one sheet of flexible material extending along the surface of extension.
- a sheet exhibits a thickness which preferably has a maximal value less than at least 4 times the smallest of the other two dimensions of the sheet, more preferably less than 8 times the smallest of the other two dimensions.
- the thickness of the sheet could be in the order of 1 to 4 mm, such as 2 mm.
- the holder 22 may be in the form of at least two sheets of flexible material which extend one along the other, across at least a substantial portion of the surface of extension of the holder, i.e. with preferably over 70% of overlap, more preferably more than 80% of overlap (see FIG. 4 and FIG. 5 ). In such a case, despite the fact that the holder has different layers, possibly, the holder may be considered unitary as the various sheets which largely overlap are themselves unitary across the surface of extension.
- the sheet or sheets of flexible material may be planar or may extend along a three-dimensional surface.
- the holder 22 is made of at least one sheet of elastomeric material, such a silicone based material, preferably of medical grade.
- elastomeric materials are materials of choice considering their biocompatibility and their softness to avoid brain traumatism.
- the different sheets can be of a same material or of different materials, for example different grades of material.
- the holder 22 may comprise an upper sheet 22 a , on the skull bone side of the holder and made of a first grade of silicone, and a lower sheet 22 b , on the brain side of the holder and made of a second grade of silicone.
- the second grade of silicone may be softer than the first grade, i.e. for example exhibiting a lower shore A hardness, and/or the first grade may be selected to exhibit a higher toughness by exhibiting a higher degree of resistance to tearing.
- FIG. 4 the holder 22 may comprise an upper sheet 22 a , on the skull bone side of the holder and made of a first grade of silicone, and a lower sheet 22 b , on the brain side of the holder and made of a second grade of silicone.
- the second grade of silicone may be softer than the first grade, i.e. for example exhibiting a lower shore A hardness, and/or the first grade may be
- the different sheets of material may include a central sheet 22 c of a first elastomeric material on which the ultrasonic generating transducers may be fixed and two external sheets 22 a , 22 b of a second elastomeric material, the two external sheets fully encapsulating the central sheet and the ultrasonic generating transducers.
- the first material may exhibit a relatively higher toughness to tearing than the second material, and/or the second elastomeric material may exhibit a relatively higher degree of biocompatibility than the first material.
- the unitary body of flexible material will exhibit several holding zones 23 a on each of which one or several ultrasound generating transducers are held, and, between the holding zones, the unitary body exhibits flexing zones 23 b .
- the flexing zones are manually reversibly deformable.
- the flexing zones may comprise portions of reduced thickness of the unitary holder.
- the flexing zones may be zones where one of the sheets is absent.
- the holder 22 may be non-unitary and may comprises several rigid holding portions 25 a , i.e. not suitable for manual reversible deformation, and on each of which one or several ultrasound generating transducers are held, and the rigid holding portions may be connected by articulation portions 25 b . It is to be understood that in such case, at least two distinct rigid portions hold each respectively one of at least two distinct ultrasound generating transducers.
- the articulation portions may be made with a mechanical connection, such as a pivot or ball joint connection, but, as illustrated in FIG. 6 , are preferably made of flexible material, thus forming a flexing portion.
- the holding portions may exhibit rigidity by themselves and/or may become due to the rigidity of the transducers they hold.
- the holder 22 preferably comprises attachment portions for attaching the holder, and thus the ultrasound emitting grid, for example to the dura-mater.
- Such attachment portions are preferably located on the periphery of the surface of extension of the holder.
- the holder 22 may be attached by stitches (as illustrated in FIG. 2 ) or by screws, but also possibly by riveting or by gluing with a biocompatible glue.
- the ultrasound emitting grid is fixed by the holder attachment portions being stitched to the dura-mater.
- the ultrasonic transducers 20 are sealed inside the holder 22 in a watertight manner, for example by being embedded in a flexible material of the holder, or by being encapsulated between two layers of flexible material.
- the part of the electric connection circuit 24 which is held on the holder 22 i.e. the connection lines 28 , is also embedded or encapsulated in the holder 22 .
- the holder 22 is a unitary holder which exhibits a single sheet of elastomeric material.
- the holder is initially flat, in that, if supported on a flat surface, it exhibits a flat surface of extension. It exhibits for example a flat upper surface and a flat lower surface.
- the ultrasonic transducers 20 are arranged inside the volume of the holder 22 , which is in this case composed of a single sheet of material, in this case a medical grade of silicone based material.
- the holder has a rectangular contour in the surface of extension.
- other shapes could be possible, including common geometrical shapes (square, circle (see FIG. 7 ), ellipse, . . . ) or irregular shapes.
- the ultrasound generating transducers 20 may be arranged according to any pattern. In some embodiments, all transducers 20 may be aligned along a same line. However, it is preferred that the transducers are arranged so as to form a two dimensional arrangement extending in the surface of the extension.
- the transducers may be arranged as in a quincunx.
- the transducers are arranged along two parallel rows extending along a longitudinal direction, the two rows being spaced laterally along a transversal direction. In this embodiment, the transducers are regularly spaced along the longitudinal direction in each row. However, the longitudinal position of the transducers in one row is offset longitudinally compared to the longitudinal position of the transducers in the other row, thus forming a quincunx-like arrangement.
- the holder exhibits no voids within its contour.
- the holder could have voids within the contour, between the holding zones and the flexing zones.
- the holding zones which hold the transducers could be linked to each other by flexible arm portions, voids being delimited between such flexible arm portions.
- the holding zones 23 a carry only one ultrasonic transducer 20 each.
- the holding zones 23 a can have an annular shape surrounding the corresponding ultrasonic transducer 20 .
- the holding zones 23 a and thus the ultrasonic transducers 20 , are arranged along a grid forming several parallel columns D 1 1 , D 1 2 , D 1 3 , along a first direction D 1 and several parallel rows D 2 1 , D 2 2 , D 2 3 along a second direction D 2 .
- the first and second directions D 1 , D 2 are perpendicular.
- the first and second directions could form an acute angle of 45° or lower, preferably however forming an acute angle of more than 30°.
- each holding zone 23 a in a row D 2 1 , D 2 2 , D 2 3 is connected to the adjacent holding zone 23 a in the same row by flexing zone 23 b in the form of a flexible arm portion extending along the second direction D 2 .
- each holding zone 23 a in a column D 1 1 , D 1 2 , D 1 3 is connected to the adjacent holding zone 23 a in the same column by a flexing zone 23 b in the form of a flexible arm portion extending along the second direction.
- Voids 23 c are delimited between such flexible arm portions.
- Voids 23 c have a closed perimeter along the surface of extension of the holder.
- the holder 22 as a whole may exhibit differing flexibilities respectively around a first flexing axis F 1 1 , F 1 2 , having a flexing axis direction F 1 , and around a second flexing axis F 2 1 , F 2 2 , having a second flexing axis direction F 2 , both tangent to the surface of extension of the holder 22 , the said first and second flexing axis forming an acute angle of at least 30°, preferably forming an angle of 90°.
- the holder 22 as a whole, with its transducers 20 can be more easily flexed to a globally cylindrical or convex shape around the first flexing axis direction F 1 , than around the second flexing axis direction F 2 .
- the holder 22 may exhibit several holding zones 23 a on each of which are held one or several ultrasound generating transducers 20 , and, between the holding zones 23 a , the holder exhibits flexing zones 23 b .
- the flexing zones may be configured so that the holder as a whole can be more easily flexed around one flexing axis direction, for example the first flexing axis direction F 1 , than around the other flexing axis direction, for example the second flexing axis direction F 2 .
- the holder 22 may have:
- the first and second flexing zones 23 b 1 , 23 b 2 may, as in the example shown on FIG. 14 , exhibit differing flexibilities respectively around the first flexing axis direction F 1 and around the second flexing axis direction F 2 .
- the first flexing zones 23 b 1 are more flexible than the second first flexing zone 23 b 2 , arranged along the rows.
- the differing flexibilities can derive from the material of the respective flexing zones, their geometry (cross-section perpendicular to their direction of extension, length along their direction of extension, presence of reinforcements, . . . ).
- the given holding zone and the first and second adjacent holding zones hold each only one ultrasound generating transducer. Therefore, the centre 220 of the corresponding transducer 20 defines a centre of the holding zone.
- the flexibility of the first and second flexing zones 23 b 1 , 23 b 2 may be compared by
- the contour in the surface of extension may be entirely convex or may exhibit concavities.
- the contour of the holder may resemble that of a flower with fully or partially separated petals (see FIG. 8 ).
- the embodiment of FIG. 10 exhibits a holder 22 which has central portion 22 A, which may be circular as shown, but which could be elliptical or of any other known convex shape, and radial portions 22 B which extend radially from a the central portion.
- Each of the central and radial portions 22 A, 22 B preferably hold ultrasound generating transducers 20 .
- the various radial portions of a given holder may be all similar, or at least some of them may be dissimilar.
- radial portions 22 B exhibit a certain length along their radial direction of extension, which length may be equal for each radial portion 22 B, or may be dissimilar for at least some radial portions 22 B.
- Radial portions 22 B may be distributed evenly angularly around the central portion 22 A, as shown in the embodiment of FIG. 10 , or could be distributed unevenly.
- Each radial portion 226 exhibits a width, perpendicularly to its respective radial direction of extension, which may be constant along its length, or which may to the contrary increase or decrease along with increased distance from the central portion 22 A along the radial direction.
- the radial portions 22 B exhibit a constant width except at their terminal portions which are rounded.
- the central and radial portions may exhibit the same thickness, perpendicularly to the surface of extension of ultrasound emitting grid, or may be of different thickness.
- the central portion 22 A of the ultrasound emitting grid may be thicker than the radial portions 22 B.
- the ultrasound emitting grid may implanted under a patient's skull with the central portion being received in a location where the dura-mater has been removed, whereas the radial portions may be received between the meninges, including the dura-matter and the brain.
- the holder 22 may have a bevelled contour edge to limit the physical pressure on the brain and may help inserting the device over the patient's brain.
- the holder 22 exhibits:
- the lower surface facing the brain is of lesser area than the upper surface.
- the bevel 46 may, as visible on FIG. 16 , extend along the entire contour of the holder, or, as shown on FIGS. 11A, 11B on only part of said contour.
- voids 23 c may have a bevelled perimeter, as visible on FIG. 16 .
- the perimeter of each void 23 c is bevelled along its entire length.
- the bevelled perimeter of the void 23 c forms a bevel 48 turning away from the upper surface.
- the bevels 46 , 48 are preferably surfaces which intersect with the upper surface 40 where the holder 22 forms an acute angle between said bevel 46 , 48 and said upper surface 40 , preferably comprised between 25 and 75 degrees.
- the holder 22 When the holder 22 is installed under the skull, it will adapt its curvature to the brain's curvature. Then distinct transducers could converge and emit ultrasound in the same area of the brain, leading to an undesired superposition of their ultrasound emission. Such ultrasound beam superposition may in such a case generate zones of undesired increased peak pressure that could modify the therapeutic effect and then bring safety issues.
- a given group of ultrasound generating transducers 20 may comprise at least two subgroups of transducers which may be differentiated by the transducers in the two different sub-groups having different operating frequencies. Transducers of a same sub-group preferably have a same operating frequency.
- An operating frequency of a given transducer 20 is a frequency for which it delivers a higher acoustic power output for a given electric drive signal power, compared to the acoustic power output delivered at neighbouring frequencies. It must be noted that the term operating frequency, as used in this text, covers an individual peak operating frequency, at which the transducer 20 delivers a peak ultrasound field power/intensity for a given electric drive signal power, or an operating frequency range, around such peak power frequency, for which the transducer 20 delivers a ultrasound field power/intensity higher than a minimum field power/intensity, which may be expressed as a percentage of the peak ultrasound field power/intensity.
- each ultrasound generating transducer 20 may be connected to the common electrical connection circuit 24 through a dedicated frequency selector circuit, such as a filter, typically a band-pass filter passing frequencies inside a frequency band and attenuating the frequencies outside the band.
- a dedicated frequency selector circuit such as a filter
- the operating frequency of the ultrasound generating transducer may be comprised in the frequency band of its band-pass filter.
- the frequency selector circuit filter may tune the transducer's electrical impedance to 50 ohms within a narrow frequency band so that when driven using a long connection cable and connected to the generator, the transducer is driven efficiently, i.e. with minimal electrical losses.
- the dedicated frequency selector circuit may be individual for a given ultrasound generating transducer 20 .
- the dedicated frequency selector circuit may be common for several ultrasound generating transducers 20 .
- the dedicated frequency selector circuit may be common for all of the ultrasound generating transducers 20 of a given sub-group of transducers.
- an operating frequency of a given transducer may be a resonant frequency of the transducer.
- the ultrasound energy is generated by virtue of the vibration created in the core of the transducer by an alternating voltage by virtue of a piezoelectric effect or capacitive variation.
- the transducer is fed with an electric voltage which may have a given frequency or which may have a frequency spectrum which may be decomposed into preferably a limited number of main frequencies.
- the core of the transducer may thus be designed such that it exhibits at least one inherent resonant frequency.
- a resonant frequency of the transducer can be defined as the frequency of the drive signal for which the ratio of the acoustic power output divided by consumed electrical power reaches a maximum (at least within neighbouring frequencies). For a typical piezoceramic transducer, this ratio is typically between 50% and 90% at a resonant frequency. If the electric current fed to the transducer exhibits such frequency, it will induce in the transducer a resonant vibration which will generate ultrasound. If the electric current fed to the transducer exhibits only a frequency or frequencies which lie outside of an operating range around the operating frequency, then the acoustic power output will be less than 25% of the power delivered when driven with a given voltage at its operating frequency.
- a transducer may have a given operating frequency by choosing for example its resonant thickness mode for a piezoceramic material, e.g. 2 mm thickness for a 1 MHz transducer for PZ26 material.
- a transducer with a resonance of 0.9 MHz may be constructed by using a transducer made of such material with a thickness of 2.2 mm or a transducer with a resonance frequency of 1.1 MHz may be constructed by using a transducer made of such material with a thickness of 1.8 mm.
- a matching layer that is glued to the front face of the transducer may be used to ideal couple the ultrasound energy into the tissue at a given operating frequency.
- the operating frequency of a transducer may alternatively be defined by being a resonant frequency of a dedicated frequency selector circuit through which the transducer 20 may be connected to the common electrical connection circuit 24 .
- the second operating frequency which is specific to the second sub-group of transducers differs from the nearest operating frequency of the first transducer or sub-group of transducers by at least 10% of the second operating frequency.
- the operating frequency covers an operating frequency range, such range should be of limited extent and two operating frequency ranges should not overlap. Such a feature will ensure that there is a sufficient separation between the operating frequencies so that one of the sub-groups may be activated while the other will not be activated.
- activation of a transducer is triggered by the frequency content of the electric drive signal delivered to the transducer. If the electric drive signal contains the operating frequency of the transducer, the transducer is activated and delivers an ultrasound field. If not, the transducer is not activated.
- the frequency content of the electric drive signal can be obtained directly, in case of a simple alternating voltage having one frequency, such as a pure sinusoidal signal. It can also be obtained through Fast Fourier Transform (FFT), as known to the man skilled in the art of signal processing.
- FFT Fast Fourier Transform
- the intensity/power of the ultrasound field generated by a given transducer will depend on the amplitude of the electric drive signal delivered by the generator system 10 at the operating frequency.
- a transducer will be considered to be not activated if, when fed with an electrical signal not having its operating frequency, it delivers an ultrasound field having an acoustic power output of less than 25% than the power/intensity it would deliver if fed with an electrical signal having the same acoustic power output at its operating frequency.
- a group of ultrasound generating transducers 20 may comprise a first ultrasound generating transducer or sub-group of transducers having at least a first operating frequency; and at least a second ultrasound generating transducer or sub-group of transducers having at least a second operating frequency which is not an operating frequency of the first ultrasound transducer or group of transducers.
- the first operating frequency is not an operating frequency of the second ultrasound transducer or group of transducers.
- the group of transducers is fed, through the common electric connection circuit 24 , with an electric signal having the first operating frequency and not the second operating frequency, only the first sub-group of transducers will be activated and will deliver ultrasound.
- the common holder 22 may comprise 7 transducers 20 a , 20 b , 20 c , 20 d , 20 e , 20 f , 20 g each having a different operating frequency.
- each ultrasound generating transducer 20 which here belong to a same group of transducers, has an operating frequency different from any operating frequency of that group of transducers.
- each transducer can be considered to be a sub-group of transducers.
- each transducer can be activated individually. If the transducers are activated individually, there is no risk that the ultrasound field created by two transducers may superpose. Thus, there is no risk of un-controlled creation of high intensity ultrasound field at any point of the treatment zone addressed by the implantable ultrasound generating device 12 .
- the common holder 22 may comprise 4 different sub-groups of transducers 20 a , 20 b , 20 c , 20 d , each having a different operating frequency.
- the sub-groups 20 a , 20 b have each 4 transducers while the sub-groups 20 c , 20 d have each 2 transducers.
- the sub-groups do not necessarily have the save number of transducers.
- the common holder 22 may comprise 2 different sub-groups of transducers 20 a , 20 b , each having 4 different transducers, thus having the same number of transducers in the different sub-groups.
- FIGS. 6, 7 and 10 are shown other possible sub-groupings of transducers into sub-groups having different operating frequencies.
- two transducers of a same subgroup are not adjacent in the sense that there is at least one transducer of another sub-group which is closer to the each of the two transducers of the same subgroup than a shortest distance between said two transducers of the same subgroup.
- an ultrasound generating transducer 20 can be considered to have a given ultrasound emission zone in the form approximately of a cone in which the intensity of the ultrasound field is significant.
- FIG. 2 is shown the case of said field of an implantable ultrasound generating device 12 having two sub-groups of two transducers: a first sub-group 20 a 1 , 20 a 2 , and a second sub-group 20 b 1 , 20 b 2 .
- the transducers 20 a 1 , 20 a 2 belong to the same first sub-group and thus have a same first operating frequency.
- the transducers 20 b 1 , 20 b 2 belong to the same second sub-group and thus have a same second operating frequency.
- Each transducer when properly activated at its operating frequency, delivers an ultrasound field which can be characterized by a central emission axis Xa 1 , Xb 1 , Xa 2 , Xb 2 and a border emission envelope Ea 1 , Eb 1 , Ea 2 , Eb 2 which is shown here as a cone having the central emission axis as its axis of symmetry.
- the border emission envelope of the emission cone can be defined as the envelope containing all locations where the acoustic pressure of the ultrasound field is equal to at least a certain percentage, for example 25%, of the ultrasound field on the central axis at the same distance from the transducer.
- the border envelope is not exactly a cone but, for the type of transducers used in the field of medical treatment ultrasound, can be considered as fairly close to a cone.
- FIG. 2 is shown that the emission cones of two adjacent transducers intersect. This is of course of interest to make sure that no zone of the brain is left untreated. However, in the intersection zone, there is a risk of superposition of the two fields created by the two adjacent transducers, if they would be activated simultaneously.
- the emission cones of two non-adjacent transducers do not intersect in the treatment zone, or at least they may intersect at a distance along the central emission axis which is far enough from the transducers so that the acoustic pressure of each field in the intersection zone is greatly diminished, especially due to absorption by the brains tissues before reaching the intersection zone.
- transducers 20 a 1 and 20 a 2 , or 20 b 1 and 20 b 2 , belonging to the same sub-group are chosen and arranged on the common holder such that, when the device is implanted in a patient's head, the emission cones of two transducers of a same sub-group do not intersect, or intersect at a distance from the respective transducers, along their central emission axis, where the ultrasound field pressure is less than or equal to the maximum acoustic pressure that would be generated if a single transducer was activated and had no interference from neighbouring transducers.
- Constructive interference is acceptable if the addition of the two ultrasound fields leads to a pressure value that is less than the maximum value of a single transducer, or is less than the maximum pressure value that is defined as “safe” for a given treatment.
- the ultrasound generating device 12 is fed with an electric signal having only the first operating frequency, only the transducers 20 a 1 and 20 a 2 are activated, with no risk of superposition of the two fields in the treatment zone which may generate unsafe acoustic pressure levels.
- the ultrasound generating device 12 is fed with an electric signal having only the second operating frequency, only the transducers 20 b 1 and 20 b 2 are activated.
- the ultrasound generating transducers 20 may be connected to the common electrical connection circuit 24 through an implantable switch 50 which is connected, upstream, to the common electrical connection circuit 24 and, downstream, separately to several distinct sub-groups of one or several ultrasound generating transducers 20 .
- the implantable switch 50 forms part of the ultrasound generating device 12 .
- the implantable switch 50 selectively connects the common electrical connection circuit 24 to one of several distinct sub-groups of one or several ultrasound generating transducers 20 , based on the electric drive signal which controls the implantable switch.
- FIG. 17 An example of such implantable switch 50 is illustrated diagrammatically on FIG. 17 .
- the implantable switch 50 may comprise an input port 52 connected to the common electrical connection circuit 24 , for example to the cable 26 of FIG. 1 , for receiving the electric drive signal coming from the generator 10 .
- the electric drive signal in the common electrical connection circuit 24 may be as shown diagrammatically on FIG. 18 .
- the electric drive signal may comprise a series of signal bursts IA having a burst length for example between 1 and 100 milliseconds, preferably between 10 and 50 milliseconds.
- the signal bursts IA herein called therapeutically active bursts IA, comprise at least an operating frequency of the transducers, for example within the frequency range of 500 kHz to 2 MHz, and have a power sufficient for activating the ultrasound generating transducers 20 so that they deliver therapeutically active ultrasounds.
- the implantable switch 50 may comprise several output ports 54 a , 54 b , 54 c which are each electrically connected separately to one of several distinct sub-groups of one or several ultrasound generating transducers 20 .
- Only one ultrasound generating transducer 20 a , 20 b , 20 c is associated to the corresponding output port 54 a , 54 b , 54 c .
- a given output port could be electrically connected to the three ultrasound generating transducers 20 arranged along a same row D 2 1 , D 2 2 , D 2 3 along the second direction D 2 , such that the three ultrasound generating transducers 20 arranged along a same row would be driven simultaneously with the same drive signal to generate therapeutic ultrasounds.
- the implantable switch 50 may comprise a relay stage 56 which may comprise, individually electrically connected to one of each output ports 54 a , 54 b , 54 c , a respective individual relay 56 a , 56 b , 56 c , which may be in the form of a solid state relay including transistors, thyristors, MOSFETs, etc. . . . .
- Each individual relay 56 a , 56 b , 56 c may comprise:
- the implantable switch 50 comprises a switching stage 58 , which in this case comprises a number of output ports 58 a , 58 b , 58 c , with one output port of the switching stage 58 associated to a gate port of a corresponding individual relay 56 a , 56 b , 56 c of the relay stage 56 .
- a switching stage 58 which in this case comprises a number of output ports 58 a , 58 b , 58 c , with one output port of the switching stage 58 associated to a gate port of a , 56 b , 56 c of the relay stage 56 .
- only one gate port of an individual relay 56 a , 56 b , 56 c of the relay stage 56 is associated to one output port of the switching stage 58 .
- a solid state relay AQY277 from Panasonic Corporation can be used as a respective individual relay 56 a , 56 b , 56 c.
- the switching stage 58 has an energy input port 581 at which the switching stage 58 receives the energy necessary for its operation.
- the switching stage 58 also has a control port 582 which receives a clock signal according to which the switching stage 58 causes selective activation of the output ports 58 a , 58 b , 58 c.
- the implantable switch 50 is energized from the electric drive signal.
- the electric drive signal delivered by the generator 10 and carried by the common electrical circuit 24 may have a switch energizing portion, as depicted FIG. 19 on which it is seen that the electric drive signal comprises, between the therapeutically active bursts IA, a switch energizing signal SE.
- the switch energizing signal SE does not comprise an operating frequency of the transducers.
- the switch energizing signal SE may be offset of a resonant frequency of the transducers 20 by more than 10%, preferably by more than 20%.
- a filter such as a band-pass filter, may be provided between the switch input port 52 and the switching stage energy input port 581 so that only the switch energizing signal SE is fed to the energy input port 581 .
- a filter (not represented) may be provided between the switch input port 52 and a power input port of the relay stage 56 to filter out the switch energizing signal SE.
- the implantable switch 50 generates a switch energizing signal SE from the electric drive signal, said switch energizing signal SE energizing the switch 50 .
- the implantable switch 50 may comprise a switch energizing signal generator 60 to generate a switch energizing signal SE from the electric drive signal.
- the switch energizing signal generator 60 may comprise for example a RC filter for filtering the electric drive signal.
- An example of a switch energizing signal SE generated by a switch energizing signal generator 60 is shown on FIG. 20 .
- the switch energizing signal SE can for example comprise a low frequency signal, for example 50 Hz or 60 Hz signal.
- the switch energizing signal SE may comprise a signal having a frequency comprised between 200 KHz and 400 Khz.
- the implantable switch 50 may generate a clock signal from the electric drive signal. Such a clock signal may be used by the switching stage 58 to cause the implantable switch to selectively connect the common electrical connection circuit 24 , through the relay stage 56 , to one at a time of said several distinct sub-groups of one or several ultrasound generating transducers 20 .
- the implantable switch 50 may comprise a clock signal generator 62 to generate a clock signal from the electric drive signal.
- the clock signal generator may comprise a Schmitt trigger, which may be associated to an RC filter.
- the clock signal generator 62 may be located between the switch input port 52 and the switching stage control port 582 .
- the clock signal CS may thus comprise a square binary signal having a raising edge and a falling edge.
- the raising edge may be triggered by the start of a therapeutically active burst IA.
- the falling edge may be triggered by the end of a therapeutically active burst IA.
- other relative configurations are possible between the therapeutically active burst IA and the clock signal CS.
- the switching stage 58 of the implantable switch may comprise a digital counter which selectively activates, one at a time, one of several of its several outputs based on a clock signal.
- the digital counter may for example comprise a decade counter, for example of the industry standard generic 4017 integrated circuit type.
- the implantable switch 50 may connect, in a sequence, for example a predetermined sequence, the common electrical connection circuit 24 to one at a time of said several distinct sub-groups of one or several ultrasound generating transducers, based on the electric drive signal which controls the implantable switch.
- An implantable switch 50 can alternatively comprise
- the ultrasound generating transducers 20 of a given group may have the same resonant frequencies, even if pertaining to different sub-groups which are to be activated at different times.
- the implantable ultrasound generating treating device 12 may comprise phase difference inducing electrical components implemented in the power controller and/or the treating device.
- the phase difference inducing components may be integrated or associated to the ultrasound transducers.
- Such phase difference inducing components can for instance comprise filters, capacitors and combinations thereof.
- the implantable ultrasound generating device has, in front of one, some, or each of the ultrasound generating transducers, an ultrasound conditioning device, i.e. a device which affects the direction of propagation of the ultrasound waves generated by the transducer.
- an ultrasound conditioning device i.e. a device which affects the direction of propagation of the ultrasound waves generated by the transducer.
- Such device can include a refraction lens, e.g. a focusing or a defocusing lens, which affects the direction of propagation by refraction through non parallel surfaces of the device.
- Alternatively, or in combination, such device may affect the direction of propagation by diffraction of the ultrasound waves generated by the transducer.
- an ultrasound conditioning device may be formed as a portion of the holder material which covers a frontal surface of one, several or each of the ultrasound generating transducers.
- the frontal surface is the surface of the transducer which emits the ultrasound. It is turned towards the brain.
- FIG. 11A an example of a holder 22 made of a single sheet of material in which the ultrasound generating transducers are embedded.
- the holder thus exhibits a lower surface 38 , turned towards the brain, and an upper surface 40 turned opposite the brain, towards the skull bone.
- the holder material exhibits, in front of some or each of the ultrasound generating transducers, a portion 42 of its lower surface 38 , which is shaped convexly.
- the interface of the material of the holder with the transducer exhibits a substantially flat surface, so that the portion 42 of the holder material which is in front of the ultrasound generating device can be assimilated to a plano-convex lens 42 .
- the ultrasound wave when propagating through the lower convex surface of the holder material, will be diffracted according to known laws of propagation, and the direction of propagation will be affected depending on the convexity of the lower surface of the ultrasound conditioning device formed as a portion 42 of the holder material, and depending on the difference in acoustic impedance between the holder material and the surrounding material at the interface with the holder.
- FIG. 11B is shown a variant where the holder material exhibits, in front of the ultrasound generating transducers, a portion 44 of its lower surface 38 , which is shaped concavely.
- the portion of the holder material which is in front of the ultrasound generating device can be assimilated to a plano-concave lens 44 .
- Such concave shaped lower surface portion may assist in achieving focalisation of ultrasound.
- the ultrasound emitting grid may include, in front of one, some or all the ultrasound generating transducers, one or several diffracting array(s) to cause diffraction of the ultrasound generated by the ultrasound generating transducers.
- the diffraction array may be formed by the material of the holder, which may exhibit properties such as to cause diffraction of the ultrasound generated by the ultrasound generating transducers.
- the material may include a diffracting array.
- Such array may include micro-bubbles of air or any suitable gas, or particles, or an array of ultrasound opaque inclusions which cause diffraction of the ultrasound wave, thus affecting its propagation direction.
- the ultrasound emitting grid may include one or several ultrasound conditioning device(s), such as a refracting lens or a diffracting array distinct from said holder.
- the ultrasound conditioning device(s) may be attached to the holder 22 .
- Use of ultrasound conditioning devices as above may allow to design an ultrasound generating grid which avoids unwanted superposition of the various waves generated by each ultrasound, for example for avoiding peak ultrasound power at certain locations of the treatment zone.
- Use of ultrasound conditioning devices as above may allow to design an ultrasound generating grid with more homogeneous distribution of the ultrasound power in the total volume of treatment zone.
- the ultrasound conditioning device when included in the material forming the holder, may be included in only one of the sheets.
- Such sheet may be the lowest sheet of material, having the lower surface 38 .
- convex or concave shaped ultrasound conditioning devices they may be included in a sheet intermediate between the transducers 20 and the lowest sheet of material, which thus may be of complementary shape and may exhibit a flat lower surface.
- the electrical connection network comprises a connection receiver 16 having a rigid casing.
- the rigid casing of the connection receiver is adapted to be fitted in a burr-hole performed in the skull of the patient to be treated.
- the casing may be of cylindrical shape, preferably of circular cylindrical shape.
- Said casing may comprises an upper wall 30 and a lower wall 32 connected by a circular peripheral wall 34 .
- the rigid casing may have an upper flange 36 of larger diameter than a lower portion of the casing.
- the lower portion may be received in the burr-hole while the upper flange may then rest on the upper external surface of the skull bone.
- the rigid casing of the connection receiver 16 may be fastened to the skull 1 by any suitable means, such as bone screws.
- the upper flange may be replaced by one or several peripheral tabs, possibly with hole(s) for receiving bone screws to attach the implantable connection receiver 16 to the skull.
- the casing may comprise a peripheral external screwing thread formed on the external surface of the peripheral wall of the casing.
- the connection receiver can advantageously be screwed manually in the burr-hole 3 of corresponding diameter by a surgeon.
- one or several connecting plugs may be located within the implantable rigid casing and may be adapted to physically connect with one or several connecting needle(s) 14 from the generator systems.
- a connecting needle 14 is preferably a transdermal needle.
- Such needles are suitable for piercing the patient's skin and the upper wall 30 of the implantable casing of the connection receiver before plugging into the connecting plugs inside the implantable casing.
- the upper wall 30 of the casing can be advantageously made of, or comprise a portion made of, an isolating concealable material like Silastic®, from the silicone manufacturer Dow Corning. This material can easily and automatically reseal when the needle 14 is withdrawn from the implantable connection receiver 16 .
- the upper wall 30 forms an automatically re-sealable sealing gasket between the inside of the casing and the biological fluids and tissues of the patient's head.
- the transdermal needle 14 may be coated with an isolating material, for instance wax or plastic on its entire length except at its tip so that an electric contact can be established at its tip with a connecting plug inside the connection receiver to transfer electric current to the implantable connection receiver 16 without causing burning of the patient's skin.
- an isolating material for instance wax or plastic
- FIG. 1 depicts a two-way connection by means of a single transdermal needle 16 which carries, on one way, the electric drive signal and, on the other way, the ground connection between the generator system 10 and the implantable treating device 12 , which in this case, has only one independent electric connection circuit 24 , thus only one group of transducers.
- Two single-way needles could have been provided, one for the electric drive signal and one for the ground return.
- an independent connection for each electrical signal corresponding to each independent electrical connection circuit would be needed, plus at least one common ground connection. This could be achieved with a single needle having one way per electrical signal plus one way for the ground return, or with several needles.
- the ultrasound generating transducers 20 are preferably chosen into the group formed by piezo-composite elements, piezo-ceramic elements, CMUT elements (Capacitive micro-machined ultrasonic transducers), or PVDF elements (Poly(vinylidene fluoride)).
- Piezo-composite elements or piezo-ceramic elements usually have a size in the range of 1 to 50 mm in diameter.
- CMUT elements usually have a size in the range of 10 to 50 ⁇ m in diameter.
- Piezoelectric components are commonly used in the medical field as ultrasound transducers.
- a given transducer can comprise one or several discrete elements which are activated simultaneously.
- the transducers 20 may be held on the holder 22 by any suitable means. They can be held by being partially embedded or encapsulated in the material forming the holder 22 . They can be held on the holder 22 by gluing, by riveting, or by stitching.
- the switch can advantageously be mounted on the holder 22 , or, less preferably, in the connection receiver 16 .
- the generator system 10 is adapted for delivering electric drive signals to be delivered to the ultrasound generating transducers 20 of an associated ultrasound generating device 12 .
- the generator system typically comprises an alternating voltage generator able to generate an electric signal at different frequencies. It shall be able to at least deliver alternating voltages at each of the operating frequencies of the associated ultrasound generating device 12 .
- the generator delivers for example a sinusoidal electric voltage signal.
- the generator shall be able to deliver an electric voltage being a combination of signals having at least two of said operating frequencies.
- a generator system that can be used with the inventive device may include a system that integrates signal generation, amplification, and control into a single unit.
- a generator system can also comprise one or several individual components performing one or more of these functions.
- the generator can include an HP/Agilent 33120 function generator. If needed, it can also include for example one or more of an ENI 240L Broadband RF amplifier, of a Rhode and Schwarz RF power meter, and/or external computer controlling equipment over GPIB/Serial/USB interfaces.
- a computer interface for example a touchscreen interface, can be provided to control the system and give the user feedback.
- a radiofrequency board that generates the RF signal and amplifies it may be provided, as well as a coupler to measure the delivered RF power, and matching components to tune the generator output to the impedance of the ultrasound elements.
- the generator may be of a type capable to deliver 25-100 W peak RF power, capable of sending burst lengths with durations of 1 microsecond to continuous mode, and capable of sending bursts within the frequency range of 500 kHz to 2 MHz, preferably also capable to deliver bursts within the frequency range of 20 kHz to 200 MHz.
- Such a system can be controlled to send pulses with variable frequency and duty cycles for durations of approximately 2-5 minutes.
- the generator may be a class A/B RF system, which means that it is capable of generating nearly pure sinusoidal signals, but this may make the system rather large.
- the generator could be a class D system, which tends to generate signals that are square wave on the output.
- the operating frequencies of the ultrasound generating transducers 20 can range for example from 1 kHz to 100 MHz, Preferably, between 100 kHz and 10 MHz, more preferably between 500 KHz and 2 MHz.
- the respective sub-groups may have, as operating frequency, respectively 900 KHz, 1 MHz and 1.1 MHz.
- the ultrasound generating transducers 20 of the implantable ultrasound generating device 12 of the invention can be planar or can be curved.
- the holder 22 may advantageously hold at least one detection ultrasound transducer designed for echo-monitoring of the brain 3 .
- Said detection transducer may thus be connected to the generator system to work at a different frequency from the ultrasound generating transducers 20 and to produce echo-monitoring onto a monitor implemented in or connected to the generator system.
- the detection ultrasound transducer(s) may operate as or “passive monitoring” where the transducer simply listens to the signals emitted by bubbles in the field. It is therefore possible with the apparatus of the invention to treat a brain disorder by ultrasound emission while in the same time echo-detect the area of the brain being treated. Such feed-back information permits to ensure clinicians of the microbubbles presence in the vessels and permits a monitoring of cavitation within the brain, with a safety closed loop feedback on the generator.
- the implantable ultrasound generating treating device 12 is made of non-ferromagnetic materials, preferably MRI compatible materials.
- the holder 22 of the implantable ultrasound generating treatment device 12 extends preferably over a surface of extension exceeding 5 cm 2 , preferably exceeding 25 cm 2 . In some embodiments, the holder 22 may reach a surface of extension exceeding 100 cm 2 , including a holder having a dimensions of up to 10 ⁇ 15 cm.
- the volume of the part of the brain which may treated, i.e. the treatment zone, by a single implantable ultrasound generating treatment device 12 according to the invention can reach up to 500 cm 3 .
- a much larger treatment zone of the brain may be treated with the apparatus according to the invention.
- a substantial portion, or the entirety, of the cerebral hemisphere may be treated with such apparatus.
- the holder may exhibit for example 1 to 4 transducers per square centimetre.
- the transducers 20 are arranged on the holder 22 with a spacing between two transducers which have a size comparable to the size of the transducer, for example between 0.5 and 1.5 times the biggest dimension of the transducer in the plane of extension of the holder 22 .
- transducers could be more closely arranged thanks to the selective activation of the transducers according to the invention.
- the treatment zone can be much larger than that with other implantable devices, while still being selectable by proper choice of the size and positioning of the holder(s), and still being able to avoid skull bone absorption of the ultrasound waves.
- a given treatment apparatus can be provided with a set of different implantable ultrasound generating devices, such devices being for example different by their holder size, their holder shape (contour periphery, spatial configuration), their holder elastic or conformable properties, the type of transducers, the number of transducers, and/or the density of transducers, etc. . . . . Indeed, designing and constructing of such various holders can be done at minimal cost.
- an implantable ultrasound generating treatment device 12 could comprise several independent holders.
- the different holders are connected to a single connection receiver 16 by a suitably designed electrical connection circuit.
- Such circuit may thus comprise several cables, for example with one cable per holder and each cable connecting the corresponding holder directly to the connection receiver.
- the electric connection circuit could comprise an electrical cable between two holders, one holder being thus powered through the other holder.
- the apparatus 1 of the invention is aimed at providing a solution for treating brain disorders, particularly brain tumours or neurodegenerative diseases such as Alzheimer's Disease, in complement to regular craniotomies.
- the apparatus 1 of the invention provides for emission of ultrasound waves, directly in the area of the brain affected.
- the implantable ultrasound generating device 12 can advantageously be introduced underneath the skull bone through a burr-hole or a small craniotomy of a smaller dimension than the dimension of the holder.
- the flexible holder 22 may indeed be flexed and therefore folded to be slid through the burr-hole.
- the implantable ultrasound generating device 12 can also be implanted through a larger opening.
- it can be implanted on the inner surface of a bone skull flap, with or without the dura-mater in place. If a portion of the dura-mater is removed, the flexible holder can replace at last part of the missing portion.
- flexibility of the holder 22 will predominantly help in adapting the spatial configuration of the folder to that of the skull and/or the brain at the location of implantation, thereby minimizing adverse consequences of the presence of such a device inside the skull.
- the generator system is implanted in the patient's chest to have a totally implantable apparatus,
- connection between the generator system and the implantable ultrasound emitting grid can be achieved by a mere electric cable, without need of a connection receiver or transdermic needles.
- Control of the generator is performed remotely by the clinician, for example, by radiofrequency or ultrasound.
- the invention therefore proposes also a method for treatment of such brain disorders.
- the method of the invention essentially consists in positioning, for example at the end of a traditional neurosurgical procedure (craniotomy debulking or keyhole biopsy), at least one implantable ultrasound generating device 12 of the apparatus previously described through a burr hole 3 or other opening in a patient's skull 1 , before the skin closure of the patient. Alternatively, it can also be carried out without previous neurosurgical procedure. In that case, one or several burr holes 3 are drilled directly in the patient's skull 1 with the aim of implanting the implantable ultrasound generating device 12 of the apparatus of the invention. The positioning of the burr hole(s) 3 to drill in the skull may then be preferably determined prior to drilling, e.g. by neuro-navigational systems.
- connection receiver 16 may be installed in said burr-hole 3 .
- the connection receiver 16 can be secured to the skull 1 on its edges, for example by bone screws 5 .
- the cranial skin is then sutured over the implantable ultrasound generating device 12 and is preferably allowed to heal before any further action.
- the implantable ultrasound generating device 12 is connected to its generator system 10 by means of transdermal needle 14 implanted through the head's skin and into the connection receiver 16 .
- the implantable ultrasound generating device 12 is then activated through control of the generator system 10 of the apparatus, which the surgeon or practitioner carrying out the treatment has previously set to specific treatment parameters.
- the generator is thus, for some embodiments, controlled for generating an electric drive signal comprising selectively, during an individual activation time, at least one or the other of:
- the two sub-steps will be conducted one after the other.
- the method will preferably provide that each sub-group of transducers 20 will be activated, each in turn, during one cycle, by generating, in turn, a corresponding electric drive signal comprising one operating frequency corresponding to one sub-group, and preferably not comprising the other operating frequencies corresponding the other sub-groups, except if two sub-groups can be activated simultaneously without any risk. If two sub-groups are to be activated at the same time, an electric drive signal comprising two operating frequencies is to be delivered through the same electrical connection circuit 24 during a joint activation time.
- the electric drive signal having at least operation frequency will cause the activation of at least one sub-group during an individual activation time IA, after which another sub-group is activated during another individual activation time.
- An optional individual lapse time IL can be provided between two individual activation times IA, during which no sub-group of transducer is activated.
- a cycle lapse time CL may be provided between two cycles, during which no sub-group of transducer is activated. Such cycle lapse time could be typically in the order of 1 s, for example comprised between 200 ms and 5 s.
- the cycles may be repeated during a treatment time.
- Each transducer is for example activated for an individual activation time of 1 microsecond to 100 milliseconds during each activation IA.
- the delay between the initial activation of a single transducer and the subsequent activation is such that the net duty cycle (ON time divided by ON time plus OFF time) is typically less than 20% preferably less than 10% to avoid heating of tissues in the case of use for BBB disruption.
- FIGS. 12A to 12D illustrate one example of a method according to the invention when using an implantable device having three sub-groups of transducers 20 a , 20 b and 20 c , each having a different operating frequency Fa, Fb and Fc.
- FIG. 12D illustrates, as a function of time, the frequency F 24 of an electric drive signal delivered by the generator to the implantable device 12 through the common electrical connection circuit 24 .
- FIGS. 12A, 12B and 12 C illustrate respectively, as a function of time, an image of the ultrasound field intensity USa, USb, USc delivered respectively by the first, second and third sub-groups of transducers 20 a , 20 b and 20 c.
- the frequency F 24 of an electric drive signal delivered by the generator successively takes a value Fa during an individual activation time IAa, thus activating exclusively the first sub-group of transducers 20 a , a value Fb during an individual activation time IAb, thus activating exclusively the second sub-group of transducers 20 b , and a value Fc during an individual activation time IAc, thus activating exclusively a third sub-group of transducers 20 c .
- a cycle lapse time CL which may be optional, a new cycle is repeated.
- the frequency of an electric drive signal delivered by the generator successively could the same value F during individual activation times IAa, IAb, IAc, while still activating exclusively a first sub-group of transducers 20 , then subsequently exclusively a second sub-group of transducers 20 , and subsequently exclusively a third sub-group of transducers 20 .
- the treatment parameters may include the ultrasound amplitude, their duration, their possible pulsing, individual transducer control or parallel control, etc. . . .
- Emission of the physical waves in the brain to complete treatment lasts a predetermined treatment time. Once treatment is finished, the practitioner may unplug the transdermal needle 14 from the connection receiver 16 and the patient's head.
- the treatment with ultrasound may be used to enhance penetration and efficiency of selected drugs by increasing the permeability of the blood brain barrier, this increase in the permeability being induced by the ultrasound. Therefore, a method according to the invention may include the step of intravenously injecting a drug in the blood of a patient before or during ultrasound emission in the brain, said drug comprising therapeutic agents.
- the method may comprise a step of injecting in the patient's blood at least one contrast agent (Ultrasound sensitive micro-bubbles, ultrasound sensitive drugs, thermal sensitive drugs, nanoparticles, . . . ) prior to or during the emission of ultrasound with the treating device of the apparatus.
- a contrast agent Ultrasound sensitive micro-bubbles, ultrasound sensitive drugs, thermal sensitive drugs, nanoparticles, . . .
- the injection of such contrast agent advantageously helps and promotes opening of the blood brain barrier of the brain and enhances diffusion of the drugs within the brain tissues.
- the therapeutic agents of the drug may be coated with ultrasound sensitive release/carrier agents.
- the active drug is only released in the organism, and precisely only where the brain disorder to be treated is located when ultrasound waves emitted by the implantable ultrasound generating device 12 into the brain reach the coated therapeutic agents which have diffused in the patient's blood.
- the active drug is only released in the selected region and doesn't affect the rest of the organism.
- the apparatus and method of the invention advantageously allow monitoring, for example by means of the generator system 10 or by an external controller such as a computer, of the generation of ultrasound and, potentially, of the injection of contrast agent(s) and/or drug(s) into the patient's blood.
- a combined treatment sequence including injections of a contrast agent A and chemotherapeutic drug B together with ultrasound emission to open the blood brain barrier and enhance drug diffusion in the area of the brain to treat can be monitored.
- the apparatus and method of the invention can also be applied for other medical application than tumour and cancer treatment such as Alzheimer disease, psychiatric disorders, . . . . It can further be applied to induce a loco regional release of ultrasound sensible release/carrier agents such as nanoparticles, or liposomes for example.
- the drug injected in the patient's body is MRI-visible
- its release within the brain can advantageously be monitored by MRI during or after the ultrasound emission treatment according to the method of the invention after connection of the implantable ultrasound generating device 12 of the apparatus of the invention to its generator system 10 .
- Such MRI monitoring is possible in case the apparatus doesn't contain ferromagnetic material and the transdermal needles 19 used as connecting mains are coated with an isolating material. It allows controlling distribution of the effect of the ultrasound treatment over the treatment zone.
- a flexible implantable device as described above may be inserted under the skull, between the skull bone and the meninges and may be made large to address a large zone of the brain. It allows treatment with therapeutic effect of diffuse brain tumors or other diffuse brain disorders. Moreover, an implantable device according to the invention may be used to deliver unfocused therapeutic ultrasound.
- an implantable device By activating only a selected number of ultrasound transducers at a time, an implantable device as described above allows avoiding undesired peak ultrasound pressure zones which could harm the tissues. Selective activation of the transducer, either individually or by sub-groups, minimizes the risk of undesired adverse consequences.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- Anesthesiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Surgical Instruments (AREA)
- Percussion Or Vibration Massage (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
characterized in that the group of transducers consists of several transducers driven by a same electrical drive signal, and connected to the generator system by a common electrical connection circuit, where the electric drive signal serves both as power signal and as a control signal for operating selectively, within said group, at least one or the other of a first transducer or sub-group of transducers, and of a second transducer or sub-group of transducers.
Description
- The present invention relates to a device, an apparatus and a method for the treatment of brain disorders.
- In the last decades, the academic and clinical knowledge and understanding of brain processes and diseases have considerably improved and so have the medical and surgical treatments of such pathologies. One field of brain medicine which has particularly developed is the field of neuromodulation techniques, which consist in submitting brain areas to a physical stimulation like an electric current or a magnetic field to treat a neurological disorder. Among neuromodulation techniques, DBS (which stands for “Deep Brain Stimulation”) with electrical probes, TES (which stands for “Transcranial Electrical Stimulation”) and TMS (for “Transcranial Magnetic Stimulation”) are well known and exemplified in literature. U.S. Pat. No. 7,107,104 describes an implantable cortical neural lead for electrical stimulation of the cerebral cortex.
- Recently, it has been proposed in WO 2006/092061 A1 implantable devices to cause lasting changes in neural functions through several types of physical stimulation (mechanical impulsion on cortex, electrical deep brain stimulation, drug infusion, for neurological deficit rehabilitation). It has also been suggested in WO 2009/067323 A1 devices for creating a skull/brain interface, which devices (implantable into the skull) are totally passive windows or channels permeable to external physical means (electric ionic current, radiofrequency . . . ) in order to neuromodulate brain activity for movement disorder or epilepsy pathologies.
- In the field of brain cancer treatment, such neurostimulation techniques are not efficient. The treatments applied to this pathology remain the same as those applied for any kind of cancer, i.e. chemotherapies and/or surgical ablation of tumors when it is possible without irreversible or lethal damaging of the brain.
- Surgical treatments of the brain require open surgical procedures in the skull of patients. Such open surgical procedures comprise a craniotomy, which includes performing a bone flap.
- To do so, the surgeon firstly performs a trepanation in the skull by piercing several burr holes, and secondly unsticks the durra matter underneath.
- After that, the surgeon then performs the craniotomy by using a saw going from one burr hole to the other. Burr holes are usually 10 to 12 mm diameter each. The fragmented bone chip of each burr hole is kept and used at the end of the surgery to fill bone defects, which suffer poor, long-term, ossification. At the end of the surgical procedure, the bone flap is repositioned and fixed either with trans-skull stitches or with titanium micro-plates. The bone defect areas are filled up either with a synthetic copolymer or with bone powder obtained from the drilling of the burr holes at the beginning of the procedure.
- Ultra keyhole surgical procedures do not require performing a bone flap, but only a burr hole. This burr hole can be very slight (4 mm diameter) in cases of stereotactic biopsy, but can be larger (between 8 to 12 mm diameter) for endoscopic procedures required for partial ablation of tumors.
- Where chemotherapeutic treatments are concerned, these treatments include intravenous administration of highly active drugs to the patients. Unfortunately, these drugs are not specifically active onto the tumors and they also have considerable negative effects in the whole body of patients, with very unpleasant side-effects like nausea, hair loss etc. . . . .
- Known treatments of neurological and neurodegenerative diseases have limitations. Indeed, the brain is particularly difficult to deliver drugs to because of the blood-brain barrier (BBB). The impermeability of the BBB is due to the tight junctions connecting adjacent endothelial cells and highly regulatory transport systems of the endothelial cell membranes. However, these permeability properties pose tremendous obstacles when it comes to pharmacological treatment. The BBB prevents most neurologically active drugs from entering the brain and, as a result, has been isolated as the rate-limiting factor in brain drug delivery. Recently, local blood-brain barrier (BBB) opening has been found to be an advantageous approach for targeted drug delivery to the brain. It has been shown that localized ultrasound exposures, particularly when applied in the presence of intravenously injected gas bubbles, cause reversible opening of the BBB in targeted locations.
- WO-2011/101492 describes a small rigid apparatus for the treatment of brain disorders which comprises an implantable generator having an ultrasound generating device positioned inside a casing and means for fastening the casing into the skull thickness. Such a device is well adapted for applications where a zone of the brain to be treated is of limited extension, for example less than 10 cubic centimetres. But several brain pathologies (i.e. diffuse gliomas, Alzheimer disease, . . . ) will require a much larger zone of treatment because the disease itself is diffused in the brain. WO-2011/101492 might not be adequate to address such an extension of the treatment zone.
- U.S. Pat. No. 7,878,977 describes a flexible ultrasound transducer array for imaging applications. It discloses a condensed ultrasound transducer arrangement. Such a design is ideal for its ultrasound focusing properties, which is useful for imaging applications, but is not suitable for a diffuse unfocused treatment.
- In fact, the present invention aims at offering an improved apparatus which can be used for addressing larger zones of the brain in view of providing treatments for brain tumors and other brain disorders (i.e. Alzheimer's Disease). Large zones may be addressed by an apparatus having several transducers. However, the presence of several transducers may be problematic in view of the risk that the ultrasound waves generated by such transducers may combine in such a way to create, locally in the treatment zone, unacceptably high pressures zones and/or the deposition of too much ultrasound power within a given tissue volume, resulting in unwanted or excessive heating of the tissue.
- An originality of the present disclosure is based on an ultrasound device designed to be placed and slid under the skull on the brain and meninges surface.
- According to an aspect, the invention provides for an apparatus for the treatment of brain disorders, comprising:
-
- an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, wherein the implantable ultrasound generating device comprises at least one group of several ultrasound generating transducers which are connectable by a common electrical connection circuit to a generator delivering electric drive signals driving the generation of ultrasound from the transducers, wherein the ultrasound generating transducers each have one or several operating frequencies,
- a generator to supply electricity to the implantable ultrasound generating treating device,
- characterized in that the group of transducers consists of several transducers which are commonly driven by a same electrical drive signal, and which are therefore connected to the generator system by a common electrical connection circuit of the implantable ultrasound generating treating device, where the electric drive signal serves both as power signal and as a control signal for operating selectively at least one or the other of a first transducer or sub-group of transducers within said group of transducers, and of a second transducer or sub-group of transducers within said group of transducers.
- Thus, the same electric drive signal in the common electrical connection circuit of the implantable ultrasound generating treating device serves both as power signal and as a control signal for selectively activating at least one or the other of a first transducer or sub-group of transducers within said group of transducers, and of a second transducer or sub-group of transducers within said group of transducers.
- According to an aspect, the invention provides an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, wherein the implantable ultrasound generating device comprises at least one group of several ultrasound generating transducers which are connectable by a common electrical connection circuit to a generator system delivering electric drive signals driving the ultrasound generation of the transducers, and wherein the ultrasound generating transducers each have one or several operating frequencies.
- The ultrasound generating transducers may comprise, within said at least one group of transducers, at least
-
- a first ultrasound generating transducer or sub-group of transducers having at least a first operating frequency; and at least,
- a second ultrasound generating transducer or sub-group of transducers having at least a second operating frequency which is not an operating frequency of the first ultrasound transducer or sub-group of transducers.
- According to another aspect, the invention provides an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, characterized in that:
-
- the holder exhibits several holding zones on each of which are held one or several ultrasound generating transducers, and, between the holding zones, the holder exhibits flexing zones;
- the holder has a contour and has voids within the contour, between the holding zones and the flexing zones.
- According to another aspect, the invention provides an implantable ultrasound generating treating device to induce brain disorder treatment by emission of ultrasound waves, wherein the implantable ultrasound generating treating device is suitable for implantation in or under the skull bone of a patient, wherein the implantable ultrasound generating treating device comprises an ultrasound emitting grid having several ultrasound generating transducers held by a common holder extending along a surface of extension, characterized in that:
-
- the holder exhibits several holding zones on each of which are held one or several ultrasound generating transducers, and, between the holding zones, the holder exhibits flexing zones;
- the holder exhibits differing flexibilities respectively around a first flexing axis and around a second flexing axis tangent to the surface of extension of the holder.
- Typically said first and second flexing axis have directions forming an acute angle of at least 30°. More typically said first and second flexing axis have perpendicular directions.
- Any of such apparatus and/or implantable device as above may further comprise one or several of the following features:
-
- The first operating frequency is not an operating frequency of the second ultrasound generating transducer or sub-group of transducers.
- The second operating frequency differs from the nearest operating frequency of the first transducer or sub-group of transducers by at least 10% of the second operating frequency.
- Each ultrasound generating transducer of a same group of transducers has an operating frequency different from any operating frequency of any other transducer of that group.
- On a given common holder, two transducers of a same sub-group are not adjacent. For example, at least one other transducer of another sub-group is closer to both of the said two transducers than the distance between said two transducers.
- An operating frequency of a transducer is a resonant frequency of the transducer.
- Each ultrasound generating transducer is connected to the common electrical connection circuit through a dedicated frequency selector circuit.
- The operating frequency of an ultrasound generating transducer is a resonant frequency of a dedicated frequency selector circuit through which the ultrasound generating transducer is connected to the common electrical connection circuit.
- Each ultrasound generating transducer is connected to the common electrical connection circuit through a dedicated frequency selector circuit passing frequencies inside a frequency band, and the operating frequency of the ultrasound generating transducer is comprised in the frequency band of its dedicated frequency selector circuit.
- The ultrasound generating transducers within the group of transducers are connected to the common electrical connection circuit through an implantable switch which is connected, upstream, to the common electrical connection circuit and, downstream, separately to several distinct sub-groups of one or several ultrasound generating transducers.
- The implantable switch selectively connects the common electrical connection circuit to one of several distinct sub-groups of one or several ultrasound generating transducers, based on the electric drive signal which controls the implantable switch.
- The implantable switch selectively connects in a sequence the common electrical connection circuit to one at a time of said several distinct sub-groups of one or several ultrasound generating transducers, based on the electric drive signal which controls the implantable switch.
- The implantable switch generates a clock signal from the electric drive signal, said clock signal causing the switch to selectively connect in a sequence the common electrical connection circuit to one at a time of said several distinct sub-groups of one or several ultrasound generating transducers.
- The implantable switch comprises a clock signal generator to generate a clock signal from the electric drive signal.
- The implantable switch is energized from the electric drive signal.
- The implantable switch generates a switch energizing signal from the electric drive signal, said switch energizing signal energizing the switch.
- The implantable switch comprises a switch energizing signal generator to generate a switch energizing signal from the electric drive signal.
- The implantable switch comprises:
- a digital counter having a control port and a set of output ports, where the control port receives a clock signal generated from the electric drive signal;
- a series of relays having each:
- a power input port connected to the common electrical connection circuit to receive the electric drive signal;
- a power output port electrically connected to one of said several distinct sub-group of one or several ultrasound generating transducers;
- a gate port electrically connected to an output port of the digital counter.
- The common electrical connection circuit of the implantable ultrasound generating treating device starts from an implantable connection receiver of the implantable ultrasound generating treating device and delivers electric signals to the transducers for driving the ultrasound generation of the transducers.
- The ultrasound emitting grid is rigid.
- The ultrasound emitting grid is flexible.
- The holder comprises a unitary body of flexible material holding the ultrasound generating transducers.
- The holder is made of at least one sheet of silicone based material.
- The holder is made of at least one sheet of flexible material.
- The holder comprises several sheets of material.
- The implantable ultrasound generating device has, in front of at least some of the ultrasound generating transducers, an ultrasound conditioning device.
- The ultrasound conditioning device is formed as a portion of the holder material which covers a frontal surface of an ultrasound generating transducer.
- At least one of the ultrasound conditioning devices comprises one of a convergent lens, such as a convex lens, of a divergent lens, such as a concave lens, and/or of a diffracting array.
- The electrical connection circuit comprises a connection receiver having a casing. In such a case, the connection receiver is preferably permanently connected to the implantable device, i.e. without possibility to electrically disconnect the transducers from the connection receiver. The casing may be rigid, or it may be semi-rigid.
- The connection receiver casing is adapted to be fitted in a burr-hole performed in the skull of the patient to be treated.
- The connection receiver casing is adapted to be fixed to the skull bone.
- The implantable ultrasound generating treating device is made of non-ferromagnetic material.
- The implantable ultrasound generating treating device is implantable through a burr hole.
- The ultrasound generating transducers comprise elements chosen within the group formed by: piezo-composite elements, piezo-ceramic elements, C-MUT elements, or polyvinylidene difluoride (PVDF) elements.
According to another aspect of the invention, the invention relates to an apparatus for the treatment of a brain disorder comprising an implantable ultrasound generating device having any of the above features. Optionally, such an apparatus may further comprise one or several of the following features: - The apparatus comprises a generator system having a generator and a power controller to supply electricity to the implantable ultrasound generating treating device and to set and control its working parameters, and a connector to electrically connect the generator system and the implantable ultrasound generating treating device.
- The generator delivers an electric drive signal which comprises selectively one or the other of:
- a first drive signal component having the first operating frequency; and of
- a second drive signal component having the second operating frequency;
- in order to drive exclusively either one or the other of:
- the first transducer or sub-group of transducers; and of
- the second transducer or sub-group of transducers.
- The generator delivers an electric drive signal which comprises both of:
- a first drive signal component having the first operating frequency; and of
- a second drive signal component having the second operating frequency;
- in order to drive simultaneously both of:
- the first transducer or sub-group of transducers; and of
- the second transducer or sub-group of transducers.
- The ultrasound generating treating device comprises ultrasound generating transducers with an operating frequency between 20 kHz and 200 MHz, more preferably between 500 KHz and 2 MHz.
- The electrical connection circuit of the implantable ultrasound generating treating device comprises a connection receiver designed for cooperation with the connector of the generator system to achieve electrical connection between the generator system and the ultrasound generating treating device.
- The connector of the generator system comprises one or several transdermal needles suitable for plugging into the connection receiver through the patient's skin.
- The generator system comprises only one two-way transdermal needle or two one-way transdermal needles for operating selectively at least one or the other of the first transducer or group of transducers.
- According to another aspect, the invention also relates to a method for treating brain disorders, characterized in that it comprises the steps of:
-
- performing at least one opening into the skull of a patient,
- implanting through said opening an implantable ultrasound generating treating device,
- surgically closing the skin,
- connecting to the implantable ultrasound generating treating device to a generator system;
- activating the generator for supplying power to said implantable ultrasound generating treating device and thereby inducing ultrasound wave emission into the brain,
- treating an area of the brain located beneath the implantable ultrasound generating treating device by ultrasound waves emission into the brain during a determined period, and
- deactivating the generator system when treatment is complete.
Such method may optionally further comprise one or several of the following steps or features: - The step of supplying power to said implantable ultrasound generating treating device includes a step of generating an electric drive signal comprising selectively one or the other of:
- a first drive signal component having the first operating frequency; and of
- a second drive signal component having the second operating frequency;
- in order to drive exclusively either one or the other of the first transducer or sub-group of transducers; and of the second transducer or sub-group of transducers.
- The step of supplying power to said implantable ultrasound generating treating device includes a step of generating an electric drive signal comprising both of:
- a first drive signal component having the first operating frequency; and of
- a second drive signal component having the second operating frequency;
- in order to drive simultaneously both of:
- the first transducer or sub-group of transducers; and of
- the second transducer or sub-group of transducers.
- The step of supplying power to said implantable ultrasound generating treating device may include:
- a step of generating an electric drive signal;
- selectively connecting in a sequence the common electrical connection circuit through an implantable switch to one at a time of said several distinct sub-groups of one or several ultrasound generating transducers, based on the electric drive signal which controls the implantable switch.
- The method may further include a step of injecting a contrast agent and/or a drug in the patient's blood before and/or during ultrasound emission in the brain, and emitting in the brain ultrasound waves with the implantable ultrasound generating device.
- Said drug comprises therapeutic agents coated with ultrasound sensitive and/or thermal sensitive release/carrier agents, and in that the ultrasound waves emitted into the brain cause the release of the therapeutic agents only into the area of the brain receiving the ultrasound waves.
- Ultrasound emission induces a loco regional release of ultrasound sensible release/carrier agents such as nanoparticles or liposomes for example.
- Said contrast agent and/or drug injected in the patient's body is MRI-visible and its release within the brain is monitored by MRI after the ultrasound emission treatment.
- Definitive or reversible sonoporation of the underneath cerebral tissue is carried out by ultrasound emission to increase drug input.
- The positioning of the implantable ultrasound generating treating device is performed at the end of a regular tumor debulking open head neurosurgical procedure, by using existing craniotomy openings.
- The method of the invention can be carried out at the end of a traditional neurosurgical procedure. The implantable generator is introduced in a burr hole performed in the skull of a patient or, when needed, in holes performed for a craniotomy procedure just before the skin closure of the patient. Such generating treating device emits ultrasound waves for treating the brain, for example an area of the brain previously accessed by the surgeon to treat a brain pathology, and for example a brain tumor.
- The emission of ultrasound waves in the method of the present invention proves particularly efficient in providing blood brain barrier opening, which forms a first prominent application of said method. A second prominent application is to activate ultrasound sensitive nanoparticles. Other prominent applications include inducing slight continuous hyperthermia to induce vasodilation, stimulate local immunity, and/or activate thermosensitive nanoparticles. The implantable treating device being implanted under the patient's skull, the ultrasound energy emitted in the brain is not absorbed by the cranial bone wall.
- Therefore, a method according to the invention may further include injecting at least one contrast agent in the patient's blood before or during ultrasound waves' emission to trigger and/or enhance opening of the haematoencephalic barrier (also called blood brain barrier, alias BBB) of the treated brain.
- According to another advantageous characteristic of the invention, the method may further comprise a step of intravenously injecting a drug, such as an anti-tumorous drug, in the blood of a patient before, during, or immediately after ultrasound emission in the brain.
- A drug thus injected may comprise therapeutic agents coated with ultrasound sensitive and/or thermosensitive release or carrier agents. In such a case, emitting ultrasound waves with the implantable treating device into the brain once the drug treatment has diffused in the patient's blood allows releasing the therapeutic agents only into the selected area of the brain to be treated, this area being defined as the area covered by the ultrasound emission.
- In cases of cancerous lesions, intravenous systemic anti-tumorous chemotherapy is usually administered after surgery with products like Temodal (Registered Trademark) or Avastin (Registered Trademark).
- However, the treatment of tumors is not the only application of the apparatus and method of the present invention. Indeed, ultrasound technology can be used to perform a broad spectrum of medical actions, which can be carried out together or alternatively with the method of the present invention. These complementary actions encompass:
-
- Measuring intracranial physiological parameters like intracranial pressure, temperature, tissue elasticity . . . ;
- Hyperthermia for enhancing blood vascularization and the enhanced permeability retention effect;
- Local stimulation of immunity;
- Local definitive or reversible sonoporation of the underneath cerebral tissue, especially of the cell membranes to increase drug input;
- Combinations of any of the above described applications in the method of the invention with simultaneous contrast agent injection.
- In addition to blood brain barrier, alias BBB opening, typical uses of the invention comprise the treatment with therapeutic effect of diffusing brain tumours, multiple brain metastases, Alzheimer's disease, diffuse neurodegenerative diseases, psychiatric disorders, drug resistant epilepsy.
- The apparatus and method of the present invention will be further described in detail below with reference to the accompanying drawings showing preferred embodiments of the apparatus of the invention.
- In the figures:
-
FIG. 1 represents schematically a first embodiment of the apparatus of the present invention; -
FIG. 2 represents schematically an example of the implantation of a device according to the invention in the head of patient; -
FIGS. 3 to 6 represent various variants of an ultrasound emitting grid for a device according to the invention when viewed in cross section; -
FIGS. 7 and 8 represent schematic top views of two further variants of a grid for a device according to the invention; -
FIG. 9 represents a schematic side view of a further variant of a grid for a device according to the invention; -
FIG. 10 represents a schematic top view of a further variant of a grid for a device according to the invention; -
FIGS. 11A and 11B represent two further variants of an ultrasound emitting grid for a device according to the invention when viewed in cross section; -
FIG. 12 is a time chart showing sequential activation of different transducers or sub-groups of transducers; -
FIG. 13 represents schematically an example of the implantation of an apparatus according to the invention, comprising an implantable generator; -
FIGS. 14, 15 and 16 represent schematically a further embodiment of an implantable ultrasound emitting grid according to the invention; -
FIG. 17 represents schematically an implantable switch for an implantable ultrasound emitting grid and/or apparatus of the present invention; -
FIG. 18 represents schematically an example of an electric drive signal voltage; -
FIG. 19 represents schematically an example of an electric drive signal voltage comprising a switch energizing signal; -
FIG. 20 represents schematically an example of a switch energizing signal voltage generated from an electric drive signal; -
FIG. 21 represents schematically an example of a clock signal voltage generated from an electric drive signal. - On
FIG. 1 are shown the main components of an apparatus for the treatment of a brain disorder, comprising an exemplary embodiment of an implantable ultrasound generating treatingdevice 12 according to the invention. - This embodiment of an apparatus for the treatment of brain disorders comprises an
extracorporeal generator system 10, which may for example have a generator and a power controller, to supply electricity to the ultrasound generating treatingdevice 12 and to set and control its working parameters. According to an aspect of the invention, the implantable ultrasound generating treatingdevice 12 is suitable for implantation under the skull of a patient, preferably under the skull bone, for example in the sub-dural space and/or at least partly in place of a portion of the dura-mater, whereas the generator system may be maintained external to the skull. In operation, thegenerator system 10 and the implantable ultrasound generating treatingdevice 12 are to be connected electrically. Whereas such electrical connection could be achieved without contact, such as by inductive coupling, the electrical connection of the shown example is a more conventional cable connection. Such electrical connection could be permanent. However, in the shown embodiment of the invention, electrical connection is preferably achieved through aconnector device 14 of thegenerator system 10 and aconnection receiver 16 of theimplantable device 12 which can be connected and disconnected. In the shown embodiment, theconnector device 14 and theconnection receiver 16 may be physically coupled to achieve electrical connection and may be decoupled without the need to remove theimplantable device 12 from the skull of the patient. In this example, theconnection receiver 16 thus forms a socket of a plug-and-socket connection, while theconnector device 14 forms the plug of a plug-and-socket connection. - Preferably, the
generator system 10 does not need to be adjacent to the head of the patient, including during operation of the apparatus. Theconnector device 14 may thus be connected togenerator system 10 by acable 18 having a suitable length allowing for example for thegenerator system 10 to be arranged near the patient's chest during operation of the apparatus. The cable may thus be at least 50 centimetres long, preferably longer than one meter. - The implantable ultrasound generating treating
device 12 comprises severalultrasound generating transducers 20 held by acommon holder 22 extending along a surface of extension. Theultrasound generating transducers 20 and thecommon holder 22 form together an ultrasound emitting grid. Theultrasound generating transducers 20 are arranged on thecommon holder 22 so as to be spread, preferably at regular intervals, along most of the surface of extension of the ultrasound emitting grid. Theultrasound generating transducers 20 are preferably spaced apart from each other by a non-zero distance on the common holder. The implantable ultrasound generating treatingdevice 12 also comprises an electrical connection network for connecting theultrasound generating transducers 20 to thegenerator system 10 delivering electric drive signals. In the shown embodiment, the electrical connection network starts from theconnection receiver 16 and delivers electric signals to the transducers for driving the ultrasound generation of the transducers. As will be understood below, an electric drive signal may serve both as power signal and as a control signal. The electric connection network may comprise one or several electrically independentelectric connection circuits 24, where it will be understood that a givenelectric connection circuit 24 is a circuit where a common electric drive signal is circulating. Preferably, as will be described below, the electric connection network will comprise only one independentelectric connection circuit 24, so that the electric connection between implantableultrasound generating device 12 and the generator system, here through theconnector 14 and theconnection receiver 16 can be made as simple as possible. Indeed, in such a case, only one two-way connection will be needed, with one electrical channel for the signal connection and one electrical channel for the ground return. However, the electric connection network may comprise several independent electric connection circuits. This may be useful for example in case of a great number of transducers or in a case where the implantableultrasound generating device 12 comprises several independent holders. In such a case, each independent electric connection circuit will have its own independent electric connection to thegenerator system 10 and the generator system may deliver separate and different electric drive signals to each independent electric connection circuit. - In the shown example, the
connection receiver 16 is separate from theholder 22. Therefore, theelectric connection circuit 24 comprises at least onecable 26, most commonly made of one pair of wires where one wire corresponds to one independent electrical channel, which extends from theholder 20 to theconnection receiver 16. Preferably, there is asingle cable 26, although it may comprise several electrically separate wires bundled together. On theholder 22, thecable 26 ofelectric connection circuit 24 separates intoconnection lines 28 for delivering an electric drive signal to theindividual transducers 20 of a given group of transducers. A group of transducers will be defined as several transducers which are commonly driven by a same electrical drive signal, and which are therefore connected by a commonelectrical connection circuit 24 to the generator system. In the shown embodiment, the connection lines 28 form ramifications of a single electric circuit which is common for one group of transducers, as illustrated inFIG. 1 . - The connection lines 28 can be mounted on a surface of the
holder 22 or can be at least partly, but preferably fully, embedded in theholder 22, thus forming part of the ultrasound emitting grid. - It must be noted that, as shown in the example of
FIG. 13 , thegenerator 10 and preferably the entire generator system could also be implantable. It could be implanted in the chest of a patient. In such a case, the implantableultrasound generating device 12 and theimplantable generator 10 could be electrically connected by a cable with at least one disconnectable connection, such as a plug- and socket connection. Thecable 26 could be implanted within the patient's body, along all its length from theultrasound generating device 12 and theimplantable generator 10, i.e. under the skin. The cable could be permanently connected to theultrasound generating device 12 and could comprise a plug to be connected on a socket of the generator. However, the cable could also be, in part, external to the body between the implantableultrasound generating device 12 and the implantable generator system. - The enclosed
FIG. 2 is a schematic section view of a portion of an animal or human head where have been represented the skull bone 1, covering thebrain 2, into which aburr hole 3 has been drilled to perform a regular craniotomy. Between the skull 1 and thebrain 2, one will recognise the presence of themeninges 4 which may typically include, from the skull 1 to thebrain 2, the dura-mater 5, the arachnoid mater 6 and of the pia mater 7. - According to an aspect of the invention, the
holder 22 and itsultrasound generating transducers 20 is to be implanted under the skull, preferably under the skull bone 1. As will be seen more in detail, theconnection receiver 16 is of course implantable in the skull, but it may more particularly, as shown inFIG. 2 , be designed to be received within the aperture of theburr hole 3. However, the connection receiver is preferably to be located below theskin 8 which covers the skull. - In the shown embodiment, the
holder 22 extends along a surface of extension which is preferably parallel, or essentially parallel, to an internal surface of the skull bone 1. Theholder 22 is an element which holds severalultrasound generating transducers 20 which are to be located at different locations along the surface of extension of the holder. Preferably, theholder 22 is able to maintain a relative distance between thevarious transducers 20. However in the case of the illustrated embodiment, due to the fact that, as will be explained below, theholder 22 exhibits some flexibility, theholder 22 may allow some amount of displacement between thetransducers 20 it holds. - Alternatively to the shown embodiment, the ultrasound emitting grid may be a rigid system such as the exemplary embodiments described in WO-2011/101492. In such a case, the grid may be received in a burr-hole made in the skull bone. This grid is then received at least in part within the thickness of the skull bone. As another example, the holder shown in the figures of this application could be rigid, i.e. not flexible.
- However, according to an aspect of the illustrated embodiment of the invention, the
holder 22 is advantageously flexible. As a consequence, the ultrasound emitting grid as a whole, including theultrasound generating transducers 20 and, when applicable, the connection lines 28 for delivering electric current to the individual transducers, is flexible. - According to a desirable feature deriving from that flexibility, the
holder 22 and the ultrasound emitting grid are preferably manually deformable between at least a first spatial configuration, or shape, to at least a second spatial configuration or shape, meaning that, before its implantation or during its implantation, theholder 22 may be deformed to a desired shape by the mere application of biasing or deformation forces which are comparable to those which may be easily applied by hand. Typically, for an ultrasound emitting grid to be considered as flexible, a surgeon implanting such ultrasound emitting grid should be able to deform theholder 22 to give it a certain spatial configuration without resort to any kind of tool. This does not prevent however that deformation and/or implantation of theholder 22 can be deformed/implanted using tools typically employed in brain surgery, especially tools for performing remote-control surgery. - Preferably, the
holder 22, and thus the ultrasound emitting grid, is reversibly deformable such that, after it has been deformed from a first spatial configuration to a second spatial configuration, it can be deformed back to its first spatial configuration or very near to such spatial configuration. - Preferably, the amount of manual reversible deformation of the
holder 22, and thus ofultrasound emitting grid 12, which may be obtained is substantial, meaning optically visible with the naked eye. The amount of manual reversible deformation possible for a given holder may be evaluated as a deformation percentage X %. This deformation percentage X % can be evaluated as follows: for at least two locations of theholder 22 which are distant by L mm along a direction in the surface of extension of theholder 22, the two locations of theholder 22 can be displaced one with respect to the other along a direction perpendicular to the surface of extension of theholder 22, by manual reversible deformation, by a distance of at least L×X % mm. Preferably, the amount of manual reversible deformation is at least of 10%, more preferably of at least 25%. As an example, in the case of a deformation percentage of at least 10%, for two locations which are 100 mm apart along the surface of extension of the holder, the possible manual reversible deformation should be of at least 10 mm along a direction perpendicular to the surface of extension. - In a preferred embodiment, the ultrasound emitting grid is flexible enough to be folded on itself by manual deformation so that two opposite borders of the holder may be brought into contact.
- In a preferred embodiment of the invention, the
holder 22, and thus the ultrasound emitting grid, is manually reversibly deformable between a non-finite number of spatial configurations, meaning that the deformation is continuous and not step by step. - In some embodiments, the
holder 22 and/or the ultrasound emitting grid may be conformable, meaning that it is not entirely elastic and maintains a certain deformation even after any significant biasing or deformation force has been stopped. In such a case, theholder 22 may be deformed from an initial spatial configuration to a temporary spatial configuration upon application of a biasing or deformation force, and then may attain a final spatial configuration upon release of the biasing or deformation force. The deformation of the final spatial configuration compared to the initial spatial configuration is nevertheless preferably substantial, i.e. optically visible with the naked eye, preferably with a deformation percentage of at least 10%, preferably more that 25%. If theholder 22 has a low degree of elasticity, the deformation of the final spatial configuration compared to the temporary spatial configuration (i.e. the spring back deformation) is for example less than one fourth of the deformation amount between the initial and the temporary spatial configurations, for example less than on the tenth. Preferably,such holder 22 is conformable in a non-finite number of spatial configurations. The conformability of the ultrasound emitting grid may result for example from the conformability of theelectric connection lines 28 which may be non-elastic for the deformations which are envisioned for the ultrasound emitting grid while theholder 22 in itself may be somewhat elastic. - In some embodiments, the
holder 22 and/or the ultrasound emitting grid may be elastic and may thus have at least one stable spatial configuration to which it returns or tends to return when non-biased. More precisely, as perfect elasticity does not exist, such elastic ultrasound emitting grid should return to a spatial configuration close to the initial spatial configuration, with a residual deformation between the final deformation and the initial deformation which is, after application of the biasing or deformation effort has ceased, preferably less than 10%, more preferably less than 5%. Such elasticity is preferably maintained after a temporary deformation of up 25%, preferably up to 40%. Elasticity of the ultrasound emitting grid as a whole may derive from elasticity of the connecting lines, while the holder in itself could be substantially non elastic or ultra-flexible as defined hereunder. - In the case of an ultrasound emitting grid exhibiting at least some elasticity, the stable spatial configuration may be a flat configuration where the surface of extension of the holder extends essentially along a plane. However, the stable spatial configuration may be three dimensional, for example exhibiting a dome shape. In such a case, the surface of extension of the
holder 22 may be configured as a three dimensional surface, for example as a dome (seeFIG. 9 ). - In some embodiments, the ultrasound emitting grid, and thus the
holder 22, may be ultra-flexible, i.e. exhibiting a very low degree of rigidity. Such an ultrasound emitting grid cannot hold its own weight. For example, a flat ultrasound emitting grid will be considered ultra-flexible if, along at least one test direction, when the ultrasound emitting grid is clamped at one extremity of the holder so that the clamped extremity extends substantially horizontally, the holder exhibits, by virtue of its sole weight, at least 50% of deformation between the clamped extremity and the free opposed extremity along that direction, meaning that the vertical deflection of the free opposed extremity is at least 50% of the length of the holder between its two extremities along that direction. Such an ultra-flexible ultrasound emitting grid will have the advantage of generating the least possible pressure on the brain which may be due to its deformation. Such ultra-flexible holder may also be defined by the fact that it automatically adopts the shape of a surface it is in contact with, without generating any pressure, or at least without generating any substantial pressure, which pressure would be due to its own elasticity. Of course, it may generate some pressure, for example due to its weight, and/or due to its thickness if sandwiched between two surfaces. In such a case, not only theholder 22 should be ultra-flexible, but also theelectric connection lines 28, if any, should not impair the ultra-flexibility of the ultrasound emitting grid as a whole. - In some embodiments, the
holder 22 comprises a unitary body of flexible material holding the ultrasound generating transducers. A body can be considered unitary if it exhibits continuity of matter along it surface of extension. Preferably, such unitary body is a single unitary body holding all the ultrasound generating transducers. - The
holder 22 may be in the form of at least one sheet of flexible material extending along the surface of extension. Such a sheet exhibits a thickness which preferably has a maximal value less than at least 4 times the smallest of the other two dimensions of the sheet, more preferably less than 8 times the smallest of the other two dimensions. For example, the thickness of the sheet could be in the order of 1 to 4 mm, such as 2 mm. - The
holder 22 may be in the form of at least two sheets of flexible material which extend one along the other, across at least a substantial portion of the surface of extension of the holder, i.e. with preferably over 70% of overlap, more preferably more than 80% of overlap (seeFIG. 4 andFIG. 5 ). In such a case, despite the fact that the holder has different layers, possibly, the holder may be considered unitary as the various sheets which largely overlap are themselves unitary across the surface of extension. - The sheet or sheets of flexible material may be planar or may extend along a three-dimensional surface.
- Preferably, the
holder 22 is made of at least one sheet of elastomeric material, such a silicone based material, preferably of medical grade. Silicone based materials are materials of choice considering their biocompatibility and their softness to avoid brain traumatism. - In the case of multiple sheets, the different sheets can be of a same material or of different materials, for example different grades of material. For example, as shown on
FIG. 4 , theholder 22 may comprise anupper sheet 22 a, on the skull bone side of the holder and made of a first grade of silicone, and alower sheet 22 b, on the brain side of the holder and made of a second grade of silicone. For example, the second grade of silicone may be softer than the first grade, i.e. for example exhibiting a lower shore A hardness, and/or the first grade may be selected to exhibit a higher toughness by exhibiting a higher degree of resistance to tearing. According to another example illustrated inFIG. 5 , the different sheets of material may include acentral sheet 22 c of a first elastomeric material on which the ultrasonic generating transducers may be fixed and twoexternal sheets - Typically, the unitary body of flexible material will exhibit several holding
zones 23 a on each of which one or several ultrasound generating transducers are held, and, between the holding zones, the unitary bodyexhibits flexing zones 23 b. In such a case, the flexing zones are manually reversibly deformable. The flexing zones may comprise portions of reduced thickness of the unitary holder. In the case of a multi-sheet construction of theholder 22, the flexing zones may be zones where one of the sheets is absent. - In other embodiments, such as illustrated in
FIG. 6 theholder 22 may be non-unitary and may comprises severalrigid holding portions 25 a, i.e. not suitable for manual reversible deformation, and on each of which one or several ultrasound generating transducers are held, and the rigid holding portions may be connected byarticulation portions 25 b. It is to be understood that in such case, at least two distinct rigid portions hold each respectively one of at least two distinct ultrasound generating transducers. The articulation portions may be made with a mechanical connection, such as a pivot or ball joint connection, but, as illustrated inFIG. 6 , are preferably made of flexible material, thus forming a flexing portion. - In any case, the holding portions may exhibit rigidity by themselves and/or may become due to the rigidity of the transducers they hold.
- The
holder 22 preferably comprises attachment portions for attaching the holder, and thus the ultrasound emitting grid, for example to the dura-mater. Such attachment portions are preferably located on the periphery of the surface of extension of the holder. Theholder 22 may be attached by stitches (as illustrated inFIG. 2 ) or by screws, but also possibly by riveting or by gluing with a biocompatible glue. In one example, the ultrasound emitting grid is fixed by the holder attachment portions being stitched to the dura-mater. - Preferably, the
ultrasonic transducers 20 are sealed inside theholder 22 in a watertight manner, for example by being embedded in a flexible material of the holder, or by being encapsulated between two layers of flexible material. Preferably also, the part of theelectric connection circuit 24 which is held on theholder 22, i.e. the connection lines 28, is also embedded or encapsulated in theholder 22. - In the example of
FIGS. 1 and 2 , theholder 22 is a unitary holder which exhibits a single sheet of elastomeric material. The holder is initially flat, in that, if supported on a flat surface, it exhibits a flat surface of extension. It exhibits for example a flat upper surface and a flat lower surface. Theultrasonic transducers 20 are arranged inside the volume of theholder 22, which is in this case composed of a single sheet of material, in this case a medical grade of silicone based material. In this example, the holder has a rectangular contour in the surface of extension. However, other shapes could be possible, including common geometrical shapes (square, circle (seeFIG. 7 ), ellipse, . . . ) or irregular shapes. - On the
holder 22, theultrasound generating transducers 20 may be arranged according to any pattern. In some embodiments, alltransducers 20 may be aligned along a same line. However, it is preferred that the transducers are arranged so as to form a two dimensional arrangement extending in the surface of the extension. Advantageously, the transducers may be arranged as in a quincunx. For example, in the embodiment ofFIG. 1 , the transducers are arranged along two parallel rows extending along a longitudinal direction, the two rows being spaced laterally along a transversal direction. In this embodiment, the transducers are regularly spaced along the longitudinal direction in each row. However, the longitudinal position of the transducers in one row is offset longitudinally compared to the longitudinal position of the transducers in the other row, thus forming a quincunx-like arrangement. - In the examples shown on
FIGS. 1 to 11B , the holder exhibits no voids within its contour. - However, the holder could have voids within the contour, between the holding zones and the flexing zones. For example, as in the example of
FIGS. 14 to 16 , the holding zones which hold the transducers could be linked to each other by flexible arm portions, voids being delimited between such flexible arm portions. In this example, the holdingzones 23 a carry only oneultrasonic transducer 20 each. In the case ofultrasonic transducers 20 having a circular cross-section, as shown onFIG. 14 , the holdingzones 23 a can have an annular shape surrounding the correspondingultrasonic transducer 20. - In the example of
FIGS. 14 to 16 , the holdingzones 23 a, and thus theultrasonic transducers 20, are arranged along a grid forming several parallel columns D1 1, D1 2, D1 3, along a first direction D1 and several parallel rows D2 1, D2 2, D2 3 along a second direction D2. In this case, the first and second directions D1, D2 are perpendicular. In a variant having transducers arranged along a quincunx, the first and second directions could form an acute angle of 45° or lower, preferably however forming an acute angle of more than 30°. In the shown example, there are three transducers per row and three transducers per column, but more transducers or less transducers could be provided along a row, along a column or along both. - In the example of
FIGS. 14 to 16 , each holdingzone 23 a in a row D2 1, D2 2, D2 3 is connected to the adjacent holdingzone 23 a in the same row by flexingzone 23 b in the form of a flexible arm portion extending along the second direction D2. Also, each holdingzone 23 a in a column D1 1, D1 2, D1 3 is connected to the adjacent holdingzone 23 a in the same column by a flexingzone 23 b in the form of a flexible arm portion extending along the second direction.Voids 23 c are delimited between such flexible arm portions.Voids 23 c have a closed perimeter along the surface of extension of the holder. - According to another aspect of the invention, the
holder 22 as a whole may exhibit differing flexibilities respectively around a first flexing axis F1 1, F1 2, having a flexing axis direction F1, and around a second flexing axis F2 1, F2 2, having a second flexing axis direction F2, both tangent to the surface of extension of theholder 22, the said first and second flexing axis forming an acute angle of at least 30°, preferably forming an angle of 90°. In other words, theholder 22 as a whole, with itstransducers 20, can be more easily flexed to a globally cylindrical or convex shape around the first flexing axis direction F1, than around the second flexing axis direction F2. - For example, as in some of the embodiments described above, the
holder 22 may exhibit several holdingzones 23 a on each of which are held one or severalultrasound generating transducers 20, and, between the holdingzones 23 a, the holderexhibits flexing zones 23 b. The flexing zones may be configured so that the holder as a whole can be more easily flexed around one flexing axis direction, for example the first flexing axis direction F1, than around the other flexing axis direction, for example the second flexing axis direction F2. - For example, the
holder 22 may have: -
- a
first flexing zone 23 b 1 extending along a first direction D1, perpendicular to the first flexing axis direction F1, from a given holdingzone 23 a to a first adjacent holdingzone 23 a. - a
second flexing zone 23b 2 extending along a second direction D2, perpendicular to the second flexing axis direction F2, from said given holdingzone 23 a to a second adjacent holdingzone 23 a distinct from the first adjacent holdingzone 23 a.
- a
- The first and
second flexing zones 23b 1, 23b 2 may, as in the example shown onFIG. 14 , exhibit differing flexibilities respectively around the first flexing axis direction F1 and around the second flexing axis direction F2. - In
FIG. 14 , thefirst flexing zones 23 b 1, arranged along the columns, are more flexible than the second first flexingzone 23b 2, arranged along the rows. - The differing flexibilities can derive from the material of the respective flexing zones, their geometry (cross-section perpendicular to their direction of extension, length along their direction of extension, presence of reinforcements, . . . ).
- In the example of
FIG. 14 , the given holding zone and the first and second adjacent holding zones hold each only one ultrasound generating transducer. Therefore, thecentre 220 of the correspondingtransducer 20 defines a centre of the holding zone. - As an example, the flexibility of the first and
second flexing zones 23b 1, 23b 2 may be compared by -
- maintaining the given holding zone horizontal, as defined by a plane tangent to the surface of extension at the
centre 220 of the given holding zone; - applying a given force on the
centre 220 of the first adjacent holding zone, along a force direction perpendicular to the surface of extension of the holder at the centre of the first adjacent holding zone and measuring the deflection of said centre along said force direction; - applying the same given force on the centre of the second adjacent holding zone, along a direction perpendicular to the surface of extension of the holder at the centre of the second adjacent holding zone and measuring the deflection of said centre along said direction
- comparing the respective deflections.
- maintaining the given holding zone horizontal, as defined by a plane tangent to the surface of extension at the
- The contour in the surface of extension may be entirely convex or may exhibit concavities. For example, the contour of the holder may resemble that of a flower with fully or partially separated petals (see
FIG. 8 ). As another example of a surface of extension exhibiting concavities, the embodiment ofFIG. 10 exhibits aholder 22 which hascentral portion 22A, which may be circular as shown, but which could be elliptical or of any other known convex shape, andradial portions 22B which extend radially from a the central portion. Each of the central andradial portions ultrasound generating transducers 20. The various radial portions of a given holder may be all similar, or at least some of them may be dissimilar. For exampleradial portions 22B exhibit a certain length along their radial direction of extension, which length may be equal for eachradial portion 22B, or may be dissimilar for at least someradial portions 22B.Radial portions 22B may be distributed evenly angularly around thecentral portion 22A, as shown in the embodiment ofFIG. 10 , or could be distributed unevenly. Each radial portion 226 exhibits a width, perpendicularly to its respective radial direction of extension, which may be constant along its length, or which may to the contrary increase or decrease along with increased distance from thecentral portion 22A along the radial direction. In the shown embodiment ofFIG. 10 , theradial portions 22B exhibit a constant width except at their terminal portions which are rounded. The central and radial portions may exhibit the same thickness, perpendicularly to the surface of extension of ultrasound emitting grid, or may be of different thickness. For example, thecentral portion 22A of the ultrasound emitting grid may be thicker than theradial portions 22B. In such a case, the ultrasound emitting grid may implanted under a patient's skull with the central portion being received in a location where the dura-mater has been removed, whereas the radial portions may be received between the meninges, including the dura-matter and the brain. - As exemplified in
FIGS. 5, 11A, 11B and 15 , theholder 22 may have a bevelled contour edge to limit the physical pressure on the brain and may help inserting the device over the patient's brain. - In the example of
FIGS. 14 to 16 , theholder 22 exhibits: -
- a lower surface intended to be installed facing the brain
- an upper surface opposite the lower surface
- a bevelled contour edge forming a
bevel 46 turning away from the upper surface.
- With such a bevel turning away from the upper surface, the lower surface facing the brain is of lesser area than the upper surface.
- The
bevel 46 may, as visible onFIG. 16 , extend along the entire contour of the holder, or, as shown onFIGS. 11A, 11B on only part of said contour. - In the same way, if the holder comprises
voids 23 c,such voids 23 c may have a bevelled perimeter, as visible onFIG. 16 . Preferably, the perimeter of each void 23 c is bevelled along its entire length. Preferably, the bevelled perimeter of the void 23 c forms abevel 48 turning away from the upper surface. - The
bevels upper surface 40 where theholder 22 forms an acute angle between saidbevel upper surface 40, preferably comprised between 25 and 75 degrees. - When the
holder 22 is installed under the skull, it will adapt its curvature to the brain's curvature. Then distinct transducers could converge and emit ultrasound in the same area of the brain, leading to an undesired superposition of their ultrasound emission. Such ultrasound beam superposition may in such a case generate zones of undesired increased peak pressure that could modify the therapeutic effect and then bring safety issues. - According to an aspect of the invention, for a given implantable
ultrasound generating device 12, a given group ofultrasound generating transducers 20 may comprise at least two subgroups of transducers which may be differentiated by the transducers in the two different sub-groups having different operating frequencies. Transducers of a same sub-group preferably have a same operating frequency. - An operating frequency of a given
transducer 20 is a frequency for which it delivers a higher acoustic power output for a given electric drive signal power, compared to the acoustic power output delivered at neighbouring frequencies. It must be noted that the term operating frequency, as used in this text, covers an individual peak operating frequency, at which thetransducer 20 delivers a peak ultrasound field power/intensity for a given electric drive signal power, or an operating frequency range, around such peak power frequency, for which thetransducer 20 delivers a ultrasound field power/intensity higher than a minimum field power/intensity, which may be expressed as a percentage of the peak ultrasound field power/intensity. - In some embodiments, each
ultrasound generating transducer 20 may be connected to the commonelectrical connection circuit 24 through a dedicated frequency selector circuit, such as a filter, typically a band-pass filter passing frequencies inside a frequency band and attenuating the frequencies outside the band. In such a case, the operating frequency of the ultrasound generating transducer may be comprised in the frequency band of its band-pass filter. For example, the frequency selector circuit filter may tune the transducer's electrical impedance to 50 ohms within a narrow frequency band so that when driven using a long connection cable and connected to the generator, the transducer is driven efficiently, i.e. with minimal electrical losses. The dedicated frequency selector circuit may be individual for a givenultrasound generating transducer 20. The dedicated frequency selector circuit may be common for severalultrasound generating transducers 20. The dedicated frequency selector circuit may be common for all of theultrasound generating transducers 20 of a given sub-group of transducers. - In some embodiments, an operating frequency of a given transducer may be a resonant frequency of the transducer. Indeed, in most commonly used
ultrasound generating transducers 20, the ultrasound energy is generated by virtue of the vibration created in the core of the transducer by an alternating voltage by virtue of a piezoelectric effect or capacitive variation. The transducer is fed with an electric voltage which may have a given frequency or which may have a frequency spectrum which may be decomposed into preferably a limited number of main frequencies. The core of the transducer may thus be designed such that it exhibits at least one inherent resonant frequency. A resonant frequency of the transducer can be defined as the frequency of the drive signal for which the ratio of the acoustic power output divided by consumed electrical power reaches a maximum (at least within neighbouring frequencies). For a typical piezoceramic transducer, this ratio is typically between 50% and 90% at a resonant frequency. If the electric current fed to the transducer exhibits such frequency, it will induce in the transducer a resonant vibration which will generate ultrasound. If the electric current fed to the transducer exhibits only a frequency or frequencies which lie outside of an operating range around the operating frequency, then the acoustic power output will be less than 25% of the power delivered when driven with a given voltage at its operating frequency. - A transducer may have a given operating frequency by choosing for example its resonant thickness mode for a piezoceramic material, e.g. 2 mm thickness for a 1 MHz transducer for PZ26 material. Thus, a transducer with a resonance of 0.9 MHz may be constructed by using a transducer made of such material with a thickness of 2.2 mm or a transducer with a resonance frequency of 1.1 MHz may be constructed by using a transducer made of such material with a thickness of 1.8 mm. Alternatively, a matching layer that is glued to the front face of the transducer may be used to ideal couple the ultrasound energy into the tissue at a given operating frequency.
- The operating frequency of a transducer may alternatively be defined by being a resonant frequency of a dedicated frequency selector circuit through which the
transducer 20 may be connected to the commonelectrical connection circuit 24. - Preferably, the second operating frequency, which is specific to the second sub-group of transducers differs from the nearest operating frequency of the first transducer or sub-group of transducers by at least 10% of the second operating frequency. If the operating frequency covers an operating frequency range, such range should be of limited extent and two operating frequency ranges should not overlap. Such a feature will ensure that there is a sufficient separation between the operating frequencies so that one of the sub-groups may be activated while the other will not be activated. Indeed, activation of a transducer is triggered by the frequency content of the electric drive signal delivered to the transducer. If the electric drive signal contains the operating frequency of the transducer, the transducer is activated and delivers an ultrasound field. If not, the transducer is not activated.
- The frequency content of the electric drive signal can be obtained directly, in case of a simple alternating voltage having one frequency, such as a pure sinusoidal signal. It can also be obtained through Fast Fourier Transform (FFT), as known to the man skilled in the art of signal processing.
- It can be noted that, the intensity/power of the ultrasound field generated by a given transducer will depend on the amplitude of the electric drive signal delivered by the
generator system 10 at the operating frequency. - It must be noted here that a transducer will be considered to be not activated if, when fed with an electrical signal not having its operating frequency, it delivers an ultrasound field having an acoustic power output of less than 25% than the power/intensity it would deliver if fed with an electrical signal having the same acoustic power output at its operating frequency.
- For a given implantable
ultrasound generating device 12, a group ofultrasound generating transducers 20 may comprise a first ultrasound generating transducer or sub-group of transducers having at least a first operating frequency; and at least a second ultrasound generating transducer or sub-group of transducers having at least a second operating frequency which is not an operating frequency of the first ultrasound transducer or group of transducers. Thereby, if the group of transducers is fed, through the commonelectric connection circuit 24 with an electric signal having the second operating frequency and not the first operating frequency, only the second sub-group of transducers will be activated and will deliver a significant amount ultrasound power capable of having a measurable effect on the brain. - Preferably, in such a case, the first operating frequency is not an operating frequency of the second ultrasound transducer or group of transducers. Thus, if the group of transducers is fed, through the common
electric connection circuit 24, with an electric signal having the first operating frequency and not the second operating frequency, only the first sub-group of transducers will be activated and will deliver ultrasound. - Thereby, it will be possible to activate either one or the other of the two sub-groups of transducers by feeding the group of transducers with an electric drive signal having the appropriate frequency content.
- What is described above for two sub-groups of transducers can of course be applied to a higher number of sub-groups of transducers having each an exclusive operating frequency for the transducers of the sub-group. By feeding the group of transducers with an electric current having only one of the exclusive operating frequencies, only the corresponding sub-group of transducers will be activated.
- For example, in the example of
FIG. 1 , it is suggested that thecommon holder 22 may comprise 7transducers ultrasound generating transducer 20, which here belong to a same group of transducers, has an operating frequency different from any operating frequency of that group of transducers. In such a case, each transducer can be considered to be a sub-group of transducers. In such a case, each transducer can be activated individually. If the transducers are activated individually, there is no risk that the ultrasound field created by two transducers may superpose. Thus, there is no risk of un-controlled creation of high intensity ultrasound field at any point of the treatment zone addressed by the implantableultrasound generating device 12. - In the example of
FIG. 8 , it is suggested that thecommon holder 22 may comprise 4 different sub-groups oftransducers sub-groups - In the example of
FIG. 9 , it is suggested that thecommon holder 22 may comprise 2 different sub-groups oftransducers FIGS. 6, 7 and 10 are shown other possible sub-groupings of transducers into sub-groups having different operating frequencies. - Preferably, on a given
common holder 22, two transducers of a same subgroup are not adjacent in the sense that there is at least one transducer of another sub-group which is closer to the each of the two transducers of the same subgroup than a shortest distance between said two transducers of the same subgroup. - Indeed, it is of course interesting to have several ultrasound generating transducers in a same sub-group, thus several transducers having the same operating frequency, not the least because it allows making an implantable
ultrasound generating device 12 having numerous transducers without the need to use too many different types of ultrasound generating transducers. However, in order to achieve a desired effect of reducing the risk of unwanted high ultrasound pressure spots in the treatment zone, which might otherwise result from the superposition of two ultrasound fields, it is preferable that two transducers of the same sub-group are not too close that their ultrasound emission zones intersect broadly in the treatment zone. - Indeed, an
ultrasound generating transducer 20 can be considered to have a given ultrasound emission zone in the form approximately of a cone in which the intensity of the ultrasound field is significant. For example, inFIG. 2 is shown the case of said field of an implantableultrasound generating device 12 having two sub-groups of two transducers: afirst sub-group 20 a 1, 20 a 2, and asecond sub-group 20b 1, 20b 2. Thetransducers 20 a 1, 20 a 2, belong to the same first sub-group and thus have a same first operating frequency. Thetransducers 20b 1, 20b 2, belong to the same second sub-group and thus have a same second operating frequency. Each transducer, when properly activated at its operating frequency, delivers an ultrasound field which can be characterized by a central emission axis Xa1, Xb1, Xa2, Xb2 and a border emission envelope Ea1, Eb1, Ea2, Eb2 which is shown here as a cone having the central emission axis as its axis of symmetry. The border emission envelope of the emission cone can be defined as the envelope containing all locations where the acoustic pressure of the ultrasound field is equal to at least a certain percentage, for example 25%, of the ultrasound field on the central axis at the same distance from the transducer. In real-world applications, the border envelope is not exactly a cone but, for the type of transducers used in the field of medical treatment ultrasound, can be considered as fairly close to a cone. - On
FIG. 2 is shown that the emission cones of two adjacent transducers intersect. This is of course of interest to make sure that no zone of the brain is left untreated. However, in the intersection zone, there is a risk of superposition of the two fields created by the two adjacent transducers, if they would be activated simultaneously. On the other hand, in the example ofFIG. 2 , the emission cones of two non-adjacent transducers do not intersect in the treatment zone, or at least they may intersect at a distance along the central emission axis which is far enough from the transducers so that the acoustic pressure of each field in the intersection zone is greatly diminished, especially due to absorption by the brains tissues before reaching the intersection zone. For example, within a given implantableultrasound generating device 12,transducers 20 a 1 and 20 a 2, or 20 b 1 and 20b 2, belonging to the same sub-group, are chosen and arranged on the common holder such that, when the device is implanted in a patient's head, the emission cones of two transducers of a same sub-group do not intersect, or intersect at a distance from the respective transducers, along their central emission axis, where the ultrasound field pressure is less than or equal to the maximum acoustic pressure that would be generated if a single transducer was activated and had no interference from neighbouring transducers. Constructive interference is acceptable if the addition of the two ultrasound fields leads to a pressure value that is less than the maximum value of a single transducer, or is less than the maximum pressure value that is defined as “safe” for a given treatment. - Thus, in the example of
FIG. 2 , if theultrasound generating device 12 is fed with an electric signal having only the first operating frequency, only thetransducers 20 a 1 and 20 a 2 are activated, with no risk of superposition of the two fields in the treatment zone which may generate unsafe acoustic pressure levels. Similarly, if theultrasound generating device 12 is fed with an electric signal having only the second operating frequency, only thetransducers 20 b 1 and 20 b 2 are activated. - In some examples of an
ultrasound generating device 12, theultrasound generating transducers 20 may be connected to the commonelectrical connection circuit 24 through animplantable switch 50 which is connected, upstream, to the commonelectrical connection circuit 24 and, downstream, separately to several distinct sub-groups of one or severalultrasound generating transducers 20. - The
implantable switch 50 forms part of theultrasound generating device 12. - The
implantable switch 50 selectively connects the commonelectrical connection circuit 24 to one of several distinct sub-groups of one or severalultrasound generating transducers 20, based on the electric drive signal which controls the implantable switch. - An example of such
implantable switch 50 is illustrated diagrammatically onFIG. 17 . - The
implantable switch 50 may comprise aninput port 52 connected to the commonelectrical connection circuit 24, for example to thecable 26 ofFIG. 1 , for receiving the electric drive signal coming from thegenerator 10. - The electric drive signal in the common
electrical connection circuit 24 may be as shown diagrammatically onFIG. 18 . The electric drive signal may comprise a series of signal bursts IA having a burst length for example between 1 and 100 milliseconds, preferably between 10 and 50 milliseconds. The signal bursts IA, herein called therapeutically active bursts IA, comprise at least an operating frequency of the transducers, for example within the frequency range of 500 kHz to 2 MHz, and have a power sufficient for activating theultrasound generating transducers 20 so that they deliver therapeutically active ultrasounds. - The
implantable switch 50 may compriseseveral output ports ultrasound generating transducers 20. In the example ofFIG. 18 , only oneultrasound generating transducer corresponding output port implantable device 12 as shown onFIGS. 14 to 16 , a given output port could be electrically connected to the threeultrasound generating transducers 20 arranged along a same row D2 1, D2 2, D2 3 along the second direction D2, such that the threeultrasound generating transducers 20 arranged along a same row would be driven simultaneously with the same drive signal to generate therapeutic ultrasounds. - The
implantable switch 50 may comprise arelay stage 56 which may comprise, individually electrically connected to one of eachoutput ports individual relay individual relay -
- a power input port connected to the common
electrical connection circuit 24 to receive the electric drive signal; - a power output port electrically connected to one of said several distinct sub-group of one or several ultrasound generating transducers, through a corresponding one of the
output ports - a gate port electrically connected to an output port of a switching stage.
- a power input port connected to the common
- In the embodiment of
FIG. 17 , theimplantable switch 50 comprises a switchingstage 58, which in this case comprises a number ofoutput ports stage 58 associated to a gate port of a correspondingindividual relay relay stage 56. In the depicted embodiment, only one gate port of anindividual relay relay stage 56 is associated to one output port of the switchingstage 58. For example, a solid state relay AQY277 from Panasonic Corporation can be used as a respectiveindividual relay - In the depicted embodiment, the switching
stage 58 has anenergy input port 581 at which the switchingstage 58 receives the energy necessary for its operation. The switchingstage 58 also has acontrol port 582 which receives a clock signal according to which the switchingstage 58 causes selective activation of theoutput ports - In the depicted embodiment the
implantable switch 50 is energized from the electric drive signal. - In some embodiments, the electric drive signal delivered by the
generator 10 and carried by the commonelectrical circuit 24 may have a switch energizing portion, as depictedFIG. 19 on which it is seen that the electric drive signal comprises, between the therapeutically active bursts IA, a switch energizing signal SE. Preferably, the switch energizing signal SE does not comprise an operating frequency of the transducers. For example, the switch energizing signal SE may be offset of a resonant frequency of thetransducers 20 by more than 10%, preferably by more than 20%. - If needed, a filter, such as a band-pass filter, may be provided between the
switch input port 52 and the switching stageenergy input port 581 so that only the switch energizing signal SE is fed to theenergy input port 581. - If needed, a filter (not represented) may be provided between the
switch input port 52 and a power input port of therelay stage 56 to filter out the switch energizing signal SE. - Preferably the
implantable switch 50 generates a switch energizing signal SE from the electric drive signal, said switch energizing signal SE energizing theswitch 50. For example, theimplantable switch 50 may comprise a switch energizingsignal generator 60 to generate a switch energizing signal SE from the electric drive signal. The switch energizingsignal generator 60 may comprise for example a RC filter for filtering the electric drive signal. An example of a switch energizing signal SE generated by a switch energizingsignal generator 60 is shown onFIG. 20 . The switch energizing signal SE can for example comprise a low frequency signal, for example 50 Hz or 60 Hz signal. Alternatively, the switch energizing signal SE may comprise a signal having a frequency comprised between 200 KHz and 400 Khz. - The
implantable switch 50 may generate a clock signal from the electric drive signal. Such a clock signal may be used by the switchingstage 58 to cause the implantable switch to selectively connect the commonelectrical connection circuit 24, through therelay stage 56, to one at a time of said several distinct sub-groups of one or severalultrasound generating transducers 20. To that effect, theimplantable switch 50 may comprise aclock signal generator 62 to generate a clock signal from the electric drive signal. For example, the clock signal generator may comprise a Schmitt trigger, which may be associated to an RC filter. Theclock signal generator 62 may be located between theswitch input port 52 and the switchingstage control port 582. OnFIG. 21 is illustrated an example of a clock signal CS which may be generated by aclock signal generator 62 based on the electric drive signal ofFIG. 18 . The clock signal CS may thus comprise a square binary signal having a raising edge and a falling edge. The raising edge may be triggered by the start of a therapeutically active burst IA. The falling edge may be triggered by the end of a therapeutically active burst IA. However, other relative configurations are possible between the therapeutically active burst IA and the clock signal CS. - The switching
stage 58 of the implantable switch may comprise a digital counter which selectively activates, one at a time, one of several of its several outputs based on a clock signal. The digital counter may for example comprise a decade counter, for example of the industry standard generic 4017 integrated circuit type. - In the example of
FIG. 17 , theimplantable switch 50 may connect, in a sequence, for example a predetermined sequence, the commonelectrical connection circuit 24 to one at a time of said several distinct sub-groups of one or several ultrasound generating transducers, based on the electric drive signal which controls the implantable switch. - An
implantable switch 50 can alternatively comprise -
- a high voltage analog switch, for example an HITACHI ECN3290,
- with a control stage comprising a micro-controller, also comprised within the
implantable switch 50, to control the high voltage analog switch based on the electric drive signal.
- In embodiments where the ultrasound generating treating
device 12 comprises animplantable switch 50, as described above, theultrasound generating transducers 20 of a given group may have the same resonant frequencies, even if pertaining to different sub-groups which are to be activated at different times. - In some embodiments, the implantable ultrasound generating treating
device 12 may comprise phase difference inducing electrical components implemented in the power controller and/or the treating device. For a better compactness of the apparatus, and more specifically of its treating device, the phase difference inducing components may be integrated or associated to the ultrasound transducers. Such phase difference inducing components can for instance comprise filters, capacitors and combinations thereof. - In some embodiments, the implantable ultrasound generating device has, in front of one, some, or each of the ultrasound generating transducers, an ultrasound conditioning device, i.e. a device which affects the direction of propagation of the ultrasound waves generated by the transducer. Such device can include a refraction lens, e.g. a focusing or a defocusing lens, which affects the direction of propagation by refraction through non parallel surfaces of the device. Alternatively, or in combination, such device may affect the direction of propagation by diffraction of the ultrasound waves generated by the transducer.
- In some embodiments, an ultrasound conditioning device may be formed as a portion of the holder material which covers a frontal surface of one, several or each of the ultrasound generating transducers. The frontal surface is the surface of the transducer which emits the ultrasound. It is turned towards the brain.
- In the example of
FIG. 11A is shown an example of aholder 22 made of a single sheet of material in which the ultrasound generating transducers are embedded. The holder thus exhibits alower surface 38, turned towards the brain, and anupper surface 40 turned opposite the brain, towards the skull bone. In this example, the holder material exhibits, in front of some or each of the ultrasound generating transducers, aportion 42 of itslower surface 38, which is shaped convexly. As the transducers exhibit here a substantially flat frontal surface turned towards the brain, the interface of the material of the holder with the transducer exhibits a substantially flat surface, so that theportion 42 of the holder material which is in front of the ultrasound generating device can be assimilated to a plano-convex lens 42. Thus, the ultrasound wave, when propagating through the lower convex surface of the holder material, will be diffracted according to known laws of propagation, and the direction of propagation will be affected depending on the convexity of the lower surface of the ultrasound conditioning device formed as aportion 42 of the holder material, and depending on the difference in acoustic impedance between the holder material and the surrounding material at the interface with the holder. - In the example of
FIG. 11B , is shown a variant where the holder material exhibits, in front of the ultrasound generating transducers, aportion 44 of itslower surface 38, which is shaped concavely. The portion of the holder material which is in front of the ultrasound generating device can be assimilated to a plano-concave lens 44. Such concave shaped lower surface portion may assist in achieving focalisation of ultrasound. - Alternatively, or in combination, the ultrasound emitting grid may include, in front of one, some or all the ultrasound generating transducers, one or several diffracting array(s) to cause diffraction of the ultrasound generated by the ultrasound generating transducers.
- The diffraction array may be formed by the material of the holder, which may exhibit properties such as to cause diffraction of the ultrasound generated by the ultrasound generating transducers. For example, the material may include a diffracting array. Such array may include micro-bubbles of air or any suitable gas, or particles, or an array of ultrasound opaque inclusions which cause diffraction of the ultrasound wave, thus affecting its propagation direction.
- The ultrasound emitting grid may include one or several ultrasound conditioning device(s), such as a refracting lens or a diffracting array distinct from said holder. In such a case, the ultrasound conditioning device(s) may be attached to the
holder 22. - Use of ultrasound conditioning devices as above may allow to design an ultrasound generating grid which avoids unwanted superposition of the various waves generated by each ultrasound, for example for avoiding peak ultrasound power at certain locations of the treatment zone. Use of ultrasound conditioning devices as above may allow to design an ultrasound generating grid with more homogeneous distribution of the ultrasound power in the total volume of treatment zone.
- In the case of a holder made of several sheets of material, the ultrasound conditioning device, when included in the material forming the holder, may be included in only one of the sheets. Such sheet may be the lowest sheet of material, having the
lower surface 38. Alternatively, especially in the case of convex or concave shaped ultrasound conditioning devices, they may be included in a sheet intermediate between thetransducers 20 and the lowest sheet of material, which thus may be of complementary shape and may exhibit a flat lower surface. - In the shown embodiment, the electrical connection network comprises a
connection receiver 16 having a rigid casing. In this particular case, the rigid casing of the connection receiver is adapted to be fitted in a burr-hole performed in the skull of the patient to be treated. The casing may be of cylindrical shape, preferably of circular cylindrical shape. Said casing may comprises anupper wall 30 and alower wall 32 connected by a circularperipheral wall 34. - The rigid casing may have an
upper flange 36 of larger diameter than a lower portion of the casing. The lower portion may be received in the burr-hole while the upper flange may then rest on the upper external surface of the skull bone. The rigid casing of theconnection receiver 16 may be fastened to the skull 1 by any suitable means, such as bone screws. The upper flange may be replaced by one or several peripheral tabs, possibly with hole(s) for receiving bone screws to attach theimplantable connection receiver 16 to the skull. In a variant, the casing may comprise a peripheral external screwing thread formed on the external surface of the peripheral wall of the casing. In that embodiment, the connection receiver can advantageously be screwed manually in the burr-hole 3 of corresponding diameter by a surgeon. - For example, one or several connecting plugs may be located within the implantable rigid casing and may be adapted to physically connect with one or several connecting needle(s) 14 from the generator systems. A connecting
needle 14 is preferably a transdermal needle. Such needles are suitable for piercing the patient's skin and theupper wall 30 of the implantable casing of the connection receiver before plugging into the connecting plugs inside the implantable casing. Theupper wall 30 of the casing can be advantageously made of, or comprise a portion made of, an isolating concealable material like Silastic®, from the silicone manufacturer Dow Corning. This material can easily and automatically reseal when theneedle 14 is withdrawn from theimplantable connection receiver 16. Thus, theupper wall 30 forms an automatically re-sealable sealing gasket between the inside of the casing and the biological fluids and tissues of the patient's head. Advantageously, thetransdermal needle 14 may be coated with an isolating material, for instance wax or plastic on its entire length except at its tip so that an electric contact can be established at its tip with a connecting plug inside the connection receiver to transfer electric current to theimplantable connection receiver 16 without causing burning of the patient's skin. The embodiment of the invention represented inFIG. 1 depicts a two-way connection by means of a singletransdermal needle 16 which carries, on one way, the electric drive signal and, on the other way, the ground connection between thegenerator system 10 and theimplantable treating device 12, which in this case, has only one independentelectric connection circuit 24, thus only one group of transducers. Two single-way needles could have been provided, one for the electric drive signal and one for the ground return. - However, in case of an implantable ultrasound generating device having several independent electrical connection circuits, an independent connection for each electrical signal corresponding to each independent electrical connection circuit would be needed, plus at least one common ground connection. This could be achieved with a single needle having one way per electrical signal plus one way for the ground return, or with several needles.
- The
ultrasound generating transducers 20 are preferably chosen into the group formed by piezo-composite elements, piezo-ceramic elements, CMUT elements (Capacitive micro-machined ultrasonic transducers), or PVDF elements (Poly(vinylidene fluoride)). Piezo-composite elements or piezo-ceramic elements usually have a size in the range of 1 to 50 mm in diameter. CMUT elements usually have a size in the range of 10 to 50 μm in diameter. Piezoelectric components are commonly used in the medical field as ultrasound transducers. A given transducer can comprise one or several discrete elements which are activated simultaneously. Thetransducers 20 may be held on theholder 22 by any suitable means. They can be held by being partially embedded or encapsulated in the material forming theholder 22. They can be held on theholder 22 by gluing, by riveting, or by stitching. - In embodiments where the implantable
ultrasound generating device 12 comprises animplantable switch 50, the switch can advantageously be mounted on theholder 22, or, less preferably, in theconnection receiver 16. - The
generator system 10 is adapted for delivering electric drive signals to be delivered to theultrasound generating transducers 20 of an associatedultrasound generating device 12. The generator system typically comprises an alternating voltage generator able to generate an electric signal at different frequencies. It shall be able to at least deliver alternating voltages at each of the operating frequencies of the associatedultrasound generating device 12. The generator delivers for example a sinusoidal electric voltage signal. Preferably, the generator shall be able to deliver an electric voltage being a combination of signals having at least two of said operating frequencies. - One example of a generator system that can be used with the inventive device may include a system that integrates signal generation, amplification, and control into a single unit. However, a generator system can also comprise one or several individual components performing one or more of these functions. For example, the generator can include an HP/Agilent 33120 function generator. If needed, it can also include for example one or more of an ENI 240L Broadband RF amplifier, of a Rhode and Schwarz RF power meter, and/or external computer controlling equipment over GPIB/Serial/USB interfaces. A computer interface, for example a touchscreen interface, can be provided to control the system and give the user feedback. A radiofrequency board that generates the RF signal and amplifies it may be provided, as well as a coupler to measure the delivered RF power, and matching components to tune the generator output to the impedance of the ultrasound elements. Preferably, the generator may be of a type capable to deliver 25-100 W peak RF power, capable of sending burst lengths with durations of 1 microsecond to continuous mode, and capable of sending bursts within the frequency range of 500 kHz to 2 MHz, preferably also capable to deliver bursts within the frequency range of 20 kHz to 200 MHz. Such a system can be controlled to send pulses with variable frequency and duty cycles for durations of approximately 2-5 minutes. The generator may be a class A/B RF system, which means that it is capable of generating nearly pure sinusoidal signals, but this may make the system rather large. In some embodiments, especially in the case where the generator is implantable, the generator could be a class D system, which tends to generate signals that are square wave on the output.
- The operating frequencies of the
ultrasound generating transducers 20 can range for example from 1 kHz to 100 MHz, Preferably, between 100 kHz and 10 MHz, more preferably between 500 KHz and 2 MHz. For example, in the case of anultrasound generating device 12 having three sub-groups of ultrasound transducers, the respective sub-groups may have, as operating frequency, respectively 900 KHz, 1 MHz and 1.1 MHz. - The
ultrasound generating transducers 20 of the implantableultrasound generating device 12 of the invention can be planar or can be curved. - In addition to the
ultrasound generating transducers 20, theholder 22 may advantageously hold at least one detection ultrasound transducer designed for echo-monitoring of thebrain 3. Said detection transducer may thus be connected to the generator system to work at a different frequency from theultrasound generating transducers 20 and to produce echo-monitoring onto a monitor implemented in or connected to the generator system. Alternatively, the detection ultrasound transducer(s) may operate as or “passive monitoring” where the transducer simply listens to the signals emitted by bubbles in the field. It is therefore possible with the apparatus of the invention to treat a brain disorder by ultrasound emission while in the same time echo-detect the area of the brain being treated. Such feed-back information permits to ensure clinicians of the microbubbles presence in the vessels and permits a monitoring of cavitation within the brain, with a safety closed loop feedback on the generator. - Preferably, the implantable ultrasound generating treating
device 12 is made of non-ferromagnetic materials, preferably MRI compatible materials. - The
holder 22 of the implantable ultrasound generatingtreatment device 12 extends preferably over a surface of extension exceeding 5 cm2, preferably exceeding 25 cm2. In some embodiments, theholder 22 may reach a surface of extension exceeding 100 cm2, including a holder having a dimensions of up to 10×15 cm. The volume of the part of the brain which may treated, i.e. the treatment zone, by a single implantable ultrasound generatingtreatment device 12 according to the invention can reach up to 500 cm3. - With such dimensions a much larger treatment zone of the brain may be treated with the apparatus according to the invention. Advantageously a substantial portion, or the entirety, of the cerebral hemisphere may be treated with such apparatus.
- The holder may exhibit for example 1 to 4 transducers per square centimetre.
- In the shown embodiments, directed to flexible holders, the
transducers 20 are arranged on theholder 22 with a spacing between two transducers which have a size comparable to the size of the transducer, for example between 0.5 and 1.5 times the biggest dimension of the transducer in the plane of extension of theholder 22. However, transducers could be more closely arranged thanks to the selective activation of the transducers according to the invention. - Thus, the treatment zone can be much larger than that with other implantable devices, while still being selectable by proper choice of the size and positioning of the holder(s), and still being able to avoid skull bone absorption of the ultrasound waves. Indeed a given treatment apparatus can be provided with a set of different implantable ultrasound generating devices, such devices being for example different by their holder size, their holder shape (contour periphery, spatial configuration), their holder elastic or conformable properties, the type of transducers, the number of transducers, and/or the density of transducers, etc. . . . . Indeed, designing and constructing of such various holders can be done at minimal cost.
- It can be noted that an implantable ultrasound generating
treatment device 12 according to the invention could comprise several independent holders. Preferably, in such a case, the different holders are connected to asingle connection receiver 16 by a suitably designed electrical connection circuit. Such circuit may thus comprise several cables, for example with one cable per holder and each cable connecting the corresponding holder directly to the connection receiver. In a different configuration, the electric connection circuit could comprise an electrical cable between two holders, one holder being thus powered through the other holder. - The apparatus 1 of the invention, as described herein, is aimed at providing a solution for treating brain disorders, particularly brain tumours or neurodegenerative diseases such as Alzheimer's Disease, in complement to regular craniotomies. The apparatus 1 of the invention provides for emission of ultrasound waves, directly in the area of the brain affected.
- Thanks to the flexibility of the implantable
ultrasound generating device 12 according to the above described embodiment, it can advantageously be introduced underneath the skull bone through a burr-hole or a small craniotomy of a smaller dimension than the dimension of the holder. Theflexible holder 22 may indeed be flexed and therefore folded to be slid through the burr-hole. However, the implantableultrasound generating device 12 can also be implanted through a larger opening. For example, it can be implanted on the inner surface of a bone skull flap, with or without the dura-mater in place. If a portion of the dura-mater is removed, the flexible holder can replace at last part of the missing portion. In both cases, flexibility of theholder 22 will predominantly help in adapting the spatial configuration of the folder to that of the skull and/or the brain at the location of implantation, thereby minimizing adverse consequences of the presence of such a device inside the skull. - In one embodiment, the generator system is implanted in the patient's chest to have a totally implantable apparatus, In such a case, connection between the generator system and the implantable ultrasound emitting grid can be achieved by a mere electric cable, without need of a connection receiver or transdermic needles. Control of the generator is performed remotely by the clinician, for example, by radiofrequency or ultrasound.
- The invention therefore proposes also a method for treatment of such brain disorders.
- The method of the invention essentially consists in positioning, for example at the end of a traditional neurosurgical procedure (craniotomy debulking or keyhole biopsy), at least one implantable
ultrasound generating device 12 of the apparatus previously described through aburr hole 3 or other opening in a patient's skull 1, before the skin closure of the patient. Alternatively, it can also be carried out without previous neurosurgical procedure. In that case, one orseveral burr holes 3 are drilled directly in the patient's skull 1 with the aim of implanting the implantableultrasound generating device 12 of the apparatus of the invention. The positioning of the burr hole(s) 3 to drill in the skull may then be preferably determined prior to drilling, e.g. by neuro-navigational systems. - Once the implantable
ultrasound generating device 12 has been implanted through aburr hole 3, theconnection receiver 16 may be installed in said burr-hole 3. Theconnection receiver 16 can be secured to the skull 1 on its edges, for example by bone screws 5. - The cranial skin is then sutured over the implantable
ultrasound generating device 12 and is preferably allowed to heal before any further action. - When the skin in the patient's head has healed, treatment of brain disorders can then be carried out. To that aim, the implantable
ultrasound generating device 12 is connected to itsgenerator system 10 by means oftransdermal needle 14 implanted through the head's skin and into theconnection receiver 16. The implantableultrasound generating device 12 is then activated through control of thegenerator system 10 of the apparatus, which the surgeon or practitioner carrying out the treatment has previously set to specific treatment parameters. - When supplying power to said implantable ultrasound generating treating
device 12, the generator is thus, for some embodiments, controlled for generating an electric drive signal comprising selectively, during an individual activation time, at least one or the other of: -
- a first drive signal component having the first operating frequency; and of
- a second drive signal component having the second operating frequency;
- in order to drive exclusively either one or the other of:
-
- the first transducer or sub-group of transducers; and of
- the second transducer or sub-group of transducers.
- Preferably, the two sub-steps will be conducted one after the other.
- In the general case of several different sub-groups of transducers, the method will preferably provide that each sub-group of
transducers 20 will be activated, each in turn, during one cycle, by generating, in turn, a corresponding electric drive signal comprising one operating frequency corresponding to one sub-group, and preferably not comprising the other operating frequencies corresponding the other sub-groups, except if two sub-groups can be activated simultaneously without any risk. If two sub-groups are to be activated at the same time, an electric drive signal comprising two operating frequencies is to be delivered through the sameelectrical connection circuit 24 during a joint activation time. - The electric drive signal having at least operation frequency will cause the activation of at least one sub-group during an individual activation time IA, after which another sub-group is activated during another individual activation time. An optional individual lapse time IL can be provided between two individual activation times IA, during which no sub-group of transducer is activated.
- At the end of one cycle time C, each sub-group of transducers will have been activated. At the end of one cycle time C, a new similar cycle may be repeated. A cycle lapse time CL may be provided between two cycles, during which no sub-group of transducer is activated. Such cycle lapse time could be typically in the order of 1 s, for example comprised between 200 ms and 5 s.
- The cycles may be repeated during a treatment time. Each transducer is for example activated for an individual activation time of 1 microsecond to 100 milliseconds during each activation IA. The delay between the initial activation of a single transducer and the subsequent activation is such that the net duty cycle (ON time divided by ON time plus OFF time) is typically less than 20% preferably less than 10% to avoid heating of tissues in the case of use for BBB disruption.
-
FIGS. 12A to 12D illustrate one example of a method according to the invention when using an implantable device having three sub-groups oftransducers FIG. 12D illustrates, as a function of time, the frequency F24 of an electric drive signal delivered by the generator to theimplantable device 12 through the commonelectrical connection circuit 24.FIGS. 12A, 12B and 12 C illustrate respectively, as a function of time, an image of the ultrasound field intensity USa, USb, USc delivered respectively by the first, second and third sub-groups oftransducers - As can be seen, the frequency F24 of an electric drive signal delivered by the generator successively takes a value Fa during an individual activation time IAa, thus activating exclusively the first sub-group of
transducers 20 a, a value Fb during an individual activation time IAb, thus activating exclusively the second sub-group oftransducers 20 b, and a value Fc during an individual activation time IAc, thus activating exclusively a third sub-group oftransducers 20 c. After a cycle lapse time CL, which may be optional, a new cycle is repeated. - In embodiments where the ultrasound generating treating
device 12 comprises animplantable switch 50, as described above, the frequency of an electric drive signal delivered by the generator successively could the same value F during individual activation times IAa, IAb, IAc, while still activating exclusively a first sub-group oftransducers 20, then subsequently exclusively a second sub-group oftransducers 20, and subsequently exclusively a third sub-group oftransducers 20. - It can be noted that, in addition to the control for the electrical signal frequency which includes setting the different individual activation, individual lapse and cycle lapse times, the treatment parameters may include the ultrasound amplitude, their duration, their possible pulsing, individual transducer control or parallel control, etc. . . . Once the implantable
ultrasound generating device 12 has been activated, physical waves are thus emitted in the patient'sbrain 2 to treat the brain area located beneath theimplantable generator 4 in the patient's skull. - Emission of the physical waves in the brain to complete treatment lasts a predetermined treatment time. Once treatment is finished, the practitioner may unplug the
transdermal needle 14 from theconnection receiver 16 and the patient's head. - Such ultrasound emission in the brain, and specifically in the area of the brain that may have been surgically treated by the surgeon, for example by removal of tumorous tissue, is not absorbed by the skull since the transducers are positioned below the skull 1 itself.
- According to a preferred method, the treatment with ultrasound may be used to enhance penetration and efficiency of selected drugs by increasing the permeability of the blood brain barrier, this increase in the permeability being induced by the ultrasound. Therefore, a method according to the invention may include the step of intravenously injecting a drug in the blood of a patient before or during ultrasound emission in the brain, said drug comprising therapeutic agents.
- Moreover, the method may comprise a step of injecting in the patient's blood at least one contrast agent (Ultrasound sensitive micro-bubbles, ultrasound sensitive drugs, thermal sensitive drugs, nanoparticles, . . . ) prior to or during the emission of ultrasound with the treating device of the apparatus. The injection of such contrast agent advantageously helps and promotes opening of the blood brain barrier of the brain and enhances diffusion of the drugs within the brain tissues.
- Moreover, the therapeutic agents of the drug may be coated with ultrasound sensitive release/carrier agents. In that way, the active drug is only released in the organism, and precisely only where the brain disorder to be treated is located when ultrasound waves emitted by the implantable
ultrasound generating device 12 into the brain reach the coated therapeutic agents which have diffused in the patient's blood. By this mean, the active drug is only released in the selected region and doesn't affect the rest of the organism. - The apparatus and method of the invention advantageously allow monitoring, for example by means of the
generator system 10 or by an external controller such as a computer, of the generation of ultrasound and, potentially, of the injection of contrast agent(s) and/or drug(s) into the patient's blood. A combined treatment sequence including injections of a contrast agent A and chemotherapeutic drug B together with ultrasound emission to open the blood brain barrier and enhance drug diffusion in the area of the brain to treat can be monitored. - Moreover, the apparatus and method of the invention, relying on ultrasound emission, can also be applied for other medical application than tumour and cancer treatment such as Alzheimer disease, psychiatric disorders, . . . . It can further be applied to induce a loco regional release of ultrasound sensible release/carrier agents such as nanoparticles, or liposomes for example.
- Still preferably, if the drug injected in the patient's body is MRI-visible, its release within the brain can advantageously be monitored by MRI during or after the ultrasound emission treatment according to the method of the invention after connection of the implantable
ultrasound generating device 12 of the apparatus of the invention to itsgenerator system 10. Such MRI monitoring is possible in case the apparatus doesn't contain ferromagnetic material and the transdermal needles 19 used as connecting mains are coated with an isolating material. It allows controlling distribution of the effect of the ultrasound treatment over the treatment zone. - A flexible implantable device as described above may be inserted under the skull, between the skull bone and the meninges and may be made large to address a large zone of the brain. It allows treatment with therapeutic effect of diffuse brain tumors or other diffuse brain disorders. Moreover, an implantable device according to the invention may be used to deliver unfocused therapeutic ultrasound.
- By activating only a selected number of ultrasound transducers at a time, an implantable device as described above allows avoiding undesired peak ultrasound pressure zones which could harm the tissues. Selective activation of the transducer, either individually or by sub-groups, minimizes the risk of undesired adverse consequences.
Claims (22)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IB2014003102 | 2014-12-19 | ||
IBPCT/IB2014/003102 | 2014-12-19 | ||
PCT/IB2015/002508 WO2016097867A2 (en) | 2014-12-19 | 2015-12-18 | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2015/002508 A-371-Of-International WO2016097867A2 (en) | 2014-12-19 | 2015-12-18 | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/853,637 Division US11738214B2 (en) | 2014-12-19 | 2020-04-20 | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190030374A1 true US20190030374A1 (en) | 2019-01-31 |
Family
ID=52598796
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/536,996 Abandoned US20190030374A1 (en) | 2014-12-19 | 2015-12-18 | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
US16/853,637 Active 2036-05-05 US11738214B2 (en) | 2014-12-19 | 2020-04-20 | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/853,637 Active 2036-05-05 US11738214B2 (en) | 2014-12-19 | 2020-04-20 | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
Country Status (8)
Country | Link |
---|---|
US (2) | US20190030374A1 (en) |
EP (1) | EP3233187B1 (en) |
JP (1) | JP6657225B2 (en) |
CN (2) | CN107864633A (en) |
CA (1) | CA2970514C (en) |
HK (1) | HK1251190A1 (en) |
IL (1) | IL252957B (en) |
WO (1) | WO2016097867A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020193782A1 (en) * | 2019-03-28 | 2020-10-01 | Sorbonne Universite | Implantable ultrasound generating device for implantation within a vertebral column |
WO2021050843A1 (en) * | 2019-09-13 | 2021-03-18 | The Johns Hopkins University | Cranial implant devices, systems, and related methods |
WO2021050881A1 (en) * | 2019-09-13 | 2021-03-18 | The Johns Hopkins University | Cranial implant devices and related methods for monitoring biometric data |
US20210282739A1 (en) * | 2020-03-16 | 2021-09-16 | Avihai Eshel | Stethoscope device and method for remote physical examination of a patient |
US20210298905A1 (en) * | 2016-08-30 | 2021-09-30 | Longeviti Neuro Solutions Llc | Method for manufacturing a low-profile intercranial device and the low-profile intercranial device manufactured thereby |
US20220133263A1 (en) * | 2019-03-01 | 2022-05-05 | The Johns Hopkins University | Mri-compatible implantable wireless diagnostic and therapeutic ultrasound |
US20220184424A1 (en) * | 2019-01-25 | 2022-06-16 | Sonogen Medical, Inc, | Ultrasound stimulation of musculo-skeletal tissue structures |
US12150858B2 (en) | 2015-09-04 | 2024-11-26 | The Johns Hopkins University | Low-profile intercranial device |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH711264A2 (en) * | 2015-06-29 | 2016-12-30 | St Gallen Kantonsspital | An implantable ultrasound transmitter arrangement for treating a person. |
CN105877782B (en) * | 2016-06-27 | 2020-03-10 | 中国科学院苏州生物医学工程技术研究所 | Ultrasonic device |
CA3038668C (en) | 2016-09-27 | 2024-04-30 | Prakash Sampath | Ultra-sound compatible artificial cranial prosthesis with customized platforms |
JP7184365B2 (en) * | 2017-03-30 | 2022-12-06 | サウンドウェーブイノベーション株式会社 | Device for treating dementia, operating method and program for the device |
MX2020011010A (en) * | 2018-04-19 | 2021-01-20 | Iota Biosciences Inc | Implants using ultrasonic communication for neural sensing and stimulation. |
BR112020021286A2 (en) | 2018-04-19 | 2021-01-26 | Iota Biosciences, Inc. | implants using ultrasonic communication to modulate splenic nerve activity |
US20220176163A1 (en) * | 2018-08-25 | 2022-06-09 | Zetroz Systems Llc | Flexible and wearable long duration ultrasound device |
IL311077B1 (en) | 2018-08-29 | 2025-03-01 | Iota Biosciences Inc | Implantable closed-loop neuromodulation device, systems and methods for use |
IL313600A (en) * | 2019-02-13 | 2024-08-01 | Alpheus Medical Inc | Non-invasive sonodynamic therapy |
KR20220082063A (en) | 2019-10-17 | 2022-06-16 | 아이오타 바이오사이언시즈 인코퍼레이티드 | Devices and methods for modulating immune system activity and treating cancer in cancer patients |
FR3103389B1 (en) * | 2019-11-25 | 2022-09-09 | Carthera | IMPLANTABLE MEDICAL DEVICE FOR IMAGING AND/OR TREATMENT OF BRAIN TISSUE |
CN112023243B (en) * | 2020-09-15 | 2022-03-25 | 南京大学 | Transdermal drug delivery device with ultrasonic circulating focusing emission and control method |
KR102716510B1 (en) * | 2022-02-10 | 2024-10-15 | 재단법인대구경북과학기술원 | Brain ultrasonic stimulation and visual monitoring system |
Family Cites Families (200)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1879502A (en) | 1929-07-16 | 1932-09-27 | Rinman Erik Ludvig | Method of producing valuable products from vegetable substances |
DE3150513A1 (en) | 1981-12-21 | 1983-06-30 | Battelle-Institut E.V., 6000 Frankfurt | Device for local hyperthermia treatment |
DE3374522D1 (en) | 1982-10-26 | 1987-12-23 | University Of Aberdeen | |
FR2543817B1 (en) * | 1983-04-06 | 1986-06-27 | Rabelais Universite Francois | ENDOSCOPIC ULTRASOUND SCANNING AND ULTRASONIC ULTRASOUND PROBE |
CA1247845A (en) | 1983-06-24 | 1989-01-03 | Thomas Edye | Wave-guide alignment process |
DE8701218U1 (en) | 1987-01-26 | 1988-05-26 | Siemens AG, 1000 Berlin und 8000 München | Lithotripsy workstation |
US4982434A (en) | 1989-05-30 | 1991-01-01 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
JP2924259B2 (en) | 1991-04-11 | 1999-07-26 | 住友化学工業株式会社 | An anti-adhesion agent for the inner surface of a polymerization vessel comprising a sulfide compound of naphthols and a method for polymerizing a vinyl monomer using the anti-adhesion agent |
US5429582A (en) | 1991-06-14 | 1995-07-04 | Williams; Jeffery A. | Tumor treatment |
JPH0568684A (en) | 1991-09-13 | 1993-03-23 | Olympus Optical Co Ltd | Ultrasonic diagnosing device |
WO1993019705A1 (en) | 1992-03-31 | 1993-10-14 | Massachusetts Institute Of Technology | Apparatus and method for acoustic heat generation and hyperthermia |
US5391197A (en) | 1992-11-13 | 1995-02-21 | Dornier Medical Systems, Inc. | Ultrasound thermotherapy probe |
US5524624A (en) | 1994-05-05 | 1996-06-11 | Amei Technologies Inc. | Apparatus and method for stimulating tissue growth with ultrasound |
US5694936A (en) * | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
US5558092A (en) | 1995-06-06 | 1996-09-24 | Imarx Pharmaceutical Corp. | Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously |
US5752515A (en) | 1996-08-21 | 1998-05-19 | Brigham & Women's Hospital | Methods and apparatus for image-guided ultrasound delivery of compounds through the blood-brain barrier |
US6719755B2 (en) * | 1996-10-22 | 2004-04-13 | Epicor Medical, Inc. | Methods and devices for ablation |
SE518490C2 (en) | 1997-04-18 | 2002-10-15 | Ultrazonix Dnt Ab | Device for non-invasive treatment of biological tissue |
WO1998047569A1 (en) | 1997-04-18 | 1998-10-29 | Exogen, Inc. | Ultrasound application device for accelerating sternum healing |
US6585763B1 (en) * | 1997-10-14 | 2003-07-01 | Vascusense, Inc. | Implantable therapeutic device and method |
US6647296B2 (en) | 1997-10-27 | 2003-11-11 | Neuropace, Inc. | Implantable apparatus for treating neurological disorders |
ATE280555T1 (en) | 1998-01-12 | 2004-11-15 | Ronald P Lesser | METHOD FOR TREATING BRAIN DISEASE USING CONTROLLED HEAT SUPPLY |
US6319241B1 (en) | 1998-04-30 | 2001-11-20 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or a brain |
MXPA00010847A (en) | 1998-05-06 | 2002-05-08 | Exogen Inc | Ultrasound bandages. |
AU6288099A (en) | 1998-10-06 | 2000-04-26 | Progressive Surgical Products | External tissue expansion device for breast reconstruction, male pattern baldness and removal of nevi and keloids |
US7575550B1 (en) | 1999-03-11 | 2009-08-18 | Biosense, Inc. | Position sensing based on ultrasound emission |
AU5496700A (en) | 1999-06-17 | 2001-01-09 | Transurgical, Inc. | Sonic transducer arrays and methods |
DE60004066T2 (en) | 1999-07-29 | 2004-04-15 | Eli Lilly And Co., Indianapolis | BENZOFURYLPIPERAZINE: 5-HT2C SEROTONINE RECEPTOR AGONISTS |
US6139241A (en) | 1999-09-16 | 2000-10-31 | Jenike & Johanson, Inc. | Multi-faceted modular silo for bulk solids |
US6560486B1 (en) | 1999-10-12 | 2003-05-06 | Ivan Osorio | Bi-directional cerebral interface system |
JP2003527940A (en) | 2000-03-24 | 2003-09-24 | トランサージカル,インコーポレイテッド | Apparatus and method for performing internal heating procedures |
US6468219B1 (en) | 2000-04-24 | 2002-10-22 | Philip Chidi Njemanze | Implantable telemetric transcranial doppler device |
JP2001327495A (en) | 2000-05-19 | 2001-11-27 | Shimadzu Corp | Ultrasonic apparatus |
KR100730845B1 (en) | 2000-05-22 | 2007-06-20 | 유겐가이샤 미와 사이언스 겐큐쇼 | Ultrasonic irradiation device |
US6514221B2 (en) | 2000-07-27 | 2003-02-04 | Brigham And Women's Hospital, Inc. | Blood-brain barrier opening |
US6862479B1 (en) | 2000-08-30 | 2005-03-01 | Advanced Bionics Corporation | Spinal cord stimulation as a therapy for sexual dysfunction |
US6584357B1 (en) | 2000-10-17 | 2003-06-24 | Sony Corporation | Method and system for forming an acoustic signal from neural timing difference data |
FR2815717B1 (en) | 2000-10-20 | 2003-01-10 | Centre Nat Rech Scient | NON-INVASIVE METHOD AND DEVICE FOR FOCUSING ACOUSTIC WAVES |
US6613005B1 (en) | 2000-11-28 | 2003-09-02 | Insightec-Txsonics, Ltd. | Systems and methods for steering a focused ultrasound array |
US6666833B1 (en) | 2000-11-28 | 2003-12-23 | Insightec-Txsonics Ltd | Systems and methods for focussing an acoustic energy beam transmitted through non-uniform tissue medium |
US6770031B2 (en) | 2000-12-15 | 2004-08-03 | Brigham And Women's Hospital, Inc. | Ultrasound therapy |
JP3937755B2 (en) | 2001-05-28 | 2007-06-27 | 松下電工株式会社 | Ultrasonic beauty device |
WO2002100480A2 (en) | 2001-06-13 | 2002-12-19 | Apple Marc G | Brachytherapy device and method |
EP1465701A4 (en) | 2002-01-15 | 2008-08-13 | Univ California | SYSTEM AND METHOD FOR DIRECTIONAL ULTRASONIC THERAPY OF SKELETAL JOINTS |
EP1503685B1 (en) | 2002-01-23 | 2012-10-31 | The Regents of The University of California | Implantable thermal treatment apparatus |
US8086296B2 (en) | 2002-04-30 | 2011-12-27 | Brainsonix Corporation | Methods for modifying electrical currents in neuronal circuits |
US9592409B2 (en) | 2002-04-30 | 2017-03-14 | The Regents Of The University Of California | Methods for modifying electrical currents in neuronal circuits |
JP2003325616A (en) | 2002-05-15 | 2003-11-18 | Sanyo Electric Co Ltd | Massager |
US20050020945A1 (en) | 2002-07-02 | 2005-01-27 | Tosaya Carol A. | Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy |
US20040049134A1 (en) | 2002-07-02 | 2004-03-11 | Tosaya Carol A. | System and methods for treatment of alzheimer's and other deposition-related disorders of the brain |
US7302298B2 (en) | 2002-11-27 | 2007-11-27 | Northstar Neuroscience, Inc | Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography |
US7033313B2 (en) | 2002-12-11 | 2006-04-25 | No. 182 Corporate Ventures Ltd. | Surgically implantable hearing aid |
US8088067B2 (en) * | 2002-12-23 | 2012-01-03 | Insightec Ltd. | Tissue aberration corrections in ultrasound therapy |
US20040162507A1 (en) | 2003-02-19 | 2004-08-19 | Assaf Govari | Externally-applied high intensity focused ultrasound (HIFU) for therapeutic treatment |
US20040267234A1 (en) * | 2003-04-16 | 2004-12-30 | Gill Heart | Implantable ultrasound systems and methods for enhancing localized delivery of therapeutic substances |
US7611462B2 (en) * | 2003-05-22 | 2009-11-03 | Insightec-Image Guided Treatment Ltd. | Acoustic beam forming in phased arrays including large numbers of transducer elements |
US7454251B2 (en) | 2003-05-29 | 2008-11-18 | The Cleveland Clinic Foundation | Excess lead retaining and management devices and methods of using same |
US7107104B2 (en) | 2003-05-30 | 2006-09-12 | Medtronic, Inc. | Implantable cortical neural lead and method |
US20050021117A1 (en) * | 2003-07-21 | 2005-01-27 | Jiping He | Flexible integrated head-stage for neural interface |
US7854701B2 (en) | 2003-07-24 | 2010-12-21 | Stergios Stergiopoulos | Non-invasive monitoring of intracranial dynamic effects and brain density fluctuations |
US7896821B1 (en) | 2003-11-14 | 2011-03-01 | Perfusion Technology, LLC | Low intensity directed ultrasound (LODUS) mediated blood brain barrier disruption |
US20060058708A1 (en) | 2003-12-24 | 2006-03-16 | Gill Heart | Method and apparatus for ultrasonically increasing the transportation of therapeutic substances through tissue |
US7647097B2 (en) * | 2003-12-29 | 2010-01-12 | Braingate Co., Llc | Transcutaneous implant |
US20060049957A1 (en) | 2004-08-13 | 2006-03-09 | Surgenor Timothy R | Biological interface systems with controlled device selector and related methods |
EP1879502A2 (en) | 2004-10-06 | 2008-01-23 | Guided Therapy Systems, L.L.C. | Method and system for cosmetic enhancement |
US7522962B1 (en) | 2004-12-03 | 2009-04-21 | Remon Medical Technologies, Ltd | Implantable medical device with integrated acoustic transducer |
US7341562B2 (en) | 2004-12-15 | 2008-03-11 | Neuropace, Inc. | Modulation and analysis of cerebral perfusion in epilepsy and other neurological disorders |
US7819812B2 (en) | 2004-12-15 | 2010-10-26 | Neuropace, Inc. | Modulation and analysis of cerebral perfusion in epilepsy and other neurological disorders |
WO2006092061A1 (en) | 2005-03-04 | 2006-09-08 | Functional Neuroscience, Inc. | Methods and apparatus for effectuating a lasting change in a neural function of a patient, including via mechanical force on neural tissue |
US7674229B2 (en) | 2005-03-07 | 2010-03-09 | The Brigham And Women's Hospital, Inc. | Adaptive ultrasound delivery system |
US7774053B2 (en) * | 2005-03-31 | 2010-08-10 | Wisconsin Alumni Research Foundation | Neural probe array |
US7421297B2 (en) | 2005-03-31 | 2008-09-02 | Medtronic, Inc. | Monopolar stimulation assembly including at least one remote electrode |
WO2006134754A1 (en) * | 2005-06-13 | 2006-12-21 | Takayuki Saguchi | Ultrasonic wave radiator for treatment |
AU2006261150A1 (en) | 2005-06-16 | 2006-12-28 | Michael J. Russell | Guided electrical transcranial stimulation (gets) technique |
US7717853B2 (en) | 2005-06-24 | 2010-05-18 | Henry Nita | Methods and apparatus for intracranial ultrasound delivery |
US20070129652A1 (en) | 2005-11-15 | 2007-06-07 | Henry Nita | Methods and apparatus for intracranial ultrasound therapies |
US20120078140A1 (en) * | 2005-06-24 | 2012-03-29 | Penumbra, Inc. | Method and Apparatus for Removing Blood Clots and Tissue from the Patient's Head |
WO2007026299A2 (en) | 2005-08-30 | 2007-03-08 | Koninklijke Philips Electronics, N.V. | Method of using a combination imaging and therapy transducer to dissolve blood clots |
US8649876B2 (en) | 2005-09-10 | 2014-02-11 | Artann Laboratories Inc. | Leadless system for deep brain stimulation using time reversal acoustics |
US20070073135A1 (en) | 2005-09-13 | 2007-03-29 | Warren Lee | Integrated ultrasound imaging and ablation probe |
US8374696B2 (en) | 2005-09-14 | 2013-02-12 | University Of Florida Research Foundation, Inc. | Closed-loop micro-control system for predicting and preventing epileptic seizures |
WO2007035721A2 (en) | 2005-09-19 | 2007-03-29 | The Trustees Of Columbia University In The City Of New York | Ultrasound method to open blood brain barrier |
US20070225773A1 (en) | 2005-09-28 | 2007-09-27 | Yang Shen | Implantable transcranial pulse generator having a collapsible portion |
US7878977B2 (en) | 2005-09-30 | 2011-02-01 | Siemens Medical Solutions Usa, Inc. | Flexible ultrasound transducer array |
US20070088345A1 (en) | 2005-10-13 | 2007-04-19 | Ust Inc. | Applications of HIFU and chemotherapy |
EP1834646B1 (en) | 2005-10-26 | 2016-06-22 | Toto Ltd. | Ultrasonic cancer therapy accelerator and cytotoxic agent |
CA2570965A1 (en) | 2005-12-15 | 2007-06-15 | Jds Uniphase Corporation | Security device with metameric features using diffractive pigment flakes |
US7949402B2 (en) | 2005-12-27 | 2011-05-24 | Neuropoint Medical, Inc. | Neuro-stimulation and ablation system |
US20070179558A1 (en) | 2006-01-30 | 2007-08-02 | Gliner Bradford E | Systems and methods for varying electromagnetic and adjunctive neural therapies |
US7949401B2 (en) | 2006-04-11 | 2011-05-24 | Advanced Neuromodulation Systems, Inc. | Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods |
WO2007124458A2 (en) | 2006-04-20 | 2007-11-01 | The Regents Of The University Of California | Method of thermal treatment for myolysis and destruction of benign uterine tumors |
US8116875B2 (en) | 2006-06-16 | 2012-02-14 | Neuropoint Medical, Inc. | Implantable neurostimulation systems |
US9623241B2 (en) * | 2006-06-19 | 2017-04-18 | Highland Instruments | Treatment methods |
US7894904B2 (en) | 2006-06-20 | 2011-02-22 | Ebr Systems, Inc. | Systems and methods for implantable leadless brain stimulation |
US20090238763A1 (en) | 2006-07-09 | 2009-09-24 | Chongxi Yu | High penetration compositions and uses thereof |
US20100030076A1 (en) * | 2006-08-01 | 2010-02-04 | Kobi Vortman | Systems and Methods for Simultaneously Treating Multiple Target Sites |
EP2051777B1 (en) | 2006-08-11 | 2019-01-16 | Koninklijke Philips N.V. | Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis |
EP2069019A2 (en) | 2006-09-25 | 2009-06-17 | Koninklijke Philips Electronics N.V. | Feedback loop for focused ultrasound application |
CN101152646B (en) * | 2006-09-27 | 2012-07-04 | 香港理工大学 | flexible ultrasonic transducer array and application device thereof |
WO2008062342A2 (en) | 2006-11-20 | 2008-05-29 | Koninklijke Philips Electronics, N.V. | Control and display of ultrasonic microbubble cavitation |
US7747318B2 (en) | 2006-12-07 | 2010-06-29 | Neuropace, Inc. | Functional ferrule |
RU2471517C2 (en) | 2006-12-13 | 2013-01-10 | Сапиенс Стиринг Брейн Стимьюлейшн Б.В. | One-trial correct wire installation for deep brain stimulation |
CN101636196A (en) | 2006-12-21 | 2010-01-27 | 皇家飞利浦电子股份有限公司 | Biomimetic neurostimulation device |
GB2445585A (en) | 2007-01-09 | 2008-07-16 | Mob Ads Ltd | Customised video programme delivery |
US20080183166A1 (en) | 2007-01-29 | 2008-07-31 | Gary Miller | Devices and methods for ablating tissue |
US7813811B2 (en) | 2007-02-08 | 2010-10-12 | Neuropace, Inc. | Refillable reservoir lead systems |
FR2912817B1 (en) | 2007-02-21 | 2009-05-22 | Super Sonic Imagine Sa | METHOD FOR OPTIMIZING WAVE FOCUSING THROUGH AN INTRODUCING ELEMENT OF ABERATIONS |
US8088084B2 (en) | 2007-03-06 | 2012-01-03 | The Cleveland Clinic Foundation | Method and apparatus for repair of intervertebral discs |
JP2007289715A (en) | 2007-05-07 | 2007-11-08 | Olympus Corp | Ultrasonic diagnostic and therapeutic system |
US20080311045A1 (en) | 2007-06-06 | 2008-12-18 | Biovaluation & Analysis, Inc. | Polymersomes for Use in Acoustically Mediated Intracellular Drug Delivery in vivo |
US20080319355A1 (en) | 2007-06-20 | 2008-12-25 | Henry Nita | Ischemic stroke therapy |
US9993337B1 (en) | 2007-07-19 | 2018-06-12 | Osteosymbionics, Llc | Orthopaedic implant and method of making same |
US8734377B2 (en) | 2007-09-24 | 2014-05-27 | Ivantis, Inc. | Ocular implants with asymmetric flexibility |
US9179850B2 (en) | 2007-10-30 | 2015-11-10 | Neuropace, Inc. | Systems, methods and devices for a skull/brain interface |
US20090112278A1 (en) | 2007-10-30 | 2009-04-30 | Neuropace, Inc. | Systems, Methods and Devices for a Skull/Brain Interface |
FR2923612B1 (en) | 2007-11-12 | 2011-05-06 | Super Sonic Imagine | INSONIFYING DEVICE COMPRISING A THREE-DIMENSIONAL NETWORK OF SPIRAL EMITTERS PROVIDED TO GENERATE A HIGH-INTENSITY FOCUSED WAVE BEAM |
BRPI0820097A2 (en) | 2007-12-07 | 2015-06-30 | Koninkl Philips Electronics Nv | Vessel imaging method, transcranial imaging method, and ultrasound imaging system |
US8226538B2 (en) | 2007-12-10 | 2012-07-24 | Chang Gung University | Biomedical used multiple-channel hemispherical focused ultrasound phased array apparatus |
US20090254134A1 (en) | 2008-02-04 | 2009-10-08 | Medtrode Inc. | Hybrid ultrasound/electrode device for neural stimulation and recording |
US8301262B2 (en) * | 2008-02-06 | 2012-10-30 | Cardiac Pacemakers, Inc. | Direct inductive/acoustic converter for implantable medical device |
US9320914B2 (en) | 2008-03-03 | 2016-04-26 | DePuy Synthes Products, Inc. | Endoscopic delivery of red/NIR light to the subventricular zone |
FR2929040B1 (en) | 2008-03-18 | 2010-04-23 | Super Sonic Imagine | INSONIFYING DEVICE HAVING AN INTERNAL COOLING CHAMBER |
TWI384963B (en) * | 2008-03-28 | 2013-02-11 | Univ Nat Cheng Kung | Kit for providing an access channel in or sensing the intracranial status of the skull of a subject |
WO2009125002A1 (en) | 2008-04-09 | 2009-10-15 | Alexandre Carpentier | A medical system comprising a percutaneous probe |
CA2725453C (en) | 2008-04-30 | 2021-09-14 | Milux Holding S.A. | Brain stimulation |
JP5425459B2 (en) | 2008-05-19 | 2014-02-26 | 富士フイルム株式会社 | Conductive film and transparent heating element |
TWI382860B (en) | 2008-07-11 | 2013-01-21 | Univ Chang Gung | Noninvasively low-frequency ultrasonic apparatus for the brain therapy and the method thereof |
EP2310094B1 (en) * | 2008-07-14 | 2014-10-22 | Arizona Board Regents For And On Behalf Of Arizona State University | Devices for modulating cellular activity using ultrasound |
WO2010022239A2 (en) | 2008-08-20 | 2010-02-25 | Brigham And Women's Hospital, Inc. | Method for modifying glomerular permeability and function with focused ultrasound |
WO2010030819A1 (en) | 2008-09-10 | 2010-03-18 | The Trustees Of Columbia University In The City Of New York | Systems and methods for opening a tissue |
US20100143241A1 (en) | 2008-10-22 | 2010-06-10 | Johnson G Allan | Method and apparatus for delivery of agents across the blood brain barrier |
RU2011120494A (en) | 2008-10-30 | 2012-12-10 | Смит Энд Нефью, Инк. | DEVICE AND METHOD OF ULTRASONIC EXPOSURE |
WO2012030962A2 (en) | 2010-08-31 | 2012-03-08 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Apparatus, systems, and methods for current monitoring in ultrasound powered neurostimulation |
US8629353B2 (en) | 2009-03-05 | 2014-01-14 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method using patterned array with separated islands |
EP3210540B1 (en) | 2009-03-20 | 2021-05-05 | University of Cincinnati | Ultrasound-mediated inducement, detection, and enhancement of stable cavitation |
US8617073B2 (en) | 2009-04-17 | 2013-12-31 | Insightec Ltd. | Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves |
WO2010131157A1 (en) | 2009-05-15 | 2010-11-18 | Koninklijke Philips Electronics N.V. | Implantable device with communication means |
EP2445585A1 (en) | 2009-06-26 | 2012-05-02 | Koninklijke Philips Electronics N.V. | Skin radiation apparatus |
CN102472814A (en) | 2009-06-30 | 2012-05-23 | 皇家飞利浦电子股份有限公司 | Propagation-medium-modification-based reverberated-signal elimination |
WO2011013053A1 (en) | 2009-07-29 | 2011-02-03 | Koninklijke Philips Electronics N.V. | Device with integrated ultrasound transducers and flow sensor |
GB2473265A (en) * | 2009-09-07 | 2011-03-09 | Sonovia Ltd | Flexible PCB mounting for ultrasonic transducers |
EP2475316B8 (en) | 2009-09-10 | 2016-07-13 | Woodwelding AG | Device to be implanted in a human or animal body for signal delivery or acquisition within the body |
US9399144B2 (en) | 2009-09-10 | 2016-07-26 | Newton Howard | System, method, and applications of using the fundamental code unit and brain language |
EP2480144B1 (en) | 2009-09-21 | 2024-03-06 | The Trustees of Columbia University in the City of New York | Systems for opening of a tissue barrier |
US20140074076A1 (en) | 2009-10-12 | 2014-03-13 | Kona Medical, Inc. | Non-invasive autonomic nervous system modulation |
RU2554892C2 (en) | 2009-11-09 | 2015-06-27 | Конинклейке Филипс Электроникс Н.В. | Curvilinear converter of high-intensity focused ultrasound with deformable electric connections |
CN102596431B (en) * | 2009-11-09 | 2016-01-20 | 皇家飞利浦电子股份有限公司 | With the high-intensity focusing ultrasonic transducer of nonmagnetic conductive passage |
US8956277B2 (en) | 2010-02-28 | 2015-02-17 | David J. Mishelevich | Stimulation method via deep brain stimulation |
US20130281890A1 (en) | 2009-11-11 | 2013-10-24 | David J. Mishelevich | Neuromodulation devices and methods |
US20110178442A1 (en) | 2010-01-18 | 2011-07-21 | Mishelevich David J | Patient feedback for control of ultrasound deep-brain neuromodulation |
US20130079682A1 (en) | 2011-09-25 | 2013-03-28 | David J. Mischelevich | Ultrasound-neuromodulation techniques for control of permeability of the blood-brain barrier |
US20110112394A1 (en) | 2009-11-11 | 2011-05-12 | Mishelevich David J | Neuromodulation of deep-brain targets using focused ultrasound |
US20160001096A1 (en) | 2009-11-11 | 2016-01-07 | David J. Mishelevich | Devices and methods for optimized neuromodulation and their application |
US20120083719A1 (en) | 2010-10-04 | 2012-04-05 | Mishelevich David J | Ultrasound-intersecting beams for deep-brain neuromodulation |
US20120283502A1 (en) | 2011-03-21 | 2012-11-08 | Mishelevich David J | Ultrasound neuromodulation treatment of depression and bipolar disorder |
US20130178765A1 (en) | 2011-11-29 | 2013-07-11 | David J. Mishelevich | Ultrasound neuromodulation of spinal cord |
AU2010339720B2 (en) | 2009-12-21 | 2016-07-28 | Sherwin Hua | Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using |
WO2011079177A1 (en) | 2009-12-22 | 2011-06-30 | The Trustees Of Columbia University In The City Of New York | A planning system for targeting tissue structures with ultrasound |
DE102010001020A1 (en) | 2010-01-19 | 2011-07-21 | Medizinische Fakultät Otto-von-Guericke-Universität Magdeburg, 39120 | Device for determining vertebral spacing of the spine |
WO2011101039A1 (en) * | 2010-02-22 | 2011-08-25 | Universite Pierre Et Marie Curie (Paris 6) | Apparatus for the treatment of brain affections and method implementing thereof |
US8932237B2 (en) * | 2010-04-28 | 2015-01-13 | Insightec, Ltd. | Efficient ultrasound focusing |
EP2579807B1 (en) | 2010-06-11 | 2015-05-13 | Sunnybrook Health Sciences Centre | Method of forming patient-specific implant |
US20130251633A1 (en) | 2010-08-05 | 2013-09-26 | The Trustees Of Columbia University In The City Of New York | Systems, methods, and devices for ultrasonic assessment of cancer and response to therapy |
EP2455133A1 (en) | 2010-11-18 | 2012-05-23 | Koninklijke Philips Electronics N.V. | Catheter comprising capacitive micromachined ultrasonic transducers with an adjustable focus |
US9326720B2 (en) | 2011-02-09 | 2016-05-03 | The Charles Stark Draper Laboratory, Inc. | Wireless, implantable electro-encephalography system |
CN102670264B (en) * | 2011-03-15 | 2015-05-13 | 迈克尔·格特纳 | Energy modulation of nerves |
EP2521593B1 (en) | 2011-03-15 | 2015-12-09 | Kona Medical, Inc. | Energetic modulation of nerves |
WO2012162664A1 (en) | 2011-05-26 | 2012-11-29 | The Trustees Of Columbia University In The City Of New York | Systems and methods for opening of a tissue barrier in primates |
EP2726152B1 (en) | 2011-06-29 | 2022-08-24 | Sunnybrook Health Sciences Centre | System for controlling focused ultrasound treatment |
WO2013017778A1 (en) | 2011-07-27 | 2013-02-07 | Universite Pierre Et Marie Curie (Paris 6) | Device for treating the sensory capacity of a person, and method of treatment with the aid of such a device |
JP2013042974A (en) * | 2011-08-25 | 2013-03-04 | Toshiba Corp | Ultrasonic probe and ultrasonic diagnosis apparatus |
WO2013048912A2 (en) * | 2011-09-26 | 2013-04-04 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
WO2013101772A1 (en) | 2011-12-30 | 2013-07-04 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
CN106983959A (en) | 2012-01-11 | 2017-07-28 | 赛诺龙医疗公司 | The moulding apply device of large area body beautification |
US9675321B2 (en) | 2012-04-30 | 2017-06-13 | Christopher Schlenger | Ultrasonographic systems and methods for examining and treating spinal conditions |
WO2013169363A2 (en) | 2012-05-07 | 2013-11-14 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Ultrasound modulation of the brain for treatment of stroke, brain injury, and other neurological disorders |
WO2013177430A1 (en) * | 2012-05-23 | 2013-11-28 | Sunnybrook Health Sciences Centre | Multi-frequency ultrasound device and method of operation |
US20130324892A1 (en) | 2012-05-29 | 2013-12-05 | Boston Scientific Neuromodulation Corporation | Ultrasonic means and methods for dorsal root ganglion neuromodulation |
CN103479403B (en) | 2012-06-08 | 2016-06-22 | 长庚大学 | System and method for guiding focused ultrasonic energy release by surgical navigation system |
WO2014013285A1 (en) | 2012-07-16 | 2014-01-23 | Super Sonic Imagine | Apparatus and method for determining optimal positions of a hifu probe |
RU2663646C2 (en) | 2012-10-19 | 2018-08-07 | Конинклейке Филипс Н.В. | Ultrasound head frame for emergency medical services |
CN103142287A (en) | 2013-02-06 | 2013-06-12 | 曾忠友 | Vertebral pedicle ultrasonic detecting instrument |
EP2996561B1 (en) | 2013-03-05 | 2017-05-03 | Koninklijke Philips N.V. | Consistent sequential ultrasound acquisitions for intra-cranial monitoring |
WO2014179720A1 (en) | 2013-05-02 | 2014-11-06 | University Of South Florida | Implantable sonic windows |
CN105339040A (en) | 2013-06-27 | 2016-02-17 | 波士顿科学神经调制公司 | Paddle leads and lead arrangements for dorsal horn stimulation and systems using the leads |
JP6450752B2 (en) | 2013-06-28 | 2019-01-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Transducer placement and alignment for image-guided ultrasonic thrombolysis |
US10322178B2 (en) | 2013-08-09 | 2019-06-18 | The Trustees Of Columbia University In The City Of New York | Systems and methods for targeted drug delivery |
US20160184614A1 (en) | 2013-08-27 | 2016-06-30 | University Of Washington Through Its Center For Commercialization | Systems and methods for treating abscesses and infected fluid collections |
US10028723B2 (en) | 2013-09-03 | 2018-07-24 | The Trustees Of Columbia University In The City Of New York | Systems and methods for real-time, transcranial monitoring of blood-brain barrier opening |
EP3049117B1 (en) | 2013-09-27 | 2022-07-27 | Exact Therapeutics As | Ultrasound mediated delivery of drugs |
US9782590B2 (en) | 2013-10-18 | 2017-10-10 | Functional Neuromodulation, Inc. | Brain stimulation system including diagnostic tool |
WO2015075603A1 (en) | 2013-11-21 | 2015-05-28 | Koninklijke Philips N.V. | Ultrasound headset |
WO2015113813A1 (en) | 2014-01-17 | 2015-08-06 | Koninklijke Philips N.V. | Ultrasound device and method of assessing a bone of a subject |
US20150224345A1 (en) | 2014-02-13 | 2015-08-13 | John Warlick | Acoustic shock wave therapeutic methods |
US9675374B2 (en) | 2014-03-24 | 2017-06-13 | Ethicon Llc | Ultrasonic forceps |
KR101700883B1 (en) | 2014-07-18 | 2017-02-02 | 한국과학기술연구원 | Stimulation apparatus using low intensity focused ultrasound for pain management and muscle strengthening |
US10098539B2 (en) | 2015-02-10 | 2018-10-16 | The Trustees Of Columbia University In The City Of New York | Systems and methods for non-invasive brain stimulation with ultrasound |
WO2017046412A1 (en) | 2015-09-17 | 2017-03-23 | Consejo Superior De Investigaciones Científicas | Method for detecting circulating cells in superficial body fluids |
AU2016354728B2 (en) | 2015-11-11 | 2019-02-28 | Navifus Co., Ltd. | Method and kit for treating brain tumor by using ultrasound system |
CN108601948B (en) | 2015-12-09 | 2021-04-20 | 皇家飞利浦有限公司 | Ultrasound system |
-
2015
- 2015-12-18 US US15/536,996 patent/US20190030374A1/en not_active Abandoned
- 2015-12-18 IL IL252957A patent/IL252957B/en unknown
- 2015-12-18 EP EP15831151.4A patent/EP3233187B1/en active Active
- 2015-12-18 WO PCT/IB2015/002508 patent/WO2016097867A2/en active Application Filing
- 2015-12-18 JP JP2017532705A patent/JP6657225B2/en active Active
- 2015-12-18 CN CN201580074892.2A patent/CN107864633A/en active Pending
- 2015-12-18 CN CN202010421379.9A patent/CN111701155B/en active Active
- 2015-12-18 CA CA2970514A patent/CA2970514C/en active Active
-
2018
- 2018-08-15 HK HK18110464.6A patent/HK1251190A1/en unknown
-
2020
- 2020-04-20 US US16/853,637 patent/US11738214B2/en active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12213884B2 (en) | 2015-09-04 | 2025-02-04 | The Johns Hopkins University | Low-profile intercranial device |
US12161555B2 (en) | 2015-09-04 | 2024-12-10 | The Johns Hopkins University | Low-profile intercranial device |
US12150858B2 (en) | 2015-09-04 | 2024-11-26 | The Johns Hopkins University | Low-profile intercranial device |
US20210298905A1 (en) * | 2016-08-30 | 2021-09-30 | Longeviti Neuro Solutions Llc | Method for manufacturing a low-profile intercranial device and the low-profile intercranial device manufactured thereby |
US11446148B2 (en) | 2016-08-30 | 2022-09-20 | Longeviti Neuro Solutions Llc | Method for manufacturing a low-profile intercranial device and the low-profile intercranial device manufactured thereby |
US20220184424A1 (en) * | 2019-01-25 | 2022-06-16 | Sonogen Medical, Inc, | Ultrasound stimulation of musculo-skeletal tissue structures |
US20220133263A1 (en) * | 2019-03-01 | 2022-05-05 | The Johns Hopkins University | Mri-compatible implantable wireless diagnostic and therapeutic ultrasound |
WO2020193782A1 (en) * | 2019-03-28 | 2020-10-01 | Sorbonne Universite | Implantable ultrasound generating device for implantation within a vertebral column |
EP4027889A4 (en) * | 2019-09-13 | 2023-12-13 | The Johns Hopkins University | CRANIAL IMPLANT DEVICES AND RELATED METHODS FOR MONITORING BIOMETRIC DATA |
EP4027891A4 (en) * | 2019-09-13 | 2023-09-13 | The Johns Hopkins University | CRANIAL IMPLANT DEVICES, RELATED SYSTEMS AND METHODS |
WO2021050881A1 (en) * | 2019-09-13 | 2021-03-18 | The Johns Hopkins University | Cranial implant devices and related methods for monitoring biometric data |
WO2021050843A1 (en) * | 2019-09-13 | 2021-03-18 | The Johns Hopkins University | Cranial implant devices, systems, and related methods |
US20210282739A1 (en) * | 2020-03-16 | 2021-09-16 | Avihai Eshel | Stethoscope device and method for remote physical examination of a patient |
Also Published As
Publication number | Publication date |
---|---|
WO2016097867A2 (en) | 2016-06-23 |
IL252957B (en) | 2022-07-01 |
EP3233187A2 (en) | 2017-10-25 |
EP3233187B1 (en) | 2022-06-01 |
CA2970514C (en) | 2023-09-12 |
CN107864633A (en) | 2018-03-30 |
CA2970514A1 (en) | 2016-06-23 |
CN111701155A (en) | 2020-09-25 |
WO2016097867A3 (en) | 2016-08-25 |
JP2018500989A (en) | 2018-01-18 |
IL252957A0 (en) | 2017-08-31 |
US11738214B2 (en) | 2023-08-29 |
US20200254284A1 (en) | 2020-08-13 |
HK1251190A1 (en) | 2019-01-25 |
JP6657225B2 (en) | 2020-03-04 |
CN111701155B (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11738214B2 (en) | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device | |
EP2539021B1 (en) | Apparatus for the treatment of brain affections | |
US8649876B2 (en) | Leadless system for deep brain stimulation using time reversal acoustics | |
US7699768B2 (en) | Device and method for non-invasive, localized neural stimulation utilizing hall effect phenomenon | |
US7848803B1 (en) | Methods and systems for facilitating stimulation of one or more stimulation sites | |
US20070038264A1 (en) | Methods and systems for treating autism | |
US20100292527A1 (en) | Device and method for hypertension treatment by non-invasive stimulation to vascular baroreceptors | |
US8423155B1 (en) | Methods and systems for facilitating stimulation of one or more stimulation sites | |
US20110196267A1 (en) | Ultrasound neuromodulation of the occiput | |
WO2013082587A1 (en) | Method for modulating the enteric nervous system to treat a disorder | |
WO2013011474A2 (en) | Nerve stimulation system | |
US20060194724A1 (en) | Methods and systems for nerve regeneration | |
US9358393B1 (en) | Stimulation methods and systems for treating an auditory dysfunction | |
JP6783319B2 (en) | Implantable ultrasound generation therapy devices for the treatment of the spinal cord and / or spinal nerves, devices and methods comprising the devices. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASSISTANCE PUBLIQUE - HOPITAUX DE PARIS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARPENTIER, ALEXANDRE;CANNEY, MICHAEL;CHOLVY, MATTHIEU;SIGNING DATES FROM 20170614 TO 20170912;REEL/FRAME:044283/0839 Owner name: UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6), FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARPENTIER, ALEXANDRE;CANNEY, MICHAEL;CHOLVY, MATTHIEU;SIGNING DATES FROM 20170614 TO 20170912;REEL/FRAME:044283/0839 Owner name: CARTHERA, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARPENTIER, ALEXANDRE;CANNEY, MICHAEL;CHOLVY, MATTHIEU;SIGNING DATES FROM 20170614 TO 20170912;REEL/FRAME:044283/0839 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |