US20190016680A1 - Mast-cell modulators and uses thereof - Google Patents
Mast-cell modulators and uses thereof Download PDFInfo
- Publication number
- US20190016680A1 US20190016680A1 US16/069,961 US201716069961A US2019016680A1 US 20190016680 A1 US20190016680 A1 US 20190016680A1 US 201716069961 A US201716069961 A US 201716069961A US 2019016680 A1 US2019016680 A1 US 2019016680A1
- Authority
- US
- United States
- Prior art keywords
- compound
- pharmaceutically acceptable
- formula
- acceptable salt
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000003630 histaminocyte Anatomy 0.000 title abstract description 41
- 150000001875 compounds Chemical class 0.000 claims abstract description 119
- 238000000034 method Methods 0.000 claims abstract description 57
- 150000003839 salts Chemical class 0.000 claims abstract description 43
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 25
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 11
- 239000003937 drug carrier Substances 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 9
- 208000032131 Diabetic Neuropathies Diseases 0.000 claims description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 239000012453 solvate Substances 0.000 claims description 8
- 230000035876 healing Effects 0.000 claims description 7
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 claims description 6
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 claims description 6
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 5
- 210000004322 M2 macrophage Anatomy 0.000 claims description 4
- 210000003690 classically activated macrophage Anatomy 0.000 claims description 4
- 125000001153 fluoro group Chemical group F* 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 125000004076 pyridyl group Chemical group 0.000 claims description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims 10
- 125000004767 (C1-C4) haloalkoxy group Chemical group 0.000 claims 5
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 claims 5
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims 5
- 125000004093 cyano group Chemical group *C#N 0.000 claims 5
- 229910052739 hydrogen Inorganic materials 0.000 claims 5
- 239000001257 hydrogen Substances 0.000 claims 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 5
- 238000011282 treatment Methods 0.000 abstract description 14
- 208000037765 diseases and disorders Diseases 0.000 abstract 2
- 239000000203 mixture Substances 0.000 description 45
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 37
- 235000002639 sodium chloride Nutrition 0.000 description 30
- 238000005160 1H NMR spectroscopy Methods 0.000 description 27
- 210000004027 cell Anatomy 0.000 description 26
- 239000007858 starting material Substances 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 17
- 206010052428 Wound Diseases 0.000 description 14
- 208000027418 Wounds and injury Diseases 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 10
- UVKHUEWQHVXNGZ-UHFFFAOYSA-N CC.CC[Y]CC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC.CC[Y]CC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 UVKHUEWQHVXNGZ-UHFFFAOYSA-N 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 10
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 10
- 229940125797 compound 12 Drugs 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910020257 Cl2F2 Inorganic materials 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000002671 adjuvant Substances 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 230000029663 wound healing Effects 0.000 description 9
- BHPAIARYYGYBCC-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(3-fluoropyridin-4-yl)indole-3-carboxamide Chemical compound ClC1=C(CN2C=C(C3=CC=CC=C23)C(=O)NC2=C(C=NC=C2)F)C=CC(=C1)Cl BHPAIARYYGYBCC-UHFFFAOYSA-N 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- RIBFVYACOKUSST-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-3-fluoropyridine-4-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(=O)C1=C(C=NC=C1)F RIBFVYACOKUSST-UHFFFAOYSA-N 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 238000001994 activation Methods 0.000 description 7
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 7
- -1 poly(ADP-ribose) Polymers 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 102000020167 Calcium release-activated calcium channel Human genes 0.000 description 6
- 108091022898 Calcium release-activated calcium channel Proteins 0.000 description 6
- RZIVDYDMOXVGPO-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-3-methylpyridine-4-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(=O)C1=C(C=NC=C1)C RZIVDYDMOXVGPO-UHFFFAOYSA-N 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229960000265 cromoglicic acid Drugs 0.000 description 6
- IMZMKUWMOSJXDT-UHFFFAOYSA-N cromoglycic acid Chemical compound O1C(C(O)=O)=CC(=O)C2=C1C=CC=C2OCC(O)COC1=CC=CC2=C1C(=O)C=C(C(O)=O)O2 IMZMKUWMOSJXDT-UHFFFAOYSA-N 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- UTPDKUZUERCNKP-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(2,4-difluorophenyl)indole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1C=C(C2=CC=CC=C12)C(=O)NC1=C(C=C(C=C1)F)F UTPDKUZUERCNKP-UHFFFAOYSA-N 0.000 description 5
- FGQSLNATAGVVLS-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(2,6-difluorophenyl)indazole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)C(=O)NC1=C(C=CC=C1F)F FGQSLNATAGVVLS-UHFFFAOYSA-N 0.000 description 5
- WQUDTMIVGBBLQD-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(thiadiazol-5-yl)indazole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)C(=O)NC1=CN=NS1 WQUDTMIVGBBLQD-UHFFFAOYSA-N 0.000 description 5
- 208000010261 Small Fiber Neuropathy Diseases 0.000 description 5
- 206010073928 Small fibre neuropathy Diseases 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 208000017692 primary erythermalgia Diseases 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- IXFPJGBNCFXKPI-FSIHEZPISA-N thapsigargin Chemical compound CCCC(=O)O[C@H]1C[C@](C)(OC(C)=O)[C@H]2[C@H](OC(=O)CCCCCCC)[C@@H](OC(=O)C(\C)=C/C)C(C)=C2[C@@H]2OC(=O)[C@@](C)(O)[C@]21O IXFPJGBNCFXKPI-FSIHEZPISA-N 0.000 description 5
- FUNLAMGXGVPTID-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(3,5-difluoropyridin-4-yl)indazole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)C(=O)NC1=C(C=NC=C1F)F FUNLAMGXGVPTID-UHFFFAOYSA-N 0.000 description 4
- OOMZQKJXRMGHAI-UHFFFAOYSA-N 1-[(2,6-dichlorophenyl)methyl]-N-(2,6-difluorophenyl)indole-3-carboxamide Chemical compound ClC1=C(C(=CC=C1)Cl)CN1C=C(C2=CC=CC=C12)C(=O)NC1=C(C=CC=C1F)F OOMZQKJXRMGHAI-UHFFFAOYSA-N 0.000 description 4
- MXAIUTVCQSYQSH-UHFFFAOYSA-N 1-[(2-chlorophenyl)methyl]-N-(2,6-difluorophenyl)indole-3-carboxamide Chemical compound ClC1=C(C=CC=C1)CN1C=C(C2=CC=CC=C12)C(=O)NC1=C(C=CC=C1F)F MXAIUTVCQSYQSH-UHFFFAOYSA-N 0.000 description 4
- LACOQELXBRHMER-UHFFFAOYSA-N 1-[(4-chlorophenyl)methyl]-N-(2,6-difluorophenyl)indole-3-carboxamide Chemical compound ClC1=CC=C(C=C1)CN1C=C(C2=CC=CC=C12)C(=O)NC1=C(C=CC=C1F)F LACOQELXBRHMER-UHFFFAOYSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- TUTFVELSLFOKME-UHFFFAOYSA-N N-(2,6-difluorophenyl)-1-[[2-(trifluoromethoxy)phenyl]methyl]indole-3-carboxamide Chemical compound FC1=C(C(=CC=C1)F)NC(=O)C1=CN(C2=CC=CC=C12)CC1=C(C=CC=C1)OC(F)(F)F TUTFVELSLFOKME-UHFFFAOYSA-N 0.000 description 4
- FBQQNHCKTFRLQR-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-2,4-difluorobenzamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(C1=C(C=C(C=C1)F)F)=O FBQQNHCKTFRLQR-UHFFFAOYSA-N 0.000 description 4
- YKWGGEAZSNKVFD-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-2,6-difluorobenzamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(C1=C(C=CC=C1F)F)=O YKWGGEAZSNKVFD-UHFFFAOYSA-N 0.000 description 4
- YKQLSTQPJFOHJR-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-2-fluorobenzamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(C1=C(C=CC=C1)F)=O YKQLSTQPJFOHJR-UHFFFAOYSA-N 0.000 description 4
- UIISXIZGODMRPJ-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-3,5-difluoropyridine-4-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(=O)C1=C(C=NC=C1F)F UIISXIZGODMRPJ-UHFFFAOYSA-N 0.000 description 4
- PRIPWZDZWWCPCG-UHFFFAOYSA-N N-[1-[(2,4-dichlorophenyl)methyl]indazol-3-yl]-4-methylthiadiazole-5-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)NC(=O)C1=C(N=NS1)C PRIPWZDZWWCPCG-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- HATRDXDCPOXQJX-UHFFFAOYSA-N Thapsigargin Natural products CCCCCCCC(=O)OC1C(OC(O)C(=C/C)C)C(=C2C3OC(=O)C(C)(O)C3(O)C(CC(C)(OC(=O)C)C12)OC(=O)CCC)C HATRDXDCPOXQJX-UHFFFAOYSA-N 0.000 description 4
- 229940125904 compound 1 Drugs 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- WKJQWBPRPFBOKP-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(2,4-difluorophenyl)indazole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)C(=O)NC1=C(C=C(C=C1)F)F WKJQWBPRPFBOKP-UHFFFAOYSA-N 0.000 description 3
- HVROETUKFTYRDA-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(2-fluorophenyl)indazole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1N=C(C2=CC=CC=C12)C(=O)NC1=C(C=CC=C1)F HVROETUKFTYRDA-UHFFFAOYSA-N 0.000 description 3
- AGMPFALDDKOUMU-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(2-fluorophenyl)indole-3-carboxamide Chemical compound ClC1=C(CN2C=C(C3=CC=CC=C23)C(=O)NC2=C(C=CC=C2)F)C=CC(=C1)Cl AGMPFALDDKOUMU-UHFFFAOYSA-N 0.000 description 3
- IRSVDHPYXFLLDS-UHFFFAOYSA-N 2,4-dichloro-1-(chloromethyl)benzene Chemical compound ClCC1=CC=C(Cl)C=C1Cl IRSVDHPYXFLLDS-UHFFFAOYSA-N 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 206010016654 Fibrosis Diseases 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- FAMRARGRNTZSJL-UHFFFAOYSA-N N-(2-chloro-6-fluorophenyl)-1-[(2,4-dichlorophenyl)methyl]indazole-3-carboxamide Chemical compound ClC1=C(C(=CC=C1)F)NC(=O)C1=NN(C2=CC=CC=C12)CC1=C(C=C(C=C1)Cl)Cl FAMRARGRNTZSJL-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 230000004761 fibrosis Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 230000005937 nuclear translocation Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 0 *NII*C1=N*(Cc2ccccc2)c2c1cccc2 Chemical compound *NII*C1=N*(Cc2ccccc2)c2c1cccc2 0.000 description 2
- QMIJMQRLPAODQX-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]-N-(2,6-difluorophenyl)indole-3-carboxamide Chemical compound ClC1=C(C=CC(=C1)Cl)CN1C=C(C2=CC=CC=C12)C(=O)NC1=C(C=CC=C1F)F QMIJMQRLPAODQX-UHFFFAOYSA-N 0.000 description 2
- DMDQGSKQTNBRAZ-UHFFFAOYSA-N 1-[(2,4-dichlorophenyl)methyl]indazol-3-amine Chemical compound C12=CC=CC=C2C(N)=NN1CC1=CC=C(Cl)C=C1Cl DMDQGSKQTNBRAZ-UHFFFAOYSA-N 0.000 description 2
- YDTDKKULPWTHRV-UHFFFAOYSA-N 1H-indazol-3-amine Chemical compound C1=CC=C2C(N)=NNC2=C1 YDTDKKULPWTHRV-UHFFFAOYSA-N 0.000 description 2
- DKOHVIIVSMATBJ-UHFFFAOYSA-N 6-amino-4-(2-chloro-6-fluorophenyl)-1-(3-chlorophenyl)-3-methyl-4h-pyrano[2,3-c]pyrazole-5-carbonitrile Chemical compound C1=2C(C)=NN(C=3C=C(Cl)C=CC=3)C=2OC(N)=C(C#N)C1C1=C(F)C=CC=C1Cl DKOHVIIVSMATBJ-UHFFFAOYSA-N 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- HLUYSPXDJCETEX-UHFFFAOYSA-N CC1=C(NC(=O)C2=CN(CC3=CC=C(Cl)C=C3Cl)C3=CC=CC=C23)C(F)=CC=C1 Chemical compound CC1=C(NC(=O)C2=CN(CC3=CC=C(Cl)C=C3Cl)C3=CC=CC=C23)C(F)=CC=C1 HLUYSPXDJCETEX-UHFFFAOYSA-N 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 2
- 208000026680 Metabolic Brain disease Diseases 0.000 description 2
- QVYHPABDUURDHG-UHFFFAOYSA-N O=C(NC1=C(Cl)N=CC=C1)C1=CN(CC2=CC(F)=CC=C2)C2=CC=CC=C12.O=C(NC1=CC(F)=C(F)C=C1)C1=NN(CC2=C(Cl)C=CC=C2Cl)C2=CC=CC=C21 Chemical compound O=C(NC1=C(Cl)N=CC=C1)C1=CN(CC2=CC(F)=CC=C2)C2=CC=CC=C12.O=C(NC1=CC(F)=C(F)C=C1)C1=NN(CC2=C(Cl)C=CC=C2Cl)C2=CC=CC=C21 QVYHPABDUURDHG-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000000172 allergic effect Effects 0.000 description 2
- HIMXGTXNXJYFGB-UHFFFAOYSA-N alloxan Chemical compound O=C1NC(=O)C(=O)C(=O)N1 HIMXGTXNXJYFGB-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 102000007478 beta-N-Acetylhexosaminidases Human genes 0.000 description 2
- 108010085377 beta-N-Acetylhexosaminidases Proteins 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 208000017169 kidney disease Diseases 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000035752 proliferative phase Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 208000017520 skin disease Diseases 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- OPCSKGOWJUXGNZ-UHFFFAOYSA-N 1-(benzotriazol-1-yl)-3-(3,6-dichlorocarbazol-9-yl)propan-2-ol Chemical compound C12=CC=C(Cl)C=C2C2=CC(Cl)=CC=C2N1CC(O)CN1C2=CC=CC=C2N=N1 OPCSKGOWJUXGNZ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- ODUZJBKKYBQIBX-UHFFFAOYSA-N 2,6-difluoroaniline Chemical compound NC1=C(F)C=CC=C1F ODUZJBKKYBQIBX-UHFFFAOYSA-N 0.000 description 1
- ONOTYLMNTZNAQZ-UHFFFAOYSA-N 2,6-difluorobenzoic acid Chemical compound OC(=O)C1=C(F)C=CC=C1F ONOTYLMNTZNAQZ-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 1
- OSMAGAVKVRGYGR-UHFFFAOYSA-N 3-methylpyridine-4-carboxylic acid Chemical compound CC1=CN=CC=C1C(O)=O OSMAGAVKVRGYGR-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 206010048396 Bone marrow transplant rejection Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- UMFYKBOXEOOXKI-UHFFFAOYSA-N C.C.C.CC.CC.CC.CC.O=C(CC1=CC=CC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.O=C(CC1=CC=NC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound C.C.C.CC.CC.CC.CC.O=C(CC1=CC=CC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.O=C(CC1=CC=NC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 UMFYKBOXEOOXKI-UHFFFAOYSA-N 0.000 description 1
- XFUUDJMKIGULBK-UHFFFAOYSA-N C.C.C1=CC=C(CN2C=C(C[Y]C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(CN2C=C(C[Y]C3=CC=NC=C3)C3=CC=CC=C32)C=C1.CC.CC.CC.CC Chemical compound C.C.C1=CC=C(CN2C=C(C[Y]C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(CN2C=C(C[Y]C3=CC=NC=C3)C3=CC=CC=C32)C=C1.CC.CC.CC.CC XFUUDJMKIGULBK-UHFFFAOYSA-N 0.000 description 1
- QQMCVSUQPZVUAF-UHFFFAOYSA-N C1=CC=C(CN2C=C(C[Y]C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(CN2C=C(C[Y]C3=CC=NC=C3)C3=CC=CC=C32)C=C1.CC.CC.CC.CC Chemical compound C1=CC=C(CN2C=C(C[Y]C3=CC=CC=C3)C3=CC=CC=C32)C=C1.C1=CC=C(CN2C=C(C[Y]C3=CC=NC=C3)C3=CC=CC=C32)C=C1.CC.CC.CC.CC QQMCVSUQPZVUAF-UHFFFAOYSA-N 0.000 description 1
- DFKKTDVWCHXZIS-UHFFFAOYSA-N CC.CC.CC.CC.O=C(CC1=CC=CC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.O=C(CC1=CC=NC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC.CC.CC.CC.O=C(CC1=CC=CC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.O=C(CC1=CC=NC=C1)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 DFKKTDVWCHXZIS-UHFFFAOYSA-N 0.000 description 1
- WJUAJJNQBAOIMT-UHFFFAOYSA-N CC.CC.CCC(=O)NC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.CCClC=O.I.NC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC.CC.CCC(=O)NC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.CCClC=O.I.NC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 WJUAJJNQBAOIMT-UHFFFAOYSA-N 0.000 description 1
- YXYAALDJBJMCAN-UHFFFAOYSA-N CC.CC.CCCC(=O)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.CCN.I.O=C(O)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 Chemical compound CC.CC.CCCC(=O)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.CCN.I.O=C(O)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12 YXYAALDJBJMCAN-UHFFFAOYSA-N 0.000 description 1
- GTGORTLSYHVCFB-UHFFFAOYSA-N CC.CC.ClCC1=CC=CC=C1.NC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.NC1=CNC2=CC=CC=C12 Chemical compound CC.CC.ClCC1=CC=CC=C1.NC1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.NC1=CNC2=CC=CC=C12 GTGORTLSYHVCFB-UHFFFAOYSA-N 0.000 description 1
- DNQJWYLQCIFZDF-UHFFFAOYSA-N CC.CC.ClCC1=CC=CC=C1.O=C(O)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.O=C(O)C1=CNC2=CC=CC=C21 Chemical compound CC.CC.ClCC1=CC=CC=C1.O=C(O)C1=CN(CC2=CC=CC=C2)C2=CC=CC=C12.O=C(O)C1=CNC2=CC=CC=C21 DNQJWYLQCIFZDF-UHFFFAOYSA-N 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- 102000004631 Calcineurin Human genes 0.000 description 1
- 108010042955 Calcineurin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 1
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 1
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 1
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 1
- 208000000668 Chronic Pancreatitis Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- LOCFZXGICIVBGE-UHFFFAOYSA-N ClCC1=C(Cl)C=C(Cl)C=C1.O=C(O)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(O)C1=CNC2=CC=CC=C21 Chemical compound ClCC1=C(Cl)C=C(Cl)C=C1.O=C(O)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(O)C1=CNC2=CC=CC=C21 LOCFZXGICIVBGE-UHFFFAOYSA-N 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012689 Diabetic retinopathy Diseases 0.000 description 1
- 208000032928 Dyslipidaemia Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 1
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 1
- 101000947178 Homo sapiens Platelet basic protein Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 208000020060 Increased inflammatory response Diseases 0.000 description 1
- HCUARRIEZVDMPT-UHFFFAOYSA-N Indole-2-carboxylic acid Chemical compound C1=CC=C2NC(C(=O)O)=CC2=C1 HCUARRIEZVDMPT-UHFFFAOYSA-N 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100026236 Interleukin-8 Human genes 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 241000735235 Ligustrum vulgare Species 0.000 description 1
- 208000017170 Lipid metabolism disease Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- LGGCPKHEIXLDIP-UHFFFAOYSA-N NC1=C(F)C=CC=C1F.O=C(Cl)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(Cl)C1OCl1.O=C(NC1=C(F)C=CC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(O)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12 Chemical compound NC1=C(F)C=CC=C1F.O=C(Cl)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(Cl)C1OCl1.O=C(NC1=C(F)C=CC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(O)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12 LGGCPKHEIXLDIP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102000017954 Nuclear factor of activated T cells (NFAT) Human genes 0.000 description 1
- 108050007058 Nuclear factor of activated T cells (NFAT) Proteins 0.000 description 1
- RLMAXVSWSXGFCX-UHFFFAOYSA-N O=C(NC1=C(F)C=CC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(NC1=C(F)C=CC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=C(F)C=NC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=CC=CC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(NC1=CC=CC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=C(F)C=CC=C1F.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=CC=CC=C1F.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=CC=NC=C1F Chemical compound O=C(NC1=C(F)C=CC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(NC1=C(F)C=CC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=C(F)C=NC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=CC=CC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(NC1=CC=CC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=C(F)C=CC=C1F.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=CC=CC=C1F.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=CC=NC=C1F RLMAXVSWSXGFCX-UHFFFAOYSA-N 0.000 description 1
- AVBVBZYJQRWPRE-UHFFFAOYSA-N O=C(NC1=CC=NC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(NC1=CC=NC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=C(F)C=NC=C1F Chemical compound O=C(NC1=CC=NC=C1F)C1=CN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C12.O=C(NC1=CC=NC=C1F)C1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21.O=C(NC1=NN(CC2=CC=C(Cl)C=C2Cl)C2=CC=CC=C21)C1=C(F)C=NC=C1F AVBVBZYJQRWPRE-UHFFFAOYSA-N 0.000 description 1
- ZVIXCPOPOQVWKY-UHFFFAOYSA-N O=C(NC1=CN(CC2=CC=C(Cl)C=C2Cl)C2=C1C=CC=C2)C1=C(F)C=NC=C1 Chemical compound O=C(NC1=CN(CC2=CC=C(Cl)C=C2Cl)C2=C1C=CC=C2)C1=C(F)C=NC=C1 ZVIXCPOPOQVWKY-UHFFFAOYSA-N 0.000 description 1
- 208000022873 Ocular disease Diseases 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033649 Pancreatitis chronic Diseases 0.000 description 1
- 241001111421 Pannus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102100036154 Platelet basic protein Human genes 0.000 description 1
- 108091026813 Poly(ADPribose) Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 206010039085 Rhinitis allergic Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 208000035896 Twin-reversed arterial perfusion sequence Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 230000009285 allergic inflammation Effects 0.000 description 1
- 201000010105 allergic rhinitis Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 210000001142 back Anatomy 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 201000011263 bladder neck cancer Diseases 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 208000001969 capillary hemangioma Diseases 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 201000009101 diabetic angiopathy Diseases 0.000 description 1
- 201000002249 diabetic peripheral angiopathy Diseases 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000000893 fibroproliferative effect Effects 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000010149 post-hoc-test Methods 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 210000001210 retinal vessel Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 210000001908 sarcoplasmic reticulum Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/30—Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
- C07D209/42—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/30—Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
- C07D209/32—Oxygen atoms
- C07D209/36—Oxygen atoms in position 3, e.g. adrenochrome
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/54—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
- C07D231/56—Benzopyrazoles; Hydrogenated benzopyrazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- the present disclosure relates to mast cell (MC) modulators, processes for their preparation, pharmaceutical compositions containing these modulators, and their use in the treatment of diseases associated with mast cells.
- MC mast cell
- mast cells have been known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity, bacterial infections, and autoimmunity. See e.g., Respitory Medicine, Volume 106, Issue 1, pp. 9-14 (January 2012); Proc. Natl Acad. Sci. USA 102 (2005) 1578-1583; Nat. Immunol. 6 (2005) 135-142; Nature 432 (2004) 512-516; Eur. J. Immunol. 40 (2010) 1843-1851; Nat. Rev. Immunol. 10 (2010) 440-452; Autoimmun. Rev. 4 (2005) 21-27; and Nat. Immunol. 11 (2010) 471-476.
- SFN small fiber neuropathy
- DPN diabetic peripheral neuropathy
- mast cell stabilizers Given the involvement of mast cells in a wide variety of therapeutic pathways and targets, it is therefore desirable to prepare compounds that modulate mast cells (e.g., mast cell stabilizers) and hence have utility for treating one or more conditions associated with mast cells.
- FIG. 1 illustrates the effects on would healing in diabetic mice from treatment of a compound described herein.
- FIG. 2 illustrates the effects on the M1/M2 ratio in intact skin of diabetic mice from treatment with a compound described herein.
- FIG. 3 shows dose-dependent inhibition by compound 12 of ⁇ -hex release from activated mast cells. Released ⁇ -Hex in cell culture supernatant were measured and compared with total ⁇ -Hex in cell lyses (reported as %).
- FIG. 4 shows dose-dependent inhibition by compound 12 of nuclear translocation of NFAT in activated mast cells.
- the present disclosure provides a compound of Formula I:
- Z is CH or N
- X is CO and Y is NH, or X is NH and Y is CO;
- Cy is phenyl or pyridyl
- R 1 and R 2 are each halo
- p and s are each independently 1, 2, or 3; provided the compound is not
- halo and “halogen” as used herein refer to an atom selected from fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), and iodine (iodo, —I).
- the terms “subject” and “patient” may be used interchangeably, and means a mammal in need of treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses, sheep, goats and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like).
- the subject is a human in need of treatment.
- the compounds of the herein may be present in the form of pharmaceutically acceptable salts.
- the salts of the compounds of the invention refer to non-toxic “pharmaceutically acceptable salts.”
- Pharmaceutically acceptable salt forms include pharmaceutically acceptable acidic/anionic or basic/cationic salts.
- Pharmaceutically acceptable acidic/anionic salts include, but are not limited to the acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, carbonate, citrate, dihydrochloride, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrobromide, hydrochloride, malate, maleate, malonate, mesylate, nitrate, salicylate, stearate, succinate, sulfate, tartrate, and tosylate.
- the present disclosure provides a compound of Formula I:
- the present disclosure provides a compound of Formula I or a pharmaceutically acceptable salt thereof.
- the compound of Formula I is of the Formula II or III:
- the compound of Formula I is of the Formula IV or V:
- p in Formula I, II, III, IV, and V is 2, wherein the remaining variables are as described above for Formula I and the second or third embodiment.
- s in Formula I, II, III, IV, and V is 1 or 2, wherein the remaining variables are as described above for Formula I and the second, third, or fourth embodiment.
- R 2 in Formula I, II, III, IV, and V is fluoro, wherein the remaining variables are as described above for Formula I and the second, third, fourth, or fifth embodiment.
- R 1 in Formula I, II, III, IV, and V is chloro, wherein the remaining variables are as described above for Formula I and the second, third, fourth, or fifth embodiment.
- the compound of Formula I is selected from
- a provided compound is one or more compounds selected from those exemplified in the EXEMPLIFICATION section below, or a pharmaceutically acceptable salt thereof. That is, pharmaceutically acceptable salts as well as the neutral forms of these compounds are included herein.
- the present disclosure provides a method of treating a subject (e.g., a human) with a condition associated with mast cells comprising the step of administering to the patient an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- Conditions associated with mast cells include, but are not limited to, bacterial infections, allergic reactions, inflammatory diseases, fibrosis, cancers, central nervous system disorders, and metabolic disorders.
- Specific conditions include e.g., allograft rejection, diabetic retinopathy, choroidal neovascularization due to age-related macular degeneration, psoriasis, arthritis, osteoarthritis, rheumatoid arthritis, synovial pannus invasion in arthritis, multiple sclerosis, myasthenia gravis, diabetes mellitus, diabetic angiopathy, diabetic neuropathy, infantile hemangiomas, non-small cell lung, bladder and head and neck cancers, prostate cancer, breast cancer, ovarian cancer, gastric and pancreatic cancer, psoriasis, fibrosis, rheumatoid arthritis, atherosclerosis, restenosis, allergy, respiratory diseases, asthma, transplantation rejection, thrombosis, retinal vessel proliferation, inflammatory bowel disease, Crohn's disease, ulcerative colitis, bone diseases, transplant or bone marrow transplant rejection, lupus, chronic pancreatitis, cachexia, septic shock, fibropro
- the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral neuropathy (PN) in a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- PN peripheral neuropathy
- the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral diabetic neuropathy (PN) in a subject (e.g., a human) in need thereof, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- PN peripheral diabetic neuropathy
- the present disclosure provides a method of delaying the onset of, reducing the risk of developing, or accelerating the healing of a wound in a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- the present disclosure provides a method for altering the M1/M2 macrophage ratio in a wound on a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- a subject e.g., a human having diabetes
- the present disclosure provides a method of preventing the increase of matrix metallopeptidase 9 (MMP-9), in a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- a subject e.g., a human having diabetes
- the present disclosure provides a method of treating a subject (e.g., a human) with a condition associated with mast cells using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- a subject e.g., a human
- a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- disorders associated with mast cells are described above e.g., in paragraph [0022].
- the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral neuropathy (PN) in a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- PN peripheral neuropathy
- the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral diabetic neuropathy (PN) in a subject (e.g., a human) in need thereof, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- PN peripheral diabetic neuropathy
- the present disclosure provides a method of delaying the onset of, reducing the risk of developing, or accelerating the healing of a wound in a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- the present disclosure provides a method for altering the M1/M2 macrophage ratio in a wound on a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- the present disclosure provides a method of preventing the increase of matrix metallopeptidase 9 (MMP-9), in a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- MMP-9 matrix metallopeptidase 9
- delaying the onset of, reversing, or reducing the risk of acquiring, or reducing the risk of developing a condition recited herein means decreasing the amount of mast cell degranulation in subjects who have elevated mast cell degranulation levels due to a condition/disease, such as e.g., diabetes. It has been found that subject having diabetes have an increase in mast cell degranulation. See e.g., U.S. Provisional Application No. 62/162,972.
- accelerating the healing of wound means that the compound of Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof elicits a cellular environment that accelerates or promotes healing of the wound.
- the he compound of Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof may elicit the release of cytokines such as CXCL8, CCL2 and CXCL7, each of which are necessary for the first phase of wound healing, thereby promoting healing of a wound.
- the first phase of wound healing is the inflammatory phase that lasts for approximately three days and it is followed by the proliferative phase that lasts two to three weeks.
- the amount of compound of the Formula I, II, III, IV, and V in a provided composition is such that it is effective as a mast cell stabilizer (such as a mast cell degranulation inhibitor) in a biological sample or in a subject.
- a provided composition is formulated for administration to a subject in need of such composition.
- a provided composition is formulated for oral administration to a subject.
- a provided composition is formulated for topical administration to a subject.
- compositions of this disclosure refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated.
- Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this disclosure include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block
- compositions described herein may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
- carriers commonly used include lactose and corn starch.
- Lubricating agents such as magnesium stearate, are also typically added.
- useful diluents include lactose and dried cornstarch.
- aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
- compositions described herein may also be prepared in injectable form.
- injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- compositions described herein may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs. Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.
- compositions should be formulated so that a dosage of between 0.01-100 mg/kg body weight/day of the inhibitor, such as e.g., 0.1-100 mg/kg body weight/day, can be administered to a patient receiving these compositions.
- a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
- the amount of a compound described herein in the composition will also depend upon the particular compound in the composition.
- treatment refers to therapeutic treatment.
- Modulation of mast cells means that a change or alternation in the activity of mast cells has occurred from the administration of one or more of the compounds described herein. Modulation may be an upregulation (increase) or a downregulation (decrease) in the magnitude of the activity or function of mast cells. Exemplary activities and functions include e.g., binding characteristics, enzymatic activity, cell receptor activation, transcriptional activity, and signal transduction. In one aspect, the compounds described herein stabilize mast cells. In further aspects, the compounds described herein act as mast cell degranulation inhibitors.
- compound of Formula I where X is CO and Y is NH can be prepared by reacting a compound of Formula 100 with a compound of Formula 110 in an organic solvent (e.g., DMF) in the presence of base (e.g., NaH) to form a compound of Formula 120. See e.g., Scheme 1.
- organic solvent e.g., DMF
- base e.g., NaH
- the compound of Formula I can then be formed by converting the carboxylic acid portion of the compound of Formula 120 to an activated group (such as an acid chloride via treatment with DMF and (COCl) 2 in DCM) followed by treatment with a compound of Formula 130 in the presence of base (e.g., TEA).
- an activated group such as an acid chloride via treatment with DMF and (COCl) 2 in DCM
- a compound of Formula 130 in the presence of base e.g., TEA
- compounds of Formula I, where X is NH and Y is CO can be prepared by reacting a compound of Formula 140 with a compound of the Formula 110 in an organic solve′nt (e.g., DMF) in the presence of base (e.g., KOH) to form a compound of 150.
- organic solve′nt e.g., DMF
- base e.g., KOH
- the compound of Formula I can then be formed by reacting amine 150 with a compound of the Formula 160 in the present an organic solvent (e.g., dichloromethane). See e.g., Scheme 4.
- an organic solvent e.g., dichloromethane
- Reagents and solvents were purchased from commercially available sources and used without further purification. All reactions were carried out according to the indicated procedures and conditions. Reactions were monitored by LC/MS analysis and/or thin-layer chromatography (TLC) on silica-coated glass plates (EMD silica gel 60 F254) with the indicated eluent. The compounds were visualized by UV light (254 nm). LC/MS analysis was performed on an Agilent 1200 HPLC/UV (220 nm and/or 254 nm wavelength) system coupled with a mass spectroscopic (Applied Biosystems, MDS SCIEX, Q TRAP LC/MS/MS) detector.
- the title compound can be prepared following the procedures set forth above.
- RBL-2H3 cells (ATCC) were seeded in 96-well plate at 4 ⁇ 10 4 cells per well in DMEM-supplemented with 2% FBS and allowed to adhere overnight. Culture medium was then replaced with 50 ⁇ l of Ca 2+ -free Tyrode solution to load Ca 2+ -probe Fluo-4NW (Molecular Probe, Thermo Fisher, MA, USA) at 1:1 to the cells. New compound at indicated concentration was supplied during the probe loading from the beginning. Cells were incubated in the presence or absence of new compound for 60 minutes in the Ca 2+ -free medium at 37° C.
- [Ca 2+ ] ER in RBL2H3 cells were depleted by Tg in the same manner in the presence of the CRAC channel blockers as for [Ca 2+ ] i measurement but without loading the cells with Fluo-4NW. Then 200 ⁇ l of DMEM-3% FBS (containing 3 mM Ca 2+ ) was supplemented back in the presence of the corresponding concentration of CRAC channel blockers. Thirty minutes after Ca 2+ -add back culture supernatant was collected for degranulation measurement. Degranulation was measured as secreted ⁇ -hexosaminidase according to the protocol of the assay kit (Sigma-Aldrich, MO, USA).
- Nuclear fraction was prepared from the cells for NFAT by using a subcellular protein fractionation kit (NE-PERTM Nuclear and Cytoplasmic Extraction Reagents, Pierce Biotechnology, Thermo Fisher Scientific, MA, USA). Nuclear NFAT-c1 was measured with an ELISA kit (Active Motif, CA, USA). At this time point TNF ⁇ was measured as pre-stored release with ELISA kits (R&D Systems, MN, USA). In a part after Ca 2+ add back incubation was prolonged for 4 h to measure de novo production of the cytokine TNF ⁇ .
- NE-PERTM Nuclear and Cytoplasmic Extraction Reagents Pierce Biotechnology, Thermo Fisher Scientific, MA, USA.
- Nuclear NFAT-c1 was measured with an ELISA kit (Active Motif, CA, USA). At this time point TNF ⁇ was measured as pre-stored release with ELISA kits (R&D Systems, MN, USA). In a part after Ca 2+ add back incubation was prolonged
- Toxicity was tested in RBL-2H3 cells.
- Cells were seeded in 96-well plate at 4 ⁇ 10 4 cells per well in DMEM-supplemented with 2% FBS and allowed to adhere overnight. Cells were then exposed to MCS compound at indicated concentrations for 4 h. Cell viability was determined by using counting assay (CCK8 cell counting kit, Dojindo Molecular Technologies, MD, USA).
- IC 50 and EC 50 were calculated by nonlinear regression using Prims Graphpad software. Statistical analysis was performed by one-way ANOVA and post-hoc test (Tukey's test).
- Inhibitory activity of calcium influx by the described compounds was determined using the RBL-2H3 rodent MC cell line as the primary in vitro assay.
- RBL-2H3 cells are known to express functional CRAC channel.
- Thapsigargin (Tg) is a sarco/endoplasmic reticulum (ER) Ca 2+ -ATPase (SERCA) inhibitor that selectively activates the CRAC channels by depleting Ca 2+ in the ER store ([Ca 2+ ] ER )
- Fluo-4NW was used as the molecular sensor to detect the concentration of intracellular calcium ([Ca 2+ ],). Under these assay conditions, approximately 3.5-fold higher [Ca 2+ ] i was consistently observed in RBL cells treated with Tg (1 ⁇ M) than that in untreated resting MCs. IC 50 results are shown in Table 1.
- Compound 12 was used to determine the inhibition of MC degranulation by measuring the release of pre-stored ⁇ -hexosaminidase ( ⁇ -hex) upon MC activation.
- ⁇ -hex ⁇ -hexosaminidase
- RBL-2H3 cells were activated with the treatment of 1 ⁇ M thapsigargin in Ca 2+ free culture. 30 Minutes after assay media were replenished with extracellular Ca 2+ , supernatants and cell lysates were analyzed for ⁇ -hex concentrations by ELISA.
- the inhibition of nuclear translocation of the nuclear factor of activated T-cells (NFAT) by compound 12 in activated MCs was determined.
- the nuclear factor NFAT is a master regulator of numerous cytokines including TNF ⁇ . Cytosolic NFAT is dephosphorylated by the phosphatase calcineurin, which leads to the nuclear translocation of NFAT and subsequent gene activations for the expression of the corresponding cytokines.
- RBL cells were first treated with 1 ⁇ M thapsigargin in Ca 2+ free culture in the absence or presence of various concentrations of compound 12, which was followed by replenishing with extracellular Ca 2+ for 30 minutes. Nuclear fraction was prepared from the cells by subcellular protein fractionation, and the nuclear NFAT-c1 content was measured by ELISA.
- TNF ⁇ protein secretions Certain compounds were selected and demonstrated dose-dependent inhibition of the production of TNF ⁇ protein by activated MCs.
- Mast cells can secrete pre-stored TNF ⁇ immediately upon activation, as well as de novo synthesized TNF ⁇ that takes a few hours to produce.
- RBL cells were activated similarly as described above, in the presence of various concentrations of a CRAC channel blocker. 4 Hours after RBL cells were re-exposed to Ca 2+ , secreted TNF ⁇ (which accounted for the combined protein from pre-stored and de novo synthesized TNF ⁇ ) in the supernatants were measured by ELISA.
- Compounds showed dose-dependent inhibition of TNF ⁇ protein secretions (Table 2).
- C57B16 mice were made diabetic (DM) using Streptozotocin (STZ) and rabbits were made DM using alloxan.
- a 10-day wound-healing period was chosen since at least 80% wounds in non-DM mice and rabbits heal by that time-point.
- a dressing based on an alginate bandage for topical sustained release of Compound 1 was generated following the methods described in WO 2014/169250, and was then applied the shaved dorsum of DM mice either before (pre-wound) or after wounds (post-wound) were introduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application claims priority to U.S. Provisional Application No. 62/278,722, filed Jan. 14, 2016, the entire contents of which are incorporated herein by reference.
- The present disclosure relates to mast cell (MC) modulators, processes for their preparation, pharmaceutical compositions containing these modulators, and their use in the treatment of diseases associated with mast cells.
- Traditionally, mast cells have been known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity, bacterial infections, and autoimmunity. See e.g., Respitory Medicine, Volume 106, Issue 1, pp. 9-14 (January 2012); Proc. Natl Acad. Sci. USA 102 (2005) 1578-1583; Nat. Immunol. 6 (2005) 135-142; Nature 432 (2004) 512-516; Eur. J. Immunol. 40 (2010) 1843-1851; Nat. Rev. Immunol. 10 (2010) 440-452; Autoimmun. Rev. 4 (2005) 21-27; and Nat. Immunol. 11 (2010) 471-476. In addition to being associated with allergic inflammation (e.g., asthma, atopic dermatitis, allergic rhinitis and ocular allergic diseases), evidence now implicates mast cells with inflammatory diseases through non-allergic triggers as well as fibrosis, cancers, central nervous system disorders, and metabolic disorders. See e.g., Biochimica et Biophysica Acta, 1822 (2012) 21-23; DNA Cell Biol. 2013 Apr. 32(4):206-18; Cancer Metastasis Rev. 2011 Mar. 30(1):45-60; Nature 210, 756-757 (14 May 1966); Biochimica et Biophys Acta. 2012 January 1822(1):14-20; and Front Immunol. 2012; 3: 7.
- Over the last decade or so it has also been shown that inflammation is a major factor of diabetic neuropathy (Nature reviews Neurology 2011; 7:573-83) Dyslipidemia (Diabetes 2009; 58:1634-40), LDL oxidation (Diabetes 2009; 58:2376-85), poly(ADP-ribose) activation (Free Radic Biol Med 2011; 50:1400-9). Increased levels of advanced glycated endproducts (AGEs) and their receptor RAGE (Diabetes 2013; 62:931-43) are the main causes for this increased inflammatory response (Diabetologia 2009; 52:2251-63). To this end, the role of local skin inflammation on the development of small fiber neuropathy (SFN), and the indentification of several new factors that play a role in development of SFN and diabetic peripheral neuropathy (DPN), such as e.g., the interaction among neuropeptides, mast cells and macrophages, and increased mast cell degranulation and M1 macrophage activation in diabetic models is described in U.S. Provisional Application No. 62/162,972.
- Given the involvement of mast cells in a wide variety of therapeutic pathways and targets, it is therefore desirable to prepare compounds that modulate mast cells (e.g., mast cell stabilizers) and hence have utility for treating one or more conditions associated with mast cells.
- It has now been found that compounds described herein, and pharmaceutically acceptable compositions thereof, are effective modulators of mast cells and are useful in treating conditions associated therewith such as e.g., to promote wound healing in diabetic subjects (see e.g.,
FIG. 1 ). Such compounds include those of Formula I: - or a pharmaceutically acceptable salt thereof, wherein each of X, Y, Cy, R1, R2, s, and p are as defined and described herein.
- The compounds described herein useful for treating a variety of diseases, disorders or conditions associated with mast cells. Such diseases, disorders, or conditions include those described herein.
-
FIG. 1 illustrates the effects on would healing in diabetic mice from treatment of a compound described herein. -
FIG. 2 illustrates the effects on the M1/M2 ratio in intact skin of diabetic mice from treatment with a compound described herein. -
FIG. 3 shows dose-dependent inhibition by compound 12 of β-hex release from activated mast cells. Released β-Hex in cell culture supernatant were measured and compared with total β-Hex in cell lyses (reported as %). -
FIG. 4 shows dose-dependent inhibition by compound 12 of nuclear translocation of NFAT in activated mast cells. - In certain embodiments, the present disclosure provides a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, wherein
- Z is CH or N;
- X is CO and Y is NH, or X is NH and Y is CO;
- Cy is phenyl or pyridyl;
- R1 and R2 are each halo; and
- p and s are each independently 1, 2, or 3; provided the compound is not
- or a pharmaceutically acceptable salt thereof.
- The terms “halo” and “halogen” as used herein refer to an atom selected from fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), and iodine (iodo, —I).
- As used herein the terms “subject” and “patient” may be used interchangeably, and means a mammal in need of treatment, e.g., companion animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, pigs, horses, sheep, goats and the like) and laboratory animals (e.g., rats, mice, guinea pigs and the like). Typically, the subject is a human in need of treatment.
- The compounds of the herein may be present in the form of pharmaceutically acceptable salts. For use in medicines, the salts of the compounds of the invention refer to non-toxic “pharmaceutically acceptable salts.” Pharmaceutically acceptable salt forms include pharmaceutically acceptable acidic/anionic or basic/cationic salts.
- Pharmaceutically acceptable acidic/anionic salts include, but are not limited to the acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, carbonate, citrate, dihydrochloride, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrobromide, hydrochloride, malate, maleate, malonate, mesylate, nitrate, salicylate, stearate, succinate, sulfate, tartrate, and tosylate.
- In a first embodiment, the present disclosure provides a compound of Formula I:
- or a pharmaceutically acceptable salt thereof, polymorph, or solvate thereof, wherein the variables are as described above. Alternatively, the present disclosure provides a compound of Formula I or a pharmaceutically acceptable salt thereof.
- In a second embodiment, the compound of Formula I is of the Formula II or III:
- or a pharmaceutically acceptable salt thereof, wherein the variables are as described above for Formula I.
- In a third embodiment, the compound of Formula I is of the Formula IV or V:
- or a pharmaceutically acceptable salt thereof, wherein the variables are as described above for Formula I and the second embodiment.
- In a fourth embodiment, p in Formula I, II, III, IV, and V is 2, wherein the remaining variables are as described above for Formula I and the second or third embodiment.
- In a fifth embodiment, s in Formula I, II, III, IV, and V is 1 or 2, wherein the remaining variables are as described above for Formula I and the second, third, or fourth embodiment.
- In a sixth embodiment, R2 in Formula I, II, III, IV, and V is fluoro, wherein the remaining variables are as described above for Formula I and the second, third, fourth, or fifth embodiment.
- In a seventh embodiment, R1 in Formula I, II, III, IV, and V is chloro, wherein the remaining variables are as described above for Formula I and the second, third, fourth, or fifth embodiment.
- In an eighth embodiment, the compound of Formula I is selected from
- or a pharmaceutically acceptable salt thereof.
- Specific examples of compounds are provided in the EXEMPLIFICATION. In some embodiments, a provided compound is one or more compounds selected from those exemplified in the EXEMPLIFICATION section below, or a pharmaceutically acceptable salt thereof. That is, pharmaceutically acceptable salts as well as the neutral forms of these compounds are included herein.
- In other embodiments, the present disclosure provides a method of treating a subject (e.g., a human) with a condition associated with mast cells comprising the step of administering to the patient an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof. Conditions associated with mast cells include, but are not limited to, bacterial infections, allergic reactions, inflammatory diseases, fibrosis, cancers, central nervous system disorders, and metabolic disorders. Specific conditions include e.g., allograft rejection, diabetic retinopathy, choroidal neovascularization due to age-related macular degeneration, psoriasis, arthritis, osteoarthritis, rheumatoid arthritis, synovial pannus invasion in arthritis, multiple sclerosis, myasthenia gravis, diabetes mellitus, diabetic angiopathy, diabetic neuropathy, infantile hemangiomas, non-small cell lung, bladder and head and neck cancers, prostate cancer, breast cancer, ovarian cancer, gastric and pancreatic cancer, psoriasis, fibrosis, rheumatoid arthritis, atherosclerosis, restenosis, allergy, respiratory diseases, asthma, transplantation rejection, thrombosis, retinal vessel proliferation, inflammatory bowel disease, Crohn's disease, ulcerative colitis, bone diseases, transplant or bone marrow transplant rejection, lupus, chronic pancreatitis, cachexia, septic shock, fibroproliferative and differentiative skin diseases or disorders, ocular disease, viral infection, heart disease, lung or pulmonary diseases or kidney or renal diseases, skin inflammation, and bronchitis.
- In other embodiments, the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral neuropathy (PN) in a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- In other embodiments, the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral diabetic neuropathy (PN) in a subject (e.g., a human) in need thereof, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- In other embodiments, the present disclosure provides a method of delaying the onset of, reducing the risk of developing, or accelerating the healing of a wound in a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- In other embodiments, the present disclosure provides a method for altering the M1/M2 macrophage ratio in a wound on a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- In other embodiments, the present disclosure provides a method of preventing the increase of matrix metallopeptidase 9 (MMP-9), in a subject (e.g., a human) having diabetes, comprising administering to the subject an effective amount of a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof.
- According to another embodiment, the present disclosure provides a method of treating a subject (e.g., a human) with a condition associated with mast cells using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle. Disorders associated with mast cells are described above e.g., in paragraph [0022].
- According to another embodiment, the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral neuropathy (PN) in a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- According to another embodiment, the present disclosure provides a method of delaying the onset of, reversing, or reducing the risk of acquiring peripheral diabetic neuropathy (PN) in a subject (e.g., a human) in need thereof, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- According to another embodiment, the present disclosure provides a method of delaying the onset of, reducing the risk of developing, or accelerating the healing of a wound in a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- According to another embodiment, the present disclosure provides a method for altering the M1/M2 macrophage ratio in a wound on a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- According to another embodiment, the present disclosure provides a method of preventing the increase of matrix metallopeptidase 9 (MMP-9), in a subject (e.g., a human) having diabetes, using a composition comprising a compound of the Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof; and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
- As used herein, delaying the onset of, reversing, or reducing the risk of acquiring, or reducing the risk of developing a condition recited herein (e.g., peripheral neuropathy (PN), small fiber neuropathy (SFN), and peripheral diabetic neuropathy) means decreasing the amount of mast cell degranulation in subjects who have elevated mast cell degranulation levels due to a condition/disease, such as e.g., diabetes. It has been found that subject having diabetes have an increase in mast cell degranulation. See e.g., U.S. Provisional Application No. 62/162,972.
- As used herein, accelerating the healing of wound means that the compound of Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof elicits a cellular environment that accelerates or promotes healing of the wound. For example, the he compound of Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof may elicit the release of cytokines such as CXCL8, CCL2 and CXCL7, each of which are necessary for the first phase of wound healing, thereby promoting healing of a wound. The first phase of wound healing is the inflammatory phase that lasts for approximately three days and it is followed by the proliferative phase that lasts two to three weeks. In chronic wounds this linear progression is abolished and are characterized by the presence of low grade chronic inflammation. The application of the compound of Formula I, II, III, IV, and V, or a pharmaceutically acceptable salt or composition thereof can convert the chronic low grade inflammation to an intense acute inflammatory phase that then progresses to the proliferative phase and promotes wound healing.
- In certain embodiments, the amount of compound of the Formula I, II, III, IV, and V in a provided composition is such that it is effective as a mast cell stabilizer (such as a mast cell degranulation inhibitor) in a biological sample or in a subject. In certain embodiments, a provided composition is formulated for administration to a subject in need of such composition. In some embodiments, a provided composition is formulated for oral administration to a subject. In other embodiments, a provided composition is formulated for topical administration to a subject.
- The term “pharmaceutically acceptable carrier, adjuvant, or vehicle” refers to a non-toxic carrier, adjuvant, or vehicle that does not destroy the pharmacological activity of the compound with which it is formulated. Pharmaceutically acceptable carriers, adjuvants or vehicles that may be used in the compositions of this disclosure include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
- Pharmaceutically acceptable compositions described herein may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
- Pharmaceutically acceptable compositions described herein may also be prepared in injectable form. Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
- Pharmaceutically acceptable compositions described herein may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs. Topical application for the lower intestinal tract can be effected in a rectal suppository formulation (see above) or in a suitable enema formulation. Topically-transdermal patches may also be used.
- The amount of compounds described herein that may be combined with the carrier materials to produce a composition in a single dosage form will vary depending upon the host treated and the particular mode of administration. In some embodiments, provided compositions should be formulated so that a dosage of between 0.01-100 mg/kg body weight/day of the inhibitor, such as e.g., 0.1-100 mg/kg body weight/day, can be administered to a patient receiving these compositions.
- It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of a compound described herein in the composition will also depend upon the particular compound in the composition.
- Unless specified otherwise, the terms “treatment,” “treat,” and “treating” refer to therapeutic treatment.
- Modulation of mast cells (or to modulate mast cells) means that a change or alternation in the activity of mast cells has occurred from the administration of one or more of the compounds described herein. Modulation may be an upregulation (increase) or a downregulation (decrease) in the magnitude of the activity or function of mast cells. Exemplary activities and functions include e.g., binding characteristics, enzymatic activity, cell receptor activation, transcriptional activity, and signal transduction. In one aspect, the compounds described herein stabilize mast cells. In further aspects, the compounds described herein act as mast cell degranulation inhibitors.
- As depicted in the Examples below, in certain exemplary embodiments, compounds are prepared according to the following general procedures. It will be appreciated that, although the general methods depict the synthesis of certain compounds herein, the following general methods, and other methods known to one of ordinary skill in the art, can be applied to all compounds and subclasses and species of each of these compounds, as described herein.
- The compounds described herein can be readily prepared according to the following reaction schemes and examples, or modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants which are themselves known to those of ordinary skill in the art, but are not mentioned in greater detail. Furthermore, other methods for preparing compounds described herein will be readily apparent to a person of ordinary skill in the art in light of the following reaction schemes and examples.
- For example, compound of Formula I where X is CO and Y is NH can be prepared by reacting a compound of Formula 100 with a compound of Formula 110 in an organic solvent (e.g., DMF) in the presence of base (e.g., NaH) to form a compound of Formula 120. See e.g., Scheme 1.
- The compound of Formula I can then be formed by converting the carboxylic acid portion of the compound of Formula 120 to an activated group (such as an acid chloride via treatment with DMF and (COCl)2 in DCM) followed by treatment with a compound of Formula 130 in the presence of base (e.g., TEA).
- In an alternative, compounds of Formula I, where X is NH and Y is CO can be prepared by reacting a compound of Formula 140 with a compound of the Formula 110 in an organic solve′nt (e.g., DMF) in the presence of base (e.g., KOH) to form a compound of 150. See Scheme 3.
- The compound of Formula I can then be formed by reacting amine 150 with a compound of the Formula 160 in the present an organic solvent (e.g., dichloromethane). See e.g., Scheme 4.
- Reagents and solvents were purchased from commercially available sources and used without further purification. All reactions were carried out according to the indicated procedures and conditions. Reactions were monitored by LC/MS analysis and/or thin-layer chromatography (TLC) on silica-coated glass plates (
EMD silica gel 60 F254) with the indicated eluent. The compounds were visualized by UV light (254 nm). LC/MS analysis was performed on an Agilent 1200 HPLC/UV (220 nm and/or 254 nm wavelength) system coupled with a mass spectroscopic (Applied Biosystems, MDS SCIEX, Q TRAP LC/MS/MS) detector. Compounds for analysis were dissolved in 100% DMSO and separated on C18 cartridge (particle size 2.6 m, dimensions: 100 mm×2.1 mm, 0.3 mL/min flow rate, 1 mL injection volume) using acetonitrile/water mobile phase with 0.1% formic acid as a modifier. The gradient started at 20% acetonitrile, held for 2 min, and linearly increased to 97% acetonitrile over 10 min, with 3 min hold at 97% acetonitrile and subsequent re-equilibration to the original conditions in a total of 17 min. - Compounds reported were obtained in a purity as >95% at 254 nm wavelength. Nuclear magnetic resonance (1H NMR) spectra were recorded on a Varian Mercury plus NMR spectrometer operating at 400.13 MHz frequencies for 1H, using a 5 mm ASW PFG probe capable of detecting 1H, 13C, 31P, and 15N nuclei. The proton chemical shifts (ppm) were referenced to the tetramethylsilane internal standard (0 ppm). NMR data are reported with these descriptions: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad peak.
- Compounds of Formula I were prepared according to the general procedures outlined below.
-
- To a solution of indole (806 mg) in DMF (10 mL) was added portion-wise NaH (60% in mineral oil, 440 mg) at 0° C. The resulting suspension was further stirred at 0° C. to r.t. for 45 min. The resulting mix was cooled to 0° C. followed by the addition of 2,4-dichlorobenzyl chloride dropwise. The reaction mix was further stirred at 0° C. to r.t. and monitored by TLC. To the reaction mix was added MeOH, and was then acidified with 2N HCl. The precipitates were isolated by filtration to give the product as a yellow solid (1.57 g, 98%). 1H NMR 1H NMR (400 MHz, d-DMSO): δ 12.10 (br, 1H, acid-H), 8.12 (s, 1H), 8.02-8.08 (m, 1H), 7.71 (d, J=2.4 Hz, 1H), 7.42-7.48 (m, 1H), 7.35-7.38 (dd, J=2.4, 8.2 Hz, 1H), 7.19-7.23 (m, 2H), 6.80 (d, J=8.0 Hz, 1H), 5.58 (s, 2H, CH2).
- To a mix of the indole carboxylic acid (800 mg) and DCM (5 mL) was added oxalyl chloride (430 μL) followed by 1 drop of DMF. The reaction mix was stirred at r.t. for 30 min, and solvent was removed under vacuum to give a pink solid, which was added portion-wise into a solution of 2,6-difluoroaniline (538 μL) and triethylamine (697 μL) in DCM (5 mL) at r.t. The resulting mix was stirred at r.t. for overnight. The reaction mix was then poured into water (10 mL) and the crude product (800 mg) was collected by filtration and was further purified by flash chromatography to give the pure product 1-(2,4-dichlorobenzyl)-N-(2,6-difluorophenyl)-1H-indole-3-carboxamide, Compound 1 as a white solid. 1H NMR (400 MHz, d6-DMSO): δ 9.70 (s, 1H), 8.32 (s, 1H), 8.26 (d, J=7.4 Hz, 1H), 7.83 (d, J=2.0 Hz, 1H), 7.65 (d, J=7.8 Hz, 1H), 7.51-7.55 (dd, J=2.2, 8.4 Hz, 1H), 7.40-7.49 (m, 1H), 7.24-7.36 (m, 4H), 7.16 (d, J=8.61 Hz, 1H), 5.68 (s, 2H). 13C NMR: δ 163.0, 160.0, 157.5, 151.8, 136.8, 133.9(2), 133.8, 132.6, 131.4, 129.7, 128.4, 128.1, 127.2, 123.2, 121.9, 121.8, 112.3, 112.1, 111.1, 109.8, 47.4. MS (ESI+): 431.5 [M]+, 433.4 [M+2]+.
-
- 1H-indazol-3-amine (1.33 g, 10 mmol) was added to a prepared (pre-heated 60° C. for 1 h, stirred at room temperature overnight) brown suspension of crushed KOH (1.4 g, 25 mmol) in DMSO (200 mL) at room temperature. The resulting suspension was further stirred at ˜r.t. for 30 min. 2,4-dichlorobenzyl chloride (1.74 mL, 12.5 mmol) was added in one portion. The reaction mix was further stirred at r.t. for 5 h. Water (300 mL) was added to the reaction mixture. The formed yellow precipitate was isolated by filtration. (2.2 g, 72% yield). 1H NMR (400 MHz, DMSO-d6): δ 7.69 (d, J=8 Hz, 1H), 7.61 (d, J=1.6 Hz, 1H), 7.38 (d, J=8.4 Hz, 1H), 7.27-7.33 (m, 2H), 6.93 (t, J=7.2 Hz, 1H), 6.80 (d, J=8.8 Hz, 1H), 5.528 (s, br, 2H), 5.36 (s, 2H). MS (ESI+) m/z calc. for [C14H11Cl2N3] 291.03, Found [M+H]+ 292.
- To a solution of 2,6-difluorobenzoic acid (80 mg, 0.25 mmol) in DCM (1 mL) was added oxalyl chloride (32 μl, 0.38 mmol) and DMF (one drop) at r.t. The mixture was stirred for 30 min. 1-[(2,4-dichlorophenyl)methyl]indazol-3-amine (73 mg, 0.25 mmol) was dissolved in DCM (1 mL) and TEA (53 μL, 0.38 mL) was added and also stirred for 30 min. Both solutions were cooled to −20° C. (10 min), combined and stirred for 1 h at −20° C. Methanol (2 ml) was added. Subsequently the pale yellow solution was added dropwise into water (8 mL). Hexanes was added (4 mL) and the solution was cooled to −20° C. overnight. The formed precipitate was washed with water and hexanes, dried under vacuum to afford the desired product 1H NMR (400 MHz, DMSO-d6): δ 11.28 (s, 1H), 7.83 (d, J=8.4 Hz, 1H), 7.70 (d, J=8.4 Hz, 1H), 7.66 (d, J=2.0 Hz, 1H), 7.53-7.60 (m, 1H), 7.44 (dt, J=7.6 Hz, 1.2 Hz, 1H), 7.38 (dd, J=8.4 Hz, 2.0 Hz 1H), 7.14-7.26 (m, 3H), 6.96 (d, J=8.4 Hz, 1H), 5.67 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H13Cl2F2N3O] 431.04, Found 432.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, CDCl3): δ 9.11 (d, J=14 Hz, 1H), 8.24 (t, J=7.4 Hz, 1H), 8.12 (d, J=4.4 Hz, 1H), 7.98-8.04 (dt, J=7.6 Hz 1.2 Hz, 1H), 7.07-7.44 (m, 7H), 6.76 (d, J=8.4 Hz, 1H), 5.58 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H13Cl2F2N3O] 413.05, Found 414.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, CDCl3): δ 8.93 (d, J=12.8 Hz, 1H), 8.70 (d, J=2.4 Hz, 1H), 8.67 (dd, J=4.8 Hz, 0.8 Hz, 1H), 8.05-8.13 (m, 2H), 7.43 (d, J=2.4 Hz, 1H), 7.39-7.43 (m, 1H), 7.32 (d, J=8.8 Hz, 1H), 7.22 (t, J=7.6 Hz, 1H), 7.12 (dd, J=2.0, 8.4 Hz, 1H), 6.77 (d, J=8.4 Hz, 1H), 5.59 (s, 2H, CH2). MS (ESI+) m/z calc. for [C20H13Cl2FN4O] 414.04, Found 415.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, CDCl3): δ 8.52 (s, 2H), 8.15 (d, J=8.0 Hz, 1H), 7.40-7.46 (m, 1H), 7.32 (d, J=8.4 Hz, 1H), 7.22 (d, J=7.2 Hz, 1H), 7.10 (dd, J=2.0, 8.8 Hz, 1H), 6.74 (d, J=8.0 Hz, 1H), 5.55 (s, 2H, CH2). MS (ESI+) m/z calc. for [C20H12Cl2F2N4O] 432.04, Found 433.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 10.87 (s, 1H), 7.82 (d, J=8.0 Hz, 2H), 7.65-7.70 (m, 2H), 7.36-7.45 (m, 3H), 7.12-7.23 (m, 2H), 7.96 (d, J=8.0 Hz, 2H), 5.65 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H13Cl2F2N3O] 431.04, Found 432.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 10.06 (s, 1H, amide), 8.20 (s, 1H), 7.81 (d, J=8.8 Hz, 1H), 7.72 (d, J=2.4 Hz, 1H), 7.52 (t, J=8.0 Hz, 1H), 7.34-7.41 (m, 3H), 7.20 (t, J=8.0 Hz, 2H), 6.88 (d, J=8.4 Hz, 1H), 5.90 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H13Cl2F2N3O] 431.04, Found 432.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, CDCl3): δ 8.48 (s, 1H), 8.42 (d, J=8.0 Hz, 1H), 7.19-7.47 (m, 6H), 7.11-7.16 (m, 2H), 6.76 (d, J=8.0 Hz, 1H), 5.72 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H13Cl3FN3O] 447.01, Found 448.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.56 (s, 1H, amide), 8.29 (s, 2H), 816-8.20 (m, 1H), 7.72 (d, J=2.4 Hz, 1H), 7.65-7.71 (m, 1H), 7.52 (d, J=7.6 Hz, 1H), 7.41 (dd, J=2.0, 8.4 Hz, 1H), 7.16-7.29 (m, 4H), 7.00 (d, J=8.4 Hz, 1H), 5.57 (s, 2H, CH2). MS (ESI+) m/z calc. for [C22H15Cl2FN2O] 412.05, Found 413.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.78 (s, 1H, amide), 8.29 (s, 2H), 8.24 (d, J=7.6 Hz, 1H), 7.84-7.90 (m, 1H), 7.80 (d, J=8.0 Hz, 1H), 7.70 (d, J=1.6 Hz, 1H), 7.51 (t, J=7.2 Hz, 1H), 7.34-7.39 (m, 1H), 7.25-7.34 (m, 1H), 7.20-7.24 (m, 1H), 6.91 (d, J=8.4 Hz, 1H), 5.88 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H14Cl2FN3O] 413.05, Found 413.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 10.04 (s, 1H), 8.62 (d, J=2.8 Hz, 1H), 8.43 (s, 1H), 8.35 (d, J=6.0 Hz, 1H), 8.12-8.21 (m, 2H), 7.67 (d, J=2.0 Hz, 1H), 7.46-7.50 (m, 1H), 7.35 (dd, J=2.0, 8.4 Hz, 1H), 7.16-7.24 (m, 2H), 6.92 (d, J=8.8 Hz, 1H), 5.55 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H14Cl2FN3O] 413.05, Found 414.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, CDCl3): δ 9.27 (s, 1H, amide), 8.60 (t, J=6.4 Hz, 1H), 8.48 (s, 1H), 8.38-8.44 (m, 1H), 7.36-7.50 (m, 4H), 7.14 (dd, J=2.0, 8.4 Hz, 1H), 6.75 (d, J=8.0 Hz, 1H), 5.75 (s, 2H, CH2). MS (ESI+) m/z calc. for [C20H13Cl2FN4O] 414.04, Found 415.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.60 (d, J=3.2 Hz, 1H, amide), 8.25 (d, J=5.2 Hz, 1H), 8.14-8.19 (m, 1H), 7.68-7.76 (m, 1H), 7.58-7.66 (m, 1H), 7.46-7.56 (m, 1H), 7.36-7.45 (m, 1H), 7.26-7.35 (m, 1H), 7.14-7.25 (m, 2H), 7.03-7.12 (m, 1H), 6.96-7.03 (m, 1H), 5.56 (s, 2H, CH2). MS (ESI+) m/z calc. for [C22H14Cl2F2N2O] 430.04, Found 431.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.91 (s, 1H), 8.21 (d, J=8.0 Hz, 1H), 7.69-7.82 (m, 3H), 7.47-7.53 (m, 1H), 7.31-7.40 (m, 3H), 7.06-7.14 (m, 1H), 6.88 (d, J=8.8 Hz, 1H), 5.88 (s, 2H, CH2). MS (ESI+) m/z calc. for [C21H13Cl2F2N3O] 431.04, Found 432.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 10.52 (s, 1H, amide), 8.60 (s, 2H), 8.19 (d, J=8.8 Hz, 1H), 7.81 (d, J=8.8 Hz, 1H), 7.71 (d, J=2.4 Hz, 1H), 7.50-7.55 (m, 1H), 7.34-7.40 (m, 2H), 6.86 (d, J=8.4 Hz, 1H), 5.91 (s, 2H, CH2). MS (ESI+) m/z calc. for [C20H12Cl2F2N4O] 432.04, Found 433.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.25 (s, 1H), 8.16 (d, J=7.2 Hz, 1H), 7.50-7.58 (m, 2H), 7.27-7.40 (m, 3H), 7.13-7.06 (m, 4H), 7.05 (dd, J=7.6 Hz, 1.6 Hz, 1H), 5.59 (s, 2H). MS (ESI+) m/z calc. for [C22H15ClF2N2O] 396.08, Found 397.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.32 (s, 1H), 8.13 (d, J=6.8 Hz, 1H), 7.55 (d, J=8.0 Hz, 1H), 7.26-7.44 (m, 5H), 7.13-7.24 (m, 4H), 5.12 (s, 2H). MS (ESI+): MS m/z calc. for [C22H15ClF2N2O] 396.08, Found 397.4 [M+H]+.
- 1-[(2,6-dichlorophenyl)methyl]-N-(2,6-difluorophenyl)indole-3-carboxamide (18)
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 9.56 (s, 1H), 8.16 (d, J=7.6 Hz, 1H), 7.91 (s, 1H), 7.73 (d, J=6.8 Hz, 1H), 7.65 (d, J=7.6 Hz, 2H); 7.53 (dd, J=8.4 Hz, 7.6 Hz, 1H) (s, 1H), 7.27-7.34 (m, 2H), 7.13-7.22 (m, 3H), 5.28 (s, 2H), MS (ESI+) m/z calc. for [C22H14Cl2F2N2O]: 431.26; Found: 432.4 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 2 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 11.39 (s, 1H), 7.82 (d, J=8.4 Hz, 1H), 7.72 (d, J=8.8 Hz, 1H), 7.66 (d, J=2.0 Hz, 1H), 7.42-7.47 (m, 1H), 7.37-7.40 (dd, J=2.0, 8.4 Hz, 1H), 7.16 (t, J=7.4 Hz, 1H), 7.00 (d, J=8.0 Hz, 1H), 5.67 (s, 2H, CH2), 2.83 (s, 3H, CH3). MS (ESI+) m/z calc. for [C19H14Cl2N4OS] 416.03, Found 417.5 [M+H]+.
-
- 1H-indazol-3-amine (1.33 g, 10 mmol) was added to a prepared (pre-heated 60° C. for 1 h, stirred at room temperature overnight) brown suspension of crushed KOH (1.4 g, 25 mmol) in DMSO (200 mL) at room temperature. The resulting suspension was further stirred at ˜r.t. for 30 min. 2,4-dichlorobenzyl chloride (1.74 mL, 12.5 mmol) was added in one portion. The reaction mix was further stirred at r.t. for 5 h. Water (300 mL) was added to the reaction mixture. The formed yellow precipitate was isolated by filtration. (2.2 g, 72% yield). 1H NMR (400 MHz, DMSO-d6): δ 7.69 (d, J=8 Hz, 1H), 7.61 (d, J=1.6 Hz, 1H), 7.38 (d, J=8.4 Hz, 1H), 7.27-7.33 (m, 2H), 6.93 (t, J=7.2 Hz, 1H), 6.80 (d, J=8.8 Hz, 1H), 5.528 (s, br, 2H), 5.36 (s, 2H). MS (ESI+) m/z calc. for [C14H11Cl2N3] 291.03, Found [M+H]+ 292.
- To a solution of 3-methylpyridine-4-carboxylic acid (80 mg, 0.25 mmol) in DCM (1 mL) was added oxalyl chloride (32 μl, 0.38 mmol) and DMF (one drop) at r.t. The mixture was stirred for 30 min. 1-[(2,4-dichlorophenyl)methyl]indazol-3-amine (73 mg, 0.25 mmol) was dissolved in DCM (1 mL) and TEA (53 μL, 0.38 mL) was added and also stirred for 30 min. Both solutions were cooled to −20° C. (10 min), combined and stirred for 1 h at −20° C. Methanol (2 ml) was added. Subsequently the pale yellow solution was added dropwise into water (8 mL). Hexanes was added (4 mL) and the solution was cooled to −20° C. overnight. The formed precipitate was washed with water and hexanes, dried under vacuum to afford the desired product 20 (78 mg, 76% yield). 1H NMR (400 MHz, DMSO-d6): δ 11.01 (s, 1H), 8.55 (s, 1H), 8.52 (d, J=5.2 Hz, 1H), 7.84 (d, J=8.8 Hz, 1H), 7.66-7.71 (m, 2H), 7.50 (d, J=5.6 Hz, 1H), 7.36-7.46 (m, 2H), 7.16 (t, J=7.2 Hz, 1H), 6.97 (d, J=8.4 Hz, 1H), 5.67 (s, 2H, CH2), 2.42 (s, 3H, CH3). MS (ESI+) m/z calc. for [C21H16Cl2N4O] 410.07, Found 411.5 [M+H]+.
-
- The tile compound was prepared following the methods set forth in Example 1 with the appropriate starting materials. 1H NMR (400 MHz, DMSO-d6): δ 12.89 (s, 1H), 8.84 (s, 1H), 8.24 (d, J=8.0 Hz, 1H), 7.78 (d, J=8.0 Hz, 1H), 7.67 (d, J=2.4 Hz, 1H), 7.48-7.53 (m, 1H), 7.35-7.40 (m, 1H), 7.30 (dd, J=8.4 Hz 2.0 Hz, 1H), 6.74 (d, J=8.4 Hz, 1H), 5.90 (s, 2H, CH2). MS (ESI+) m/z calc. for [C17H11Cl2N5OS] 403.01, Found 404.4 [M+H]+.
-
- Prepared by following general procedure B. 1H NMR (400 MHz, DMSO-d6): δ 9.61 (s, 1H), 8.27 (s, 1H), 8.15 (d, J=7.0 Hz, 1H), 7.44-7.51 (m, 3H), 7.33-7.37 (m, 2H), 7.10-7.24 (m, 5H), 5.58 (s, 2H), MS (ESI+) m/z calc. for [C23H15F5N2O2]: 446.37; Found: 447.4 [M+H]+
-
- The title compound can be prepared following the procedures set forth above.
- RBL-2H3 cells (ATCC) were seeded in 96-well plate at 4×104 cells per well in DMEM-supplemented with 2% FBS and allowed to adhere overnight. Culture medium was then replaced with 50 μl of Ca2+-free Tyrode solution to load Ca2+-probe Fluo-4NW (Molecular Probe, Thermo Fisher, MA, USA) at 1:1 to the cells. New compound at indicated concentration was supplied during the probe loading from the beginning. Cells were incubated in the presence or absence of new compound for 60 minutes in the Ca2+-free medium at 37° C. During the last 5 minutes of incubation, cells were treated with 1 μM thapsigargin (Sigma Aldrich) to deplete [Ca2+]ER. 20 mM CaCl2 in saline solution was supplemented back to the [Ca2+]ER-depleted cells to be 2 mM as final. Cell medium was removed 1 minute after Ca2+ reloading, and changes in Fluo-4NW fluorescence (RFU) were recorded with the multi-mode plate reader (FilterMax F5, Molecular Devices/Thermo Fisher Scientific, MA, USA) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm.
- [Ca2+]ER in RBL2H3 cells were depleted by Tg in the same manner in the presence of the CRAC channel blockers as for [Ca2+]i measurement but without loading the cells with Fluo-4NW. Then 200 μl of DMEM-3% FBS (containing 3 mM Ca2+) was supplemented back in the presence of the corresponding concentration of CRAC channel blockers. Thirty minutes after Ca2+-add back culture supernatant was collected for degranulation measurement. Degranulation was measured as secreted β-hexosaminidase according to the protocol of the assay kit (Sigma-Aldrich, MO, USA). Nuclear fraction was prepared from the cells for NFAT by using a subcellular protein fractionation kit (NE-PER™ Nuclear and Cytoplasmic Extraction Reagents, Pierce Biotechnology, Thermo Fisher Scientific, MA, USA). Nuclear NFAT-c1 was measured with an ELISA kit (Active Motif, CA, USA). At this time point TNFα was measured as pre-stored release with ELISA kits (R&D Systems, MN, USA). In a part after Ca2+ add back incubation was prolonged for 4 h to measure de novo production of the cytokine TNFα.
- Toxicity was tested in RBL-2H3 cells. Cells were seeded in 96-well plate at 4×104 cells per well in DMEM-supplemented with 2% FBS and allowed to adhere overnight. Cells were then exposed to MCS compound at indicated concentrations for 4 h. Cell viability was determined by using counting assay (CCK8 cell counting kit, Dojindo Molecular Technologies, MD, USA).
- Data Analyses.
- IC50 and EC50 were calculated by nonlinear regression using Prims Graphpad software. Statistical analysis was performed by one-way ANOVA and post-hoc test (Tukey's test).
- Inhibitory activity of calcium influx by the described compounds was determined using the RBL-2H3 rodent MC cell line as the primary in vitro assay. RBL-2H3 cells are known to express functional CRAC channel. Thapsigargin (Tg) is a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor that selectively activates the CRAC channels by depleting Ca2+ in the ER store ([Ca2+]ER) Fluo-4NW was used as the molecular sensor to detect the concentration of intracellular calcium ([Ca2+],). Under these assay conditions, approximately 3.5-fold higher [Ca2+]i was consistently observed in RBL cells treated with Tg (1 μM) than that in untreated resting MCs. IC50 results are shown in Table 1.
-
TABLE 1 Compound IC50 (μM) 1 <10 2 >30 3 29.0 4 >30 5 >30 6 >30 7 <10 8 <10 9 >30 b 10 >30 b 11 <10 12 <10 13 >30 14 <10 15 >30 b 16 >30 17 >30 18 <30 19 >30 b 20 >30 b 21 >30 22 >30 - Compound 12 was used to determine the inhibition of MC degranulation by measuring the release of pre-stored β-hexosaminidase (β-hex) upon MC activation. In the absence or presence of various concentrations of compound 12, RBL-2H3 cells were activated with the treatment of 1 μM thapsigargin in Ca2+ free culture. 30 Minutes after assay media were replenished with extracellular Ca2+, supernatants and cell lysates were analyzed for β-hex concentrations by ELISA. The ratio between the β-hex in supernatants and the total amount of β-hex (in supernatant plus cell lysates) indicated compound 12 significantly and dose-dependently inhibited the release of β-hex (See
FIG. 3 ). In the absence of a CRAC inhibitor, 40% of β-hex was released, while compound 12 showed nearly complete inhibition of β-hex release at the highest concentration tested. - The inhibition of nuclear translocation of the nuclear factor of activated T-cells (NFAT) by compound 12 in activated MCs was determined. The nuclear factor NFAT is a master regulator of numerous cytokines including TNFα. Cytosolic NFAT is dephosphorylated by the phosphatase calcineurin, which leads to the nuclear translocation of NFAT and subsequent gene activations for the expression of the corresponding cytokines. RBL cells were first treated with 1 μM thapsigargin in Ca2+ free culture in the absence or presence of various concentrations of compound 12, which was followed by replenishing with extracellular Ca2+ for 30 minutes. Nuclear fraction was prepared from the cells by subcellular protein fractionation, and the nuclear NFAT-c1 content was measured by ELISA. The fold increases of nuclear NFAT in activated MC as compared to that in resting MCs indicate the levels of MC activation. In the absence of CRAC channel blockers, we observed a 5-fold increase of nuclear NFAT in activated MCs, and compound 12 significantly and dose-dependently reduced the nuclear fraction of NFAT-c1 in activated RBL cells (
FIG. 4 ). Further, at 10 μM and higher concentrations, compound 12 was able to restore the levels of nuclear NFAT to that of resting MCs. - Certain compounds were selected and demonstrated dose-dependent inhibition of the production of TNFα protein by activated MCs. Mast cells can secrete pre-stored TNFα immediately upon activation, as well as de novo synthesized TNFα that takes a few hours to produce. RBL cells were activated similarly as described above, in the presence of various concentrations of a CRAC channel blocker. 4 Hours after RBL cells were re-exposed to Ca2+, secreted TNFα (which accounted for the combined protein from pre-stored and de novo synthesized TNFα) in the supernatants were measured by ELISA. Compounds showed dose-dependent inhibition of TNFα protein secretions (Table 2).
-
TABLE 2 IC50 (μM) Compound TNFα 7 0.47 8 0.74 11 0.58 12 0.28 14 0.64 15 0.14 - C57B16 mice were made diabetic (DM) using Streptozotocin (STZ) and rabbits were made DM using alloxan. A 10-day wound-healing period was chosen since at least 80% wounds in non-DM mice and rabbits heal by that time-point. A dressing based on an alginate bandage for topical sustained release of Compound 1 was generated following the methods described in WO 2014/169250, and was then applied the shaved dorsum of DM mice either before (pre-wound) or after wounds (post-wound) were introduced. A comparison was made with the FDA-approved MC stabilizer, disodium cromoglycate (DSCG), 50 mg/kg DSCG (Intraperitoneal (ip) daily, 10 consecutive days prior to wounding) in non-DM and DM mice followed by wound procedure. Wound healing was monitored for 10 days.
- As expected, daily ip injection of DSCG improved diabetic mouse wound healing. See
FIG. 1 , *p<0.05. However, it was also found that topical application of Compound 1 (either for 10 days pre-wounding or for 10 days post-wounding) improved wound healing similar to systemic DSCG pre-treatment. SeeFIG. 1 . Additionally, in the skin of DM mice, treatment with Compound 1 for 10 days without any wound increased the number of M2 macrophages. SeeFIG. 2 . Similarly, DSCG treatment reduced M1/M2 ratio in intact skin. Without wishing to be bound by theory, these latter results suggest that MC stabilizers promote M1/M2 ratio reduction most likely by increasing M2. - While we have described a number of embodiments, it is apparent that our basic examples may be altered to provide other embodiments that utilize the compounds and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims rather than by the specific embodiments that have been represented by way of example.
- The contents of all references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated herein in their entireties by reference. Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one with ordinary skill in the art.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/069,961 US20190016680A1 (en) | 2016-01-14 | 2017-01-13 | Mast-cell modulators and uses thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662278722P | 2016-01-14 | 2016-01-14 | |
US16/069,961 US20190016680A1 (en) | 2016-01-14 | 2017-01-13 | Mast-cell modulators and uses thereof |
PCT/US2017/013279 WO2017123826A1 (en) | 2016-01-14 | 2017-01-13 | Mast-cell modulators and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/013279 A-371-Of-International WO2017123826A1 (en) | 2016-01-14 | 2017-01-13 | Mast-cell modulators and uses thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/738,371 Division US11084789B2 (en) | 2016-01-14 | 2020-01-09 | Mast-cell modulators and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190016680A1 true US20190016680A1 (en) | 2019-01-17 |
Family
ID=57966103
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/069,961 Abandoned US20190016680A1 (en) | 2016-01-14 | 2017-01-13 | Mast-cell modulators and uses thereof |
US16/738,371 Active US11084789B2 (en) | 2016-01-14 | 2020-01-09 | Mast-cell modulators and uses thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/738,371 Active US11084789B2 (en) | 2016-01-14 | 2020-01-09 | Mast-cell modulators and uses thereof |
Country Status (5)
Country | Link |
---|---|
US (2) | US20190016680A1 (en) |
EP (1) | EP3402780A1 (en) |
CN (1) | CN108602775B (en) |
CA (1) | CA3010615C (en) |
WO (1) | WO2017123826A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11084789B2 (en) | 2016-01-14 | 2021-08-10 | Beth Israel Deaconess Medical Center, Inc. | Mast-cell modulators and uses thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110437235B (en) * | 2019-08-27 | 2021-04-09 | 北京诺康达医药科技股份有限公司 | 3-amide azaindole compounds as mast cell regulators, and preparation method and application thereof |
CN110885308A (en) * | 2019-09-30 | 2020-03-17 | 北京诺康达医药科技股份有限公司 | Formamide crystal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1180468A (en) * | 1913-09-11 | 1916-04-25 | George Miller Bartlett | Universal joint. |
WO2006015263A2 (en) * | 2004-07-29 | 2006-02-09 | Threshold Pharmaceuticals, Inc. | Lonidamine analogs |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9103397D0 (en) | 1991-11-18 | 1991-11-18 | Kabi Pharmacia Ab | NEW SUBSTITUTED SALICYL ACIDS |
DE69622031T2 (en) | 1995-04-10 | 2002-12-12 | Fujisawa Pharmaceutical Co., Ltd. | INDOLDER DERIVATIVES AS cGMP-PDE INHIBITORS |
AU1698899A (en) | 1997-11-04 | 1999-05-24 | St. Elizabeth's Medical Center Of Boston, Inc. | N-acetylserotonin derivatives and uses thereof |
ES2241194T3 (en) | 1997-12-24 | 2005-10-16 | Aventis Pharma Deutschland Gmbh | INDOL DERIVATIVES IN QUALITY OF FACTOR XA INHIBITORS. |
US6500853B1 (en) | 1998-02-28 | 2002-12-31 | Genetics Institute, Llc | Inhibitors of phospholipase enzymes |
CN1234705C (en) | 1998-04-28 | 2006-01-04 | 埃尔比昂股份公司 | Novel hydroxyindoles, their use as phosphodiesterase 4 inhibitors and process for their preparation |
AU5787999A (en) | 1998-08-26 | 2000-03-21 | Andrei Zakharovich Afanasiev | Method for treating neurodegenerative disorders |
DE60118521T2 (en) | 2000-01-07 | 2006-10-12 | Universitaire Instelling Antwerpen | Purine derivatives, their preparation and their use |
GB0002666D0 (en) | 2000-02-04 | 2000-03-29 | Univ London | Blockade of voltage dependent sodium channels |
EP1254115A2 (en) | 2000-02-11 | 2002-11-06 | Bristol-Myers Squibb Company | Cannabinoid receptor modulators, their processes of preparation, and use of cannabinoid receptor modulators for treating respiratory and non-respiratory diseases |
WO2002060426A2 (en) | 2001-01-03 | 2002-08-08 | President And Fellows Of Harvard College | Compounds regulating cell proliferation and differentiation |
US7074817B2 (en) | 2001-06-20 | 2006-07-11 | Wyeth | Substituted indole acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1) |
WO2003035005A2 (en) | 2001-10-26 | 2003-05-01 | University Of Connecticut | Heteroindanes: a new class of potent cannabimimetic ligands |
US7528165B2 (en) | 2001-12-13 | 2009-05-05 | National Health Research Institutes | Indole compounds |
US7632955B2 (en) | 2001-12-13 | 2009-12-15 | National Health Research Institutes | Indole compounds |
TWI317634B (en) | 2001-12-13 | 2009-12-01 | Nat Health Research Institutes | Aroyl indoles compounds |
US20040038958A1 (en) | 2002-07-11 | 2004-02-26 | Chris Rundfeldt | Topical treatment of skin diseases |
US7196082B2 (en) | 2002-11-08 | 2007-03-27 | Merck & Co. Inc. | Ophthalmic compositions for treating ocular hypertension |
DE10253426B4 (en) | 2002-11-15 | 2005-09-22 | Elbion Ag | Novel hydroxyindoles, their use as inhibitors of phosphodiesterase 4 and methods for their preparation |
EP1615667A2 (en) | 2003-04-11 | 2006-01-18 | Novo Nordisk A/S | Combinations of an 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor and a glucocorticoid receptor agonist |
EP1787982B1 (en) | 2003-04-11 | 2010-05-12 | High Point Pharmaceuticals, LLC | 11Beta-Hydroxysteroid dehydrogenase type 1 active compounds |
WO2004089416A2 (en) | 2003-04-11 | 2004-10-21 | Novo Nordisk A/S | Combination of an 11beta-hydroxysteroid dehydrogenase type 1 inhibitor and an antihypertensive agent |
EP1532980A1 (en) | 2003-11-24 | 2005-05-25 | Novo Nordisk A/S | N-heteroaryl indole carboxamides and analogues thereof, for use as glucokinase activators in the treatment of diabetes |
JP5026963B2 (en) | 2004-06-22 | 2012-09-19 | バーテックス ファーマシューティカルズ インコーポレイテッド | Heterocyclic derivatives for adjusting calcium channels |
US8030345B2 (en) | 2004-07-12 | 2011-10-04 | Cadila Healthcare Limited | Tricyclic pyrazole derivatives as cannabinoid receptor modulators |
ES2341559T3 (en) | 2004-07-23 | 2010-06-22 | The Medicines Company (Leipzig) Gmbh | PIRIDO (3 ', 2': 4,5) HAVING (3,2-D) PYRIMIDINES AND PIRIDO (3 ', 2': 4,5) FURO (3,2-D) PIRIMIDINES REPLACED FOR USE AS INHIBITORS OF THE RELEASE OF PDA-4 AND / OR TNF-ALFA. |
US20070015771A1 (en) * | 2004-07-29 | 2007-01-18 | Threshold Pharmaceuticals, Inc. | Lonidamine analogs |
WO2006015283A2 (en) | 2004-07-29 | 2006-02-09 | Threshold Pharmaceuticals, Inc. | Treatment of benign prostatic hyperplasia |
FR2875230A1 (en) | 2004-09-13 | 2006-03-17 | Sanofi Aventis Sa | CONDENSED PYRAZOLE DERIVATIVES, THEIR PREPARATION AND THERAPEUTIC USE THEREOF |
DE102004054666A1 (en) | 2004-11-12 | 2006-05-18 | Bayer Cropscience Gmbh | New substituted pyrazol-3-carboxamide derivatives useful to combat harmful plants and for growth regulation of plants |
CA2589896A1 (en) | 2004-11-30 | 2006-06-08 | Plexxikon, Inc. | Indole derivatives for use as ppar active compounds |
JP2008545739A (en) | 2005-06-02 | 2008-12-18 | グレンマーク・ファーマシューティカルズ・エスエー | Novel cannabinoid receptor ligands, pharmaceutical compositions containing them, and methods for their preparation |
EP2526942B1 (en) | 2005-06-08 | 2017-08-09 | The University of North Carolina At Chapel Hill | Methods of facilitating neural cell survival using non-peptide and peptide BDNF neurotrophin mimetics |
WO2007011647A2 (en) | 2005-07-15 | 2007-01-25 | Kalypsys, Inc. | Inhibitors of mitotic kinesin ksp |
WO2007025613A2 (en) | 2005-07-15 | 2007-03-08 | Laboratorios Del Dr. Esteve, S.A. | Use of compounds binding to the sigma receptor for the treatment of diabetes-associated pain |
MX2008002117A (en) | 2005-08-17 | 2008-09-26 | Wyeth Corp | Substituted indoles and use thereof. |
AU2006318212C1 (en) | 2005-11-23 | 2012-08-30 | The Board Of Regents Of The University Of Texas System | Oncogenic ras-specific cytotoxic compound and methods of use thereof |
JP2009526863A (en) | 2006-02-15 | 2009-07-23 | アラーガン、インコーポレイテッド | Sphingosine-1-phosphate (S1P) receptor antagonists Indole-3-carboxylic acid amide, ester, thioamide and thiol ester compounds having aryl or heteroaryl groups with biological activity |
CN101460458A (en) | 2006-02-15 | 2009-06-17 | 阿勒根公司 | Indole-3-carboxylic acid amide, ester, thioamide and thiol ester compounds bearing aryl or heteroaryl groups having sphingosine-1-phosphate (S1P) receptor antagonist biological activity |
EP2001476A4 (en) * | 2006-03-20 | 2010-12-22 | Synta Pharmaceuticals Corp | Benzoimidazolyl-parazine compounds for inflammation and immune-related uses |
US8097644B2 (en) | 2006-03-28 | 2012-01-17 | Allergan, Inc. | Indole compounds having sphingosine-1-phosphate (S1P) receptor antagonist |
DE102006033109A1 (en) | 2006-07-18 | 2008-01-31 | Grünenthal GmbH | Substituted heteroaryl derivatives |
US8445437B2 (en) | 2006-07-27 | 2013-05-21 | The Brigham And Women's Hospital, Inc. | Treatment and prevention of cardiovascular disease using mast cell stabilizers |
BRPI0715324A2 (en) | 2006-08-07 | 2015-06-23 | Ironwood Pharmaceuticals Inc | Indole Compound |
WO2008027340A2 (en) | 2006-08-30 | 2008-03-06 | Merck & Co., Inc. | Topical ophthalmic formulations |
WO2008027341A2 (en) | 2006-08-30 | 2008-03-06 | Merck & Co., Inc. | Topical ophthalmic formulations |
WO2008036967A2 (en) | 2006-09-22 | 2008-03-27 | Reddy Us Therapeutics, Inc. | Novel heterocyclic compounds as lasy activators |
US7960569B2 (en) | 2006-10-17 | 2011-06-14 | Bristol-Myers Squibb Company | Indole antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions |
US7858645B2 (en) | 2006-11-01 | 2010-12-28 | Hoffmann-La Roche Inc. | Indazole derivatives |
BRPI0719991A2 (en) | 2006-12-14 | 2014-03-18 | Bayer Schering Pharma Ag | DIHYDROPYRIDINE DERIVATIVES USEFUL AS PROTEIN KINASE INHIBITORS |
MX2009007334A (en) | 2007-01-11 | 2009-07-15 | Allergan Inc | 6-substituted indole-3-carboxylic acid amide compounds having sphingosine-1-phosphate (s1p) receptor antagonist biological activity. |
CN101687789A (en) | 2007-02-12 | 2010-03-31 | 因特蒙公司 | Novel inhibitors hepatitis c virus replication |
WO2008141013A1 (en) | 2007-05-08 | 2008-11-20 | Allergan, Inc. | S1p3 receptor inhibitors for treating pain |
US20090118503A1 (en) | 2007-06-20 | 2009-05-07 | Kevin Sprott | Faah inhibitors |
EA020332B1 (en) | 2007-08-10 | 2014-10-30 | Х. Лундбекк А/С | Heteroaryl amide analogues |
US9149463B2 (en) | 2007-09-18 | 2015-10-06 | The Board Of Trustees Of The Leland Standford Junior University | Methods and compositions of treating a Flaviviridae family viral infection |
US8445435B2 (en) | 2007-09-28 | 2013-05-21 | The Brigham And Women's Hospital, Inc. | Mast cell stabilizers in the treatment of obesity |
WO2009108551A2 (en) | 2008-02-25 | 2009-09-03 | H. Lundbeck A/S | Heteroaryl amide analogues |
CN101977655A (en) | 2008-02-29 | 2011-02-16 | 辉瑞有限公司 | Indazole derivatives |
WO2009106980A2 (en) | 2008-02-29 | 2009-09-03 | Pfizer Inc. | Indazole derivatives |
WO2009117335A2 (en) | 2008-03-17 | 2009-09-24 | Allergan, Inc. | S1p3 receptor inhibitors for treating inflammation |
US20090247766A1 (en) | 2008-03-27 | 2009-10-01 | University Of Southern California | Substituted Nitrogen Heterocycles and Synthesis and Uses Thereof |
WO2009121623A2 (en) | 2008-04-04 | 2009-10-08 | Summit Corporation Plc | Compounds for treating muscular dystrophy |
US8822513B2 (en) | 2010-03-01 | 2014-09-02 | Gtx, Inc. | Compounds for treatment of cancer |
US9447049B2 (en) | 2010-03-01 | 2016-09-20 | University Of Tennessee Research Foundation | Compounds for treatment of cancer |
US20120071448A1 (en) | 2009-05-05 | 2012-03-22 | Allergan, Inc. | S1P3 Receptor Inhibitors for Treating Conditions of the Eye |
KR101292451B1 (en) | 2009-08-17 | 2013-07-31 | 경희대학교 산학협력단 | A composition for preventing or treating inflammation |
WO2011049987A2 (en) | 2009-10-20 | 2011-04-28 | Eiger Biopharmaceuticals, Inc. | Azaindazoles to treat flaviviridae virus infection |
MX336731B (en) | 2010-01-28 | 2016-01-28 | Harvard College | Compositions and methods for enhancing proteasome activity. |
MX377405B (en) | 2010-03-01 | 2025-03-07 | Gtx Inc | COMPOUNDS FOR THE TREATMENT OF CANCER. |
TWI429628B (en) | 2010-03-29 | 2014-03-11 | Univ Taipei Medical | Indolyl or indolinyl hydroxamate compounds |
BR112013013037A2 (en) * | 2010-11-24 | 2016-08-09 | Allergan Inc | indole derivatives as s1p receptor modulators |
KR20140039242A (en) | 2011-05-31 | 2014-04-01 | 메르크 파텐트 게엠베하 | Electrolyte formulations |
EP2849733B1 (en) | 2011-12-19 | 2020-04-08 | Mahmut Bilgic | Effervescent pharmaceutical formulations comprising pregabalin and vitamin b12 |
WO2013178815A1 (en) | 2012-06-01 | 2013-12-05 | Nogra Pharma Limited | Bicyclic heterocycles capable of modulating t-cell responses, and methods of using same |
ITRM20120335A1 (en) | 2012-07-13 | 2014-01-14 | Aboca Spa Societa Agricola | NEW COMPOSITIONS FOR NEUROPATHIC PAIN TREATMENT. |
CA3139033A1 (en) | 2012-08-22 | 2014-02-27 | Cornell University | Methods for inhibiting fascin |
CU24387B1 (en) * | 2012-11-21 | 2019-03-04 | Ptc Therapeutics Inc | BMI-1 INHIBITORS OF REPLACED PYRIMIDINE REPLACED |
US9580400B2 (en) | 2013-02-26 | 2017-02-28 | Northeastern University | Cannabinergic nitrate esters and related analogs |
US10016524B2 (en) | 2013-04-11 | 2018-07-10 | President And Fellows Of Harvard College | Prefabricated alginate-drug bandages |
WO2014167530A1 (en) | 2013-04-11 | 2014-10-16 | Bowden Matthew James | Cannabinoid compounds |
CA2910473C (en) | 2013-04-26 | 2021-06-22 | Hofstra University | Nuclear magnetic resonance implemented synthetic indole and indazole cannabinoid detection, identification, and quantification |
WO2014179785A1 (en) | 2013-05-03 | 2014-11-06 | Inscent, Inc. | Improved honeybee repellents and uses thereof |
US8663663B1 (en) | 2013-06-10 | 2014-03-04 | JCDS Holdings, LLC | Topical compositions to treat circulatory disorders |
US20180161388A1 (en) | 2015-05-18 | 2018-06-14 | Beth Israel Deaconess Medical Center, Inc. | Substance p, mast cell degranulation inhibitors, and peripheral neuropathy |
CA3010615C (en) | 2016-01-14 | 2024-02-20 | Beth Israel Deaconess Medical Center, Inc. | Mast-cell modulators and uses thereof |
-
2017
- 2017-01-13 CA CA3010615A patent/CA3010615C/en active Active
- 2017-01-13 CN CN201780006583.0A patent/CN108602775B/en active Active
- 2017-01-13 US US16/069,961 patent/US20190016680A1/en not_active Abandoned
- 2017-01-13 EP EP17703502.9A patent/EP3402780A1/en not_active Withdrawn
- 2017-01-13 WO PCT/US2017/013279 patent/WO2017123826A1/en active Application Filing
-
2020
- 2020-01-09 US US16/738,371 patent/US11084789B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1180468A (en) * | 1913-09-11 | 1916-04-25 | George Miller Bartlett | Universal joint. |
WO2006015263A2 (en) * | 2004-07-29 | 2006-02-09 | Threshold Pharmaceuticals, Inc. | Lonidamine analogs |
Non-Patent Citations (5)
Title |
---|
Aboul-Einein Y hassan et al , scavenging of reactive oxygen species bt N-substitued indole-2 and 3-carboxamides. (Year: 2004) * |
S. Olgen et al. Syntheses and biological evaluation of indole-2 and 3-carboxamides: New selective cyclooxygenase-2 inhibitors. (Year: 2002) * |
Scavenging of reactive oxygen species by N-substitued indole-2 and 3-carboxamides . Hassan Y. Aboul-Enein et al (Year: 2004) * |
Sureyya Olgen et al , Synthesis and evaluation of novel H-H and N-substitued indole-2- and 3-carboxamide derivatives as antioxidants agents. (Year: 2007) * |
Syntheses and biological evaluation of indole-2 and 3-carboxamides: new selective cyclooxygenase-2 inhibitors. Olgen S. et al. (Year: 2002) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11084789B2 (en) | 2016-01-14 | 2021-08-10 | Beth Israel Deaconess Medical Center, Inc. | Mast-cell modulators and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
US20200148638A1 (en) | 2020-05-14 |
WO2017123826A1 (en) | 2017-07-20 |
CN108602775A (en) | 2018-09-28 |
CN108602775B (en) | 2022-04-29 |
CA3010615C (en) | 2024-02-20 |
EP3402780A1 (en) | 2018-11-21 |
US11084789B2 (en) | 2021-08-10 |
CA3010615A1 (en) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11045476B2 (en) | Compounds and methods for inducing chondrogenesis | |
US11976056B2 (en) | Substituted alkoxypyridinyl indolsulfonamides | |
US7799812B2 (en) | Reverse isoxazoles | |
CN105683157B (en) | Sulfonamides as sodium channel modulators | |
JP2022504949A (en) | Androgen receptor modulator and how to use it | |
US20120238588A1 (en) | 1H-Pyrrolo[2,3-B]Pyridines | |
US11084789B2 (en) | Mast-cell modulators and uses thereof | |
JP2000510164A (en) | Amide derivatives as selective neuropeptide Y receptor antagonists | |
US11046660B2 (en) | Compounds and their use as PDE4 activators | |
JP2004522710A (en) | Treatment of sexual dysfunction | |
WO2019052557A1 (en) | μ-OPIOID RECEPTOR AGONIST AND PREPARATION METHOD THEREFOR AND USE THEREOF IN FIELD OF MEDICINE | |
JP2021520340A (en) | Compounds and their use as PDE4 activators | |
KR101905295B1 (en) | Naphthyridinedione derivatives | |
WO2012120398A1 (en) | Aryl substituted carboxamide derivatives as trpm8 modulators | |
WO2017083756A1 (en) | Heterocyclic compounds for the treatment of disease | |
JP2020524660A (en) | 2,3-Dihydroisoindole-1-carboxamides useful as ROR-gamma modulators | |
CN115466289A (en) | Compounds with TYK2 inhibitory activity, pharmaceutical compositions containing them, and applications thereof | |
TW201922700A (en) | Anilide derivative and pharmaceutical use thereof | |
US11465998B2 (en) | Therapeutic compounds and methods of use thereof | |
CN107304180B (en) | Benzamide derivative, preparation method and medical application thereof | |
WO2024028654A2 (en) | Histone deacetylase inhibitors and use of the same | |
US20170088545A1 (en) | Carboxamide inhibitors | |
WO2017152570A1 (en) | Novel gvs compound and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:BETH ISRAEL DEACONESS MEDICAL CENTER;REEL/FRAME:046718/0522 Effective date: 20180716 |
|
AS | Assignment |
Owner name: BETH ISRAEL DEACONESS MEDICAL CENTER, INC., MASSAC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SUN, LIJUN;VEVES, ARISTIDIS;SIGNING DATES FROM 20180722 TO 20180727;REEL/FRAME:046594/0527 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |