US20190017076A1 - Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof - Google Patents
Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof Download PDFInfo
- Publication number
- US20190017076A1 US20190017076A1 US15/932,217 US201615932217A US2019017076A1 US 20190017076 A1 US20190017076 A1 US 20190017076A1 US 201615932217 A US201615932217 A US 201615932217A US 2019017076 A1 US2019017076 A1 US 2019017076A1
- Authority
- US
- United States
- Prior art keywords
- bio
- derived
- host
- enzyme
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 title claims abstract description 182
- 238000000034 method Methods 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000543 intermediate Substances 0.000 title abstract description 30
- 239000003153 chemical reaction reagent Substances 0.000 title 1
- CABVTRNMFUVUDM-VRHQGPGLSA-N (3S)-3-hydroxy-3-methylglutaryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@@](O)(CC(O)=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 CABVTRNMFUVUDM-VRHQGPGLSA-N 0.000 claims abstract description 81
- 230000000694 effects Effects 0.000 claims description 143
- 229920001184 polypeptide Polymers 0.000 claims description 130
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 130
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 130
- 150000007523 nucleic acids Chemical class 0.000 claims description 121
- 102000004190 Enzymes Human genes 0.000 claims description 118
- 108090000790 Enzymes Proteins 0.000 claims description 118
- 108020004707 nucleic acids Proteins 0.000 claims description 118
- 102000039446 nucleic acids Human genes 0.000 claims description 118
- 238000000855 fermentation Methods 0.000 claims description 60
- 230000004151 fermentation Effects 0.000 claims description 60
- BKAJNAXTPSGJCU-UHFFFAOYSA-N 4-methyl-2-oxopentanoic acid Chemical compound CC(C)CC(=O)C(O)=O BKAJNAXTPSGJCU-UHFFFAOYSA-N 0.000 claims description 59
- YGHRJJRRZDOVPD-UHFFFAOYSA-N 3-methylbutanal Chemical compound CC(C)CC=O YGHRJJRRZDOVPD-UHFFFAOYSA-N 0.000 claims description 46
- 230000037361 pathway Effects 0.000 claims description 45
- BXIPALATIYNHJN-ZMHDXICWSA-N 3-methylbut-2-enoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C=C(C)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 BXIPALATIYNHJN-ZMHDXICWSA-N 0.000 claims description 33
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 claims description 31
- 230000002194 synthesizing effect Effects 0.000 claims description 31
- 108010075483 isoprene synthase Proteins 0.000 claims description 29
- 108010009759 methylglutaconyl-CoA hydratase Proteins 0.000 claims description 29
- -1 syngas Chemical compound 0.000 claims description 28
- 108700040132 Mevalonate kinases Proteins 0.000 claims description 26
- 102000002678 mevalonate kinase Human genes 0.000 claims description 26
- 102100024279 Phosphomevalonate kinase Human genes 0.000 claims description 25
- 108091000116 phosphomevalonate kinase Proteins 0.000 claims description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- UYVZIWWBJMYRCD-ZMHDXICWSA-N isovaleryl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(C)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 UYVZIWWBJMYRCD-ZMHDXICWSA-N 0.000 claims description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 238000003786 synthesis reaction Methods 0.000 claims description 20
- 108010071806 methylcrotonoyl-CoA carboxylase Proteins 0.000 claims description 18
- 108010013792 Isovaleryl-CoA Dehydrogenase Proteins 0.000 claims description 17
- 102100025392 Isovaleryl-CoA dehydrogenase, mitochondrial Human genes 0.000 claims description 17
- GXKSHRDAHFLWPN-RKYLSHMCSA-N trans-3-methylglutaconyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)\C=C(CC(O)=O)/C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 GXKSHRDAHFLWPN-RKYLSHMCSA-N 0.000 claims description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 claims description 14
- 108700035681 EC 1.2.7.7 Proteins 0.000 claims description 13
- 108010055471 Phenylacetaldehyde dehydrogenase Proteins 0.000 claims description 13
- 108010036076 Phenylpyruvate decarboxylase Proteins 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 13
- 230000002255 enzymatic effect Effects 0.000 claims description 13
- 108010072869 indolepyruvate decarboxylase Proteins 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 239000002699 waste material Substances 0.000 claims description 11
- 241001528539 Cupriavidus necator Species 0.000 claims description 10
- 108700040484 Diphosphomevalonate decarboxylases Proteins 0.000 claims description 9
- 108010065958 Isopentenyl-diphosphate Delta-isomerase Proteins 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000012258 culturing Methods 0.000 claims description 9
- 229920001971 elastomer Polymers 0.000 claims description 9
- 102100026024 Acyl-coenzyme A synthetase ACSM3, mitochondrial Human genes 0.000 claims description 8
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 8
- 108700033398 EC 1.1.1.34 Proteins 0.000 claims description 8
- 239000003345 natural gas Substances 0.000 claims description 8
- 239000005060 rubber Substances 0.000 claims description 8
- 239000003518 caustics Substances 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 241000589516 Pseudomonas Species 0.000 claims description 6
- 229920001195 polyisoprene Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 241001528480 Cupriavidus Species 0.000 claims description 5
- 238000009472 formulation Methods 0.000 claims description 5
- 241001523626 Arxula Species 0.000 claims description 4
- 241000228212 Aspergillus Species 0.000 claims description 4
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 4
- 241001112696 Clostridia Species 0.000 claims description 4
- 241000235035 Debaryomyces Species 0.000 claims description 4
- 241000588722 Escherichia Species 0.000 claims description 4
- 241000235644 Issatchenkia Species 0.000 claims description 4
- 241000235649 Kluyveromyces Species 0.000 claims description 4
- 241000235648 Pichia Species 0.000 claims description 4
- 241000235070 Saccharomyces Species 0.000 claims description 4
- 241000235013 Yarrowia Species 0.000 claims description 4
- 210000000349 chromosome Anatomy 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 241000316848 Rhodococcus <scale insect> Species 0.000 claims description 3
- 239000013612 plasmid Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-IGMARMGPSA-N Carbon-12 Chemical compound [12C] OKTJSMMVPCPJKN-IGMARMGPSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- KJTLQQUUPVSXIM-ZCFIWIBFSA-M (R)-mevalonate Chemical compound OCC[C@](O)(C)CC([O-])=O KJTLQQUUPVSXIM-ZCFIWIBFSA-M 0.000 claims 2
- 230000003570 biosynthesizing effect Effects 0.000 abstract description 6
- NUHSROFQTUXZQQ-UHFFFAOYSA-N Isopentenyl diphosphate Natural products CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 41
- 244000005700 microbiome Species 0.000 description 37
- 210000004027 cell Anatomy 0.000 description 36
- 108090000623 proteins and genes Proteins 0.000 description 33
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 30
- 102000004316 Oxidoreductases Human genes 0.000 description 29
- 108090000854 Oxidoreductases Proteins 0.000 description 29
- 125000003275 alpha amino acid group Chemical group 0.000 description 28
- 101710088194 Dehydrogenase Proteins 0.000 description 23
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 22
- 101710183613 Diphosphomevalonate decarboxylase Proteins 0.000 description 19
- 108090000769 Isomerases Proteins 0.000 description 17
- 102000004195 Isomerases Human genes 0.000 description 17
- 239000012634 fragment Substances 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 15
- SIGQQUBJQXSAMW-ZCFIWIBFSA-N (R)-5-diphosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(=O)OP(O)(O)=O SIGQQUBJQXSAMW-ZCFIWIBFSA-N 0.000 description 13
- 235000001014 amino acid Nutrition 0.000 description 13
- 235000018102 proteins Nutrition 0.000 description 13
- OKZYCXHTTZZYSK-ZCFIWIBFSA-N (R)-5-phosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(O)=O OKZYCXHTTZZYSK-ZCFIWIBFSA-N 0.000 description 12
- 102000004031 Carboxy-Lyases Human genes 0.000 description 12
- 108090000489 Carboxy-Lyases Proteins 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 9
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 9
- 241000191967 Staphylococcus aureus Species 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 241000206602 Eukaryota Species 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 8
- 108090000364 Ligases Proteins 0.000 description 7
- 102000003960 Ligases Human genes 0.000 description 7
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 7
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 241000589776 Pseudomonas putida Species 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- 241000235015 Yarrowia lipolytica Species 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 241000020731 Burkholderia multivorans Species 0.000 description 3
- 241000193403 Clostridium Species 0.000 description 3
- 241001656809 Clostridium autoethanogenum Species 0.000 description 3
- 241000186570 Clostridium kluyveri Species 0.000 description 3
- 241000186226 Corynebacterium glutamicum Species 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 101000958922 Homo sapiens Diphosphomevalonate decarboxylase Proteins 0.000 description 3
- 241000235058 Komagataella pastoris Species 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- 244000111261 Mucuna pruriens Species 0.000 description 3
- 235000006161 Mucuna pruriens Nutrition 0.000 description 3
- 101000958925 Panax ginseng Diphosphomevalonate decarboxylase 1 Proteins 0.000 description 3
- 241000193998 Streptococcus pneumoniae Species 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 239000002154 agricultural waste Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 150000002016 disaccharides Chemical class 0.000 description 3
- 229940040102 levulinic acid Drugs 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 150000002772 monosaccharides Chemical class 0.000 description 3
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 3
- 239000006163 transport media Substances 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 description 2
- REKYPYSUBKSCAT-UHFFFAOYSA-N 3-hydroxypentanoic acid Chemical compound CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- 101100170556 Bacillus subtilis (strain 168) pdhD gene Proteins 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 241000680806 Blastobotrys adeninivorans Species 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000235036 Debaryomyces hansenii Species 0.000 description 2
- 241001600125 Delftia acidovorans Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 102100039618 Isopentenyl-diphosphate delta-isomerase 2 Human genes 0.000 description 2
- 241001138401 Kluyveromyces lactis Species 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241000186673 Lactobacillus delbrueckii Species 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- 102100027320 Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial Human genes 0.000 description 2
- 102100027392 Methylglutaconyl-CoA hydratase, mitochondrial Human genes 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 241000235645 Pichia kudriavzevii Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 241000589540 Pseudomonas fluorescens Species 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 241000191963 Staphylococcus epidermidis Species 0.000 description 2
- 244000057717 Streptococcus lactis Species 0.000 description 2
- 235000014897 Streptococcus lactis Nutrition 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 102000005488 Thioesterase Human genes 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- XMWHRVNVKDKBRG-CRCLSJGQSA-N [(2s,3r)-2,3,4-trihydroxy-3-methylbutyl] dihydrogen phosphate Chemical compound OC[C@](O)(C)[C@@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-CRCLSJGQSA-N 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000008238 biochemical pathway Effects 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 108020002982 thioesterase Proteins 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 1
- 108700037654 Acyl carrier protein (ACP) Proteins 0.000 description 1
- 102000048456 Acyl carrier protein (ACP) Human genes 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241000252867 Cupriavidus metallidurans Species 0.000 description 1
- 241001600129 Delftia Species 0.000 description 1
- 108010017464 Fructose-Bisphosphatase Proteins 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108090001042 Hydro-Lyases Proteins 0.000 description 1
- 102000004867 Hydro-Lyases Human genes 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 235000000421 Lepidium meyenii Nutrition 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 1
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 241000168036 Populus alba Species 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 101100132333 Pseudomonas mevalonii mvaA gene Proteins 0.000 description 1
- 101710104378 Putative malate oxidoreductase [NAD] Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000158504 Rhodococcus hoagii Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011090 industrial biotechnology method and process Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 101150032117 ipdC gene Proteins 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 235000012902 lepidium meyenii Nutrition 0.000 description 1
- 101150100958 macA gene Proteins 0.000 description 1
- 101150108859 maeB gene Proteins 0.000 description 1
- 238000012269 metabolic engineering Methods 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000002705 metabolomic analysis Methods 0.000 description 1
- 230000001431 metabolomic effect Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 108091092194 transporter activity Proteins 0.000 description 1
- 102000040811 transporter activity Human genes 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/12—Alkadienes
- C07C11/173—Alkadienes with five carbon atoms
- C07C11/18—Isoprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F136/08—Isoprene
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P11/00—Preparation of sulfur-containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/32—Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/07—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with an iron-sulfur protein as acceptor (1.2.7)
- C12Y102/07007—3-Methyl-2-oxobutanoate dehydrogenase (ferredoxin) (1.2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y108/00—Oxidoreductases acting on sulfur groups as donors (1.8)
- C12Y108/01—Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
- C12Y108/01004—Dihydrolipoyl dehydrogenase (1.8.1.4), i.e. lipoamide-dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01043—Phenylpyruvate decarboxylase (4.1.1.43)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01074—Indolepyruvate decarboxylase (4.1.1.74)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01034—Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/01005—Aldehyde dehydrogenase [NAD(P)+] (1.2.1.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/01—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
- C12Y102/01039—Phenylacetaldehyde dehydrogenase (1.2.1.39)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y103/00—Oxidoreductases acting on the CH-CH group of donors (1.3)
- C12Y103/08—Oxidoreductases acting on the CH-CH group of donors (1.3) with flavin as acceptor (1.3.8)
- C12Y103/08004—Isovaleryl-CoA dehydrogenase (1.3.8.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01036—Mevalonate kinase (2.7.1.36)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/04—Phosphotransferases with a phosphate group as acceptor (2.7.4)
- C12Y207/04002—Phosphomevalonate kinase (2.7.4.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01033—Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
- C12Y402/01018—Methylglutaconyl-CoA hydratase (4.2.1.18)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/03—Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
- C12Y402/03027—Isoprene synthase (4.2.3.27)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y602/00—Ligases forming carbon-sulfur bonds (6.2)
- C12Y602/01—Acid-Thiol Ligases (6.2.1)
- C12Y602/01002—Butyrate-CoA ligase (6.2.1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y604/00—Ligases forming carbon-carbon bonds (6.4)
- C12Y604/01—Ligases forming carbon-carbon bonds (6.4.1)
- C12Y604/01004—Methylcrotonoyl-CoA carboxylase (6.4.1.4)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- This application relates to methods for biosynthesizing 3-hydroxy-3-methylglutaryl-coA (3-HMG) and intermediates thereof, using one or more isolated enzymes such as one or more of a 4-methyl-2-oxopentanoate, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase; or using non-naturally occurring host cells expressing one or more such enzymes.
- one or more isolated enzymes such as one or more of a 4-methyl-2-oxopentanoate, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase.
- This application further relates to methods for biosynthesizing isoprene and intermediates thereof from 3-hydroxy-3-methylglutaryl-coA using one or more isolated enzymes, such as one or more of a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using non-naturally Occurring host cells expressing one or more such enzymes.
- one or more isolated enzymes such as one or more of a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using non-natural
- Isoprene is an important monomer for the production of specialty elastomers including motor mounts/fittings, surgical gloves, rubber bands, golf balls and shoes.
- Styrene-isoprene-styrene block copolymers form a key component of hot-melt pressure-sensitive adhesive formulations and cis-poly-isoprene is utilized in the manufacture of tires (Whited et al., Industrial Biotechnology, 2010, 6(3), 152-163).
- Biocatalysis is the use of biological catalysts, such as enzymes, to perform biochemical transformations of organic compounds.
- Isoprene may be synthesized via two routes leading to the precursor dimethylvinyl-PP, such as the mevalonate and the non-mevalonate pathway (Kiiztiyama, Biosci. Biotechnol. Biochem., 2002, 66(8), 1019-1827).
- the mevalonate pathway incorporates a decarboxylase enzyme, mevalonate diphosphate decarboxylase (hereafter Mdd), that introduces the first vinyl-group into the precursors leading to isoprene.
- Mdd mevalonate diphosphate decarboxylase
- the second vinyl-group is introduced by isoprene synthase (hereafter IspS) in the final step in synthesizing isoprene.
- the mevalonate pathway (shown in part in FIG. 2 ) has been exploited in the biocatalytic production of isoprene using E. coli as host.
- E. coli engineered with the mevalonate pathway requires three moles of acetyl-CoA, three moles of ATP and two moles of NAD(P)H to produce a mole of isoprene.
- isoprene Given a theoretical maximum yield of 25.2% (w/w) for the mevalonate pathway, isoprene has been produced biocatalytically at a volumetric productivity of 2 g/(L ⁇ h) with a yield of 11% (w/w) from glucose (Whited et al., 2010, supra).
- the phosphate activation of mevalonate to 5-diphosphomevalonate is energy intensive metabolically, requiring two moles of ATP per mole of isoprene synthesis ( FIG. 2 ). Accordingly, reducing the ATP consumption can improve the efficiency of the pathway.
- 3-HMG may be biosynthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase.
- 3-HMG may be biosynthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase.
- the inventors have also determined that it is possible to biosynthesize isoprene and/or intermediates thereof from 4-methyl-2-oxopentanoate via a 3-HMG intermediate using one or more isolated enzymes, or using non-naturally occurring host cells expressing one or more such enzymes.
- isoprene may be synthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase.
- a 4-methyl-2-oxopentanoate dehydrogenase a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase
- isoprene may be biosynthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase.
- a 4-methyl-2-oxopentanoate decarboxylase a 3-methylbutanal dehydrogenase, a
- the methods for synthesizing 3-HMG from 4-methyl-2-oxopentanoate and for synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate are performed in a non-naturally occurring host, which may be a prokaryotic or eukaryotic host.
- At least one of the enzymatic conversions within the methods for synthesizing 3-HMG from 4-methyl-2-oxopentanoate and for synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate is performed in a non-naturally occurring host, which may be a prokaryotic or eukaryotic host.
- non-naturally occurring hosts capable of synthesizing 3-HMG from 4-methyl-2-oxopentanoatc, said host comprising at least One exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- non-naturally occurring hosts capable of synthesizing 3-HMG from 4-methyl-2-oxopentanoate, said host comprising at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2.
- non-naturally occurring hosts capable of synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate, said host comprising at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.1.1.34 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.1.36 enzyme, at least one exogenous nucleic acid encoding a poly
- non-naturally occurring hosts capable of synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate, said host comprising at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2.
- hosts may be capable of endogenously producing isoprene, for example via a non-mevalonate pathway.
- At least one of the enzymatic conversions of the methods comprises gas fermentation, for example fermentation of at least one of natural gas, syngas, CO 2 /H 2 , methanol, ethanol, non-volatile residue, caustic wash from cyclohexane oxidation processes, or waste stream from a chemical or petrochemical industry.
- Methods described herein can be performed using cell lysates comprising the enzymes.
- the host can be a prokaryote selected from the group consisting of the genus Escherichia such as Escherichia coli; from the genus Clostridia such as Clostridium Ijungdahlii, Clostridium autoethanogenum or Clostridium kluyveri; from the genus Corynebacteria such as Corynebacterium glutamicum; from the genus Cupriavidus such as Cupriavidus necator or Cupriavidus metallidurans; from the genus Pseudomonas such as Pseudomonas fluorescens or Pseudomonas putida; from the genus Bacillus such as Bacillus subtillis; or from the genus Rhodococcus such as Rhodococcus equi.
- the genus Escherichia such as Escherichia coli
- Clostridia such as Clostridium Ijungdahl
- the host can be a eukaryote, for example a eukaryote selected from the group consisting of the genus Aspergillus such as Aspergillus niger, from the genus Saccharomyces such as Saccharomyces cerevisiae; from the genus Pichia such as Pichia pastoris; from the genus Yarrowia such as Yarrowia lipolytica; from the genus Issatchenkia such as Issatchenkia orientalis; from the genus Debaryomyces such as Debaryomyces hansenii; from the genus Arxula such as Arxula adeninivorans; or from the genus Kluyveromyces such as Kluyveromyces lactis.
- the host can be a prokaryotic or eukaryotic chemolithotroph.
- the host can be subjected to a fermentation strategy entailing anaerobic, micro-aerobic or aerobic cultivation.
- a cell retention strategy using a ceramic hollow fiber membrane can be employed to achieve and maintain a high cell density during fermentation.
- the principal carbon source fed to the fermentation can derive from a biological or a non-biological feedstock.
- the biological feedstock can be, or can derive from, monosaccharides, disaccharides, hemicellulose such as levulinic acid and furfural, cellulose, lignocellulose, lignin, triglycerides such as glycerol and fatty acids, agricultural waste or municipal waste.
- the non-biological feedstock can be, or can derive from, either natural gas, syngas, CO 2 /H 2 , methanol, ethanol, non-volatile residue (NVR), caustic wash from cyclohexane oxidation processes or other waste stream from either the chemical or petrochemical industries.
- the reactions of the pathways described herein can be performed in one or more cell (e.g., host cell) strains (a) naturally expressing one or more relevant enzymes, (b) genetically engineered to express one or more relevant enzymes, or (c) naturally expressing one or more relevant enzymes and genetically engineered to express one or more relevant enzymes.
- relevant enzymes can be extracted from any of the above types of host cells and used in a purified or semi-purified form. Extracted enzymes can optionally be immobilized to a solid substrate such as the floors and/or walls of appropriate reaction vessels.
- extracts include lysates (e.g., cell lysates) that can be used as sources of relevant enzymes.
- all the steps can be performed in cells (e.g., host cells), all the steps can be performed using extracted enzymes, or some of the steps can be performed in cells and others can be performed using extracted enzymes.
- FIG. 1 is a schematic of an exemplary biochemical pathway leading to 3-HMG from 4-methyl-2-oxopentanoate.
- FIG. 2 is a schematic of an exemplary biochemical pathway leading to isoprene from 3-HMG via the mevalonate pathway.
- FIG. 3 contains the amino acid sequences of enzymes which may be used for biosynthesizing isoprene from 3-HMG via the mevalonate pathway.
- FIG. 4 contains nucleic acid sequences encoding enzymes which may be used for biosynthesizing isoprene from 3-HMG via the mevalonate pathway.
- enzymes and non-naturally occurring, for example recombinant, host microorganisms for synthesis of 3-HMG from 4-methyl-2-oxopentanoate, and/or intermediates thereof, in one or more enzymatic steps are provided.
- enzymes and non-naturally occurring, for example recombinant, host microorganisms for synthesis of isoprene from 4-methyl-2-oxopentanoate, and/or intermediates thereof, via a 3-HMG intermediate in one or more enzymatic steps are provided.
- enzymes and non-naturally occurring recombinant host microorganisms for synthesis of 3-HMG from 4-methyl-2-oxopentanoate, and/or intermediates in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase; or using non-naturally occurring host cells expressing one or more such enzymes.
- enzymes and non-naturally occurring recombinant host microorganisms for synthesis of 3-HMG from 4-methyl-2-oxopentanoate, and/or intermediates in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase; a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase; or using non-naturally occurring host cells expressing one or more such enzymes.
- enzymes and non-naturally occurring recombinant host microorganisms for synthesis of isoprene and/or intermediates thereof via a 3-HMG intermediate in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using non-naturally occurring host cells expressing one or more such enzymes.
- enzymes and non. naturally occurring recombinant host microorganisms tor synthesis of isoprene and/or intermediates thereof via a 3-HMG intermediate in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using
- Host microorganisms described herein can include pathways that can be manipulated such that isoprene or its intermediates can be produced. In an endogenous pathway, the host microorganism naturally expresses all of the enzymes catalyzing the reactions within the pathway.
- a host microorganism containing an engineered pathway does not naturally express all of the enzymes catalyzing the reactions within the pathway but has been engineered such that all of the enzymes within the pathway are expressed in the host.
- exogenous refers to a nucleic acid that does not occur in (and cannot be obtained from) a cell of that particular type as it is found in nature or a protein encoded by such a nucleic acid.
- a non-naturally-occurring nucleic acid is considered to be exogenous to a host once in the host. It is important to note that non-naturally-occurring nucleic acids can contain nucleic acid subsequences or fragments of nucleic acid sequences that are found in nature provided the nucleic acid as a whole does not exist in nature.
- a nucleic acid molecule containing a genomic DNA sequence within an expression vector is non-naturally occurring nucleic acid, and thus is exogenous to a host cell once introduced into the host, since that nucleic acid molecule as a whole (genomic DNA plus vector DNA) does not exist in nature.
- any vector, autonomously replicating plasmid, or virus e.g., retrovirus, adenovirus, or herpes virus
- retrovirus e.g., adenovirus, or herpes virus
- genomic DNA fragments produced by PCR or restriction endonuclease treatment as well as cDNAs are considered to be non-naturally-occurring nucleic acid since they exist as separate molecules not found in nature. It also follows that any nucleic acid containing a promoter sequence and polypeptide-encoding sequence (e.g., gDNA or genomic DNA) in an arrangement not found in nature is non-naturally-occurring nucleic acid.
- a nucleic acid that is naturally-occurring can be exogenous to a particular host microorganism. For example, an entire chromosome isolated from a cell of yeast x is an exogenous nucleic acid with respect to a cell of yeast y once that chromosome is introduced into a cell of yeast y.
- the term “endogenous” as used herein with reference to a nucleic acid (e.g., a gene) (or a protein) and a host refers to a nucleic acid (or protein) that does occur in (and can be obtained from) that particular host as it is found in nature.
- a cell “endogenously expressing” a nucleic acid (or protein) expresses that nucleic acid (or protein) as does a host of the same particular type as it is found in nature.
- a host “endogenously producing” or that “endogenously produces” a nucleic acid, protein, or othercompound produces that nucleic acid, protein, or compound as does a host of the same particular type as it is found in nature.
- one or more of the following enzymes may be expressed in the host: a 4-methyl-2-oxopentanoate dehydrogenase, a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase.
- the term “mevalonate pathway” refers to a pathway for synthesis of isoprene comprising enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a hydroxymethylglutaryl Co-A red uctase; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a mevalonate-kinase enzyme; enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate using a phosphomevalonate kinase enzyme; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a diphosphomevalonate decarboxylase enzyme; enzymatically converting isopentenyl diphosphate to dimethylallyl diphosphate using an isopentenyl diphosphate isomerase; and enzymatically converting di
- the 4-methyl-2-oxopentanoate dehydrogenase is the gene product of aceD. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is the gene product of citL. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is classified under EC 1.2.1.-. In one embodiment the 4-methyl-2-oxopentanoatc dehydrogenase has the activity of an enzyme classified under EC 1.2.1.-. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is classified under EC 1.2.7.7. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase has the activity of an enzyme classified under EC 1.2.7.7.
- the 4-methyl-2-oxopentanoate decarboxylase is the gene product of ipdC. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase is classified under EC 4.1.1.74. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase has the activity of an enzyme classified under EC 4.1.1.74. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase is classified under EC 4.1.1.43. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase has the activity of an enzyme classified under EC 4.1.1.43.
- the 3-methylbutanal dehydrogenase is the gene product of padA. In one embodiment the 3-methylbutanal dehydrogenase is classified under EC 1.2.1.39. In one embodiment the 3-methylbutanal dehydrogenase has the activity of an enzyme classified under EC 1.2.1.39. In one embodiment the 3-methylbutanal dehydrogenase is classified under EC 1.2.1.5. In one embodiment the 3-methylbutanal dehydrogenase has the activity of an enzyme classified under EC 1.2.1.5.
- the 3-methylbutanoate-CoA ligase is classified under EC 6.2.1.-. In one embodiment the 3-methylbutanoate-CoA ligase is classified under EC 6.2.1.2.
- 3-methylbutanoyl-CoA oxidoreductase is the gene product of IiuA. In one embodiment 3-methylbutanoyl-CoA oxidoreductase is classified under EC 1.3.8.4.
- the 3-methylbut-2-enoyl-CoA carboxylase is classified under EC 6.4.1.4.
- the 3-methylglutaconyl-CoA hydratase is classified under EC 4.2.1.18.
- the hydroxymethylglutaryl Co-A reductase is the gene product of mvaA. In one embodiment the hydroxymethylglutaryl Co-A reductase is classified under EC 1.1.1.34. In one embodiment the hydroxymethylglutaryl Co-A reductase is a Staphylococcus aureus hydroxymethylglutaryl Co-A reductase (Genbank Accession No. BAB58707.1, SEQ ID No: 1). See FIG. 3 . In one embodiment the hydroxymethylglutaryl Co-A reductase is a Staphylococcus aureus hydroxymethylglutaryl Co-A reductase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 8. See FIG. 4 .
- the mevalonate-kinase is the gene product of mvak1. In one embodiment the mevalonate-kinase is classified under EC 2.7.1.36. In one embodiment the mevalonate-kinase is a Staphylococcus aureus mevalonate-kinase (Genbank Accession No. BAB56752.1, SEQ ID No: 2). See FIG. 3 . In one embodiment the mevalonate-kinase is a Staphylococcus aureus mevalonate-kinase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 9. See FIG. 4 .
- the phosphomevalonate kinase is the gene product of mvak2. In one embodiment the phosphomevalonate kinase is classified under EC 2.7.4.2. In one embodiment the phosphomevalonate kinase is a Staphylococcus aureus phosphomevalonate kinase (Genbank Accession No. BAB50754.1, SEQ ID No: 3). See FIG. 3 . In one embodiment the phosphomevalonate kinase is a Staphylococcus aureus phosphomevalonate kinase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 10. See FIG. 4 .
- the diphosphomevalonate decarboxylase is the gene product of Mdd. In one embodiment the diphosphomevalonate decarboxylase is classified under EC 4.1.1.33. In one embodiment the diphosphomevalonate decarboxylase is a Streptococcus pneumoniae diphosphomevalonate decarboxylase (Genbank Accession No. AAK99143.1, SEQ ID No: 4). See FIG. 3 . In one embodiment the diphosphomevalonate decarboxylase is a Staphylococcus epidermidis mevalonate diphosphate decarboxylase (Genbank Accession No. AAG02436.1, SEQ ID No: 5). See FIG. 3 .
- the diphosphomevalonate decarboxylase is a Streptococcus pneumoniae diphosphomevalonate decarboxylase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 11. See FIG. 4 .
- the isopentenyl diphosphate isomerase is the gene product of idi. In one embodiment the isopentenyl diphosphate isomerase is classified under EC 5.3.3.2. In one embodiment the isopentenyl diphosphate isomerase is a Burkholderia multivorans isopentenyl diphosphate isomerase (Genbank Accession No. ABX19602.1, SEQ ID No: 6). See FIG. 3 . In one embodiment the isopentenyl diphosphate isomerase is a Burkholderia multivorans isopentenyl diphosphate isomerase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 12. See FIG. 4 .
- the isoprene synthase is the gene product of ispS. In one emhndiment the isoprene synthase is classified under EC 4.2.3.27. In one embodiment the isoprene synthase is a Mucuna pruriens isoprene synthase (SEQ ID No: 7). See FIG. 3 . In one embodiment the isoprene synthase is classified under EC 4.2.3.27. In one embodiment the isoprene synthase is a Mucuna pruriens isoprene synthase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 13. See FIG. 4 .
- the enzymes can be from a single source, i.e., from one species, or can be from multiple sources, i.e., different species.
- Nucleic acids encoding the enzymes described herein have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
- Any of the enzymes described herein that can be used for 3-HMG production and/or isoprene production can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of the corresponding wild-type enzyme.
- sequence identity e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%
- a hydroxymethylglutaryl Co-A reductase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Staphylococcus aureus hydroxymethylglutaryl Co-A reductase (Genbank Accession No. BAB58707.1, SEQ ID No: 1). See FIG. 3 .
- a mevalonate-kinase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Staphylococcus aureus mevalonate-kinase. (Genbank Accession No. BAB56752.1, SEQ ID No: 2). See FIG. 3 .
- a phosphomevalonate kinase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Staphylococcus aureus phosphomevalonate kinase (Genbank Accession No. BAB56754.1, SEQ ID No: 3). See FIG. 3 .
- a diphosphomevalonate decarboxylase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Streptococcus pneumoniae diphosphomevalonate decarboxylase (Genbank Accession No. AAK99143.1, SEQ ID No: 4), or a Staphylococcus epidermidis mevalonate diphosphate decarboxylase (Genbank Accession No. AAG02436.1, SEQ ID No: 5). See FIG. 3 .
- an isopentenyl diphosphate isomerase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Burkholderia multivorans isopentenyl diphosphate isomerase (Genbank Accession No. ABX19602.1, SEQ ID No: 6). See FIG. 3 .
- an isoprene synthase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Mucuna pruriens isoprene synthase (SEQ ID No: 7). See FIG. 3 .
- the percent identity (homology) between two amino acid sequences can be determined by any method known to thosc skilled in the art.
- the percent identity (homology) can be determined by aligning the amino acid sequences using the BLAST 2 Sequences (B 12seq) program from the stand-alone version of BLASTZ containing BLASTP version 2.0.14. This standalone version of BLASTZ can be obtained from the U.S. government's National Center for Biotechnology Information web site (www.ncbi.nlm.nih.gov). Instructions explaining how to use the B12seq program can be found in the readme file accompanying BLASTZ. B12seq performs a comparison between two amino acid sequences using the BLASTP algorithm.
- B 12seq are set as follows: -i is set to a file containing the first amino acid sequence to be compared (e.g., C: ⁇ seql.txt); -j is set to a file containing the second amino acid sequence to be compared (e.g., C: ⁇ seq2.txt); -pis set to blastp; -o is set to any desired file name (e.g., C: ⁇ output.txt); and all other options are left at their default setting.
- -i is set to a file containing the first amino acid sequence to be compared (e.g., C: ⁇ seql.txt)
- -j is set to a file containing the second amino acid sequence to be compared (e.g., C: ⁇ seq2.txt)
- -o is set to any desired file name (e.g., C: ⁇ output.txt); and all other options are left at
- the following command can be used to generate an output file containing a comparison between two amino acid sequences: C: ⁇ B12seq c: ⁇ seql.txt -j c: ⁇ seq2.txt -p blastp -o c: ⁇ output.txt. If the two compared sequences share homology (identity), then the designated output file will present those regions of homology as aligned sequences. If the two compared sequences do not share homology (identity), then the designated output file will not present aligned sequences. Similar procedures can be used for nucleic acid sequences except that blastn is used.
- the number of matches is determined by counting the number of positions where an identical amino acid residue is presented in both sequences.
- the percent identity (homology) is determined by dividing the number of matches by the length of the full-length polypeptidc amino acid sequence followed by multiplying the resulting value by 100. It is noted that the percent identity (homology) value is rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 is rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 is rounded up to 78.2. It also is noted that the length value will always be an integer.
- This application also provides (i) functional variants of the enzymes used in the methods of the application and (ii) functional variants of the functional fragments described above.
- Functional variants of the enzymes and functional fragments can contain additions, deletions, or substitutions relative to the corresponding wild-type sequences.
- Enzymes with substitutions will generally have not more than 50 (e.g., not more than one, two, three, four, five, six, seven, eight, nine, ten, 12, 15, 20, 25, 30, 35, 40, or 50) amino acid substitutions (e.g., conservative substitutions). This applies to any of the enzymes described herein and functional fragments.
- a conservative substitution is a substitution of one amino acid for another with similar characteristics.
- Conservative substitutions include substitutions within the following groups: valine, alanine and glycine; leucine, valine, and isoleucine; aspartic acid and glutamic acid; asparagine and glutamine; serine, cysteine, and threonine; lysine and arginine; and phenylalanine and tyrosine.
- the nonpolar hydrophobic amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
- the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine.
- the positively charged (basic) amino acids include arginine, lysine and histidine.
- the negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Any substitution of one member of the above-mentioned polar, basic or acidic groups by another member of the same group can be deemed a conservative substitution. By contrast, a nonconservative substitution is a substitution of one amino acid for another with dissimilar characteristics.
- nucleic acids can encode a polypeptide having a particular amino acid sequence.
- the degeneracy of the genetic code is well known to the art; i.e., for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid.
- codons in the coding sequence for a given enzyme can be modified such that optimal expression in a particular species (e.g., bacteria or fungus) is obtained, using appropriate codon bias tables for that species.
- Functional fragments of any of the enzymes described herein can also be used in the methods described herein.
- the term “functional fragment” as used herein refers to a peptide fragment of a protein that has at least 25% (e.g., at least: 30%; 40%; 50%; 60%; 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 100%; or even greater than 100%) of the activity of the corresponding mature, full-length, wild-type protein.
- the functional fragment can generally, but not always, be comprised of a continuous region of the protein, wherein the region has functional activity.
- Deletion variants can lack one, two, three, four, five, six, seven, eight, nine, ten, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid segments (of two or more amino acids) or non-contiguous single amino acids.
- Additions include fusion proteins containing: (a) any of the enzymes described herein or a fragment thereof; and (b) internal or terminal (C or N) irrelevant or heterologous amino acid sequences.
- heterologous amino acid sequences refers to an amino acid sequence other than (a).
- a heterologous sequence can be, for example a sequence used for purification of the recombinant protein (e.g., FLAG, poly histidine (e.g., hexahistidine (SEQ ID No:14)), hemagluttanin (HA), glutathione-S-transferase (GST), or maltosebinding protein (MBP)).
- Heterologous sequences also can be proteins useful as detectable markers, for example, luciferase, green fluorescent protein (GFP), or chloramphenicol acetyl transferase (CAT).
- the fusion protein contains a signal sequence from another protein.
- the fusion protein can contain a carrier (e.g., KLH) useful, e.g., in eliciting an immune response for antibody generation) or ER or Golgi apparatus retention signals.
- a carrier e.g., KLH
- Heterologous sequences can be of varying length and in some cases can be a longer sequences than the full-length target proteins to which the heterologous sequences are attached.
- Hosts can naturally express none or some (e.g., one or more, two or more, three or more, four or more, five or more, or six or more) of the enzymes of the pathways described herein. Endogenous genes of the recombinant hosts also can be disrupted to prevent the formation of undesirable metabolites or prevent the loss of intermediates in the pathway through other enzymes acting on such intermediates. Recombinant hosts can be referred to as recombinant host cells, non-naturally occurring host cells, engineered cells, or engineered hosts.
- recombinant hosts can include nucleic acids encoding one or more of a decarboxylase, a kinase, a dehydrogenase, a monooxygenase, an acyl [acyl carrier protein (acp)] dehydrogenase, a dehydratase, a thioesterase, or a decarboxyating thioesterase as described in more detail below.
- a decarboxylase encoding one or more of a decarboxylase, a kinase, a dehydrogenase, a monooxygenase, an acyl [acyl carrier protein (acp)] dehydrogenase, a dehydratase, a thioesterase, or a decarboxyating thioesterase as described in more detail below.
- 3-HMG and/or isoprene can be performed in vitro using the isolated enzymes described herein, using a lysate (e.g., a cell lysate) from a host microorganism as a source of the enzymes, or using a plurality of lysates from different host microorganisms as the source of the enzymes.
- a lysate e.g., a cell lysate
- the enzymes of the pathways described in FIG. 1 and FIG. 2 are the result of enzyme engineering to improve activity or specificity using the enzyme structure and wild-type residue diversity to inform the rational enzyme design.
- the nucleic acids encoding the enzymes of the pathways described in FIG. 1 and FIG. 2 are introduced into a host microorganism that is either a prokaryote or eukaryote.
- the host microorganism is a prokaryote.
- the prokaryote can be a bacterium from the genus Escherichia such as Escherichia coli; from the genus Clostridia such as Clostridium Ijungdahlii, Clostridium autoethanogenum or Clostridium kluyveri; from the genus Corynebacteria such as Corynebacterium glutamicum; from the genus Cupriavidus such as Cupriavidus necator or Cupriavidus metaffidurans; from the genus Pseudomonas such as Pseudomonas fluorescens, Pseudomonas putida or Pseudomonas oleavorans; from the genus Delftia such as Delftia acidovorans; from the genus Bacillus such as Bacillus subtillis; from the genus
- the host microorganism is a eukaryote.
- the eukaryote can be a filamentous fungus, e.g., one from the genus Aspergillus such as Aspergillus niger.
- the eukaryote can be a yeast, e.g., one from the genus Saccharomyces such as Saccharomyces cerevisiae; from the genus Pichia such as Pichia pastoris; or from the genus Yarrowia such as Yarrowia lipolytica; from the genus Issatchenkia such as Issatchenkia orientalis; from the genus Debaryomyces such as Debaryomyces hansenii; from the genus Arxula such as Arxula adeninivorans; or from the genus Kluyveromyces such as Kluyveromyces lactis.
- Such eukaryotes also can be a source of genes to construct recombinant host cells described herein that are capable of producing isoprene or precursors thereof.
- 3-HMG is biosynthesized in a recombinant host using a fermentation strategy that can include anaerobic, micro-aerobic or aerobic cultivation of the recombinant host.
- 3-HMG is biosynthesized in a recombinant host using a fermentation strategy that uses an alternate final electron acceptor to oxygen such as nitrate.
- isoprene is biosynthesized in a recombinant host using a fermentation strategy that can include anaerobic, micro-aerobic or aerobic cultivation of the recombinant host.
- isoprene is biosynthesized in a recombinant host using a fermentation strategy that uses an alternate final electron acceptor to oxygen such as nitrate.
- a cell retention strategy using, for example, ceramic hollow fiber membranes can be employed to achieve and maintain a high cell density during either fed batch or continuous fermentation in the synthesis of 3-HMG and/or isoprene.
- the biological feedstock can be, can include, or can derive from, monosaccharides, disaccharides, lignocellulose, hemicellulose, cellulose, lignin, levulinic acid & formic acid, triglycerides, glycerol, fatty acids, agricultural waste, condensed distillers' solubles, or municipal waste.
- fermentable sugars such as monosaccharides and disaccharides derived from cellulosic, hemicellulosic, cane and beet molasses, cassava, corn and other agricultural sources has been demonstrated for several microorganism such as Escherichia coli, Corynebacterium glutamicum and Lactobacillus delbrueckii and Lactococcus lactis (see, e.g., Hermann et al, Journal of Biotechnology, 2003, 104, 155-172; Wee et al., Food Technol. Biotechnol., 2006, 44(2), 163-172; Ohashi et al., Journal of Bioscience and Bioengineering, 1999, 87(5), 647-654).
- the non-biological feedstock can be or can derive from natural gas, syngas, CO 2 /H 2 , methanol, ethanol, benzoic acid, non-volatile residue (NVR) or a caustic wash waste stream from cyclohexane oxidation processes, or terephthalic acid/isophthalic acid mixture waste streams.
- substntially pure cultures of recombinant host microorganisms are provided.
- a “substantially pure culture” of a recombinant host microorganism is a culture of that microorganism in which less than about 40% (i.e., less than about 35%; 30%; 25%; 20%; 15%; 10%; 5%; 2%; 1%; 0.5%; 0.25%; 0.1%; 0.01%; 0.001%; 0.0001%; or even less) of the total number of viable cells in the culture are viable cells other than the recombinant microorganism, e.g., bacterial, fungal (including yeast), mycoplasmal, or protozoan cells.
- Such a culture of recombinant microorganisms includes the cells and a growth, storage, or transport medium.
- Media can be liquid, semi-solid (e.g., gelatinous media), or frozen.
- the culture includes the cells growing in the liquid or inion the semi-solid medium or being stored or transported in a storage or transport medium, including a frozen storage or transport medium.
- the cultures are in a culture vessel or storage vessel or substrate (e.g., a culture dish, flask, or tube or a storage vial or tube).
- the present application provides methods involving less than or more than all the steps described for all the above pathways. Such methods can involve, for example, one, two, three, four, five, six, seven, eight, nine, ten, or more of such steps. Where less than all the steps are included in such a method, the first step can be any one of the steps listed.
- recombinant hosts described herein can include any combination of the above enzymes such that one or more of the steps, e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more of such steps, can be performed within a recombinant host.
- This application also recognizes that where an enzyme is shown to accept a particular co-factor, such as NADPH, or co-substrate, such as but not limited to 3-methylglutaconyl-coA, many enzymes are promiscuous in terms of accepting a number of different co-factors or co-substrates in catalyzing a particular enzyme activity. Also, this application recognizes that where enzymes have high specificity for e.g., a particular co-factor such as NADH, an enzyme with similar or identical activity that has high specificity for the co-factor NADPH may be in a different enzyme class.
- a particular co-factor such as NADPH
- co-substrate such as but not limited to 3-methylglutaconyl-coA
- the enzymes in the pathways outlined herein can be the result of enzyme engineering via non-direct or rational enzyme design approaches with aims of improving activity, improving specificity, reducing feedback inhibition, reducing repression, improving enzyme solubility, changing stereo-specificity, or changing co-factor specificity.
- the enzymes in the pathways outlined herein can be gene dosed, i.e., overexpressed, into the resulting genetically modified organism via episomal or chromosomal integration approaches.
- genome-scale system biology techniques such as Flux Balance Analysis can be utilized to devise genome scale attenuation or knockout strategies for directing carbon flux to isoprene.
- fluxomic, metabolomic and transcriptomal data can be utilized to inform or support genome-scale system biology techniques, thereby devising genome scale attenuation or knockout strategies in directing carbon flux to isoprene.
- one or more enzymes from the pathways described herein for example, at least one enzyme classified under EC 1.2.1.-, EC 1.2.7.7, EC 4.1.1.74, EC 4.1.1.43, EC 1.2.1.39, EC 1.2.15, EC 6.2.1.-, EC 1.3.8.4, EC 6.4.1.4, EC 4.2.1.18, EC 1.1.1.34, EC 2.7.1.36, EC 2.7.4.2, EC 4.1.1.33, EC 5.3.3.2, or EC 4.2.3.27, are introduced or gene dosed into a host microorganism that utilizes the non-mevalonate or 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid synthesis.
- At least one enzyme having the amino acid sequence listed in SEQ ID No: 1, SEQ ID No: 2, SEQ ID No: 3, SEQ ID No: 4, SEQ ID No: 59, SEQ ID No: 6, or SEQ ID No: 7 is introduced or gene dosed into a host microorganism that utilizes the non-mevalonate or 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid synthesis.
- a puridine nucleotide transhydrogenase gene such as UdhA can be overexpressed in the host organism (Brigham et al., Advanced Biofuels and Bioproducts, 2012, Chapter 39, 1065-1090).
- a glyceraldehyde-3P-dehydrogenase gene such as GapN can be overexpressed in the host organism (Brigham et al., 2012, supra).
- a malic enzyme gene such as macA or maeB can be overexpressed in the host organism (Brigham et al., 2012, supra).
- a glucose-6-phosphate dehydrogenase gene such as zwf can be overexpressed in the host organism (Lim et al., Journal of Bioscience and Bioengineering, 2002, 93(6), 543-549).
- a fructose 1,6 diphosphatase gene such as fbp can be overexpressed in the host (Becker et al., Journal of Biotechnology, 2007, 132, 99-109).
- the efflux of isoprene across the cell membrane to the extracellular media can be enhanced or amplified by genetically engineering structural modifications to the cell membrane or increasing any associated transporter activity for isoprene.
- 3-HMG and/or isoprene can be produced by providing a host microorganism and culturing the provided microorganism with a culture medium containing a suitable carbon source as described above.
- the culture media and/or culture conditions can be such that the microorganisms grow to an adequate density and produce isoprene efficiently.
- any method can be used such as those described elsewhere (Manual of Industrial Microbiology and Biotechnology, 2nd Edition, Editors: A. L. Demain and J. E. Davies, ASM Press; and Principles of Fermentation Technology, P. F. Stanbury and A. Whitaker, Pergamon).
- a large tank e.g., a 100 gallon, 200 gallon, 500 gallon, or more tank
- an appropriate culture medium is inoculated with a particular microorganism.
- the microorganism is incubated to allow biomass to be produced.
- the broth containing the microorganisms can be transferred to a second tank.
- This second tank can be any size.
- the second tank can be larger, smaller, or the same size as the first tank.
- the second tank is larger than the first such that,additional culture medium can be added to the broth from the first tank.
- the culture medium within this second tank can be the same as, or different from, that used in the first tank.
- the microorganisms can be incubated to allow for the production of 3-HMG and/or isoprene.
- a substrate comprising CO is provided to a bioreactor comprising one or more microorganisms and anaerobically fermenting the substrate to produce isoprene according to methods described in US 2012/0045807.
- the microorganisms can be used for the production of isoprene by microbial fermentation of a substrate comprising CO according to methods described in US 2013/0323820.
- isoprene can be recovered from the fermenter off-gas stream as a volatile product as the boiling point of isoprene is 34.1° C. At a typical fermentation temperature of approximately 30° C., isoprene has a high vapor pressure and can be stripped by the gas flow rate through the broth for recovery from the off-gas. Isoprene can be selectively adsorbed onto, for example, an adsorbent and separated from the other off-gas components. Membrane separation technology may also be employed to separate isoprene from the other off-gas compounds. Isoprene may desorbed from the adsorbent using, for example, nitrogen and condensed at low temperature and high pressure:
- are methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA, for example by using a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA, for example by using a polypeptide having the activity of an EC 1.3.8.4 enzyme; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA, for example by using a polypeptide having the activity of an EC 6.4.1.4 enzyme; and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA, for example by using a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal, for example by using a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; enzymatically converting 3-methylbutanal to 3-methylbutanoate, for example by using a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA, for example by using a polypeptide having the activity of an EC 6.2.1.2 enzyme; enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA, for example by using a polypeptide having the activity of an EC 1.3.8.4 enzyme; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl
- methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbut-2-enoyl-CoA hy: (a) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal, enzymatically converting 3-methylbutanal to 3-methylbutanoate, and enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA; (b) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA; or (c) both (a) and (b); enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA; and enzymatically converting 3-methyl-gluta
- methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbut-2-enoyl-CoA by: both (a) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal, enzymatically converting 3-methylbutanal to 3-methylbutanoate, and enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA; and (b) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA; enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA; and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methyl
- methods for synthesizing isoprene via a mevalonate pathway comprising: synthesizing 3-hydroxy-3-methylglutaryl-CoA according to a method described herein; enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate; enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate; enzymatically converting isopentenyl diphosphate to dimethylallyl diphnsphate; and enzymatically converting dimethylallyl diphosphate to isoprene.
- methods for synthesizing isoprene via a mevalonate pathway comprising: synthesizing 3-hydroxy-3-methylglutaryl-CoA according to a method described herein; and one or more steps selected from the group consisting of: enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a polypeptide having the activity of an EC 1.1.1.34 enzyme; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a polypeptide having the activity of an EC 2.7.1.36 enzyme; enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate using a polypeptide having the activity of an EC 2.7.4.2 enzyme; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a polypeptide having the activity of an EC 4.1.1.33 enzyme; enzymatic
- a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2.
- a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2.
- a non-naturally occurring host as described above wherein said host is capable of producing isoprene and comprises: at least one exogenous nucleic acid encoding a pulypeptlde having the activity of an EC 1.1.1.34 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.1.36 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.4.2 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.33 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 5.3.3.2 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising at least one of: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2.
- said host further comprising at least one of: at least one endogenous enzyme capable of enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA; at least one endogenous enzyme capable of enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal; at least one endogenous enzyme capable of enzymatically converting 3 mcthylbutanal to 3-methylbutanoate; at least one endogenous enzyme capable of enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA; at least one endogenous enzyme
- a non-naturally occurring host as described above wherein at least one of the exogenous nucleic acids is contained within a plasmid.
- a non-naturally occurring host as described above wherein at least one of the exogenous nucleic acids is integrated into a chromosome of the host.
- In one embodiment is provide a method as described above wherein said method is performed in a recombinant host.
- In one embodiment is provide a method as described above wherein at least one of the enzymatic conversions is performed in a recombinant host.
- the host is a prokaryotic host, for example from the genus Escherichia, Clostridia, Corynebacteria, Cupriavidus, Pseudomonas, Bacillus, or Rhodococcus. In one embodiment the host is Cupriavidus necator.
- the host is a eukaryotic host, for example from the genus Aspergillus, Saccharomyces, Pichia, Yarrowia, Issatchenkia, Debaryomyces, Arxula, or Kluyveromyces.
- the host is capable of endogenously producing 3-hydroxy-3-methylglutaryl-CoA.
- the host is capable of endogenously producing isoprene via a non-mevalonate pathway.
- At least one of the enzymatic conversions comprises gas fermentation within the host, for example fermentation of gas comprising at least one of natural gas, syngas, CO 2 /H 2 , methanol, ethanol, non-volatile residue, caustic wash from cyclohexane oxidation processes, or waste stream from a chemical or petrochemical industry.
- a method for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising culturing a host described herein in a gas medium.
- a method for synthesizing isoprene via the mevalonate pathway comprising culturing a host described herein in a gas medium. In one embodiment the method further comprises recovering the produced isoprene. In one embodiment, the host performs the enzymatic synthesis by gas fermentation. In one embodiment, the gas comprises at least one of natural gas, syngas, CO 2 /H 2 , methanol, ethanol, non-volatile residue, caustic wash from cyclohexane oxidation processes, or waste stream from a chemical or petrochemical industry.
- composition comprising 3-hydroxy-3-methylglutaryl-CoA synthesized by a method described herein.
- composition comprising isoprene synthesized by a method described herein.
- a method for producing bioderived 3-hydroxy-3-methylglutaryl-CoA comprising culturing or growing a host described herein under conditions and for a sufficient period of time to produce bioderived 3-hydroxy-3-methylglutaryl-CoA.
- a method for producing bioderived isoprene comprising culturing or growing a host described herein under conditions and for a sufficient period of time to produce bioderived isoprene.
- bioderived isoprene produced in a host described herein, wherein said bioderived isoprene has a carbon-12, carbon-13, and carbon-14 isotope ratio that reflects an atmospheric carbon dioxide uptake source.
- a bio-derived, bio-based, or fermentation-derived product comprising: (a) a composition comprising at least one bio-derived, bio-based, or fermentation-derived compound prepared (i) using a host described herein, or (ii) according to a method described herein, or any combination thereof; (b) a bio-derived, bio-based, or fermentation-derived polymer comprising the bio-derived, bio-based, or fermentation-derived composition or compound of (a), or any combination thereof; (c) a bio-derived, bio-based, or fermentation-derived cis-polyisoprene rubber, trans-polyisoprene rubber, or liquid polyisoprene rubber, comprising the bio-derived, bio-based, or fermentation-derived compound or bio-derived, bio-based, or fermentation-derived composition of (a), or any combination thereof or the bio-derived, bio-based, or fermentation-derived polymer of (b), or any combination thereof; (d) a molded substance obtained by molding the bio-derived, bio
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Patent Application No. 62/205,926, filed Aug. 17, 2015.
- The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 26, 2016, is named 12444_0582-00000_SL.txt and is 31,431 bytes in size.
- This application relates to methods for biosynthesizing 3-hydroxy-3-methylglutaryl-coA (3-HMG) and intermediates thereof, using one or more isolated enzymes such as one or more of a 4-methyl-2-oxopentanoate, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase; or using non-naturally occurring host cells expressing one or more such enzymes.
- This application further relates to methods for biosynthesizing isoprene and intermediates thereof from 3-hydroxy-3-methylglutaryl-coA using one or more isolated enzymes, such as one or more of a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using non-naturally Occurring host cells expressing one or more such enzymes.
- Isoprene is an important monomer for the production of specialty elastomers including motor mounts/fittings, surgical gloves, rubber bands, golf balls and shoes. Styrene-isoprene-styrene block copolymers form a key component of hot-melt pressure-sensitive adhesive formulations and cis-poly-isoprene is utilized in the manufacture of tires (Whited et al., Industrial Biotechnology, 2010, 6(3), 152-163).
- Manufacturers of rubber goods depend on either imported natural rubber from the Brazilian rubber tree or petroleum-based synthetic rubber polymers (Whited et al., 2010, supra). Given a reliance on petrochemical feedstocks and the harvesting of trees, biotechnology offers an alternative approach via biocatalysis. Biocatalysis is the use of biological catalysts, such as enzymes, to perform biochemical transformations of organic compounds.
- Accordingly, against this background, it is clear that there is a need for sustainable methods for producing intermediates, in particular isoprene, wherein the methods are biocatalysis based.
- Both bioderived feedstocks and petrochemical feedstocks are viable starting materials for the biocatalysis processes. The introduction of vinyl groups into medium carbon chain length enzyme substrates is a key consideration in synthesizing isoprene via biocatalysis processes.
- There are known metabolic pathways leading to the synthesis of isoprene in prokaryotes such as Bacillis subtillis and eukaryotes such as Populus alba (Whited et al., 2010, supra).
- Isoprene may be synthesized via two routes leading to the precursor dimethylvinyl-PP, such as the mevalonate and the non-mevalonate pathway (Kiiztiyama, Biosci. Biotechnol. Biochem., 2002, 66(8), 1019-1827).
- The mevalonate pathway incorporates a decarboxylase enzyme, mevalonate diphosphate decarboxylase (hereafter Mdd), that introduces the first vinyl-group into the precursors leading to isoprene. The second vinyl-group is introduced by isoprene synthase (hereafter IspS) in the final step in synthesizing isoprene.
- The mevalonate pathway (shown in part in
FIG. 2 ) has been exploited in the biocatalytic production of isoprene using E. coli as host. E. coli engineered with the mevalonate pathway requires three moles of acetyl-CoA, three moles of ATP and two moles of NAD(P)H to produce a mole of isoprene. Given a theoretical maximum yield of 25.2% (w/w) for the mevalonate pathway, isoprene has been produced biocatalytically at a volumetric productivity of 2 g/(L·h) with a yield of 11% (w/w) from glucose (Whited et al., 2010, supra). Particularly, the phosphate activation of mevalonate to 5-diphosphomevalonate is energy intensive metabolically, requiring two moles of ATP per mole of isoprene synthesis (FIG. 2 ). Accordingly, reducing the ATP consumption can improve the efficiency of the pathway. - The inventors have determined that it is possible to biosynthesize 3-HMG and/or intermediates thereof from 4-methyl-2-oxopentanoate using one or more isolated enzymes, or using non-naturally occurring host cells expressing one or more such enzymes. For example, 3-HMG may be biosynthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase. For further example, 3-HMG may be biosynthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase.
- In one embodiment, are methods, including non-naturally occurring methods, for synthesizing 3-HMG, comprising enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA using a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme, enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA using a polypeptide having the activity of an EC 1.3.8.4 enzyme, enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl- using a polypeptide having the activity of an EC 6.4.1.4 enzyme, and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA using a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment, are methods, including non-naturally occurring methods, for synthesizing 3-HMG, comprising enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal using a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme, enzymatically converting 3-methylbutanal to 3-methylbutanoate using a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme, enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA using a polypeptide having the activity of an EC 6.2.1.2 enzyme, enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA using a polypeptide having the activity of an EC 1.3.8.4 enzyme, enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl- using a polypeptide having the activity of an EC 6.4.1.4 enzyme, and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA using a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- The inventors have also determined that it is possible to biosynthesize isoprene and/or intermediates thereof from 4-methyl-2-oxopentanoate via a 3-HMG intermediate using one or more isolated enzymes, or using non-naturally occurring host cells expressing one or more such enzymes. For example, isoprene may be synthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase. For further example, isoprene may be biosynthesized from 4-methyl-2-oxopentanoate using one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase.
- In one embodiment, are methods, including non-naturally occurring methods, for synthesizing isoprene via a 3-HMG intermediate, comprising enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA using a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme, enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA using a polypeptide having the activity of an EC 1.3.8.4 enzyme, enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl- using a polypeptide having the activity of an EC 6.4.1.4 enzyme, enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA using a polypeptide having the activity of an EC 4.2.1.18 enzyme, enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a polypeptide having the activity of an EC 1.1.1.34 enzyme, enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a polypeptide having the activity of an EC 2.7.1.36 enzyme, enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate using a polypeptide having the activity of an EC 2.7.4.2 enzyme, enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a polypeptide having the activity of an EC 4.1.1.33 enzyme, enzymatically converting isopentenyl diphosphate to dimethylallyl diphosphate using a polypeptide having the activity of an EC 5.3.3.2 enzyme, and enzymatically converting dimethylallyl diphosphate to isoprene using a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- In one embodiment, are methods, including non-naturally occurring methods, for synthesizing isoprene via a 3-HMG intermediate, comprising enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal using a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme, enzymatically converting 3-methylbutanal to 3-methylbutanoate using a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme, enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA using a polypeptide having the activity of an EC 6.2.1.2 enzyme, enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA using a polypeptide having the activity of an EC 1.3.8.1 enzyme, enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl- using a polypeptide having the activity of an EC 6.4.1.4 enzyme, enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA using a polypeptide having the activity of an EC 4.2.1.18 enzyme, enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a polypeptide having the activity of an EC 1.1.1.34 enzyme, enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a polypeptide having the activity of an EC 2.7.1.36 enzyme, enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate using a polypeptide having the activity of an EC 2.7.4.2 enzyme, enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a polypeptide having the activity of an EC 4.1.1.33 enzyme, enzymatically converting isopentenyl diphosphate to dimethylallyl diphosphate using a polypeptide having the activity of an EC 5.3.3.2 enzyme, and enzymatically converting dimethylallyl diphosphate to isoprene using a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- In one embodiment, are methods, including non-naturally occurring methods, for synthesizing isoprene via a 3-HMG intermediate, comprising enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a hydroxymethylglutaryl Co-A reductase enzyme, for example a hydroxymethyiglutaryl Co-A reductase having the amino acid sequence set forth in SEQ ID No: 1 or a functional fragment thereof; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a mevalonate-kinase enzyme, for example a mevalonate-kinase having the amino acid sequence set forth in SEQ ID No: 2 or a functional fragment thereof; enzymatically converting (R) 6 phosphomevalonate to (R)-5-diphosphomevalonate using a phosphomevalonate kinase enzyme, for example a phosphomevalonate kinase having the amino acid sequence set forth in SEQ ID No: 3 or a functional fragment thereof; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a diphosphomevalonate decarboxylase enzyme, for example a diphosphomevalonate decarboxylase having the amino acid sequence set forth in SEQ ID No: 4 or a functional fragment thereof, or a diphosphomevalonate decarboxylase having the amino acid sequence set forth in SEQ ID No: 5 or a functional fragment thereof; enzymatically converting isopentenyl diphosphate to dimethylallyl diphosphate using an isopentenyl diphosphate isomerase, for example an isopentenyl diphosphate isomerase having the amino acid sequence set forth in SEQ ID No: 6 or a functional fragment thereof; and enzymatically converting dimethylallyl diphosphate to isoprene using an isoprene synthase enzyme, for example an isoprene synthase having the amino acid sequence set forth in SEQ ID No: 7 or a functional fragment thereof.
- In one embodiment, the methods for synthesizing 3-HMG from 4-methyl-2-oxopentanoate and for synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate are performed in a non-naturally occurring host, which may be a prokaryotic or eukaryotic host.
- In one embodiment, at least one of the enzymatic conversions within the methods for synthesizing 3-HMG from 4-methyl-2-oxopentanoate and for synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate is performed in a non-naturally occurring host, which may be a prokaryotic or eukaryotic host.
- In one embodiment, are non-naturally occurring hosts capable of synthesizing 3-HMG from 4-methyl-2-oxopentanoatc, said host comprising at least One exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment, are non-naturally occurring hosts capable of synthesizing 3-HMG from 4-methyl-2-oxopentanoate, said host comprising at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2. enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme, and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment, are non-naturally occurring hosts capable of synthesizing 3-HMG from 4-methyl-2-oxopentanoate via both of the pathways disclosed above. In one embodiment, are non-naturally occurring hosts capable of synthesizing 3-HMG from 4-methyl-2-oxopentanoate via simultaneous operation of both of the pathways disclosed above.
- In one embodiment, are non-naturally occurring hosts capable of synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate, said host comprising at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.1.1.34 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.1.36 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.4.2 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.33 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 5.3.3.2 enzyme, and least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- In one embodiment, are non-naturally occurring hosts capable of synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate, said host comprising at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2. enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1:1.1.34 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.1.36 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.42 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.33 enzyme, at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 5.3.3.2 enzyme, and least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- In one embodiment, are non-naturally occurring hosts capable of synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate via both of the pathways disclosed above. In one embodiment, are non-naturally occurring hosts capable of synthesizing isoprene from 4-methyl-2-oxopentanoate via a 3-HMG intermediate via simultaneous operation of both of the pathways disclosed above.
- In one embodiment, hosts may be capable of endogenously producing isoprene, for example via a non-mevalonate pathway.
- In one embodiment, at least one of the enzymatic conversions of the methods comprises gas fermentation, for example fermentation of at least one of natural gas, syngas, CO2/H2, methanol, ethanol, non-volatile residue, caustic wash from cyclohexane oxidation processes, or waste stream from a chemical or petrochemical industry.
- Methods described herein can be performed using isolated enzymes.
- Methods described herein can be performed using cell lysates comprising the enzymes.
- Methods described herein can be performed in a non-naturally occurring host, such as a recombinant host. For example, the host can be a prokaryote selected from the group consisting of the genus Escherichia such as Escherichia coli; from the genus Clostridia such as Clostridium Ijungdahlii, Clostridium autoethanogenum or Clostridium kluyveri; from the genus Corynebacteria such as Corynebacterium glutamicum; from the genus Cupriavidus such as Cupriavidus necator or Cupriavidus metallidurans; from the genus Pseudomonas such as Pseudomonas fluorescens or Pseudomonas putida; from the genus Bacillus such as Bacillus subtillis; or from the genus Rhodococcus such as Rhodococcus equi. The host can be a eukaryote, for example a eukaryote selected from the group consisting of the genus Aspergillus such as Aspergillus niger, from the genus Saccharomyces such as Saccharomyces cerevisiae; from the genus Pichia such as Pichia pastoris; from the genus Yarrowia such as Yarrowia lipolytica; from the genus Issatchenkia such as Issatchenkia orientalis; from the genus Debaryomyces such as Debaryomyces hansenii; from the genus Arxula such as Arxula adeninivorans; or from the genus Kluyveromyces such as Kluyveromyces lactis. The host can be a prokaryotic or eukaryotic chemolithotroph.
- The host can be subjected to a fermentation strategy entailing anaerobic, micro-aerobic or aerobic cultivation. A cell retention strategy using a ceramic hollow fiber membrane can be employed to achieve and maintain a high cell density during fermentation.
- The principal carbon source fed to the fermentation can derive from a biological or a non-biological feedstock. The biological feedstock can be, or can derive from, monosaccharides, disaccharides, hemicellulose such as levulinic acid and furfural, cellulose, lignocellulose, lignin, triglycerides such as glycerol and fatty acids, agricultural waste or municipal waste. The non-biological feedstock can be, or can derive from, either natural gas, syngas, CO2/H2, methanol, ethanol, non-volatile residue (NVR), caustic wash from cyclohexane oxidation processes or other waste stream from either the chemical or petrochemical industries.
- The reactions of the pathways described herein can be performed in one or more cell (e.g., host cell) strains (a) naturally expressing one or more relevant enzymes, (b) genetically engineered to express one or more relevant enzymes, or (c) naturally expressing one or more relevant enzymes and genetically engineered to express one or more relevant enzymes. Alternatively, relevant enzymes can be extracted from any of the above types of host cells and used in a purified or semi-purified form. Extracted enzymes can optionally be immobilized to a solid substrate such as the floors and/or walls of appropriate reaction vessels. Moreover, such extracts include lysates (e.g., cell lysates) that can be used as sources of relevant enzymes. In the methods provided by this application, all the steps can be performed in cells (e.g., host cells), all the steps can be performed using extracted enzymes, or some of the steps can be performed in cells and others can be performed using extracted enzymes.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including dcfinitions, will control. Iii addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
- The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and the drawings, and from the claims. The word “comprising” in the claims may be replaced by “consisting essentially of” or with “consisting of,” according to standard practice in patent law.
-
FIG. 1 is a schematic of an exemplary biochemical pathway leading to 3-HMG from 4-methyl-2-oxopentanoate. -
FIG. 2 is a schematic of an exemplary biochemical pathway leading to isoprene from 3-HMG via the mevalonate pathway. -
FIG. 3 contains the amino acid sequences of enzymes which may be used for biosynthesizing isoprene from 3-HMG via the mevalonate pathway. -
FIG. 4 contains nucleic acid sequences encoding enzymes which may be used for biosynthesizing isoprene from 3-HMG via the mevalonate pathway. - In one aspect are provided enzymes and non-naturally occurring, for example recombinant, host microorganisms for synthesis of 3-HMG from 4-methyl-2-oxopentanoate, and/or intermediates thereof, in one or more enzymatic steps.
- In one aspect are provided enzymes and non-naturally occurring, for example recombinant, host microorganisms for synthesis of isoprene from 4-methyl-2-oxopentanoate, and/or intermediates thereof, via a 3-HMG intermediate in one or more enzymatic steps.
- In one aspect are provided enzymes and non-naturally occurring recombinant host microorganisms for synthesis of 3-HMG from 4-methyl-2-oxopentanoate, and/or intermediates, in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase; or using non-naturally occurring host cells expressing one or more such enzymes. In a further aspect are provided enzymes and non-naturally occurring recombinant host microorganisms for synthesis of 3-HMG from 4-methyl-2-oxopentanoate, and/or intermediates, in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase; a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, and a 3-methylglutaconyl-CoA hydratase; or using non-naturally occurring host cells expressing one or more such enzymes.
- In one aspect are provided enzymes and non-naturally occurring recombinant host microorganisms for synthesis of isoprene and/or intermediates thereof via a 3-HMG intermediate in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate dehydrogenase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using non-naturally occurring host cells expressing one or more such enzymes. In a further aspect are provided enzymes and non. naturally occurring recombinant host microorganisms tor synthesis of isoprene and/or intermediates thereof via a 3-HMG intermediate in one or more enzymatic steps comprising use of one or more of a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase; or using non-naturally occurring host cells expressing one or more such enzymes.
- Host microorganisms described herein can include pathways that can be manipulated such that isoprene or its intermediates can be produced. In an endogenous pathway, the host microorganism naturally expresses all of the enzymes catalyzing the reactions within the pathway. A host microorganism containing an engineered pathway does not naturally express all of the enzymes catalyzing the reactions within the pathway but has been engineered such that all of the enzymes within the pathway are expressed in the host.
- The term “exogenous” as used herein with reference to a nucleic acid (or a protein) and a host refers to a nucleic acid that does not occur in (and cannot be obtained from) a cell of that particular type as it is found in nature or a protein encoded by such a nucleic acid. Thus, a non-naturally-occurring nucleic acid is considered to be exogenous to a host once in the host. It is important to note that non-naturally-occurring nucleic acids can contain nucleic acid subsequences or fragments of nucleic acid sequences that are found in nature provided the nucleic acid as a whole does not exist in nature. For example, a nucleic acid molecule containing a genomic DNA sequence within an expression vector is non-naturally occurring nucleic acid, and thus is exogenous to a host cell once introduced into the host, since that nucleic acid molecule as a whole (genomic DNA plus vector DNA) does not exist in nature. Thus, any vector, autonomously replicating plasmid, or virus (e.g., retrovirus, adenovirus, or herpes virus) that as a whole does not exist in nature is considered to be non-naturally-occurring nucleic acid. It follows that genomic DNA fragments produced by PCR or restriction endonuclease treatment as well as cDNAs are considered to be non-naturally-occurring nucleic acid since they exist as separate molecules not found in nature. It also follows that any nucleic acid containing a promoter sequence and polypeptide-encoding sequence (e.g., gDNA or genomic DNA) in an arrangement not found in nature is non-naturally-occurring nucleic acid. A nucleic acid that is naturally-occurring can be exogenous to a particular host microorganism. For example, an entire chromosome isolated from a cell of yeast x is an exogenous nucleic acid with respect to a cell of yeast y once that chromosome is introduced into a cell of yeast y.
- In contrast, the term “endogenous” as used herein with reference to a nucleic acid (e.g., a gene) (or a protein) and a host refers to a nucleic acid (or protein) that does occur in (and can be obtained from) that particular host as it is found in nature. Moreover, a cell “endogenously expressing” a nucleic acid (or protein) expresses that nucleic acid (or protein) as does a host of the same particular type as it is found in nature. Moreover, a host “endogenously producing” or that “endogenously produces” a nucleic acid, protein, or othercompound produces that nucleic acid, protein, or compound as does a host of the same particular type as it is found in nature.
- For example, depending on the host and the compounds produced by the host, one or more of the following enzymes may be expressed in the host: a 4-methyl-2-oxopentanoate dehydrogenase, a 4-methyl-2-oxopentanoate decarboxylase, a 3-methylbutanal dehydrogenase, a 3-methylbutanoate-CoA ligase, a 3-methylbutanoyl-CoA oxidoreductase, a 3-methylbut-2-enoyl-CoA carboxylase, a 3-methylglutaconyl-CoA hydratase, a hydroxymethylglutaryl Co-A reductase, a mevalonate-kinase, a phosphomevalonate kinase, a diphosphomevalonate decarboxylase, an isopentenyl diphosphate isomerase, and an isoprene synthase.
- As used herein, the term “mevalonate pathway” refers to a pathway for synthesis of isoprene comprising enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a hydroxymethylglutaryl Co-A red uctase; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a mevalonate-kinase enzyme; enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate using a phosphomevalonate kinase enzyme; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a diphosphomevalonate decarboxylase enzyme; enzymatically converting isopentenyl diphosphate to dimethylallyl diphosphate using an isopentenyl diphosphate isomerase; and enzymatically converting dimethylallyl diphosphate to isoprene using an isoprene synthase enzyme.
- In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is the gene product of aceD. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is the gene product of citL. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is classified under EC 1.2.1.-. In one embodiment the 4-methyl-2-oxopentanoatc dehydrogenase has the activity of an enzyme classified under EC 1.2.1.-. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase is classified under EC 1.2.7.7. In one embodiment the 4-methyl-2-oxopentanoate dehydrogenase has the activity of an enzyme classified under EC 1.2.7.7.
- In one embodiment the 4-methyl-2-oxopentanoate decarboxylase is the gene product of ipdC. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase is classified under EC 4.1.1.74. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase has the activity of an enzyme classified under EC 4.1.1.74. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase is classified under EC 4.1.1.43. In one embodiment the 4-methyl-2-oxopentanoate decarboxylase has the activity of an enzyme classified under EC 4.1.1.43.
- In one embodiment the 3-methylbutanal dehydrogenase is the gene product of padA. In one embodiment the 3-methylbutanal dehydrogenase is classified under EC 1.2.1.39. In one embodiment the 3-methylbutanal dehydrogenase has the activity of an enzyme classified under EC 1.2.1.39. In one embodiment the 3-methylbutanal dehydrogenase is classified under EC 1.2.1.5. In one embodiment the 3-methylbutanal dehydrogenase has the activity of an enzyme classified under EC 1.2.1.5.
- In one embodiment the 3-methylbutanoate-CoA ligase is classified under EC 6.2.1.-. In one embodiment the 3-methylbutanoate-CoA ligase is classified under EC 6.2.1.2.
- In one embodiment the 3-methylbutanoyl-CoA oxidoreductase is the gene product of IiuA. In one embodiment 3-methylbutanoyl-CoA oxidoreductase is classified under EC 1.3.8.4.
- In one embodiment the 3-methylbut-2-enoyl-CoA carboxylase is classified under EC 6.4.1.4.
- In one embodiment the 3-methylglutaconyl-CoA hydratase is classified under EC 4.2.1.18.
- In one embodiment the hydroxymethylglutaryl Co-A reductase is the gene product of mvaA. In one embodiment the hydroxymethylglutaryl Co-A reductase is classified under EC 1.1.1.34. In one embodiment the hydroxymethylglutaryl Co-A reductase is a Staphylococcus aureus hydroxymethylglutaryl Co-A reductase (Genbank Accession No. BAB58707.1, SEQ ID No: 1). See
FIG. 3 . In one embodiment the hydroxymethylglutaryl Co-A reductase is a Staphylococcus aureus hydroxymethylglutaryl Co-A reductase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 8. SeeFIG. 4 . - In one embodiment the mevalonate-kinase is the gene product of mvak1. In one embodiment the mevalonate-kinase is classified under EC 2.7.1.36. In one embodiment the mevalonate-kinase is a Staphylococcus aureus mevalonate-kinase (Genbank Accession No. BAB56752.1, SEQ ID No: 2). See
FIG. 3 . In one embodiment the mevalonate-kinase is a Staphylococcus aureus mevalonate-kinase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 9. SeeFIG. 4 . - In one embodiment the phosphomevalonate kinase is the gene product of mvak2. In one embodiment the phosphomevalonate kinase is classified under EC 2.7.4.2. In one embodiment the phosphomevalonate kinase is a Staphylococcus aureus phosphomevalonate kinase (Genbank Accession No. BAB50754.1, SEQ ID No: 3). See
FIG. 3 . In one embodiment the phosphomevalonate kinase is a Staphylococcus aureus phosphomevalonate kinase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 10. SeeFIG. 4 . - In one embodiment the diphosphomevalonate decarboxylase is the gene product of Mdd. In one embodiment the diphosphomevalonate decarboxylase is classified under EC 4.1.1.33. In one embodiment the diphosphomevalonate decarboxylase is a Streptococcus pneumoniae diphosphomevalonate decarboxylase (Genbank Accession No. AAK99143.1, SEQ ID No: 4). See
FIG. 3 . In one embodiment the diphosphomevalonate decarboxylase is a Staphylococcus epidermidis mevalonate diphosphate decarboxylase (Genbank Accession No. AAG02436.1, SEQ ID No: 5). SeeFIG. 3 . In one embodiment the diphosphomevalonate decarboxylase is a Streptococcus pneumoniae diphosphomevalonate decarboxylase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 11. SeeFIG. 4 . - In one embodiment the isopentenyl diphosphate isomerase is the gene product of idi. In one embodiment the isopentenyl diphosphate isomerase is classified under EC 5.3.3.2. In one embodiment the isopentenyl diphosphate isomerase is a Burkholderia multivorans isopentenyl diphosphate isomerase (Genbank Accession No. ABX19602.1, SEQ ID No: 6). See
FIG. 3 . In one embodiment the isopentenyl diphosphate isomerase is a Burkholderia multivorans isopentenyl diphosphate isomerase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 12. SeeFIG. 4 . - In one embodiment the isoprene synthase is the gene product of ispS. In one emhndiment the isoprene synthase is classified under EC 4.2.3.27. In one embodiment the isoprene synthase is a Mucuna pruriens isoprene synthase (SEQ ID No: 7). See
FIG. 3 . In one embodiment the isoprene synthase is classified under EC 4.2.3.27. In one embodiment the isoprene synthase is a Mucuna pruriens isoprene synthase encoded by a nucleic acid having the sequence set forth in SEQ ID No: 13. SeeFIG. 4 . - Within an engineered pathway, the enzymes can be from a single source, i.e., from one species, or can be from multiple sources, i.e., different species. Nucleic acids encoding the enzymes described herein have been identified from various organisms and are readily available in publicly available databases such as GenBank or EMBL.
- Any of the enzymes described herein that can be used for 3-HMG production and/or isoprene production can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of the corresponding wild-type enzyme.
- For example, a hydroxymethylglutaryl Co-A reductase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Staphylococcus aureus hydroxymethylglutaryl Co-A reductase (Genbank Accession No. BAB58707.1, SEQ ID No: 1). See
FIG. 3 . - For example, a mevalonate-kinase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Staphylococcus aureus mevalonate-kinase. (Genbank Accession No. BAB56752.1, SEQ ID No: 2). See
FIG. 3 . - For example, a phosphomevalonate kinase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Staphylococcus aureus phosphomevalonate kinase (Genbank Accession No. BAB56754.1, SEQ ID No: 3). See
FIG. 3 . - For example, a diphosphomevalonate decarboxylase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Streptococcus pneumoniae diphosphomevalonate decarboxylase (Genbank Accession No. AAK99143.1, SEQ ID No: 4), or a Staphylococcus epidermidis mevalonate diphosphate decarboxylase (Genbank Accession No. AAG02436.1, SEQ ID No: 5). See
FIG. 3 . - For example, an isopentenyl diphosphate isomerase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Burkholderia multivorans isopentenyl diphosphate isomerase (Genbank Accession No. ABX19602.1, SEQ ID No: 6). See
FIG. 3 . - For example, an isoprene synthase described herein can have at least 70% sequence identity (homology) (e.g., at least 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100%) to the amino acid sequence of a Mucuna pruriens isoprene synthase (SEQ ID No: 7). See
FIG. 3 . - The percent identity (homology) between two amino acid sequences can be determined by any method known to thosc skilled in the art. In one embodiment, the percent identity (homology) can be determined by aligning the amino acid sequences using the
BLAST 2 Sequences (B 12seq) program from the stand-alone version of BLASTZ containing BLASTP version 2.0.14. This standalone version of BLASTZ can be obtained from the U.S. government's National Center for Biotechnology Information web site (www.ncbi.nlm.nih.gov). Instructions explaining how to use the B12seq program can be found in the readme file accompanying BLASTZ. B12seq performs a comparison between two amino acid sequences using the BLASTP algorithm. To compare two amino acid sequences, the options of B 12seq are set as follows: -i is set to a file containing the first amino acid sequence to be compared (e.g., C:\seql.txt); -j is set to a file containing the second amino acid sequence to be compared (e.g., C:\seq2.txt); -pis set to blastp; -o is set to any desired file name (e.g., C:\output.txt); and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two amino acid sequences: C:\B12seq c:\seql.txt -j c:\seq2.txt -p blastp -o c:\output.txt. If the two compared sequences share homology (identity), then the designated output file will present those regions of homology as aligned sequences. If the two compared sequences do not share homology (identity), then the designated output file will not present aligned sequences. Similar procedures can be used for nucleic acid sequences except that blastn is used. - Once aligned, the number of matches is determined by counting the number of positions where an identical amino acid residue is presented in both sequences. The percent identity (homology) is determined by dividing the number of matches by the length of the full-length polypeptidc amino acid sequence followed by multiplying the resulting value by 100. It is noted that the percent identity (homology) value is rounded to the nearest tenth. For example, 78.11, 78.12, 78.13, and 78.14 is rounded down to 78.1, while 78.15, 78.16, 78.17, 78.18, and 78.19 is rounded up to 78.2. It also is noted that the length value will always be an integer.
- This application also provides (i) functional variants of the enzymes used in the methods of the application and (ii) functional variants of the functional fragments described above. Functional variants of the enzymes and functional fragments can contain additions, deletions, or substitutions relative to the corresponding wild-type sequences. Enzymes with substitutions will generally have not more than 50 (e.g., not more than one, two, three, four, five, six, seven, eight, nine, ten, 12, 15, 20, 25, 30, 35, 40, or 50) amino acid substitutions (e.g., conservative substitutions). This applies to any of the enzymes described herein and functional fragments. A conservative substitution is a substitution of one amino acid for another with similar characteristics. Conservative substitutions include substitutions within the following groups: valine, alanine and glycine; leucine, valine, and isoleucine; aspartic acid and glutamic acid; asparagine and glutamine; serine, cysteine, and threonine; lysine and arginine; and phenylalanine and tyrosine. The nonpolar hydrophobic amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Any substitution of one member of the above-mentioned polar, basic or acidic groups by another member of the same group can be deemed a conservative substitution. By contrast, a nonconservative substitution is a substitution of one amino acid for another with dissimilar characteristics.
- It will be appreciated that a number of nucleic acids can encode a polypeptide having a particular amino acid sequence. The degeneracy of the genetic code is well known to the art; i.e., for many amino acids, there is more than one nucleotide triplet that serves as the codon for the amino acid. For example, codons in the coding sequence for a given enzyme can be modified such that optimal expression in a particular species (e.g., bacteria or fungus) is obtained, using appropriate codon bias tables for that species.
- Functional fragments of any of the enzymes described herein can also be used in the methods described herein. The term “functional fragment” as used herein refers to a peptide fragment of a protein that has at least 25% (e.g., at least: 30%; 40%; 50%; 60%; 70%; 75%; 80%; 85%; 90%; 95%; 98%; 99%; 100%; or even greater than 100%) of the activity of the corresponding mature, full-length, wild-type protein. The functional fragment can generally, but not always, be comprised of a continuous region of the protein, wherein the region has functional activity.
- Deletion variants can lack one, two, three, four, five, six, seven, eight, nine, ten, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid segments (of two or more amino acids) or non-contiguous single amino acids. Additions (addition variants) include fusion proteins containing: (a) any of the enzymes described herein or a fragment thereof; and (b) internal or terminal (C or N) irrelevant or heterologous amino acid sequences. In the context of such fusion proteins, the term “heterologous amino acid sequences” refers to an amino acid sequence other than (a). A heterologous sequence can be, for example a sequence used for purification of the recombinant protein (e.g., FLAG, poly histidine (e.g., hexahistidine (SEQ ID No:14)), hemagluttanin (HA), glutathione-S-transferase (GST), or maltosebinding protein (MBP)). Heterologous sequences also can be proteins useful as detectable markers, for example, luciferase, green fluorescent protein (GFP), or chloramphenicol acetyl transferase (CAT). In some embodiments, the fusion protein contains a signal sequence from another protein. In certain host cells (e.g., yeast host cells), expression and/or secretion of the target protein can be increased through use of a heterologous signal sequence. In some embodiments, the fusion protein can contain a carrier (e.g., KLH) useful, e.g., in eliciting an immune response for antibody generation) or ER or Golgi apparatus retention signals. Heterologous sequences can be of varying length and in some cases can be a longer sequences than the full-length target proteins to which the heterologous sequences are attached.
- Hosts can naturally express none or some (e.g., one or more, two or more, three or more, four or more, five or more, or six or more) of the enzymes of the pathways described herein. Endogenous genes of the recombinant hosts also can be disrupted to prevent the formation of undesirable metabolites or prevent the loss of intermediates in the pathway through other enzymes acting on such intermediates. Recombinant hosts can be referred to as recombinant host cells, non-naturally occurring host cells, engineered cells, or engineered hosts. Thus, as described herein, recombinant hosts can include nucleic acids encoding one or more of a decarboxylase, a kinase, a dehydrogenase, a monooxygenase, an acyl [acyl carrier protein (acp)] dehydrogenase, a dehydratase, a thioesterase, or a decarboxyating thioesterase as described in more detail below.
- In addition, the production of 3-HMG and/or isoprene can be performed in vitro using the isolated enzymes described herein, using a lysate (e.g., a cell lysate) from a host microorganism as a source of the enzymes, or using a plurality of lysates from different host microorganisms as the source of the enzymes.
- In some embodiments, the enzymes of the pathways described in
FIG. 1 andFIG. 2 are the result of enzyme engineering to improve activity or specificity using the enzyme structure and wild-type residue diversity to inform the rational enzyme design. - In some embodiments, the nucleic acids encoding the enzymes of the pathways described in
FIG. 1 andFIG. 2 are introduced into a host microorganism that is either a prokaryote or eukaryote. - In some embodiments, the host microorganism is a prokaryote. For example, the prokaryote can be a bacterium from the genus Escherichia such as Escherichia coli; from the genus Clostridia such as Clostridium Ijungdahlii, Clostridium autoethanogenum or Clostridium kluyveri; from the genus Corynebacteria such as Corynebacterium glutamicum; from the genus Cupriavidus such as Cupriavidus necator or Cupriavidus metaffidurans; from the genus Pseudomonas such as Pseudomonas fluorescens, Pseudomonas putida or Pseudomonas oleavorans; from the genus Delftia such as Delftia acidovorans; from the genus Bacillus such as Bacillus subtillis; from the genus Lactobacillus such as Lactobacillus delbrueckii; or from the genus Lactococcus such as Lactococcus lactis. Such prokaryotes also can be a source of genes to construct recombinant host cells described herein that are capable of producing isoprene or precursors thereof.
- In some embodiments, the host microorganism is a eukaryote. For example, the eukaryote can be a filamentous fungus, e.g., one from the genus Aspergillus such as Aspergillus niger. Alternatively, the eukaryote can be a yeast, e.g., one from the genus Saccharomyces such as Saccharomyces cerevisiae; from the genus Pichia such as Pichia pastoris; or from the genus Yarrowia such as Yarrowia lipolytica; from the genus Issatchenkia such as Issatchenkia orientalis; from the genus Debaryomyces such as Debaryomyces hansenii; from the genus Arxula such as Arxula adeninivorans; or from the genus Kluyveromyces such as Kluyveromyces lactis. Such eukaryotes also can be a source of genes to construct recombinant host cells described herein that are capable of producing isoprene or precursors thereof.
- In some embodiments, 3-HMG is biosynthesized in a recombinant host using a fermentation strategy that can include anaerobic, micro-aerobic or aerobic cultivation of the recombinant host.
- In some embodiments, 3-HMG is biosynthesized in a recombinant host using a fermentation strategy that uses an alternate final electron acceptor to oxygen such as nitrate.
- In some embodiments, isoprene is biosynthesized in a recombinant host using a fermentation strategy that can include anaerobic, micro-aerobic or aerobic cultivation of the recombinant host.
- In some embodiments, isoprene is biosynthesized in a recombinant host using a fermentation strategy that uses an alternate final electron acceptor to oxygen such as nitrate.
- In some embodiments, a cell retention strategy using, for example, ceramic hollow fiber membranes can be employed to achieve and maintain a high cell density during either fed batch or continuous fermentation in the synthesis of 3-HMG and/or isoprene.
- In some embodiments, the biological feedstock can be, can include, or can derive from, monosaccharides, disaccharides, lignocellulose, hemicellulose, cellulose, lignin, levulinic acid & formic acid, triglycerides, glycerol, fatty acids, agricultural waste, condensed distillers' solubles, or municipal waste.
- The efficient catabolism of crude glycerol stemming from the production of biodiesel has been demonstrated in several microorganisms such as Escherichia coli, Cupriavidus necator, Pseudomonas oleavorans, Pseudomonas putida and Yarrowia lipolytica (Lee et al., Appl. Biochem. Biotechnol., 2012, 166, 1801-1813; Yang et al., Biotechnology for Biofuels, 2012, 5:13; Meijnen et al., Appl. Microbial. Biotechnol., 2011, 90, 885-893).
- The efficient catabolism of lignocellulosic-derived levulinic acid has been demonstrated in several organisms such as Cupriavidus necator and Pseudomonas putida in the synthesis of 3-hydroxyvalerate via the precursor propanoyl-CoA (Jaremko and Yu, Journal of Biotechnology, 2011, 155, 2011, 293-298; Martin and Prather, Journal of Biotechnology, 2009, 139, 61 67).
- The efficient catabolism of lignin-derived aromatic compounds such benzoate analogues has been demonstrated in several microorganisms such as Pseudomonas putida, Cupriavidus necator (Bugg et al., Current Opinion in Biotechnology, 2011, 22, 394-400; Perez-Pantoja et al, FEMS Microbial. Rev., 2008, 32, 736-794).
- The efficient utilization of agricultural waste, such as olive mill waste water has been demonstrated in several microorganisms, including Yarrowia lipolytica (Papanikolaou et al., Bioresour. Technol., 2008, 99(7), 2419-2428).
- The efficient utilization of fermentable sugars such as monosaccharides and disaccharides derived from cellulosic, hemicellulosic, cane and beet molasses, cassava, corn and other agricultural sources has been demonstrated for several microorganism such as Escherichia coli, Corynebacterium glutamicum and Lactobacillus delbrueckii and Lactococcus lactis (see, e.g., Hermann et al, Journal of Biotechnology, 2003, 104, 155-172; Wee et al., Food Technol. Biotechnol., 2006, 44(2), 163-172; Ohashi et al., Journal of Bioscience and Bioengineering, 1999, 87(5), 647-654).
- The efficient utilization of furfural, derived from a variety of agricultural lignocellulosic sources, has been demonstrated for Cupriavidus necator (Li et al., Biodegradation, 2011, 22, 1215-1225).
- In some embodiments, the non-biological feedstock can be or can derive from natural gas, syngas, CO2/H2, methanol, ethanol, benzoic acid, non-volatile residue (NVR) or a caustic wash waste stream from cyclohexane oxidation processes, or terephthalic acid/isophthalic acid mixture waste streams.
- The efficient catabolism of methanol has been demonstrated for the methylotropic yeast Pichia pastoris.
- The efficient catabolism of ethanol has been demonstrated for Clostridium kluyveri (Seedorf et al., Proc. Natl. Acad. Sci. USA, 2008, 105(6) 2128-2133). The efficient catabolism of CO2 and H2, which may be derived from natural gas and other chemical and petrochemical sources, has been demonstrated for Cupriavidus necator (Prybylski et al., Energy, Sustainability and Society, 2012, 2:11).
- The efficient catabolism of syngas has been demonstrated for numerous microorganisms, such as Clostridium Ijungdahlii and Clostridium autoethanogenum (Kopke et al., Applied and Environmental Microbiology, 2011, 77(15), 5467-5475).
- The efficient catabolism of the non-volatile residue waste stream from cyclohexane processes has been demonstrated for numerous microorganisms, such as Delftia acidovorans and Cupriavidus necator (Ramsay et al., Applied and Environmental Microbiology, 1986, 52(1), 152-156).
- In some embodiments, substntially pure cultures of recombinant host microorganisms are provided. As used herein, a “substantially pure culture” of a recombinant host microorganism is a culture of that microorganism in which less than about 40% (i.e., less than about 35%; 30%; 25%; 20%; 15%; 10%; 5%; 2%; 1%; 0.5%; 0.25%; 0.1%; 0.01%; 0.001%; 0.0001%; or even less) of the total number of viable cells in the culture are viable cells other than the recombinant microorganism, e.g., bacterial, fungal (including yeast), mycoplasmal, or protozoan cells. The term “about” in this context means that the relevant percentage can be 15% of the specified percentage above or below the specified percentage. Thus, for example, about 20% can be 17% to 23%. Such a culture of recombinant microorganisms includes the cells and a growth, storage, or transport medium. Media can be liquid, semi-solid (e.g., gelatinous media), or frozen. The culture includes the cells growing in the liquid or inion the semi-solid medium or being stored or transported in a storage or transport medium, including a frozen storage or transport medium. The cultures are in a culture vessel or storage vessel or substrate (e.g., a culture dish, flask, or tube or a storage vial or tube).
- The present application provides methods involving less than or more than all the steps described for all the above pathways. Such methods can involve, for example, one, two, three, four, five, six, seven, eight, nine, ten, or more of such steps. Where less than all the steps are included in such a method, the first step can be any one of the steps listed. Furthermore, recombinant hosts described herein can include any combination of the above enzymes such that one or more of the steps, e.g., one, two, three, four, five, six, seven, eight, nine, ten, or more of such steps, can be performed within a recombinant host.
- In addition, this application recognizes that where enzymes have been described as accepting CoA-activated substrates, analogous enzyme activities associated with [acp]-bound substrates exist that are not necessarily in the same enzyme class.
- Also, this application recognizes that where enzymes have been described accepting (R)-enantiomers of substrate, analogous enzyme activities associated with (S)-enantiomer substrates exist that are not necessarily in the same enzyme class.
- This application also recognizes that where an enzyme is shown to accept a particular co-factor, such as NADPH, or co-substrate, such as but not limited to 3-methylglutaconyl-coA, many enzymes are promiscuous in terms of accepting a number of different co-factors or co-substrates in catalyzing a particular enzyme activity. Also, this application recognizes that where enzymes have high specificity for e.g., a particular co-factor such as NADH, an enzyme with similar or identical activity that has high specificity for the co-factor NADPH may be in a different enzyme class.
- In some embodiments, the enzymes in the pathways outlined herein can be the result of enzyme engineering via non-direct or rational enzyme design approaches with aims of improving activity, improving specificity, reducing feedback inhibition, reducing repression, improving enzyme solubility, changing stereo-specificity, or changing co-factor specificity.
- In some embodiments, the enzymes in the pathways outlined herein can be gene dosed, i.e., overexpressed, into the resulting genetically modified organism via episomal or chromosomal integration approaches.
- In some embodiments, genome-scale system biology techniques such as Flux Balance Analysis can be utilized to devise genome scale attenuation or knockout strategies for directing carbon flux to isoprene.
- In some embodiments, fluxomic, metabolomic and transcriptomal data can be utilized to inform or support genome-scale system biology techniques, thereby devising genome scale attenuation or knockout strategies in directing carbon flux to isoprene.
- In some embodiments, one or more enzymes from the pathways described herein, for example, at least one enzyme classified under EC 1.2.1.-, EC 1.2.7.7, EC 4.1.1.74, EC 4.1.1.43, EC 1.2.1.39, EC 1.2.15, EC 6.2.1.-, EC 1.3.8.4, EC 6.4.1.4, EC 4.2.1.18, EC 1.1.1.34, EC 2.7.1.36, EC 2.7.4.2, EC 4.1.1.33, EC 5.3.3.2, or EC 4.2.3.27, are introduced or gene dosed into a host microorganism that utilizes the non-mevalonate or 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid synthesis. In some embodiments, at least one enzyme having the amino acid sequence listed in SEQ ID No: 1, SEQ ID No: 2, SEQ ID No: 3, SEQ ID No: 4, SEQ ID No: 59, SEQ ID No: 6, or SEQ ID No: 7 is introduced or gene dosed into a host microorganism that utilizes the non-mevalonate or 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid synthesis.
- In some embodiments, where pathways require excess NADPH co-factor in the synthesis of isoprene, a puridine nucleotide transhydrogenase gene such as UdhA can be overexpressed in the host organism (Brigham et al., Advanced Biofuels and Bioproducts, 2012, Chapter 39, 1065-1090).
- In some embodiments, where pathways require excess NADPH co-factor in the synthesis of isoprene, a glyceraldehyde-3P-dehydrogenase gene such as GapN can be overexpressed in the host organism (Brigham et al., 2012, supra).
- In some embodiments, where pathways require excess NADPH co-factor in the synthesis of isoprene, a malic enzyme gene such as macA or maeB can be overexpressed in the host organism (Brigham et al., 2012, supra).
- In some embodiments, where pathways require excess NADPH co-factor in the synthesis of isoprene, a glucose-6-phosphate dehydrogenase gene such as zwf can be overexpressed in the host organism (Lim et al., Journal of Bioscience and Bioengineering, 2002, 93(6), 543-549).
- In some embodiments, where pathways require excess NADPH co-factor in the synthesis of isoprene, a
fructose - In some embodiments, the efflux of isoprene across the cell membrane to the extracellular media can be enhanced or amplified by genetically engineering structural modifications to the cell membrane or increasing any associated transporter activity for isoprene.
- 3-HMG and/or isoprene can be produced by providing a host microorganism and culturing the provided microorganism with a culture medium containing a suitable carbon source as described above. In general, the culture media and/or culture conditions can be such that the microorganisms grow to an adequate density and produce isoprene efficiently. For large-scale production processes, any method can be used such as those described elsewhere (Manual of Industrial Microbiology and Biotechnology, 2nd Edition, Editors: A. L. Demain and J. E. Davies, ASM Press; and Principles of Fermentation Technology, P. F. Stanbury and A. Whitaker, Pergamon). In one example, a large tank (e.g., a 100 gallon, 200 gallon, 500 gallon, or more tank) containing an appropriate culture medium is inoculated with a particular microorganism. After inoculation, the microorganism is incubated to allow biomass to be produced. Once a desired biomass is reached, the broth containing the microorganisms can be transferred to a second tank. This second tank can be any size. For example, the second tank can be larger, smaller, or the same size as the first tank. Typically, the second tank is larger than the first such that,additional culture medium can be added to the broth from the first tank. In addition, the culture medium within this second tank can be the same as, or different from, that used in the first tank.
- Once transferred, the microorganisms can be incubated to allow for the production of 3-HMG and/or isoprene. In one example, a substrate comprising CO is provided to a bioreactor comprising one or more microorganisms and anaerobically fermenting the substrate to produce isoprene according to methods described in US 2012/0045807. In one example, the microorganisms can be used for the production of isoprene by microbial fermentation of a substrate comprising CO according to methods described in US 2013/0323820.
- Once produced, any method can be used to isolate isoprene. For example, isoprene can be recovered from the fermenter off-gas stream as a volatile product as the boiling point of isoprene is 34.1° C. At a typical fermentation temperature of approximately 30° C., isoprene has a high vapor pressure and can be stripped by the gas flow rate through the broth for recovery from the off-gas. Isoprene can be selectively adsorbed onto, for example, an adsorbent and separated from the other off-gas components. Membrane separation technology may also be employed to separate isoprene from the other off-gas compounds. Isoprene may desorbed from the adsorbent using, for example, nitrogen and condensed at low temperature and high pressure:
- In one embodiment, are methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA, for example by using a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA, for example by using a polypeptide having the activity of an EC 1.3.8.4 enzyme; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA, for example by using a polypeptide having the activity of an EC 6.4.1.4 enzyme; and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA, for example by using a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment are methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal, for example by using a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; enzymatically converting 3-methylbutanal to 3-methylbutanoate, for example by using a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA, for example by using a polypeptide having the activity of an EC 6.2.1.2 enzyme; enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA, for example by using a polypeptide having the activity of an EC 1.3.8.4 enzyme; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA, for example by using a polypeptide having the activity of an EC 6.4.1.4 enzyme; and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA, for example by using a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment are provided methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbut-2-enoyl-CoA hy: (a) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal, enzymatically converting 3-methylbutanal to 3-methylbutanoate, and enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA; (b) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA; or (c) both (a) and (b); enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA; and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA.
- In one embodiment are provided methods for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising: enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbut-2-enoyl-CoA by: both (a) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal, enzymatically converting 3-methylbutanal to 3-methylbutanoate, and enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA; and (b) enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA; enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA; enzymatically converting 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA; and enzymatically converting 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA.
- In one embodiment are provided methods for synthesizing isoprene via a mevalonate pathway comprising: synthesizing 3-hydroxy-3-methylglutaryl-CoA according to a method described herein; enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate; enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate; enzymatically converting isopentenyl diphosphate to dimethylallyl diphnsphate; and enzymatically converting dimethylallyl diphosphate to isoprene.
- In one embodiment are provided methods for synthesizing isoprene via a mevalonate pathway comprising: synthesizing 3-hydroxy-3-methylglutaryl-CoA according to a method described herein; and one or more steps selected from the group consisting of: enzymatically converting 3-hydroxy-3-methylglutaryl-CoA to (R)-mevalonate using a polypeptide having the activity of an EC 1.1.1.34 enzyme; enzymatically converting (R)-mevalonate to (R)-5-phosphomevalonate using a polypeptide having the activity of an EC 2.7.1.36 enzyme; enzymatically converting (R)-5-phosphomevalonate to (R)-5-diphosphomevalonate using a polypeptide having the activity of an EC 2.7.4.2 enzyme; enzymatically converting (R)-5-diphosphomevalonate to isopentenyl diphosphate using a polypeptide having the activity of an EC 4.1.1.33 enzyme; enzymatically converting isopentenyl diphosphate to dimethylallyl diphosphate using a polypeptide having the activity of an EC 5.3.3.2 enzyme; and enzymatically converting dimethylallyl diphosphate to isoprene using a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- In one embodiment is provided a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment is provided a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2. enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment is provided a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2. enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme.
- In one embodiment is provided a non-naturally occurring host as described above wherein said host is capable of producing isoprene and comprises: at least one exogenous nucleic acid encoding a pulypeptlde having the activity of an EC 1.1.1.34 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.1.36 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 2.7.4.2 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.33 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 5.3.3.2 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.3.27 enzyme.
- In one embodiment is provided a non-naturally occurring host capable of producing 3-hydroxy-3-methylglutaryl-CoA, said host comprising at least one of: at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.7.7 or EC 1.2.1.- enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.1.1.74 or EC 4.1.1.43 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.2.1.39 or EC 1.2.1.5 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.2.1.2. enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 1.3.8.4 enzyme; at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 6.4.1.4 enzyme; and at least one exogenous nucleic acid encoding a polypeptide having the activity of an EC 4.2.1.18 enzyme; and said host further comprising at least one of: at least one endogenous enzyme capable of enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanoyl-CoA; at least one endogenous enzyme capable of enzymatically converting 4-methyl-2-oxopentanoate to 3-methylbutanal; at least one endogenous enzyme capable of enzymatically converting 3 mcthylbutanal to 3-methylbutanoate; at least one endogenous enzyme capable of enzymatically converting 3-methylbutanoate to 3-methylbutanoyl-CoA; at least one endogenous enzyme capable of enzymatically converting 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA; at least one endogenous enzyme capable of 3-methylbut-2-enoyl-CoA to 3-methyl-glutaconyl-CoA; and at least one endogenous enzyme capable of 3-methyl-glutaconyl-CoA to 3-hydroxy-3-methylglutaryl-CoA.
- In one embodiment is provided a non-naturally occurring host as described above wherein at least one of the exogenous nucleic acids is contained within a plasmid.
- In one embodiment is provided a non-naturally occurring host as described above wherein at least one of the exogenous nucleic acids is integrated into a chromosome of the host.
- In one embodiment is provide a method as described above wherein said method is performed in a recombinant host.
- In one embodiment is provide a method as described above wherein at least one of the enzymatic conversions is performed in a recombinant host.
- In one embodiment the host is a prokaryotic host, for example from the genus Escherichia, Clostridia, Corynebacteria, Cupriavidus, Pseudomonas, Bacillus, or Rhodococcus. In one embodiment the host is Cupriavidus necator.
- In one embodiment the host is a eukaryotic host, for example from the genus Aspergillus, Saccharomyces, Pichia, Yarrowia, Issatchenkia, Debaryomyces, Arxula, or Kluyveromyces.
- In one embodiment the host is capable of endogenously producing 3-hydroxy-3-methylglutaryl-CoA.
- In one embodiment the host is capable of endogenously producing isoprene via a non-mevalonate pathway.
- In one embodiment of the methods and hosts described herein, at least one of the enzymatic conversions comprises gas fermentation within the host, for example fermentation of gas comprising at least one of natural gas, syngas, CO2/H2, methanol, ethanol, non-volatile residue, caustic wash from cyclohexane oxidation processes, or waste stream from a chemical or petrochemical industry.
- In one embodiment is provided a method for synthesizing 3-hydroxy-3-methylglutaryl-CoA comprising culturing a host described herein in a gas medium.
- In one embodiment is provided a method for synthesizing isoprene via the mevalonate pathway comprising culturing a host described herein in a gas medium. In one embodiment the method further comprises recovering the produced isoprene. In one embodiment, the host performs the enzymatic synthesis by gas fermentation. In one embodiment, the gas comprises at least one of natural gas, syngas, CO2/H2, methanol, ethanol, non-volatile residue, caustic wash from cyclohexane oxidation processes, or waste stream from a chemical or petrochemical industry.
- In one embodiment is provided a composition comprising 3-hydroxy-3-methylglutaryl-CoA synthesized by a method described herein.
- In one embodiment is provided a composition comprising isoprene synthesized by a method described herein.
- In one embodiment is provided a method for producing bioderived 3-hydroxy-3-methylglutaryl-CoA, comprising culturing or growing a host described herein under conditions and for a sufficient period of time to produce bioderived 3-hydroxy-3-methylglutaryl-CoA.
- In one embodiment is provided a method for producing bioderived isoprene, comprising culturing or growing a host described herein under conditions and for a sufficient period of time to produce bioderived isoprene.
- In one embodiment is provided bioderived isoprene produced in a host described herein, wherein said bioderived isoprene has a carbon-12, carbon-13, and carbon-14 isotope ratio that reflects an atmospheric carbon dioxide uptake source.
- In one embodiment is provided a bio-derived, bio-based, or fermentation-derived product comprising: (a) a composition comprising at least one bio-derived, bio-based, or fermentation-derived compound prepared (i) using a host described herein, or (ii) according to a method described herein, or any combination thereof; (b) a bio-derived, bio-based, or fermentation-derived polymer comprising the bio-derived, bio-based, or fermentation-derived composition or compound of (a), or any combination thereof; (c) a bio-derived, bio-based, or fermentation-derived cis-polyisoprene rubber, trans-polyisoprene rubber, or liquid polyisoprene rubber, comprising the bio-derived, bio-based, or fermentation-derived compound or bio-derived, bio-based, or fermentation-derived composition of (a), or any combination thereof or the bio-derived, bio-based, or fermentation-derived polymer of (b), or any combination thereof; (d) a molded substance obtained by molding the bio-derived, bio-based, or fermentation-derived polymer of (b), or the bio-derived, bio-based, or fermentation-derived resin of (c), or any combination thereof; (e) a bio derived, bio-based, or fermentation-derived formulation comprising the bio-derived, bio-based, or fermentation-derived composition or compound of (a), bio-derived, bio-based, or fermentation-derived polymer of (b), bio-derived, bio-based, or fermentation-derived resin of (c), or bio-derived, bio-based, or fermentation-derived molded substance of (d), or any combination thereof; or (f) a bio-derived, bio-based, or fermentation-derived semi-solid or a non-semi-solid stream, comprising the bio-derived, bio-based, or fermentation-derived composition or compound of (a), bio-derived, bio-based, or fermentation-derived polymer of (b); bio-derived, bio-based, or fermentation-derived resin of (c), bio-derived, bio-based, or fermentation-derived formulation of (e), or bio-derived, bio-based, or fermentation-derived molded substance of (d), or any combination thereof.
- It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention. Other aspects, advantages, and modifications are within the scope of the following claims.
Claims (29)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/932,217 US20190017076A1 (en) | 2015-08-17 | 2016-08-16 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562205926P | 2015-08-17 | 2015-08-17 | |
US15/932,217 US20190017076A1 (en) | 2015-08-17 | 2016-08-16 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
PCT/IB2016/001245 WO2017029553A2 (en) | 2015-08-17 | 2016-08-16 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190017076A1 true US20190017076A1 (en) | 2019-01-17 |
Family
ID=57003533
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/932,217 Abandoned US20190017076A1 (en) | 2015-08-17 | 2016-08-16 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
US15/238,234 Active 2036-09-03 US10167487B2 (en) | 2015-08-17 | 2016-08-16 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
US16/188,673 Abandoned US20190271009A1 (en) | 2015-08-17 | 2018-11-13 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/238,234 Active 2036-09-03 US10167487B2 (en) | 2015-08-17 | 2016-08-16 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
US16/188,673 Abandoned US20190271009A1 (en) | 2015-08-17 | 2018-11-13 | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof |
Country Status (2)
Country | Link |
---|---|
US (3) | US20190017076A1 (en) |
WO (1) | WO2017029553A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11162115B2 (en) | 2017-06-30 | 2021-11-02 | Inv Nylon Chemicals Americas, Llc | Methods, synthetic hosts and reagents for the biosynthesis of hydrocarbons |
US11505809B2 (en) | 2017-09-28 | 2022-11-22 | Inv Nylon Chemicals Americas Llc | Organisms and biosynthetic processes for hydrocarbon synthesis |
US11634733B2 (en) | 2017-06-30 | 2023-04-25 | Inv Nylon Chemicals Americas, Llc | Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190218577A1 (en) | 2016-09-30 | 2019-07-18 | Invista North America S.A.R.L. | Methods, synthetic hosts and reagents for the biosynthesis of isoprene and derivatives |
WO2019245895A1 (en) | 2018-06-19 | 2019-12-26 | Invista North America S.A.R.L. | Methods for the synthesis of carbon products from non-biosynthetic streams |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009064910A2 (en) * | 2007-11-13 | 2009-05-22 | Synthetic Genomics, Inc. | Dimethyloctane as an advanced biofuel |
EP2334788A1 (en) * | 2008-09-15 | 2011-06-22 | Danisco US Inc. | Increased isoprene production using the archaeal lower mevalonate pathway |
CN103415618A (en) | 2010-08-19 | 2013-11-27 | 新西兰郎泽科技公司 | A process for producing chemicals by using microbial fermentation of substrates comprising carbon monoxide |
US8617862B2 (en) * | 2011-06-22 | 2013-12-31 | Genomatica, Inc. | Microorganisms for producing propylene and methods related thereto |
WO2013119340A1 (en) * | 2012-02-08 | 2013-08-15 | Glycos Biotechnologies, Inc. | Microorganism and process for isoprene production |
US20130323820A1 (en) * | 2012-06-01 | 2013-12-05 | Lanzatech New Zealand Limited | Recombinant microorganisms and uses therefor |
-
2016
- 2016-08-16 US US15/932,217 patent/US20190017076A1/en not_active Abandoned
- 2016-08-16 WO PCT/IB2016/001245 patent/WO2017029553A2/en active Application Filing
- 2016-08-16 US US15/238,234 patent/US10167487B2/en active Active
-
2018
- 2018-11-13 US US16/188,673 patent/US20190271009A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11162115B2 (en) | 2017-06-30 | 2021-11-02 | Inv Nylon Chemicals Americas, Llc | Methods, synthetic hosts and reagents for the biosynthesis of hydrocarbons |
US11634733B2 (en) | 2017-06-30 | 2023-04-25 | Inv Nylon Chemicals Americas, Llc | Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof |
US11505809B2 (en) | 2017-09-28 | 2022-11-22 | Inv Nylon Chemicals Americas Llc | Organisms and biosynthetic processes for hydrocarbon synthesis |
Also Published As
Publication number | Publication date |
---|---|
WO2017029553A3 (en) | 2017-04-06 |
US20170051314A1 (en) | 2017-02-23 |
US10167487B2 (en) | 2019-01-01 |
WO2017029553A8 (en) | 2017-10-12 |
WO2017029553A2 (en) | 2017-02-23 |
US20190271009A1 (en) | 2019-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10538789B2 (en) | Methods for biosynthesis of isoprene | |
US9777295B2 (en) | Methods for biosynthesis of isobutene | |
US20190271009A1 (en) | Methods, cells and reagents for production of isoprene, derivatives and intermediates thereof | |
US10214752B2 (en) | Biosynthesis of 1,3-butanediol | |
US20180291401A1 (en) | Methods, hosts, and reagents related thereto for production of unsaturated pentahydrocarbons, derivatives and intermediates thereof | |
US11634733B2 (en) | Methods, materials, synthetic hosts and reagents for the biosynthesis of hydrocarbons and derivatives thereof | |
US20190203241A1 (en) | Methods for biosynthesizing 3-oxopent-4-enoyl-coa | |
US20160237461A1 (en) | Methods for biosynthesizing methacrylate | |
US10538788B2 (en) | Methods, synthetic hosts and reagents for the biosynthesis of dienes and derivatives thereof | |
WO2015175698A1 (en) | Methods of procucing 6-carbon chemicals from long chain fatty acids via oxidative cleavage | |
US20170009263A1 (en) | Methods and host cells for enhancing production of 1, 3-butanediol | |
US10570379B2 (en) | Polypeptides for carbon-carbon bond formation and uses thereof | |
WO2015021059A1 (en) | Methods for biosynthesis of isobutene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INVISTA NORTH AMERICA S.A.R.L., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONRADIE, ALEX VAN ECK;REEL/FRAME:046898/0011 Effective date: 20180629 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |