US20180344678A1 - Use of n-acetylcysteine to treat cns disorders - Google Patents
Use of n-acetylcysteine to treat cns disorders Download PDFInfo
- Publication number
- US20180344678A1 US20180344678A1 US15/968,355 US201815968355A US2018344678A1 US 20180344678 A1 US20180344678 A1 US 20180344678A1 US 201815968355 A US201815968355 A US 201815968355A US 2018344678 A1 US2018344678 A1 US 2018344678A1
- Authority
- US
- United States
- Prior art keywords
- nac
- ich
- mice
- pure
- collagenase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 title claims abstract description 247
- 229960004308 acetylcysteine Drugs 0.000 title claims abstract description 245
- 238000000034 method Methods 0.000 claims abstract description 54
- 210000003169 central nervous system Anatomy 0.000 claims abstract description 47
- 239000003112 inhibitor Substances 0.000 claims abstract description 36
- HCZKYJDFEPMADG-TXEJJXNPSA-N masoprocol Chemical compound C([C@H](C)[C@H](C)CC=1C=C(O)C(O)=CC=1)C1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-TXEJJXNPSA-N 0.000 claims abstract description 16
- HCZKYJDFEPMADG-UHFFFAOYSA-N erythro-nordihydroguaiaretic acid Natural products C=1C=C(O)C(O)=CC=1CC(C)C(C)CC1=CC=C(O)C(O)=C1 HCZKYJDFEPMADG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229960003951 masoprocol Drugs 0.000 claims abstract description 7
- 230000036542 oxidative stress Effects 0.000 claims abstract description 3
- 102100022278 Arachidonate 5-lipoxygenase-activating protein Human genes 0.000 claims description 21
- 101710187011 Arachidonate 5-lipoxygenase-activating protein Proteins 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 17
- 208000006011 Stroke Diseases 0.000 claims description 14
- 208000016988 Hemorrhagic Stroke Diseases 0.000 claims description 12
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical group CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 claims description 9
- 229940099500 cystamine Drugs 0.000 claims description 9
- 208000035475 disorder Diseases 0.000 claims description 9
- 208000029028 brain injury Diseases 0.000 claims description 8
- 239000000651 prodrug Substances 0.000 claims description 7
- 229940002612 prodrug Drugs 0.000 claims description 7
- 102000004023 5-Lipoxygenase-Activating Proteins Human genes 0.000 claims description 6
- 108090000411 5-Lipoxygenase-Activating Proteins Proteins 0.000 claims description 6
- 230000035882 stress Effects 0.000 claims description 4
- UJCHIZDEQZMODR-BYPYZUCNSA-N (2r)-2-acetamido-3-sulfanylpropanamide Chemical group CC(=O)N[C@@H](CS)C(N)=O UJCHIZDEQZMODR-BYPYZUCNSA-N 0.000 claims description 3
- 208000032851 Subarachnoid Hemorrhage Diseases 0.000 claims description 3
- 208000020925 Bipolar disease Diseases 0.000 claims description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 claims description 2
- 231100000318 excitotoxic Toxicity 0.000 claims description 2
- 230000003492 excitotoxic effect Effects 0.000 claims description 2
- 201000000980 schizophrenia Diseases 0.000 claims description 2
- 208000020431 spinal cord injury Diseases 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 38
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 abstract description 36
- 102000004169 proteins and genes Human genes 0.000 abstract description 25
- 239000003814 drug Substances 0.000 abstract description 19
- 229940124597 therapeutic agent Drugs 0.000 abstract description 12
- 229960002986 dinoprostone Drugs 0.000 abstract description 5
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 abstract description 5
- 230000003213 activating effect Effects 0.000 abstract 1
- 208000020658 intracerebral hemorrhage Diseases 0.000 description 167
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 159
- 241000699670 Mus sp. Species 0.000 description 135
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 90
- 229940025294 hemin Drugs 0.000 description 84
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 84
- 150000001875 compounds Chemical class 0.000 description 80
- 102000001381 Arachidonate 5-Lipoxygenase Human genes 0.000 description 74
- 108010093579 Arachidonate 5-lipoxygenase Proteins 0.000 description 74
- 238000011282 treatment Methods 0.000 description 53
- 102000029816 Collagenase Human genes 0.000 description 52
- 108060005980 Collagenase Proteins 0.000 description 52
- 229960002424 collagenase Drugs 0.000 description 49
- 150000002632 lipids Chemical class 0.000 description 44
- 239000000203 mixture Substances 0.000 description 44
- 108010024636 Glutathione Proteins 0.000 description 43
- 229960003180 glutathione Drugs 0.000 description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 210000004556 brain Anatomy 0.000 description 33
- 210000003618 cortical neuron Anatomy 0.000 description 33
- 230000000694 effects Effects 0.000 description 33
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 27
- 210000002569 neuron Anatomy 0.000 description 27
- 230000001965 increasing effect Effects 0.000 description 25
- 235000018102 proteins Nutrition 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- 231100000419 toxicity Toxicity 0.000 description 23
- 230000001988 toxicity Effects 0.000 description 23
- 230000030833 cell death Effects 0.000 description 21
- 238000009472 formulation Methods 0.000 description 21
- 239000008194 pharmaceutical composition Substances 0.000 description 20
- 230000002829 reductive effect Effects 0.000 description 20
- 241000894007 species Species 0.000 description 20
- 238000002347 injection Methods 0.000 description 18
- 239000007924 injection Substances 0.000 description 18
- 239000003981 vehicle Substances 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 239000003963 antioxidant agent Substances 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 17
- 229910052742 iron Inorganic materials 0.000 description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 235000006708 antioxidants Nutrition 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 16
- 239000010977 jade Substances 0.000 description 16
- 238000010186 staining Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 102000004190 Enzymes Human genes 0.000 description 15
- 108090000790 Enzymes Proteins 0.000 description 15
- 230000001419 dependent effect Effects 0.000 description 15
- 229940088598 enzyme Drugs 0.000 description 15
- 230000004806 ferroptosis Effects 0.000 description 15
- 208000024891 symptom Diseases 0.000 description 15
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 14
- 241000700159 Rattus Species 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 230000004224 protection Effects 0.000 description 14
- GLEVLJDDWXEYCO-UHFFFAOYSA-N Trolox Chemical compound O1C(C)(C(O)=O)CCC2=C1C(C)=C(C)C(O)=C2C GLEVLJDDWXEYCO-UHFFFAOYSA-N 0.000 description 13
- 229940114079 arachidonic acid Drugs 0.000 description 13
- 235000021342 arachidonic acid Nutrition 0.000 description 13
- 230000003542 behavioural effect Effects 0.000 description 13
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 230000004770 neurodegeneration Effects 0.000 description 13
- 239000011780 sodium chloride Substances 0.000 description 13
- 206010010254 Concussion Diseases 0.000 description 12
- 238000013401 experimental design Methods 0.000 description 12
- 238000011084 recovery Methods 0.000 description 12
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 description 11
- 208000032843 Hemorrhage Diseases 0.000 description 11
- 239000002390 adhesive tape Substances 0.000 description 11
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 11
- 230000009514 concussion Effects 0.000 description 11
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 11
- 235000018417 cysteine Nutrition 0.000 description 11
- 239000002552 dosage form Substances 0.000 description 11
- 235000019136 lipoic acid Nutrition 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 229960002663 thioctic acid Drugs 0.000 description 11
- QAOBBBBDJSWHMU-WMBBNPMCSA-N 16,16-dimethylprostaglandin E2 Chemical compound CCCCC(C)(C)[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O QAOBBBBDJSWHMU-WMBBNPMCSA-N 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 208000020861 perceptual disease Diseases 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000004083 survival effect Effects 0.000 description 9
- 238000007492 two-way ANOVA Methods 0.000 description 9
- 229960005332 zileuton Drugs 0.000 description 9
- MWLSOWXNZPKENC-SSDOTTSWSA-N zileuton Chemical compound C1=CC=C2SC([C@H](N(O)C(N)=O)C)=CC2=C1 MWLSOWXNZPKENC-SSDOTTSWSA-N 0.000 description 9
- KJQFBVYMGADDTQ-UHFFFAOYSA-N S-butyl-DL-homocysteine (S,R)-sulfoximine Chemical compound CCCCS(=N)(=O)CCC(N)C(O)=O KJQFBVYMGADDTQ-UHFFFAOYSA-N 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- 239000002502 liposome Substances 0.000 description 8
- 210000001577 neostriatum Anatomy 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 239000003755 preservative agent Substances 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 8
- -1 vapors Substances 0.000 description 8
- 206010018852 Haematoma Diseases 0.000 description 7
- 229930003427 Vitamin E Natural products 0.000 description 7
- 208000034158 bleeding Diseases 0.000 description 7
- 230000000740 bleeding effect Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 230000002255 enzymatic effect Effects 0.000 description 7
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000002207 metabolite Substances 0.000 description 7
- 238000010172 mouse model Methods 0.000 description 7
- 238000010149 post-hoc-test Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 235000019165 vitamin E Nutrition 0.000 description 7
- 239000011709 vitamin E Substances 0.000 description 7
- 229940046009 vitamin E Drugs 0.000 description 7
- 101000588302 Homo sapiens Nuclear factor erythroid 2-related factor 2 Proteins 0.000 description 6
- 238000000134 MTT assay Methods 0.000 description 6
- 231100000002 MTT assay Toxicity 0.000 description 6
- 208000012902 Nervous system disease Diseases 0.000 description 6
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 6
- 230000034994 death Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000001543 one-way ANOVA Methods 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000036962 time dependent Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 5
- 102100023580 Cyclic AMP-dependent transcription factor ATF-4 Human genes 0.000 description 5
- HMFDVPSBWOHOAP-YUMQZZPRSA-N Glutathione ethyl ester Chemical compound OC(=O)CNC(=O)[C@H](CSCC)NC(=O)CC[C@H](N)C(O)=O HMFDVPSBWOHOAP-YUMQZZPRSA-N 0.000 description 5
- 101000905743 Homo sapiens Cyclic AMP-dependent transcription factor ATF-4 Proteins 0.000 description 5
- 108700024319 S-ethyl glutathione Proteins 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000012190 activator Substances 0.000 description 5
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 239000011648 beta-carotene Substances 0.000 description 5
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 5
- 235000013734 beta-carotene Nutrition 0.000 description 5
- 229960002747 betacarotene Drugs 0.000 description 5
- 210000005013 brain tissue Anatomy 0.000 description 5
- 101150014475 chac1 gene Proteins 0.000 description 5
- 238000013270 controlled release Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 150000002535 isoprostanes Chemical class 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- BHMBVRSPMRCCGG-OUTUXVNYSA-N prostaglandin D2 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](C\C=C/CCCC(O)=O)[C@@H](O)CC1=O BHMBVRSPMRCCGG-OUTUXVNYSA-N 0.000 description 5
- 150000003180 prostaglandins Chemical class 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 5
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 4
- 206010047700 Vomiting Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 150000002066 eicosanoids Chemical class 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- VNYSSYRCGWBHLG-AMOLWHMGSA-N leukotriene B4 Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC(O)=O VNYSSYRCGWBHLG-AMOLWHMGSA-N 0.000 description 4
- OTZRAYGBFWZKMX-JUDRUQEKSA-N leukotriene E4 Chemical compound CCCCCC=CCC=C\C=C\C=C\[C@@H](SC[C@H](N)C(O)=O)[C@@H](O)CCCC(O)=O OTZRAYGBFWZKMX-JUDRUQEKSA-N 0.000 description 4
- 230000003859 lipid peroxidation Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 230000000144 pharmacologic effect Effects 0.000 description 4
- 230000002335 preservative effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000012730 sustained-release form Substances 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004846 x-ray emission Methods 0.000 description 4
- PXGPLTODNUVGFL-BRIYLRKRSA-N (E,Z)-(1R,2R,3R,5S)-7-(3,5-Dihydroxy-2-((3S)-(3-hydroxy-1-octenyl))cyclopentyl)-5-heptenoic acid Chemical compound CCCCC[C@H](O)C=C[C@H]1[C@H](O)C[C@H](O)[C@@H]1CC=CCCCC(O)=O PXGPLTODNUVGFL-BRIYLRKRSA-N 0.000 description 3
- KGIJOOYOSFUGPC-CABOLEKPSA-N 5-HETE Natural products CCCCC\C=C/C\C=C/C\C=C/C=C/[C@H](O)CCCC(O)=O KGIJOOYOSFUGPC-CABOLEKPSA-N 0.000 description 3
- KGIJOOYOSFUGPC-MSFIICATSA-N 5-Hydroxyeicosatetraenoic acid Chemical compound CCCCCC=CCC=CCC=C\C=C\[C@@H](O)CCCC(O)=O KGIJOOYOSFUGPC-MSFIICATSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108010081687 Glutamate-cysteine ligase Proteins 0.000 description 3
- 102100039696 Glutamate-cysteine ligase catalytic subunit Human genes 0.000 description 3
- 102000003820 Lipoxygenases Human genes 0.000 description 3
- 108090000128 Lipoxygenases Proteins 0.000 description 3
- 208000008348 Post-Concussion Syndrome Diseases 0.000 description 3
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 210000002469 basement membrane Anatomy 0.000 description 3
- 230000006736 behavioral deficit Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 208000015114 central nervous system disease Diseases 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000001149 cognitive effect Effects 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000003278 haem Chemical class 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 238000010874 in vitro model Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 229940126707 lipid peroxidation inhibitor Drugs 0.000 description 3
- 238000002595 magnetic resonance imaging Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- CEUDWZXMLMKPNN-SOFGYWHQSA-N n-hydroxy-n-[(e)-3-(3-phenoxyphenyl)prop-2-enyl]acetamide Chemical compound CC(=O)N(O)C\C=C\C1=CC=CC(OC=2C=CC=CC=2)=C1 CEUDWZXMLMKPNN-SOFGYWHQSA-N 0.000 description 3
- 230000000324 neuroprotective effect Effects 0.000 description 3
- 210000000633 nuclear envelope Anatomy 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 208000033808 peripheral neuropathy Diseases 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000036515 potency Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 210000002243 primary neuron Anatomy 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- 238000013102 re-test Methods 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- RDEYORKJEDLLDB-DQVHGTJVSA-N 5-Hydroperoxyeicosatetraenoic acid Chemical compound CCCCCCCCCCC\C=C\C=C\C(\OO)=C\C=C\C(O)=O RDEYORKJEDLLDB-DQVHGTJVSA-N 0.000 description 2
- BGWLYQZDNFIFRX-UHFFFAOYSA-N 5-[3-[2-[3-(3,8-diamino-6-phenylphenanthridin-5-ium-5-yl)propylamino]ethylamino]propyl]-6-phenylphenanthridin-5-ium-3,8-diamine;dichloride Chemical compound [Cl-].[Cl-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCNCCNCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 BGWLYQZDNFIFRX-UHFFFAOYSA-N 0.000 description 2
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 101150050490 Alox5 gene Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 206010048962 Brain oedema Diseases 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102100033369 Glutathione S-transferase A4 Human genes 0.000 description 2
- 101710113311 Glutathione S-transferase A4 Proteins 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 244000073231 Larrea tridentata Species 0.000 description 2
- 102100037611 Lysophospholipase Human genes 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 108010058864 Phospholipases A2 Proteins 0.000 description 2
- 102100031950 Polyunsaturated fatty acid lipoxygenase ALOX15 Human genes 0.000 description 2
- 101710164073 Polyunsaturated fatty acid lipoxygenase ALOX15 Proteins 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 2
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 2
- 229940124639 Selective inhibitor Drugs 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 102000014384 Type C Phospholipases Human genes 0.000 description 2
- 108010079194 Type C Phospholipases Proteins 0.000 description 2
- 238000002213 X-ray fluorescence microscopy Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 239000003911 antiadherent Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 208000006752 brain edema Diseases 0.000 description 2
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 2
- 229960000590 celecoxib Drugs 0.000 description 2
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000010968 computed tomography angiography Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229960001342 dinoprost Drugs 0.000 description 2
- XLZOVRYBVCMCGL-BPNVQINPSA-L disodium;4-[(z)-[tert-butyl(oxido)azaniumylidene]methyl]benzene-1,3-disulfonate Chemical compound [Na+].[Na+].CC(C)(C)[N+](\[O-])=C\C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O XLZOVRYBVCMCGL-BPNVQINPSA-L 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229960000905 indomethacin Drugs 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003447 ipsilateral effect Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- REUHFEYPDFRRGJ-UHFFFAOYSA-N n-methylsulfonyl-6-(2-prop-2-ynoxyphenyl)hexanamide Chemical compound CS(=O)(=O)NC(=O)CCCCCC1=CC=CC=C1OCC#C REUHFEYPDFRRGJ-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000006070 nanosuspension Substances 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 238000003012 network analysis Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 210000004498 neuroglial cell Anatomy 0.000 description 2
- 230000004112 neuroprotection Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229940097156 peroxyl Drugs 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- PXGPLTODNUVGFL-YNNPMVKQSA-N prostaglandin F2alpha Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)C[C@H](O)[C@@H]1C\C=C/CCCC(O)=O PXGPLTODNUVGFL-YNNPMVKQSA-N 0.000 description 2
- BHMBVRSPMRCCGG-UHFFFAOYSA-N prostaglandine D2 Natural products CCCCCC(O)C=CC1C(CC=CCCCC(O)=O)C(O)CC1=O BHMBVRSPMRCCGG-UHFFFAOYSA-N 0.000 description 2
- 239000002516 radical scavenger Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005563 spheronization Methods 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000012443 tonicity enhancing agent Substances 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009529 traumatic brain injury Effects 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- KUHSEZKIEJYEHN-BXRBKJIMSA-N (2s)-2-amino-3-hydroxypropanoic acid;(2s)-2-aminopropanoic acid Chemical compound C[C@H](N)C(O)=O.OC[C@H](N)C(O)=O KUHSEZKIEJYEHN-BXRBKJIMSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- JNUUNUQHXIOFDA-XTDASVJISA-N 5-HPETE Chemical compound CCCCC\C=C/C\C=C/C\C=C/C=C/C(OO)CCCC(O)=O JNUUNUQHXIOFDA-XTDASVJISA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000006888 Agnosia Diseases 0.000 description 1
- 241001047040 Agnosia Species 0.000 description 1
- 201000002882 Agraphia Diseases 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000000044 Amnesia Diseases 0.000 description 1
- 208000031091 Amnestic disease Diseases 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010003062 Apraxia Diseases 0.000 description 1
- YZXBAPSDXZZRGB-DOFZRALJSA-M Arachidonate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC([O-])=O YZXBAPSDXZZRGB-DOFZRALJSA-M 0.000 description 1
- 102000011730 Arachidonate 12-Lipoxygenase Human genes 0.000 description 1
- 108010076676 Arachidonate 12-lipoxygenase Proteins 0.000 description 1
- 102000009515 Arachidonate 15-Lipoxygenase Human genes 0.000 description 1
- 108010048907 Arachidonate 15-lipoxygenase Proteins 0.000 description 1
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 208000020706 Autistic disease Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000012219 Autonomic Nervous System disease Diseases 0.000 description 1
- 206010003840 Autonomic nervous system imbalance Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 208000007333 Brain Concussion Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- WKWARFFQHWKFCC-ZYQGMMJFSA-N CC(=O)N[C@@H](CS)C(=O)O.CC(=O)N[C@@H](CS)C(N)=O.N[C@@H](CS)C(=O)O Chemical compound CC(=O)N[C@@H](CS)C(=O)O.CC(=O)N[C@@H](CS)C(N)=O.N[C@@H](CS)C(=O)O WKWARFFQHWKFCC-ZYQGMMJFSA-N 0.000 description 1
- ACYUJPAVLPFGED-UHFFFAOYSA-N CC(CC1=CC(O)=C(O)C=C1)C(C)CC1=CC(O)=C(O)C=C1.NCCSSCCN Chemical compound CC(CC1=CC(O)=C(O)C=C1)C(C)CC1=CC(O)=C(O)C=C1.NCCSSCCN ACYUJPAVLPFGED-UHFFFAOYSA-N 0.000 description 1
- 229940124638 COX inhibitor Drugs 0.000 description 1
- 101100459439 Caenorhabditis elegans nac-2 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 208000019736 Cranial nerve disease Diseases 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- 238000004435 EPR spectroscopy Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 206010016807 Fluid retention Diseases 0.000 description 1
- 108010016166 Gamma-glutamylcyclotransferase Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108010036164 Glutathione synthase Proteins 0.000 description 1
- 102100034294 Glutathione synthetase Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010019663 Hepatic failure Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000725401 Homo sapiens Cytochrome c oxidase subunit 2 Proteins 0.000 description 1
- 101000605122 Homo sapiens Prostaglandin G/H synthase 1 Proteins 0.000 description 1
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010021333 Ileus paralytic Diseases 0.000 description 1
- 201000005081 Intestinal Pseudo-Obstruction Diseases 0.000 description 1
- 208000008574 Intracranial Hemorrhages Diseases 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- KJQFBVYMGADDTQ-CVSPRKDYSA-N L-buthionine-(S,R)-sulfoximine Chemical compound CCCCS(=N)(=O)CC[C@H](N)C(O)=O KJQFBVYMGADDTQ-CVSPRKDYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 235000006173 Larrea tridentata Nutrition 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 1
- OTCCIMWXFLJLIA-UHFFFAOYSA-N N-acetyl-DL-aspartic acid Natural products CC(=O)NC(C(O)=O)CC(O)=O OTCCIMWXFLJLIA-UHFFFAOYSA-N 0.000 description 1
- OTCCIMWXFLJLIA-BYPYZUCNSA-N N-acetyl-L-aspartic acid Chemical compound CC(=O)N[C@H](C(O)=O)CC(O)=O OTCCIMWXFLJLIA-BYPYZUCNSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 description 1
- 101000983844 Oryza sativa subsp. japonica Linoleate 9S-lipoxygenase 1 Proteins 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 206010073489 Polymicrogyria Diseases 0.000 description 1
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 1
- 108050003243 Prostaglandin G/H synthase 1 Proteins 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 230000002292 Radical scavenging effect Effects 0.000 description 1
- 101100545004 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YSP2 gene Proteins 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 201000010829 Spina bifida Diseases 0.000 description 1
- 208000029033 Spinal Cord disease Diseases 0.000 description 1
- 208000006097 Spinal Dysraphism Diseases 0.000 description 1
- 208000020307 Spinal disease Diseases 0.000 description 1
- 208000034713 Spontaneous Rupture Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 208000016620 Tourette disease Diseases 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 230000006986 amnesia Effects 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 206010002320 anencephaly Diseases 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940125708 antidiabetic agent Drugs 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000006851 antioxidant defense Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 201000007201 aphasia Diseases 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229940114078 arachidonate Drugs 0.000 description 1
- 230000005744 arteriovenous malformation Effects 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 208000008216 bilateral frontoparietal polymicrogyria Diseases 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 208000037872 brain arteriovenous malformation Diseases 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 230000005978 brain dysfunction Effects 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000002327 cardiovascular agent Substances 0.000 description 1
- 229940125692 cardiovascular agent Drugs 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940125693 central nervous system agent Drugs 0.000 description 1
- 239000003576 central nervous system agent Substances 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 238000011278 co-treatment Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000003931 cognitive performance Effects 0.000 description 1
- 230000036992 cognitive tasks Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 238000011244 combinatorial administration Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 235000012605 creosote bush Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 238000002598 diffusion tensor imaging Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 208000019479 dysautonomia Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 206010058319 dysgraphia Diseases 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 201000006517 essential tremor Diseases 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 102000000425 gamma-Glutamylcyclotransferase Human genes 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 206010021093 hypospadias Diseases 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- GWNVDXQDILPJIG-NXOLIXFESA-N leukotriene C4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O GWNVDXQDILPJIG-NXOLIXFESA-N 0.000 description 1
- YEESKJGWJFYOOK-IJHYULJSSA-N leukotriene D4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@H]([C@@H](O)CCCC(O)=O)SC[C@H](N)C(=O)NCC(O)=O YEESKJGWJFYOOK-IJHYULJSSA-N 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 238000010872 live dead assay kit Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 231100000835 liver failure Toxicity 0.000 description 1
- 208000007903 liver failure Diseases 0.000 description 1
- 230000007056 liver toxicity Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940118019 malondialdehyde Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229940071648 metered dose inhaler Drugs 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 210000000274 microglia Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 201000003631 narcolepsy Diseases 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 238000002378 negative ion chemical ionisation mass spectrometry Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000003188 neurobehavioral effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 238000010984 neurological examination Methods 0.000 description 1
- 230000016273 neuron death Effects 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 230000003557 neuropsychological effect Effects 0.000 description 1
- 238000010855 neuropsychological testing Methods 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- QRIOOMWVHJMPFT-UHFFFAOYSA-N non-1-ene-1,1-diol Chemical compound CCCCCCCC=C(O)O QRIOOMWVHJMPFT-UHFFFAOYSA-N 0.000 description 1
- 210000000869 occipital lobe Anatomy 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 201000007620 paralytic ileus Diseases 0.000 description 1
- 210000001152 parietal lobe Anatomy 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 208000027232 peripheral nervous system disease Diseases 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000009038 pharmacological inhibition Effects 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 229940098458 powder spray Drugs 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 208000018290 primary dysautonomia Diseases 0.000 description 1
- 230000001686 pro-survival effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 150000003166 prostaglandin E2 derivatives Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 239000008299 semisolid dosage form Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000036362 sensorimotor function Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000009131 signaling function Effects 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000013222 sprague-dawley male rat Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 210000003478 temporal lobe Anatomy 0.000 description 1
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 description 1
- RLNWRDKVJSXXPP-UHFFFAOYSA-N tert-butyl 2-[(2-bromoanilino)methyl]piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CNC1=CC=CC=C1Br RLNWRDKVJSXXPP-UHFFFAOYSA-N 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000003135 vibrissae Anatomy 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 150000003712 vitamin E derivatives Chemical class 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/05—Phenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/145—Amines having sulfur, e.g. thiurams (>N—C(S)—S—C(S)—N< and >N—C(S)—S—S—C(S)—N<), Sulfinylamines (—N=SO), Sulfonylamines (—N=SO2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
Definitions
- Hemorrhagic stroke defined as bleeding within the brain parenchyma, accounts for 13-15% of all stroke cases. Nearly half of afflicted patients die, and survivors commonly experience long-term disability. Identification of novel targets to treat hemorrhagic stroke is an important unmet public need.
- the disclosure provides a method of treating a central nervous system condition comprising administering to a subject in need thereof a therapeutically-effective amount of a 5-lipoxygenase activating protein (FLAP) inhibitor.
- FLAP 5-lipoxygenase activating protein
- FIG. 1 shows representative live/dead images of primary cortical neurons 24 hours (h) after treatment with saline (Ctrl), NAC (1 mM), Hemin (100 ⁇ M) and Hemin (100 ⁇ M)+NAC (1 mM). Scale bars: 100 ⁇ m.
- FIG. 2 shows that NAC protected primary cortical neurons from hemin-induced toxicity in a concentration dependent manner.
- the graph shows mean ⁇ SEM.
- FIG. 3 shows a schematic of an experimental design for the delivery of NAC post-intracerebral hemorrhage (ICH) in mice.
- ICH NAC post-intracerebral hemorrhage
- FIG. 4 shows that NAC reduced neuronal degeneration as monitored by Fluoro-Jade® staining in the perihematomal regions of the mouse brain.
- the white arrows highlight the increased numbers of degenerating neurons in the ICH-treated group (middle panel).
- Neuronal degeneration was reduced by treatment with NAC (right panel).
- Scale bar 100 ⁇ m.
- FIG. 5 shows the quantification of Fluoro-Jade® positive cells in sham-infused mice and in collagenase-infused ICH mice with or without NAC treatment.
- the graph shows mean ⁇ SEM.
- FIG. 6 shows the corner task scores on various experimental days for sham infused mice, collagenase infused ICH mice without NAC treatment, and collagenase infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg.
- the graph shows mean ⁇ SEM.
- FIG. 7 shows showing the results of an adhesive tape removal task on various experimental days for sham-infused mice, collagenase-infused ICH mice without NAC treatment, or collagenase-infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg.
- the graph shows mean ⁇ SEM.
- FIG. 8 shows a schematic of an experimental design investigating the effect of NAC in a collagenase-infused mouse model of ICH
- FIG. 9 shows a panel of serial brain sections from saline-treated mice and ICH mice with or without NAC treatment.
- FIG. 10 shows a graph quantifying hematoma sizes by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC.
- the graph shows mean ⁇ SEM.
- FIG. 11 shows a graph showing percentage of swelling (brain edema) by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC.
- the graph shows mean ⁇ SEM.
- FIG. 12 shows a schematic of an experimental design for evaluating the total concentrations of iron in the brain following ICH in vehicle-treated and NAC-treated mice.
- FIG. 13 PANEL A shows X-ray fluorescence spectroscopy images from coronal sections in collagenase-infused ICH mice with or without NAC treatment after 7 days.
- FIG. 13 PANEL B shows total iron levels in the cortex, intrahematomal, and perihematomal regions of the brain of collagenase-infused ICH mice with or without NAC treatment. The graph shows mean ⁇ SEM.
- FIG. 14 PANEL A shows the effect of NAC, trolox (TRO), and ⁇ -lipoic acid (LA) in preventing hemin-induced ferroptosis in primary cortical neurons as measured by MTT assay.
- FIG. 14 PANEL B shows that combinations of non-protective concentrations of NAC, TRO, or LA failed to synergize in preventing hemin-induced ferroptosis in primary cortical neurons.
- the graphs show mean ⁇ SEM.
- FIG. 15 PANEL A shows that Zileuton was effective in inhibiting ALOX5.
- FIG. 15 PANEL B shows that BW-4AC was effective in inhibiting ALOX5.
- FIG. 15 PANEL C shows that NAC was not effective at inhibiting ALOX5.
- FIG. 16 illustrates a schematic model of ALOX5 pathway activation in ICH.
- FIG. 17 shows that ICH increased ALOX5 protein levels in nuclear fractions, as verified by immunoblot analysis.
- FIG. 18 PANEL A shows the increase in ALOX-derived 5-HETE after induction of ICH in rats.
- FIG. 18 PANEL B shows the increase in ALOX-derived LTB4 after induction of ICH in rats.
- FIG. 18 PANEL C shows the increase in ALOX-derived LTE4 after induction of ICH in rats.
- FIG. 20 shows that WGCNA revealed transcripts most closely co-regulated with ALOX5.
- FIG. 21 PANEL A shows that hemin increased ALOX5 levels in a time-dependent manner, while NAC blocked the expression of ALOX5 in primary cortical neurons.
- FIG. 21 PANEL B shows that hemin increased ALOX AP levels in a time-dependent manner, while NAC blocked the expression of ALOX AP in primary cortical neurons.
- FIG. 22 shows an image of a Western blot probed with streptavidin-HRP for detection of lipid protein adducts in primary cortical neurons treated with hemin at concentrations of 0, 5, 10, 25, and 50 ⁇ M for 4 h.
- FIG. 23 shows an image of lipid protein adducts probed with streptavidin-HRP, demonstrating that NAC (1 mM), a-tocopherol (10 ⁇ M) and zileuton (10 ⁇ M) attenuated formation of hemin induced oxidized lipid protein adducts.
- FIG. 24 shows quantification of the bands shown in FIG. 17 , revealing a reduction in oxidized lipid protein adducts.
- FIG. 25 shows the total glutathione (GSH) levels determined by HPLC analysis in neurons treated with 0 (“Con,” vehicle), 0.1, or 1.0 mM NAC in the presence or absence of hemin.
- FIG. 26 shows the survival rates of neurons treated with 0 mM, 0.1 mM, 0.25 mM, 0.5 mM, 0.75 mM, or 1.0 mM NAC in the presence of vehicle (Con), hemin, buthionine sulphoximine (BSO) or BSO+hemin.
- vehicle Con
- BSO buthionine sulphoximine
- FIG. 27 illustrates the neutralization of oxidized lipid species by GSTA4.
- FIG. 28 shows the effects of adenovirus-mediated overexpression of GFP (Ad GFP) and GST (Ad GST) on survival of neurons with or without hemin treatment.
- FIG. 29 illustrates an experimental design to study the effect of NAC on total glutathione levels in the striatum of a collagenase infusion mouse model of ICH.
- FIG. 30 shows total glutathione levels by HPLC analysis in the striatum of sham injected mice with or without NAC treatment, and in collagenase-infused ICH mice with or without NAC treatment.
- FIG. 31 shows illustrates that ICH-induced ATF4 dependent Chac1 degraded glutathione to 5-oxoproline.
- FIG. 32 shows the relative Chac1 gene expression levels as measured by quantitative RT-PCR in neurons of sham injected mice with or without NAC treatment, and of collagenase-infused ICH mice with or without NAC treatment.
- FIG. 34 PANEL A shows F 2 isoprostane levels in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.
- FIG. 34 PANEL B shows prostaglandin E2 (PGE 2 ) levels as determined by GC/MS analysis in sham injected mice and in collagenase-infused ICH mice over time following collagenase injection.
- FIG. 34 PANEL C shows prostaglandin D2 (PGD 2 ) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.
- FIG. 34 PANEL B shows prostaglandin E2 (PGE 2 ) levels as determined by GC/MS analysis in sham injected mice and in collagenase-infused ICH mice over time following collagenase injection.
- FIG. 34 PANEL C shows prostaglandin D2 (PGD 2 ) levels as determined by GC/MS analysis in sham-injected
- 34 PANEL D shows prostaglandin F2 (PGF 2 ) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.
- FIG. 34 PANEL E shows 6-keto-prostaglandin F 2 (6-keto PGF 2 ) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.
- FIG. 35 shows survival rates of primary cortical neurons treated with vehicle (Con) or with various concentrations of NAC, mPGE 2 , or mPGE 2 +NAC.
- FIG. 36 illustrates a schematic of an experimental design for combinatorial delivery of NAC and PGE 2 after ICH.
- FIG. 37 shows photographs showing Fluoro-Jade® staining of neurons in sham injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC or NAC+PGE 2 .
- FIG. 39 PANEL A shows behavioral analysis results for the corner task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE 2 , or NAC+PGE 2 .
- FIG. 39 PANEL B shows behavioral analysis results for the adhesive tape removal task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE 2 , or NAC+PGE 2 .
- Intracerebral hemorrhage also known as cerebral bleeding, is a type of intracranial bleed that occurs within the brain tissue or ventricles. Symptoms can include headache, one-sided weakness, vomiting, seizures, fever, decreased level of consciousness, and neck stiffness. Symptoms often worsen over time. ICH is also a stroke subtype that accounts for 13-15% of all stroke cases, and remains a significant cause of mortality and morbidity. Nearly half of the afflicted patients die, and survivors commonly suffer from long-term disability. Identification of novel targets to treat hemorrhagic stroke is an unmet public need.
- ICH cerebral spastic artery disease 2019
- causes of ICH include brain trauma, aneurysms, arteriovenous malformations, and brain tumors.
- the largest risk factors for spontaneous bleeding are high blood pressure and amyloidosis.
- Other risk factors for ICH include alcoholism, low cholesterol, blood thinners, and cocaine use.
- Diagnosis is typically conducted by computed tomography angiography (CTA) and magnetic resonance angiography (MRA) scans.
- CTA computed tomography angiography
- MRA magnetic resonance angiography
- the present disclosure describes the use of a catalytic amount of a compound to treat a neurological disorder.
- the disclosure describes the use of a catalytic amount of NAC to treat a CNS condition.
- NAC can prevent cell death.
- NAC can enhance functional recovery from a CNS condition.
- the present disclosure also describes the use of NAC to treat a CNS condition by targeting ALOX5-derived reactive lipid species to mediate neuroprotective effects.
- the disclosure describes the use of NAC and a second therapeutic agent to treat a CNS condition.
- the present disclosure also describes a method of treating a CNS condition by administering a 5-lipoxygenase activating protein (FLAP) inhibitor.
- FLAP 5-lipoxygenase activating protein
- a neurological disorder is any disorder of the nervous system. Structural, biochemical, or electrical abnormalities in the brain, spinal cord, or other nerves can result in a range of symptoms. Examples of symptoms that arise from neurological disorders include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain, and altered levels of consciousness.
- the present disclosure describes the use of a compound to treat a neurological disorder.
- the disclosure describes the use of a compound to treat brain damage, such as cerebral lobe (e.g., basal ganglia, cerebellum, or the brainstem) damage, frontal lobe damage, parietal lobe damage, temporal lobe damage, or occipital lobe damage.
- the present disclosure describes the use of a compound to treat brain dysfunction according to type: aphasia (language), dysgraphia (writing), dysarthria (speech), apraxia (patterns of sequences of movements), agnosia (identifying things or people), or amnesia (memory).
- the present disclosure describes the use of a compound to treat spinal cord disorders, peripheral neuropathy and other peripheral nervous system disorders, cranial nerve disorders (e.g., Trigeminal neuralgia), autonomic nervous system disorders (e.g., dysautonomia, Multiple System Atrophy), or seizure disorders (i.e., epilepsy).
- cranial nerve disorders e.g., Trigeminal neuralgia
- autonomic nervous system disorders e.g., dysautonomia, Multiple System Atrophy
- seizure disorders i.e., epilepsy
- the disclosure describes the use of a compound to treat a movement disorder of the central and peripheral nervous system, such as Essential tremor, Amyotrophic lateral sclerosis, Tourette's syndrome, Multiple Sclerosis, and various types of peripheral neuropathy.
- a movement disorder of the central and peripheral nervous system such as Essential tremor, Amyotrophic lateral sclerosis, Tourette's syndrome, Multiple Sclerosis, and various types of peripheral neuropathy.
- the disclosure describes the use of a compound to treat sleep disorders (e.g., narcolepsy), migraines and other types of headaches, or central neuropathy.
- the disclosure describes the use of a compound to treat a neuropsychiatric illness, such as attention deficit hyperactivity disorder, autism, or obsessive compulsive disorder.
- CNS disorders are a group of neurological disorders that affect the structure or function of the brain or spinal cord, which collectively form the CNS.
- the disclosure describes use of a compound to treat a CNS disorder caused by traumatic brain injury, concussion, post-concussion syndrome, infections, degeneration (e.g., degenerative spinal disorders), structural defects (e.g., anencephaly, hypospadias, spina bifida, microgyria, polymicrogyria, bilateral frontoparietal polymicrogyria, or pachgyria), tumors, autoimmune disorders, or stroke.
- degeneration e.g., degenerative spinal disorders
- structural defects e.g., anencephaly, hypospadias, spina bifida, microgyria, polymicrogyria, bilateral frontoparietal polymicrogyria, or pachgyria
- tumors autoimmune disorders, or stroke.
- the disclosure describes the use of a compound to treat traumatic brain injury. In some embodiments, the disclosure describes the use of a compound to treat subarachnoid hemorrhage. In some embodiments, the disclosure describes the use of a compound to treat concussion. In some embodiments, the disclosure describes the use of a compound to treat post-concussion syndrome.
- NAC prevents cell death or enhances functional recovery by inhibiting more than one target. In some embodiments, NAC prevents cell death or enhances functional recovery by targeting nuclear ALOX5-derived reactive lipid species and products of COX-2 metabolism. In some embodiments, NAC or a compound of the disclosure inhibits FLAP.
- NAC N-acetylcysteine
- NAC is a glutathione prodrug that is used to treat acetaminophen-induced liver failure and to loosen thick mucus individuals with cystic fibrosis or chronic obstructive pulmonary disease.
- NAC can be taken intravenously, by mouth, or inhaled as a mist.
- Common side effects of NAC include nausea and vomiting when NAC is administered orally.
- NAC can also cause skin redness and itching and a non-immune type of anaphylaxis.
- NAC has multiple putative targets of action, and NAC has poor penetration into the CNS.
- NAC has been reported to cause nausea and vomiting, induce bronchospasm, slow blood clotting, and induce neurotoxicity in a dose-dependent manner, which can be problematic for patients with hemorrhagic stroke.
- the present disclosure describes the use of at least one compound or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- the disclosure describes the use of NAC or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- the disclosure describes the use of NAC amide or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- the disclosure describes the use of a NAC prodrug or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- the disclosure describes the use of cysteine or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- Cystamine is a disulfide-containing antioxidant compound.
- the disclosure describes the use of cystamine or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- Nordihydroguaiaretic acid is an antioxidant compound found in the creosote bush ( Larrea tridentata ).
- the disclosure describes the use of NDGA or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- a compound herein can be least 1% pure, at least 2% pure, at least 3% pure, at least 4% pure, at least 5% pure, at least 6% pure, at least 7% pure, at least 8% pure, at least 9% pure, at least 10% pure, at least 11% pure, at least 12% pure, at least 13% pure, at least 14% pure, at least 15% pure, at least 16% pure, at least 17% pure, at least 18% pure, at least 19% pure, at least 20% pure, at least 21% pure, at least 22% pure, at least 23% pure, at least 24% pure, at least 25% pure, at least 26% pure, at least 27% pure, at least 28% pure, at least 29% pure, at least 30% pure, at least 31% pure, at least 32% pure, at least 33% pure, at least 34% pure, at least 35% pure, at least 36% pure, at least 37% pure, at least 38% pure, at least 39% pure, at least 40% pure, at least 41% pure,
- compositions comprising NAC, which can be administered to a subject to treat a CNS condition.
- a pharmaceutical composition of the disclosure can be a combination of any pharmaceutical compound described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients.
- the pharmaceutical composition facilitates administration of the compound to an organism.
- Pharmaceutical compositions can be administered in therapeutically-effective amounts as pharmaceutical compositions by various forms and routes including, for example, intravenous, subcutaneous, intramuscular, oral, parenteral, ophthalmic, subcutaneous, transdermal, nasal, vaginal, and topical administration.
- a pharmaceutical composition can be administered in a local manner, for example, via injection of the compound directly into an organ, optionally in a depot or sustained release formulation or implant.
- a compound of the disclosure can be administered intranasally, and can be formulated into a variety of inhalable compositions, such as solutions, suspensions, vapors, or powders.
- Intranasal pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- therapeutically-effective amounts of a compound described herein are administered in pharmaceutical compositions to a subject having a disease or condition to be treated.
- the subject is a mammal such as a human.
- a therapeutically-effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used, and other factors.
- a compound of the disclosure can be used singly or in combination with one or more therapeutic agents as components of mixtures.
- compositions can be formulated using one or more physiologically-acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations that can be used pharmaceutically.
- a formulation can be modified depending upon the route of administration chosen.
- Pharmaceutical compositions comprising a compound described herein can be manufactured, for example, by mixing, dissolving, emulsifying, encapsulating, entrapping, or compression processes.
- compositions of the disclosure can include at least one pharmaceutically-acceptable carrier, diluent, or excipient and compounds described herein as free-base or pharmaceutically-acceptable salt form.
- Pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- Solid compositions include, for example, powders, tablets, dispersible granules, capsules, and cachets.
- Liquid compositions include, for example, solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein.
- Semi-solid compositions include, for example, gels, suspensions and creams.
- compositions can be in liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. These compositions can also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and other pharmaceutically-acceptable additives.
- Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include binding agents, disintegrating agents, anti-adherents, anti-static agents, surfactants, anti-oxidants, coating agents, coloring agents, plasticizers, preservatives, suspending agents, emulsifying agents, anti-microbial agents, spheronization agents, and any combination thereof.
- a composition of the disclosure can be, for example, an immediate release form or a controlled release formulation.
- An immediate release formulation can be formulated to allow a compound to act rapidly.
- Non-limiting examples of immediate release formulations include readily dissolvable formulations.
- a controlled release formulation can be a pharmaceutical formulation that has been adapted such that release rates and release profiles of the active agent can be matched to physiological and chronotherapeutic requirements or, alternatively, has been formulated to effect release of an active agent at a programmed rate.
- Non-limiting examples of controlled release formulations include granules, delayed release granules, hydrogels (e.g., of synthetic or natural origin), other gelling agents (e.g., gel-forming dietary fibers), matrix-based formulations (e.g., formulations comprising a polymeric material having at least one active ingredient dispersed through), granules within a matrix, polymeric mixtures, and granular masses.
- hydrogels e.g., of synthetic or natural origin
- other gelling agents e.g., gel-forming dietary fibers
- matrix-based formulations e.g., formulations comprising a polymeric material having at least one active ingredient dispersed through
- a controlled release formulation is a delayed release form.
- a delayed release form can be formulated to delay a compound's action for an extended period of time.
- a delayed release form can be formulated to delay the release of an effective dose of one or more compounds, for example, for about 4, about 8, about 12, about 16, or about 24 hours.
- a controlled release formulation can be a sustained release form.
- a sustained release form can be formulated to sustain, for example, the compound's action over an extended period of time.
- a sustained release form can be formulated to provide an effective dose of any compound described herein (e.g., provide a physiologically-effective blood profile) over about 4, about 8, about 12, about 16 or about 24 hours.
- Non-limiting examples of pharmaceutically-acceptable excipients can be found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins 1999), each of which is incorporated by reference in its entirety.
- compositions provided herein can be administered in conjunction with other therapies, for example, chemotherapy, radiation, surgery, anti-inflammatory agents, and selected vitamins.
- the other agents can be administered prior to, after, or concomitantly with the pharmaceutical compositions.
- the pharmaceutical compositions can be in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, or gels, for example, in unit dosage form suitable for single administration of a precise dosage.
- Non-limiting examples of pharmaceutically active agents suitable for combination with compositions of the disclosure include anti-infectives, i.e., aminoglycosides, antiviral agents, antimicrobials, anticholinergics/antispasmotics, antidiabetic agents, antihypertensive agents, antineoplastics, cardiovascular agents, central nervous system agents, coagulation modifiers, hormones, immunologic agents, immunosuppressive agents, and ophthalmic preparations.
- anti-infectives i.e., aminoglycosides, antiviral agents, antimicrobials, anticholinergics/antispasmotics, antidiabetic agents, antihypertensive agents, antineoplastics, cardiovascular agents, central nervous system agents, coagulation modifiers, hormones, immunologic agents, immunosuppressive agents, and ophthalmic preparations.
- Liposomes are composed of natural phospholipids, and can contain mixed lipid chains with surfactant properties (e.g., egg phosphatidylethanolamine).
- a liposome design can employ surface ligands for attaching to unhealthy tissue.
- Non-limiting examples of liposomes include the multilamellar vesicle (MLV), the small unilamellar vesicle (SUV), and the large unilamellar vesicle (LUV).
- LUV multilamellar vesicle
- SUV small unilamellar vesicle
- LUV large unilamellar vesicle
- Liposomal physicochemical properties can be modulated to optimize penetration through biological barriers and retention at the site of administration, and to reduce a likelihood of developing premature degradation and toxicity to non-target tissues.
- Optimal liposomal properties depend on the administration route: large-sized liposomes show good retention upon local injection, small-sized liposomes are better suited to achieve passive targeting. PEGylation reduces the uptake of the liposomes by the liver and spleen, and increases the circulation time, resulting in increased localization at the inflamed site due to the enhanced permeability and retention (EPR) effect. Additionally, liposomal surfaces can be modified to achieve selective delivery of the encapsulated drug to specific target cells.
- targeting ligands include monoclonal antibodies, vitamins, peptides, and polysaccharides specific for receptors concentrated on the surface of cells associated with the disease.
- Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, elixir, nanosuspension, aqueous or oily suspensions, drops, syrups, and any combination thereof.
- Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include granulating agents, binding agents, lubricating agents, disintegrating agents, sweetening agents, glidants, anti-adherents, anti-static agents, surfactants, anti-oxidants, gums, coating agents, coloring agents, flavoring agents, coating agents, plasticizers, preservatives, suspending agents, emulsifying agents, plant cellulosic material and spheronization agents, and any combination thereof.
- compositions of the disclosure can be packaged as a kit.
- a kit includes written instructions on the administration/use of the composition.
- the written material can be, for example, a label.
- the written material can suggest conditions methods of administration.
- the instructions provide the subject and the supervising physician with the best guidance for achieving the optimal clinical outcome from the administration of the therapy.
- the written material can be a label.
- the label can be approved by a regulatory agency, for example the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), or other regulatory agencies.
- FDA U.S. Food and Drug Administration
- EMA European Medicines Agency
- a compound of the disclosure can be administered as an intranasal spray.
- a compound can be packaged in a pressurized aerosol container with suitable propellants and adjuvants.
- the propellants are hydrocarbon propellants, such as propane, butane, or isobutene.
- aerosol formulations can include other ingredients, such as co-solvents, stabilizers, surfactants, antioxidants, lubricants, and pH adjusters. The aerosol formulations can be administered using a metered dose inhaler.
- a compound of the disclosure can be administered as a sprayable powder.
- a compound can be administered as an inhalable dry powder.
- the powder formulation can include pharmaceutically acceptable excipients, such as monosaccharides (e.g., glucose, arabinose), disaccharides (e.g., lactose, saccharose, maltose), oligosaccharides or polysaccharides (e.g., dextran), polyalcohols (e.g., sorbitol, mannitol, xylitol), salts (e.g., sodium chloride, calcium carbonate), or any combination thereof.
- a compound can be administered as a solution, suspension, or a dry powder.
- a compound can be administered in a non-pressurized form using a nebulizer or an atomizer.
- lower systemic drug exposure can lower the risk of bleeding, gastrointestinal side effects, liver toxicity, fluid retention or edema, neutropenia or leukopenia, anemia, or infection.
- lower systemic drug exposure can lower the risk of gastrointestinal side effects, such as nausea, vomiting, or diarrhea.
- a compound of the disclosure can be administered directly to the nasal cavity.
- a compound can be administered intranasally in the form of a vapor or drops.
- a compound can be administered using a intranasal delivery device, such as a rhinyle catheter, multi-dose dropper, unit-dose pipette, or vapor inhaler.
- a compound can be delivered using a squeeze bottle, multi-dose metered-dose spray pump, single or duo-dose spray pump, or a bidirectional multi-dose spray pump.
- a compound can be delivered using an atomizer.
- a compound can be delivered using a nebulizer.
- a compound can be administered intranasally in the form of a powder.
- a compound can be delivered using mechanical powder sprayer, breath actuated inhaler, or a insufflator.
- a compound can be delivered using a mechanical powder spray device.
- a compound can be delivered using a multi-dose powder inhaler, single or duo-dose capsule inhaler, or a nasal inhaler.
- a compound can be delivered using a insufflator, or a breath-powered bi-directional delivery system.
- a compound of the disclosure can be administered to a subject using minimally invasive surgery. In some embodiments, a compound of the disclosure can be administered to a subject using BrainPath®, a trans-sulcal system for subcortical surgery. In some embodiments, a compound of the disclosure can be administered to a subject as a combinatory neuroprotective treatment that is delivered directly to a hematoma site.
- compositions described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a therapeutic agent can vary.
- the compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to lessen a likelihood of the occurrence of the disease or condition.
- the compositions can be administered to a subject during or as soon as possible after the onset of the symptoms.
- the administration of the therapeutic agents can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms.
- NAC or a NAC derivative to treat a CNS condition.
- NAC or a NAC derivative id administered with a second therapeutic agent to treat a CNS condition.
- NAC is administered to a subject with a prostaglandin to treat a CNS condition.
- NAC is administered with prostaglandin E2 (PGE 2 ) to treat a CNS condition.
- PGE 2 prostaglandin E2
- co-administration of NAC and PGE 2 allows the therapeutic dose of NAC and PGE 2 to be lower than when NAC and PGE 2 are administered alone.
- compositions described herein can be in unit dosage forms suitable for single administration of precise dosages.
- the formulation is divided into unit doses containing appropriate quantities of one or more compound.
- the unit dosage can be in the form of a package containing discrete quantities of the formulation.
- Non-limiting examples are liquids in vials or ampoules.
- Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with a preservative.
- Formulations for parenteral injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.
- a compound of the disclosure can be administered to a subject in a composition in an amount of about 1 mg/kg to about 10 mg/kg. In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1-50 mg/kg. In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1-75 mg/kg. In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, or about 10 mg/kg.
- a compound described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg, about 1400 mg, about 1450 mg, about 1500 mg, about 1550 mg
- CNS conditions for example, mild traumatic brain injury.
- standard physical and neurological examinations, and neuropsychometric batteries and scales with broader applicability e.g., Glasgow coma scale
- neuropsychometric batteries and scales with broader applicability e.g., Glasgow coma scale
- PCSS Post-Concussion Symptom Score
- the PCSS score consists of 22 items that evaluate symptoms on a 7-point scale. 0 correlates to no symptoms, and 6 correlates to severe symptoms. PCSS scores have utility for subjects ages 11 and above in identifying individuals with clinically-diagnosed concussion, and in predicting prolonged recovery. PCSS scores have also demonstrated test-retest reliability.
- GSC Graded Symptom Checklist
- the GSC consists of 16 items scored on a 7-point scale.
- the GSC scale is applicable to subjects ages 13 and above, and incorporates a three-factor structure (cognitive, somatic, and neurobehavioral).
- the GSC scale has demonstrated internal validity, test-retest reliability, and convergent validity with respect to balance and cognitive performance.
- SCAT is a standardized tool that is used by healthcare professionals, and incorporates other assessment scales, such as GCS, Maddocks questions for memory assessment, PCSS, and other neurological and cognitive tests.
- ImPACT is a computerized test battery with 3 components, such as demographic data, neuropsychological testing, and PCSS. ImPACT has the advantage of including assessments of cognition (e.g., attention, processing speed, impulsivity, and reaction time). In a combination with a scale for mTBI symptoms, ImPACT has a sensitivity of 81.9%, and a specificity of 89.4%. ImPACT is not subject to substantial practice effects.
- the King-Devick scale is a brief test administered acutely following head injury in which the subject must read patterns of letters and numbers on test cards.
- the King-Devick scale assess language, attention, and eye movements, all of which can be impaired in a CNS condition, for example, concussion.
- the test-retest reliability of the King-Devick scale over a period of 1-2 years compares is comparable to other standard assessment methods.
- Electrophysiological techniques, imaging techniques, and blood tests can be used to assess the CNS condition of a subject.
- Event-related potentials EPRs
- EEG computer-processed electroencephalogram
- CNS computer-processed electroencephalogram
- CNS computer-processed electroencephalogram
- MRI magnetic resonance imaging
- diffusion tensor imaging can be used to diagnose or track the progression of a CNS condition.
- MRI can be used to determine the levels of metabolites in the brain and assess the progress of a CNS disease. In some embodiments, MRI can be used to quantify metabolite levels in the range of ⁇ moles/g, such as N-acetylaspartate, lactate, glutamate, gamma-aminobutyric acid, and glutathione.
- mice C57BL/6 and pregnant CD1 mice of 10-12 weeks were used.
- the animals were housed in a pathogen-free facility on a 12-hour light/dark cycle, and were provided ad libitum access to food and water, unless stated otherwise.
- 171 adult male Sprague Dawley rates ( ⁇ 350 g-400 g) were used in the studies to examine the effects of NAC.
- 40 mg/kg or 75 mg/kg doses of NAC were given to mice I.P. 2 h after collagenase infusion and thereafter in the mice efficacy studies.
- Saline was used as a control.
- the body temperature, edema, eicosanoids, cerebral bleeding, behavior, and lesion volume (28 day survival) of the animals were assessed. Animals were randomly assigned to groups, and data were analyzed blind.
- mice Primary cortical neurons were collected from embryonic (E15) CD1 mice. The cortices of the mice were dissected, homogenized, and plated in minimum essential medium containing 10% fetal bovine serum (FBS), 5% horse serum, and 1% penicillin/streptomycin in 96-well plates, 6-well plates, or 10-cm dishes. The neurons were maintained at 37° C. with 5% CO 2 . All experiments were conducted 24 hours after plating.
- FBS fetal bovine serum
- horse serum 5% horse serum
- penicillin/streptomycin penicillin/streptomycin
- Ferroptosis is a type of programmed cell death that is dependent on iron, and is characterized by the accumulation of lipid peroxides. Ferroptosis is genetically and biochemically distinct from other forms of regulated cell death such as apoptosis. Ferroptosis is initiated by the failure of the glutathione-dependent antioxidant defenses, resulting in unchecked lipid peroxidation and eventual cell death.
- hemin a blood breakdown product.
- NAC 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
- trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
- trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
- ⁇ -carotene 0.1 ⁇ M to 100 ⁇ M
- ⁇ -lipoic acid (0.01 mM to 2 mM
- glutathione ethyl ester (1 mM to 10 mM
- oxothiazolidine-4-carboxylate 1 mM to 10 mM
- cystamine 0.1 ⁇ M to 10 ⁇ M
- nordihydroguaiaretic acid 0.1 ⁇ M to 10 ⁇ M.
- Cell viability was analyzed 24 h after treatment. The cells were rinsed with warm phosphate-buffered saline (PBS) and assessed using an MTT assay. The fidelity of the MTT assays in measuring viability was verified by calcein-AM/ethidium homodimer-1 staining (Live/Dead assay).
- PBS warm phosphate-buffered saline
- mice Male C57BL/6 mice (8 to 10 weeks of age) or mice (10 to 12 weeks of age) were anesthetized with isoflurane (2% to 5%) and placed on a stereotaxic frame. During the procedure, the animal's body temperature was maintained at 37° C. with a homeothermic blanket. 1 mL of collagenase (0.075 IU) was infused into the right striatum at a flow rate of 0.120 ⁇ L/min using a Nanomite® syringe pump and a syringe. Relative to the bregma point, the stereotaxic coordinates of the injection were: lateral, ⁇ 0.20; anteroposterior, 0.62; and dorsoventral, ⁇ 0.40.
- mice In control animals, 1 mL of saline was infused.
- the treatment group received NAC (75 mg/kg or 300 mg/kg in normal saline, I.P.) once a day for 7 days starting at 2 h after collagenase infusion.
- NAC 40 mg/kg, I.P.
- PGE 2 10 ⁇ M, ICV
- the control groups received the vehicle (normal saline) alone.
- the animals were randomized to sham or ICH groups.
- the identities of the mice that received vehicle or NAC were masked to surgeons who performed the experiments. The identities of the animals were revealed after collection of the data. Proper postoperative care was provided until the animals recovered completely.
- the corner task assessed integrated sensorimotor function in the stimulation of vibrissae (sensory neglect) and rearing (motor response). Mice were placed between two cardboard pieces that formed a corner with a 30° angle. While maintaining the 30° angle, the boards were gradually moved toward the mouse until the mouse approached the corner, reared upward, and turned 180° to face the open end. The direction (left or right) in which the mouse turned was recorded for each trial. Ten trials were performed for each mouse.
- adhesive tape was placed on the planter region of the forward paw (right and left) of each mouse. The time from which the tape was applied to when the mouse successfully removed the tape was recorded for each paw. A maximum of 300 s for each paw was allowed.
- Neurodegeneration of cells was assessed in mice with collagenase-induced ICH using Fluoro-Jade® B staining.
- 40 ⁇ M brain sections were mounted on gelatin-coated slides and dried at room temperature overnight. The sections were immersed in a graded series of alcohol solutions before being immersed in a 0.06% potassium permanganate (KMnO 4 ) solution for 15 min. Sections were washed with water before being immersed in a 0.001% Fluoro-Jade® staining solution with gentle shaking in the dark for 30 min. The sections were then washed with water and dried overnight at room temperature in the dark before being dehydrated and coverslipped with DPX.
- a graded series of alcohol solutions before being immersed in a 0.06% potassium permanganate (KMnO 4 ) solution for 15 min.
- Sections were washed with water before being immersed in a 0.001% Fluoro-Jade® staining solution with gentle shaking in the dark for 30 min. The sections were then washed with
- Fluoro-Jade® B staining was examined within perihematoma or hematoma regions using a fluorescence microscope. Quantification of Fluoro-Jade® B staining was performed using three brain sections (anterior to posterior of hematoma) using Metamorph analysis.
- XFM X-ray fluorescence microscopy
- WGCNA Weighted Gene Coexpression Network Analysis
- RNA was prepared using a NucleoSpin® RNA II kit. Duplex real-time PCR reactions were performed with gene expression assays using 6-carboxyfluorescein-labeled probes for ALOX5 (Mm 01182747_m1) and ALOX5AP (Mm 01218551_m1). Expression levels were normalized to ⁇ -actin gene expression levels, which were determined with a VICTM-labeled probe. All experiments were performed using a real-time PCR system.
- Enzymatic reactions were initiated by adding approximately 100 nM-300 nM ammonium sulfate-precipitated wildtype enzyme.
- IC 50 values were obtained by determining the enzymatic rate at a minimum of five inhibitor concentrations, plotting the enzymatic rate against inhibitor concentration, and performing a hyperbolic saturation curve fit. Inhibitor concentrations were assayed in duplicate or triplicate.
- Example 2 NAC Abrogated Hemin Toxicity In Vitro; NAC Reduced Neuronal Death and Improved Functional Recovery in an In Vivo Model of ICH
- the ability of NAC to protect cells was investigated in a hemin model of hemorrhagic stroke.
- the in vitro model of ICH involved the administration of hemin, a breakdown product of hemoglobin from lysed blood, to trigger cell death.
- Treatment of primary cortical neurons with 100 ⁇ M hemin induced widespread cell death through a ferroptotic mechanism, which was quantified with MTT and qualitatively observed using live/dead staining. Living cells were labeled with calcein-AM, and dead cells were labeled with ethidium homodimer.
- FIG. 1 shows representative live/dead images of primary cortical neurons 24 h after treatment with saline (Ctrl), NAC (1 mM), hemin (100 ⁇ M) and hemin (100 ⁇ M)+NAC (1 mM). Scale bars: 100 ⁇ m.
- NAC hemin-induced ferroptosis
- FIG. 4 shows that NAC reduced neuronal degeneration as monitored by Fluoro-Jade® staining in the perihematomal regions of the mouse brain.
- the white arrows highlight the increased numbers of degenerating neurons in the ICH-treated group (middle panel).
- Neuronal degeneration was reduced by treatment with NAC (right panel).
- Scale bar 100 ⁇ m.
- mice with striatal hemorrhage showed a preference for ipsilateral turns because of deficits in the weight-balancing movements of the limbs contralateral to the injury. Mice with striatal hemorrhage also exhibited spatial neglect.
- the preference for ipsilateral turns was normalized in NAC-treated mice, which was measured by the corner turn task. The deficits were corrected by administration of 300 mg/kg NAC, but not 75 mg/kg NAC, as measured by the corner turn task.
- the tape removal task is behavior that represents a form of sensory neglect. Analysis of the tape removal task showed that sensory neglect of NAC-treated mice 1, 3, and 7 days after ICH improved significantly. The improvements in sensory neglect were observed for mice treated with 300 mg/kg NAC, but not for mice treated with 75 mg/kg NAC.
- FIG. 7 shows the results of an adhesive tape removal task on various experimental days for sham-infused mice, collagenase-infused ICH mice without NAC treatment, or collagenase-infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg. Significance was determined by two-way ANOVA and Bonferroni's post hoc test. The graph shows mean ⁇ SEM. The data show that NAC enhances functional recovery in the collagenase ICH mouse model.
- FIG. 8 shows a schematic of an experimental design investigating the effect of NAC in a collagenase-infused mouse model of ICH. Measurements of hematoma size 24 h after collagenase injection verified that NAC (300 mg/kg) did not inhibit or affect collagenase activity. The data demonstrate that the significant behavioral benefits could not be attributed to the suppression of collagenase activity by NAC.
- FIG. 11 shows a graph showing percentage of swelling (brain edema) by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC. Significance was determined by one-way ANOVA followed by Dunnett's comparison test, for vehicle-treated mice and ICH mice with or without NAC treatment. The graph shows mean ⁇ SEM.
- FIG. 14 PANEL A shows the effect of NAC, trolox (TRO), and ⁇ -lipoic acid (LA) in preventing hemin-induced ferroptosis in primary cortical neurons as measured by MTT assay.
- FIG. 14 PANEL B shows that combinations of non-protective concentrations of NAC, TRO, or LA failed to synergize in preventing hemin-induced ferroptosis in primary cortical neurons.
- Reactive lipid oxidants can be produced enzymatically via specific enzymes, or non-enzymatically via direct oxidant modification. Structurally diverse, but well characterized pharmacological tools were used to understand how hemin kills neurons.
- Neuronal membranes are composed of phospholipid bilayers where arachidonic acid (AA) is esterified into phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. Following brain injury, AA is liberated by increases in calcium-dependent, phospholipase A2, or phospholipase C activity.
- Released AA can be oxidized non-enzymatically by oxidants or enzymatically by cyclooxygenase, lipoxygenase, or epoxygenase enzymes to produce bioactive lipid mediators, such as isoprostanes, hydroxynonenol, malondialdehyde, hydroxy-PUFAs (HETEs), epoxy-PUFAs (EETs), prostaglandins, and leukotrienes, which regulate homeostatic and inflammatory processes.
- bioactive lipid mediators such as isoprostanes, hydroxynonenol, malondialdehyde, hydroxy-PUFAs (HETEs), epoxy-PUFAs (EETs), prostaglandins, and leukotrienes, which regulate homeostatic and inflammatory processes.
- a systematic pharmacological screening of oxidized lipid species inhibitors in the context of hemin-induced cell death was performed in primary cortical neurons.
- Primary cortical neurons were co-treated with hemin and a non-specific or enzymatic lipid peroxidation inhibitor.
- the MTT assays were performed 18 h following the co-treatment.
- the screening identified the non-specific inhibitor ⁇ -carotene and selective 5-lipoxigenase (5-LOX) inhibitors as agents that protected against hemin-induced toxicity in primary cortical neurons.
- Test tube assays involving recombinant ALOX5 verified that each of the inhibitors inhibited ALOX5 activity with high potency. NAC and ⁇ -carotene, which were protective, did not inhibit ALOX5 activity.
- FIG. 15 PANEL A shows that Zileuton was effective in inhibiting ALOX5.
- FIG. 15 PANEL B shows that BW-4AC was effective in inhibiting ALOX5.
- FIG. 15 PANEL C shows that NAC was not effective at inhibiting ALOX5. Significance was determined by two-way ANOVA and Bonferroni's post hoc test.
- the data show that 5-lipoxygenase-derived lipid metabolites are necessary for hemin-induced ferroptosis in vitro.
- the data also show NAC, trolox, and ⁇ -carotene may act to neutralize the toxic metabolic products of ALOX5 activity rather than ALOX5 activity itself.
- Inhibitors of arachidonate-5-lipoxygenase activating protein (FLAP), an integral membrane protein within the nuclear envelope, which serves to recruit ALOX5 to the membrane, may also be protective.
- FLAP arachidonate-5-lipoxygenase activating protein
- TABLE 1 shows that a chemical FLAP inhibitor (MK 561) significantly reduced hemin-induced death.
- FIG. 16 illustrates a schematic model of ALOX5 pathway activation in ICH.
- FIG. 17 shows that ICH increased ALOX5 protein levels in nuclear fractions, as verified by immunoblot analysis.
- ALOX5 metabolizes AA to produce 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which forms the inflammatory mediators leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs, including LTC4, LTD4, and LTE4).
- the metabolites of ALOX5 were monitored using gas chromatography/negative ion chemical ionization mass spectrometry (GC/MS) to assess the activation of ALOX5 in a rodent model of ICH.
- GC/MS analysis of ICH striatum showed a significant time-dependent increase in the ALOX5 products: 5-HETE, LTB4, and LTE4.
- FIG. 18 PANEL A shows the increase in ALOX-derived 5-HETE after ICH in rats.
- FIG. 18 PANEL B shows the increase in ALOX-derived LTB4 after induction of ICH in rats.
- FIG. 18 PANEL C shows the increase in ALOX-derived LTE4 after induction of ICH in rats.
- the data were consistent with transcriptomic analyses of brain tissues from human ICH patients that identified an increased expression of mRNAs encoding ALOX5 and 5-LOX-activating protein FLAP (ALOX5AP).
- ALOX5AP 5-LOX-activating protein FLAP
- WGCNA Weighted Gene Coexpression Network Analysis
- NAC, trolox, and more selective ALOX5 inhibitors can inhibit the incorporation of ALOX5-derived reactive lipids into proteins. Electrophilic attack by ALOX5 products could alter cellular protein-mediated signaling to trigger cell death.
- Arachidonic acid (AA) tagged with biotin (Bt-AA) was used to monitor the formation of covalent protein adducts. To test whether hemin was sufficient to catalyze the formation of protein-reactive lipid species, primary neurons were treated with hemin at concentrations of 5 ⁇ M-50 ⁇ M for 4 h. Lipid protein adducts were detected by Western blots probed with Streptavidin-HRP.
- FIG. 22 shows an image of a Western blot probed with streptavidin-HRP for detection of lipid protein adducts in primary cortical neurons treated with hemin at concentrations of 0, 5, 10, 25, and 50 ⁇ M for 4 h.
- NAC treatment decreased hemin-induced ALOX5 gene expression and the generation of hemin-induced oxidized lipid species.
- Non-protective doses of NAC (0.1 mM), vitamin E (1 ⁇ M), and zileuton (ALOX5 inhibitor, 1 ⁇ M) did not decrease AA-protein adduct formation.
- FIG. 23 shows an image of lipid protein adducts probed with streptavidin-HRP, demonstrating that NAC (1 mM), a-tocopherol (10 ⁇ M) and zileuton (10 ⁇ M) attenuated formation of hemin-induced oxidized lipid protein adducts. The blot is representative from replicates of three experiments.
- FIG. 24 shows quantification of the bands shown in FIG. 17 , revealing a reduction in oxidized lipid protein adducts.
- the bands that were evident in the control wells were the endogenous biotin-containing carboxylases, and the bands confirmed equal gel loading between the groups.
- the results showed that the reactive lipids that were incorporated into proteins were abrogated by ALOX5 inhibitors (NAC or vitamin E).
- ALOX5 lipid radical scavenging agents
- ALOX5 inhibitors or chain-breaking antioxidants such as vitamin or NAC.
- Example 8 NAC Efficacy Requires Increases in Glutathione; Protection by NAC is Mimicked by Glutathione S-Transferase A4
- Cysteine is the rate-limiting precursor for the synthesis of glutathione with ⁇ -glutamylcysteine synthetase and glutathione synthetase.
- NAC undergoes hydrolysis to liberate cysteine, which is transported by the alanine-serine cysteine (ASC) system.
- ASC alanine-serine cysteine
- BSO buthionine sulfoximine
- glutathione levels with (1) a membrane permeable form of glutathione (glutathione ethyl ester); (2) the cysteine prodrug L-oxothiazolidine decarboxylate; or (3) glial Nrf2 activator cystamine or nordihydroguaiaretic acid (NDGA), prevented hemin-induced death as effectively as NAC in vitro.
- glutathione ethyl ester glutathione ethyl ester
- cysteine prodrug L-oxothiazolidine decarboxylate or (3) glial Nrf2 activator cystamine or nordihydroguaiaretic acid (NDGA)
- NDGA nordihydroguaiaretic acid
- cysteine is the rate-limiting precursor for glutathione synthesis
- NAC or OTC increased glutathione levels.
- Activation of Nrf-2 increased transcriptional levels of cysteine transporters, glutathione synthesizing enzymes, and glutathione-related enzymes involved in suppression of lipid peroxidation.
- FIG. 27 illustrates the neutralization of oxidized lipid species by GSTA 4 .
- Adenoviral overexpression of GSTA 4 protected cells from hemin-induced toxicity.
- FIG. 28 shows the effects of adenovirus-mediated overexpression of GFP (Ad GFP) and GST (Ad GST) on the survival of neurons with or without hemin treatment. The data show that adenoviral overexpression of GSTA 4 protected cells from hemin-induced ferroptosis.
- FIG. 31 illustrates that ICH-induced ATF4 dependent Chac1 degraded glutathione to 5-oxoproline.
- FIG. 32 shows the relative Chac1 gene expression levels as measured by quantitative RT-PCR in neurons of sham-injected mice with or without NAC treatment, and of collagenase-infused ICH mice with or without NAC treatment. The data show that ATF4-dependent Chad was significantly induced by NAC. ATF4-dependent Chad induction was significantly reduced in ICH mice. The data demonstrate that NAC reduced nuclear 5-lipoxigenase accumulation in ICH or hemin-treated neurons.
- Example 9 Targeted Lipidomics Identified Prosurvival Prostaglandin PGE 2 as Providing Synergy with NAC to Treat ICH
- FIG. 34 PANEL A shows F 2 isoprostane levels in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. The data show that F 2 isoprostanes levels were unchanged.
- FIG. 34 PANEL B shows prostaglandin E2 (PGE 2 ) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. A significant increase in prostaglandin PGE 2 levels was observed 12 h post-ICH.
- FIG. 34 PANEL E shows 6-keto-prostaglandin F 2 (6-keto PGF 2 ) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. A significant increase in prostaglandin 6-keto-PGF 2 levels was observed 12 h post-ICH. Data from sham control brains from each time point was pooled for the analysis. Significance was determined by one-way ANOVA and Dunnet's multiple comparison test. All graphs are mean ⁇ SEM.
- NAC and PGE 2 The ability of NAC and PGE 2 to provide a synergistic effect on functional recovery after ICH was evaluated in vivo.
- NAC 40 mg/kg; i.p., a dose ineffective in mice and rats
- dmPGE 2 10 ⁇ M; ICV
- FIG. 36 illustrates a schematic of an experimental design for combinatorial delivery of NAC and PGE 2 after ICH.
- FIG. 39 PANEL A shows behavioral analysis results for the corner task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE2, or NAC+PGE2.
- FIG. 39 PANEL B shows behavioral analysis results for the adhesive tape removal task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE2, or NAC+PGE2.
- NAC+PGE 2 improved spatial neglect (corner task) and sensory neglect (adhesive tape removal task) behavioral deficits induced by ICH.
- Observations from the behavioral analysis show that targeted lipidomics in an ICH context has identified that PGE 2 provides a synergistic protective effect with NAC in both an in vitro hemin model and an in vivo collagenase model of ICH.
- ALOX5 inhibitors did not synergize with PEG 2 (data not shown). NAC may alter PEG 2 signaling directly rather than via its effects on ALOX5-derived products.
- Example 11 Intranasal Administration of NAC and PGE 2 to Treat CNS Conditions
- a college athlete suffers a concussion and is diagnosed with a concussion using standard evaluation, such as CogScreen, ImPACT v2, or SCAT3.
- the athlete is given a dose of NAC of 1 mg/kg-10 mg/kg and PGE 2 dose intranasally three hours after the concussion, and a similar dose on each of the following fourteen days.
- the athlete's scores on the evaluations are monitored.
- a method of treating a central nervous system condition comprising administering to a subject in need thereof a therapeutically-effective amount of a 5-lipoxygenase activating protein (FLAP) inhibitor.
- FLAP 5-lipoxygenase activating protein
- neuropsychiatric disorder is bipolar disorder.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Psychiatry (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Pain & Pain Management (AREA)
- Otolaryngology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This Application claims the benefit of U.S. Provisional Application No. 62/500,381, filed May 2, 2017, which is incorporated herein by reference in its entirety.
- This invention was made with government support under P01 NIA AG014930,
Project 1 to RRR by the National Institutes of Health. The government has certain rights in the invention. - Hemorrhagic stroke, defined as bleeding within the brain parenchyma, accounts for 13-15% of all stroke cases. Nearly half of afflicted patients die, and survivors commonly experience long-term disability. Identification of novel targets to treat hemorrhagic stroke is an important unmet public need.
- Each patent, publication, and non-patent literature cited in the application is hereby incorporated by reference in its entirety as if each was incorporated by reference individually.
- In some embodiments, the disclosure provides a method of treating a central nervous system condition comprising administering to a subject in need thereof a therapeutically-effective amount of a 5-lipoxygenase activating protein (FLAP) inhibitor.
-
FIG. 1 shows representative live/dead images of primarycortical neurons 24 hours (h) after treatment with saline (Ctrl), NAC (1 mM), Hemin (100 μM) and Hemin (100 μM)+NAC (1 mM). Scale bars: 100 μm. -
FIG. 2 shows that NAC protected primary cortical neurons from hemin-induced toxicity in a concentration dependent manner. The graph shows mean±SEM. -
FIG. 3 shows a schematic of an experimental design for the delivery of NAC post-intracerebral hemorrhage (ICH) in mice. -
FIG. 4 shows that NAC reduced neuronal degeneration as monitored by Fluoro-Jade® staining in the perihematomal regions of the mouse brain. The white arrows highlight the increased numbers of degenerating neurons in the ICH-treated group (middle panel). Neuronal degeneration was reduced by treatment with NAC (right panel). Scale bar: 100 μm. -
FIG. 5 shows the quantification of Fluoro-Jade® positive cells in sham-infused mice and in collagenase-infused ICH mice with or without NAC treatment. The graph shows mean±SEM. -
FIG. 6 shows the corner task scores on various experimental days for sham infused mice, collagenase infused ICH mice without NAC treatment, and collagenase infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg. The graph shows mean±SEM. -
FIG. 7 shows showing the results of an adhesive tape removal task on various experimental days for sham-infused mice, collagenase-infused ICH mice without NAC treatment, or collagenase-infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg. The graph shows mean±SEM. -
FIG. 8 shows a schematic of an experimental design investigating the effect of NAC in a collagenase-infused mouse model of ICH -
FIG. 9 shows a panel of serial brain sections from saline-treated mice and ICH mice with or without NAC treatment. -
FIG. 10 shows a graph quantifying hematoma sizes by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC. The graph shows mean±SEM. -
FIG. 11 shows a graph showing percentage of swelling (brain edema) by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC. The graph shows mean±SEM. -
FIG. 12 shows a schematic of an experimental design for evaluating the total concentrations of iron in the brain following ICH in vehicle-treated and NAC-treated mice. -
FIG. 13 PANEL A shows X-ray fluorescence spectroscopy images from coronal sections in collagenase-infused ICH mice with or without NAC treatment after 7 days.FIG. 13 PANEL B shows total iron levels in the cortex, intrahematomal, and perihematomal regions of the brain of collagenase-infused ICH mice with or without NAC treatment. The graph shows mean±SEM. -
FIG. 14 PANEL A shows the effect of NAC, trolox (TRO), and α-lipoic acid (LA) in preventing hemin-induced ferroptosis in primary cortical neurons as measured by MTT assay.FIG. 14 PANEL B shows that combinations of non-protective concentrations of NAC, TRO, or LA failed to synergize in preventing hemin-induced ferroptosis in primary cortical neurons. The graphs show mean±SEM. -
FIG. 15 PANEL A shows that Zileuton was effective in inhibiting ALOX5.FIG. 15 PANEL B shows that BW-4AC was effective in inhibiting ALOX5.FIG. 15 PANEL C shows that NAC was not effective at inhibiting ALOX5. -
FIG. 16 illustrates a schematic model of ALOX5 pathway activation in ICH. -
FIG. 17 shows that ICH increased ALOX5 protein levels in nuclear fractions, as verified by immunoblot analysis. -
FIG. 18 PANEL A shows the increase in ALOX-derived 5-HETE after induction of ICH in rats.FIG. 18 PANEL B shows the increase in ALOX-derived LTB4 after induction of ICH in rats.FIG. 18 PANEL C shows the increase in ALOX-derived LTE4 after induction of ICH in rats. -
FIG. 19 shows the results of the transcriptomic analysis of brain tissues obtained from control (n=8) and ICH (n=6) patients. -
FIG. 20 shows that WGCNA revealed transcripts most closely co-regulated with ALOX5. -
FIG. 21 PANEL A shows that hemin increased ALOX5 levels in a time-dependent manner, while NAC blocked the expression of ALOX5 in primary cortical neurons.FIG. 21 PANEL B shows that hemin increased ALOX AP levels in a time-dependent manner, while NAC blocked the expression of ALOX AP in primary cortical neurons. -
FIG. 22 shows an image of a Western blot probed with streptavidin-HRP for detection of lipid protein adducts in primary cortical neurons treated with hemin at concentrations of 0, 5, 10, 25, and 50 μM for 4 h. -
FIG. 23 shows an image of lipid protein adducts probed with streptavidin-HRP, demonstrating that NAC (1 mM), a-tocopherol (10 μM) and zileuton (10 μM) attenuated formation of hemin induced oxidized lipid protein adducts. -
FIG. 24 shows quantification of the bands shown inFIG. 17 , revealing a reduction in oxidized lipid protein adducts. -
FIG. 25 shows the total glutathione (GSH) levels determined by HPLC analysis in neurons treated with 0 (“Con,” vehicle), 0.1, or 1.0 mM NAC in the presence or absence of hemin. -
FIG. 26 shows the survival rates of neurons treated with 0 mM, 0.1 mM, 0.25 mM, 0.5 mM, 0.75 mM, or 1.0 mM NAC in the presence of vehicle (Con), hemin, buthionine sulphoximine (BSO) or BSO+hemin. -
FIG. 27 illustrates the neutralization of oxidized lipid species by GSTA4. -
FIG. 28 shows the effects of adenovirus-mediated overexpression of GFP (Ad GFP) and GST (Ad GST) on survival of neurons with or without hemin treatment. -
FIG. 29 illustrates an experimental design to study the effect of NAC on total glutathione levels in the striatum of a collagenase infusion mouse model of ICH. -
FIG. 30 shows total glutathione levels by HPLC analysis in the striatum of sham injected mice with or without NAC treatment, and in collagenase-infused ICH mice with or without NAC treatment. -
FIG. 31 shows illustrates that ICH-induced ATF4 dependent Chac1 degraded glutathione to 5-oxoproline. -
FIG. 32 shows the relative Chac1 gene expression levels as measured by quantitative RT-PCR in neurons of sham injected mice with or without NAC treatment, and of collagenase-infused ICH mice with or without NAC treatment. -
FIG. 33 illustrates an experimental design for analyzing eicosanoid levels post-ICH in mice. -
FIG. 34 PANEL A shows F2 isoprostane levels in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.FIG. 34 PANEL B shows prostaglandin E2 (PGE2) levels as determined by GC/MS analysis in sham injected mice and in collagenase-infused ICH mice over time following collagenase injection.FIG. 34 PANEL C shows prostaglandin D2 (PGD2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.FIG. 34 PANEL D shows prostaglandin F2 (PGF2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection.FIG. 34 PANEL E shows 6-keto-prostaglandin F2 (6-keto PGF2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. -
FIG. 35 shows survival rates of primary cortical neurons treated with vehicle (Con) or with various concentrations of NAC, mPGE2, or mPGE2+NAC. -
FIG. 36 illustrates a schematic of an experimental design for combinatorial delivery of NAC and PGE2 after ICH. -
FIG. 37 shows photographs showing Fluoro-Jade® staining of neurons in sham injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC or NAC+PGE2. -
FIG. 38 quantifies the Fluoro-Jade® staining of neurons in sham injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC or NAC+PGE2. -
FIG. 39 PANEL A shows behavioral analysis results for the corner task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE2, or NAC+PGE2.FIG. 39 PANEL B shows behavioral analysis results for the adhesive tape removal task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE2, or NAC+PGE2. - Intracerebral hemorrhage (ICH), also known as cerebral bleeding, is a type of intracranial bleed that occurs within the brain tissue or ventricles. Symptoms can include headache, one-sided weakness, vomiting, seizures, fever, decreased level of consciousness, and neck stiffness. Symptoms often worsen over time. ICH is also a stroke subtype that accounts for 13-15% of all stroke cases, and remains a significant cause of mortality and morbidity. Nearly half of the afflicted patients die, and survivors commonly suffer from long-term disability. Identification of novel targets to treat hemorrhagic stroke is an unmet public need.
- Causes of ICH include brain trauma, aneurysms, arteriovenous malformations, and brain tumors. The largest risk factors for spontaneous bleeding are high blood pressure and amyloidosis. Other risk factors for ICH include alcoholism, low cholesterol, blood thinners, and cocaine use. Diagnosis is typically conducted by computed tomography angiography (CTA) and magnetic resonance angiography (MRA) scans.
- Stoichiometric use of antioxidants, such as vitamin E and Cerovive® (NXY-059), for stroke treatment has been decreasing because the concentrations required for the antioxidants is relatively high compared to therapeutic agents that work catalytically. For stoichiometric antioxidants, one molecule of antioxidant is used to neutralize one oxidant. If the concentration of an antioxidant drug that reaches the CNS is below the level of injury-induced oxidant production, the antioxidant agent will be ineffective.
- The present disclosure describes the use of a catalytic amount of a compound to treat a neurological disorder. In some embodiments, the disclosure describes the use of a catalytic amount of NAC to treat a CNS condition. In some embodiments, NAC can prevent cell death. In some embodiments, NAC can enhance functional recovery from a CNS condition. The present disclosure also describes the use of NAC to treat a CNS condition by targeting ALOX5-derived reactive lipid species to mediate neuroprotective effects. In some embodiments, the disclosure describes the use of NAC and a second therapeutic agent to treat a CNS condition. The present disclosure also describes a method of treating a CNS condition by administering a 5-lipoxygenase activating protein (FLAP) inhibitor.
- The present disclosure describes the use of a compound to treat a neurological disorder. A neurological disorder is any disorder of the nervous system. Structural, biochemical, or electrical abnormalities in the brain, spinal cord, or other nerves can result in a range of symptoms. Examples of symptoms that arise from neurological disorders include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain, and altered levels of consciousness.
- The present disclosure describes the use of a compound to treat a neurological disorder. In some embodiments, the disclosure describes the use of a compound to treat brain damage, such as cerebral lobe (e.g., basal ganglia, cerebellum, or the brainstem) damage, frontal lobe damage, parietal lobe damage, temporal lobe damage, or occipital lobe damage. In some embodiments, the present disclosure describes the use of a compound to treat brain dysfunction according to type: aphasia (language), dysgraphia (writing), dysarthria (speech), apraxia (patterns of sequences of movements), agnosia (identifying things or people), or amnesia (memory). In some embodiments the present disclosure describes the use of a compound to treat spinal cord disorders, peripheral neuropathy and other peripheral nervous system disorders, cranial nerve disorders (e.g., Trigeminal neuralgia), autonomic nervous system disorders (e.g., dysautonomia, Multiple System Atrophy), or seizure disorders (i.e., epilepsy).
- In some embodiments, the disclosure describes the use of a compound to treat a movement disorder of the central and peripheral nervous system, such as Essential tremor, Amyotrophic lateral sclerosis, Tourette's syndrome, Multiple Sclerosis, and various types of peripheral neuropathy. In some embodiments, the disclosure describes the use of a compound to treat sleep disorders (e.g., narcolepsy), migraines and other types of headaches, or central neuropathy. In some embodiments, the disclosure describes the use of a compound to treat a neuropsychiatric illness, such as attention deficit hyperactivity disorder, autism, or obsessive compulsive disorder.
- The methods of the disclosure can be used to treat a CNS condition. CNS disorders are a group of neurological disorders that affect the structure or function of the brain or spinal cord, which collectively form the CNS. The disclosure describes use of a compound to treat a CNS disorder caused by traumatic brain injury, concussion, post-concussion syndrome, infections, degeneration (e.g., degenerative spinal disorders), structural defects (e.g., anencephaly, hypospadias, spina bifida, microgyria, polymicrogyria, bilateral frontoparietal polymicrogyria, or pachgyria), tumors, autoimmune disorders, or stroke. In some embodiments, the disclosure describes the use of a compound to treat traumatic brain injury. In some embodiments, the disclosure describes the use of a compound to treat subarachnoid hemorrhage. In some embodiments, the disclosure describes the use of a compound to treat concussion. In some embodiments, the disclosure describes the use of a compound to treat post-concussion syndrome.
- In some embodiments, the disclosure describes the use of a compound to treat stroke. Stroke is a medical condition in which poor blood flow to the brain results in cell death. The two main types of strokes are ischemic stroke resulting from a lack of blood flow, and hemorrhagic stroke resulting from bleeding. Signs and symptoms of a stroke may include an inability to move or feel on one side of the body, problems understanding or speaking, and a loss of vision to one side. In some embodiments, the disclosure describes the use of a compound to treat hemorrhagic stroke. In some embodiments, the disclosure describes the use of a compound to treat ICH stroke.
- In some embodiments, NAC prevents cell death or enhances functional recovery by inhibiting one target. In some embodiments, the present disclosure describes the use of a compound to treat a CNS condition by targeting nuclear arachidonate 5-lipoxygenase (ALOX5)-derived reactive lipid species. Following ICH, 5-lipoxygenase-derived lipids are important for cell death. Transcriptomic analyses of brain tissue obtained from human ICH patients have identified an increased expression of mRNAs encoding ALOX5 and 5-LOX-activating protein (ALOX5AP) FLAP. In some embodiments, NAC is administered to a subject, which targets nuclear ALOX5-derived reactive lipid species in mediating neuroprotective effects in vitro and in vivo.
- In some embodiments, NAC prevents cell death or enhances functional recovery by inhibiting more than one target. In some embodiments, NAC prevents cell death or enhances functional recovery by targeting nuclear ALOX5-derived reactive lipid species and products of COX-2 metabolism. In some embodiments, NAC or a compound of the disclosure inhibits FLAP.
- N-acetylcysteine (NAC) is a glutathione prodrug that is used to treat acetaminophen-induced liver failure and to loosen thick mucus individuals with cystic fibrosis or chronic obstructive pulmonary disease. NAC can be taken intravenously, by mouth, or inhaled as a mist. Common side effects of NAC include nausea and vomiting when NAC is administered orally. NAC can also cause skin redness and itching and a non-immune type of anaphylaxis. NAC has multiple putative targets of action, and NAC has poor penetration into the CNS. NAC has been reported to cause nausea and vomiting, induce bronchospasm, slow blood clotting, and induce neurotoxicity in a dose-dependent manner, which can be problematic for patients with hemorrhagic stroke.
- The present disclosure describes the use of at least one compound or a pharmaceutically-acceptable salt thereof to treat a CNS condition. In some embodiments, the disclosure describes the use of NAC or a pharmaceutically-acceptable salt thereof to treat a CNS condition. In some embodiments, the disclosure describes the use of NAC amide or a pharmaceutically-acceptable salt thereof to treat a CNS condition. In some embodiments, the disclosure describes the use of a NAC prodrug or a pharmaceutically-acceptable salt thereof to treat a CNS condition. In some embodiments, the disclosure describes the use of cysteine or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- Cystamine is a disulfide-containing antioxidant compound. In some embodiments, the disclosure describes the use of cystamine or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in the creosote bush (Larrea tridentata). In some embodiments, the disclosure describes the use of NDGA or a pharmaceutically-acceptable salt thereof to treat a CNS condition.
- Any compound of the disclosure can be purified. A compound herein can be least 1% pure, at least 2% pure, at least 3% pure, at least 4% pure, at least 5% pure, at least 6% pure, at least 7% pure, at least 8% pure, at least 9% pure, at least 10% pure, at least 11% pure, at least 12% pure, at least 13% pure, at least 14% pure, at least 15% pure, at least 16% pure, at least 17% pure, at least 18% pure, at least 19% pure, at least 20% pure, at least 21% pure, at least 22% pure, at least 23% pure, at least 24% pure, at least 25% pure, at least 26% pure, at least 27% pure, at least 28% pure, at least 29% pure, at least 30% pure, at least 31% pure, at least 32% pure, at least 33% pure, at least 34% pure, at least 35% pure, at least 36% pure, at least 37% pure, at least 38% pure, at least 39% pure, at least 40% pure, at least 41% pure, at least 42% pure, at least 43% pure, at least 44% pure, at least 45% pure, at least 46% pure, at least 47% pure, at least 48% pure, at least 49% pure, at least 50% pure, at least 51% pure, at least 52% pure, at least 53% pure, at least 54% pure, at least 55% pure, at least 56% pure, at least 57% pure, at least 58% pure, at least 59% pure, at least 60% pure, at least 61% pure, at least 62% pure, at least 63% pure, at least 64% pure, at least 65% pure, at least 66% pure, at least 67% pure, at least 68% pure, at least 69% pure, at least 70% pure, at least 71% pure, at least 72% pure, at least 73% pure, at least 74% pure, at least 75% pure, at least 76% pure, at least 77% pure, at least 78% pure, at least 79% pure, at least 80% pure, at least 81% pure, at least 82% pure, at least 83% pure, at least 84% pure, at least 85% pure, at least 86% pure, at least 87% pure, at least 88% pure, at least 89% pure, at least 90% pure, at least 91% pure, at least 92% pure, at least 93% pure, at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99% pure, at least 99.1% pure, at least 99.2% pure, at least 99.3% pure, at least 99.4% pure, at least 99.5% pure, at least 99.6% pure, at least 99.7% pure, at least 99.8% pure, or at least 99.9% pure.
- The present disclosure describes pharmaceutical compositions comprising NAC, which can be administered to a subject to treat a CNS condition. A pharmaceutical composition of the disclosure can be a combination of any pharmaceutical compound described herein with other chemical components, such as carriers, stabilizers, diluents, dispersing agents, suspending agents, thickening agents, and/or excipients. The pharmaceutical composition facilitates administration of the compound to an organism. Pharmaceutical compositions can be administered in therapeutically-effective amounts as pharmaceutical compositions by various forms and routes including, for example, intravenous, subcutaneous, intramuscular, oral, parenteral, ophthalmic, subcutaneous, transdermal, nasal, vaginal, and topical administration. A pharmaceutical composition can be administered in a local manner, for example, via injection of the compound directly into an organ, optionally in a depot or sustained release formulation or implant.
- A compound of the disclosure can be administered intranasally, and can be formulated into a variety of inhalable compositions, such as solutions, suspensions, vapors, or powders. Intranasal pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- In practicing the methods of treatment or use provided herein, therapeutically-effective amounts of a compound described herein are administered in pharmaceutical compositions to a subject having a disease or condition to be treated. In some embodiments, the subject is a mammal such as a human. A therapeutically-effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used, and other factors. A compound of the disclosure can be used singly or in combination with one or more therapeutic agents as components of mixtures.
- Pharmaceutical compositions can be formulated using one or more physiologically-acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations that can be used pharmaceutically. A formulation can be modified depending upon the route of administration chosen. Pharmaceutical compositions comprising a compound described herein can be manufactured, for example, by mixing, dissolving, emulsifying, encapsulating, entrapping, or compression processes.
- The pharmaceutical compositions of the disclosure can include at least one pharmaceutically-acceptable carrier, diluent, or excipient and compounds described herein as free-base or pharmaceutically-acceptable salt form. Pharmaceutical compositions can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
- Methods for the preparation of compositions comprising a compound described herein include formulating a compound with one or more inert, pharmaceutically-acceptable excipients or carriers to form a solid, semi-solid, or liquid composition. Solid compositions include, for example, powders, tablets, dispersible granules, capsules, and cachets. Liquid compositions include, for example, solutions in which a compound is dissolved, emulsions comprising a compound, or a solution containing liposomes, micelles, or nanoparticles comprising a compound as disclosed herein. Semi-solid compositions include, for example, gels, suspensions and creams. The compositions can be in liquid solutions or suspensions, solid forms suitable for solution or suspension in a liquid prior to use, or as emulsions. These compositions can also contain minor amounts of nontoxic, auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, and other pharmaceutically-acceptable additives.
- Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, powder, gel, nanosuspension, nanoparticle, microgel, aqueous or oily suspensions, emulsion, and any combination thereof.
- Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include binding agents, disintegrating agents, anti-adherents, anti-static agents, surfactants, anti-oxidants, coating agents, coloring agents, plasticizers, preservatives, suspending agents, emulsifying agents, anti-microbial agents, spheronization agents, and any combination thereof.
- A composition of the disclosure can be, for example, an immediate release form or a controlled release formulation. An immediate release formulation can be formulated to allow a compound to act rapidly. Non-limiting examples of immediate release formulations include readily dissolvable formulations. A controlled release formulation can be a pharmaceutical formulation that has been adapted such that release rates and release profiles of the active agent can be matched to physiological and chronotherapeutic requirements or, alternatively, has been formulated to effect release of an active agent at a programmed rate. Non-limiting examples of controlled release formulations include granules, delayed release granules, hydrogels (e.g., of synthetic or natural origin), other gelling agents (e.g., gel-forming dietary fibers), matrix-based formulations (e.g., formulations comprising a polymeric material having at least one active ingredient dispersed through), granules within a matrix, polymeric mixtures, and granular masses.
- In some, a controlled release formulation is a delayed release form. A delayed release form can be formulated to delay a compound's action for an extended period of time. A delayed release form can be formulated to delay the release of an effective dose of one or more compounds, for example, for about 4, about 8, about 12, about 16, or about 24 hours.
- A controlled release formulation can be a sustained release form. A sustained release form can be formulated to sustain, for example, the compound's action over an extended period of time. A sustained release form can be formulated to provide an effective dose of any compound described herein (e.g., provide a physiologically-effective blood profile) over about 4, about 8, about 12, about 16 or about 24 hours.
- Non-limiting examples of pharmaceutically-acceptable excipients can be found, for example, in Remington: The Science and Practice of Pharmacy, Nineteenth Ed (Easton, Pa.: Mack Publishing Company, 1995); Hoover, John E., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. 1975; Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, New York, N.Y., 1980; and Pharmaceutical Dosage Forms and Drug Delivery Systems, Seventh Ed. (Lippincott Williams & Wilkins 1999), each of which is incorporated by reference in its entirety.
- Pharmaceutical compositions described herein can be in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compounds. The unit dosage can be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are packaged injectables, vials, or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with or without a preservative. Formulations for injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.
- Pharmaceutical compositions provided herein, can be administered in conjunction with other therapies, for example, chemotherapy, radiation, surgery, anti-inflammatory agents, and selected vitamins. The other agents can be administered prior to, after, or concomitantly with the pharmaceutical compositions.
- Depending on the intended mode of administration, the pharmaceutical compositions can be in the form of solid, semi-solid or liquid dosage forms, such as, for example, tablets, suppositories, pills, capsules, powders, liquids, suspensions, lotions, creams, or gels, for example, in unit dosage form suitable for single administration of a precise dosage.
- For solid compositions, nontoxic solid carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talc, cellulose, glucose, sucrose, and magnesium carbonate.
- Non-limiting examples of pharmaceutically active agents suitable for combination with compositions of the disclosure include anti-infectives, i.e., aminoglycosides, antiviral agents, antimicrobials, anticholinergics/antispasmotics, antidiabetic agents, antihypertensive agents, antineoplastics, cardiovascular agents, central nervous system agents, coagulation modifiers, hormones, immunologic agents, immunosuppressive agents, and ophthalmic preparations.
- Compounds can be delivered via liposomal technology. The use of liposomes as drug carriers can increase the therapeutic index of a compound. Liposomes are composed of natural phospholipids, and can contain mixed lipid chains with surfactant properties (e.g., egg phosphatidylethanolamine). A liposome design can employ surface ligands for attaching to unhealthy tissue. Non-limiting examples of liposomes include the multilamellar vesicle (MLV), the small unilamellar vesicle (SUV), and the large unilamellar vesicle (LUV). Liposomal physicochemical properties can be modulated to optimize penetration through biological barriers and retention at the site of administration, and to reduce a likelihood of developing premature degradation and toxicity to non-target tissues.
- Optimal liposomal properties depend on the administration route: large-sized liposomes show good retention upon local injection, small-sized liposomes are better suited to achieve passive targeting. PEGylation reduces the uptake of the liposomes by the liver and spleen, and increases the circulation time, resulting in increased localization at the inflamed site due to the enhanced permeability and retention (EPR) effect. Additionally, liposomal surfaces can be modified to achieve selective delivery of the encapsulated drug to specific target cells. Non-limiting examples of targeting ligands include monoclonal antibodies, vitamins, peptides, and polysaccharides specific for receptors concentrated on the surface of cells associated with the disease.
- Non-limiting examples of dosage forms suitable for use in the disclosure include liquid, elixir, nanosuspension, aqueous or oily suspensions, drops, syrups, and any combination thereof. Non-limiting examples of pharmaceutically-acceptable excipients suitable for use in the disclosure include granulating agents, binding agents, lubricating agents, disintegrating agents, sweetening agents, glidants, anti-adherents, anti-static agents, surfactants, anti-oxidants, gums, coating agents, coloring agents, flavoring agents, coating agents, plasticizers, preservatives, suspending agents, emulsifying agents, plant cellulosic material and spheronization agents, and any combination thereof.
- Compositions of the disclosure can be packaged as a kit. In some embodiments, a kit includes written instructions on the administration/use of the composition. The written material can be, for example, a label. The written material can suggest conditions methods of administration. The instructions provide the subject and the supervising physician with the best guidance for achieving the optimal clinical outcome from the administration of the therapy. The written material can be a label. In some embodiments, the label can be approved by a regulatory agency, for example the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), or other regulatory agencies.
- A compound of the disclosure can be administered as an intranasal spray. In some embodiments, a compound can be packaged in a pressurized aerosol container with suitable propellants and adjuvants. In some embodiments, the propellants are hydrocarbon propellants, such as propane, butane, or isobutene. In some embodiments, aerosol formulations can include other ingredients, such as co-solvents, stabilizers, surfactants, antioxidants, lubricants, and pH adjusters. The aerosol formulations can be administered using a metered dose inhaler.
- A compound of the disclosure can be administered as a sprayable powder. In some embodiments, a compound can be administered as an inhalable dry powder. In some embodiments, the powder formulation can include pharmaceutically acceptable excipients, such as monosaccharides (e.g., glucose, arabinose), disaccharides (e.g., lactose, saccharose, maltose), oligosaccharides or polysaccharides (e.g., dextran), polyalcohols (e.g., sorbitol, mannitol, xylitol), salts (e.g., sodium chloride, calcium carbonate), or any combination thereof. In some embodiments, a compound can be administered as a solution, suspension, or a dry powder. In some embodiments, a compound can be administered in a non-pressurized form using a nebulizer or an atomizer.
- Delivery of a compound of the disclosure as an intranasal pharmaceutical composition results in lower systemic drug exposure and fewer side effects. In some embodiments, lower systemic drug exposure can lower the risk of bleeding, gastrointestinal side effects, liver toxicity, fluid retention or edema, neutropenia or leukopenia, anemia, or infection. In some embodiments, lower systemic drug exposure can lower the risk of gastrointestinal side effects, such as nausea, vomiting, or diarrhea.
- A compound of the disclosure can be administered directly to the nasal cavity. In some embodiments, a compound can be administered intranasally in the form of a vapor or drops. In some embodiments, a compound can be administered using a intranasal delivery device, such as a rhinyle catheter, multi-dose dropper, unit-dose pipette, or vapor inhaler. In some embodiments, a compound can be delivered using a squeeze bottle, multi-dose metered-dose spray pump, single or duo-dose spray pump, or a bidirectional multi-dose spray pump. In some embodiments, a compound can be delivered using an atomizer. In some embodiments, a compound can be delivered using a nebulizer.
- In some embodiments, a compound can be administered intranasally in the form of a powder. In some embodiments, a compound can be delivered using mechanical powder sprayer, breath actuated inhaler, or a insufflator. In some embodiments, a compound can be delivered using a mechanical powder spray device. In some embodiments, a compound can be delivered using a multi-dose powder inhaler, single or duo-dose capsule inhaler, or a nasal inhaler. In some embodiments, a compound can be delivered using a insufflator, or a breath-powered bi-directional delivery system.
- In some embodiments, a compound of the disclosure can be administered to a subject using minimally invasive surgery. In some embodiments, a compound of the disclosure can be administered to a subject using BrainPath®, a trans-sulcal system for subcortical surgery. In some embodiments, a compound of the disclosure can be administered to a subject as a combinatory neuroprotective treatment that is delivered directly to a hematoma site.
- Multiple therapeutic agents can be administered in any order or simultaneously. In some embodiments, a compound of the disclosure can be administered in combination with, before, or after a second agent. If simultaneously, the multiple therapeutic agents can be provided in a single, unified form, or in multiple forms, for example, as multiple separate pills. The agents can be packed together or separately, in a single package or in a plurality of packages. One or all of the therapeutic agents can be given in multiple doses. If not simultaneous, the timing between the multiple doses can vary to as much as about a month.
- Therapeutic agents described herein can be administered before, during, or after the occurrence of a disease or condition, and the timing of administering the composition containing a therapeutic agent can vary. For example, the compositions can be used as a prophylactic and can be administered continuously to subjects with a propensity to conditions or diseases in order to lessen a likelihood of the occurrence of the disease or condition. The compositions can be administered to a subject during or as soon as possible after the onset of the symptoms. The administration of the therapeutic agents can be initiated within the first 48 hours of the onset of the symptoms, within the first 24 hours of the onset of the symptoms, within the first 6 hours of the onset of the symptoms, or within 3 hours of the onset of the symptoms. The initial administration can be via any route practical, such as by any route described herein using any formulation described herein. A therapeutic agent can be administered as soon as is practicable after the onset of a disease or condition is detected or suspected, and for a length of time necessary for the treatment of the disease, such as, for example, from about 1 month to about 3 months. The length of treatment can vary for each subject.
- The disclosure describes the administration of NAC or a NAC derivative to treat a CNS condition. In some embodiments, NAC or a NAC derivative id administered with a second therapeutic agent to treat a CNS condition. In some embodiments, NAC is administered to a subject with a prostaglandin to treat a CNS condition. In some embodiments, NAC is administered with prostaglandin E2 (PGE2) to treat a CNS condition. In some embodiments, co-administration of NAC and PGE2 allows the therapeutic dose of NAC and PGE2 to be lower than when NAC and PGE2 are administered alone.
- Pharmaceutical compositions described herein can be in unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate quantities of one or more compound. The unit dosage can be in the form of a package containing discrete quantities of the formulation. Non-limiting examples are liquids in vials or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Multiple-dose reclosable containers can be used, for example, in combination with a preservative. Formulations for parenteral injection can be presented in unit dosage form, for example, in ampoules, or in multi-dose containers with a preservative.
- A compound described herein can be administered to a subject in a composition in a range of from, about 1 mg/kg to about 5 mg/kg, about 1 mg/kg to about 10 mg/kg, about 1 mg/kg to about 25 mg/kg, about 10 mg/kg to about 50 mg/kg, about 10 mg/kg to about 75 mg/kg, about 10 mg/kg to about 100 mg/kg, about 50 mg/kg to about 125 mg/kg, about 50 mg/kg to about 150 mg/kg, about 50 mg/kg to about 175 mg/kg, about 50 mg/kg to about 200 mg/kg, about 100 mg/kg to about 225 mg/kg, about 100 mg/kg to about 250 mg/kg, about 100 mg/kg to about 275 mg/kg, about 100 mg/kg to about 300 mg/kg, about 150 mg/kg to about 325 mg/kg, about 150 mg/kg to about 350 mg/kg, about 150 mg/kg to about 375 mg/kg, about 150 mg/kg to about 400 mg/kg, about 250 mg/kg to about 425 mg/kg, about 250 mg/kg to about 450 mg/kg, or about 250 mg/kg to about 500 mg/kg.
- In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1 mg/kg to about 10 mg/kg. In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1-50 mg/kg. In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1-75 mg/kg. In some embodiments, a compound of the disclosure can be administered to a subject in a composition in an amount of about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, or about 10 mg/kg.
- A compound described herein can be present in a composition in an amount of about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 65 mg, about 70 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 175 mg, about 200 mg, about 250 mg, about 300 mg, about 350 mg, about 400 mg, about 450 mg, about 500 mg, about 550 mg, about 600 mg, about 650 mg, about 700 mg, about 750 mg, about 800 mg, about 850 mg, about 900 mg, about 950 mg, about 1000 mg, about 1050 mg, about 1100 mg, about 1150 mg, about 1200 mg, about 1250 mg, about 1300 mg, about 1350 mg, about 1400 mg, about 1450 mg, about 1500 mg, about 1550 mg, about 1600 mg, about 1650 mg, about 1700 mg, about 1750 mg, about 1800 mg, about 1850 mg, about 1900 mg, about 1950 mg, or about 2000 mg.
- Several tools can be utilized to diagnose and assess the clinical and neuropsychological features of CNS conditions, for example, mild traumatic brain injury. In some embodiments, standard physical and neurological examinations, and neuropsychometric batteries and scales with broader applicability (e.g., Glasgow coma scale) can be used to diagnose and assess a subject with a CNS condition.
- Post-Concussion Symptom Score (PCSS):
- The PCSS score consists of 22 items that evaluate symptoms on a 7-point scale. 0 correlates to no symptoms, and 6 correlates to severe symptoms. PCSS scores have utility for
subjects ages 11 and above in identifying individuals with clinically-diagnosed concussion, and in predicting prolonged recovery. PCSS scores have also demonstrated test-retest reliability. - Graded Symptom Checklist (GSC):
- The GSC consists of 16 items scored on a 7-point scale. The GSC scale is applicable to subjects ages 13 and above, and incorporates a three-factor structure (cognitive, somatic, and neurobehavioral). The GSC scale has demonstrated internal validity, test-retest reliability, and convergent validity with respect to balance and cognitive performance.
- Standardized Concussion Assessment Tool (SCAT):
- SCAT is a standardized tool that is used by healthcare professionals, and incorporates other assessment scales, such as GCS, Maddocks questions for memory assessment, PCSS, and other neurological and cognitive tests.
- Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT):
- ImPACT is a computerized test battery with 3 components, such as demographic data, neuropsychological testing, and PCSS. ImPACT has the advantage of including assessments of cognition (e.g., attention, processing speed, impulsivity, and reaction time). In a combination with a scale for mTBI symptoms, ImPACT has a sensitivity of 81.9%, and a specificity of 89.4%. ImPACT is not subject to substantial practice effects.
- King-Devick Scale:
- The King-Devick scale is a brief test administered acutely following head injury in which the subject must read patterns of letters and numbers on test cards. The King-Devick scale assess language, attention, and eye movements, all of which can be impaired in a CNS condition, for example, concussion. The test-retest reliability of the King-Devick scale over a period of 1-2 years compares is comparable to other standard assessment methods.
- Biomarkers and Imaging:
- Electrophysiological techniques, imaging techniques, and blood tests can be used to assess the CNS condition of a subject. Event-related potentials (EPRs) can be used to evaluate computer-processed electroencephalogram (EEG) signals time-locked to a perpetual or cognitive task. In some embodiments, computed tomography (CT) and magnetic resonance imaging (MRI) can be used to diagnose or track the progress of a CNS condition. In some embodiments, diffusion tensor imaging can be used to diagnose or track the progression of a CNS condition.
- In some embodiments, MRI can be used to determine the levels of metabolites in the brain and assess the progress of a CNS disease. In some embodiments, MRI can be used to quantify metabolite levels in the range of μmoles/g, such as N-acetylaspartate, lactate, glutamate, gamma-aminobutyric acid, and glutathione.
- Animals:
- C57BL/6 and pregnant CD1 mice of 10-12 weeks were used. The animals were housed in a pathogen-free facility on a 12-hour light/dark cycle, and were provided ad libitum access to food and water, unless stated otherwise. 171 adult male Sprague Dawley rates (˜350 g-400 g) were used in the studies to examine the effects of NAC. 40 mg/kg or 75 mg/kg doses of NAC were given to mice I.P. 2 h after collagenase infusion and thereafter in the mice efficacy studies. Saline was used as a control. The body temperature, edema, eicosanoids, cerebral bleeding, behavior, and lesion volume (28 day survival) of the animals were assessed. Animals were randomly assigned to groups, and data were analyzed blind.
- Primary Cortical Neuronal Cultures:
- Primary cortical neurons were collected from embryonic (E15) CD1 mice. The cortices of the mice were dissected, homogenized, and plated in minimum essential medium containing 10% fetal bovine serum (FBS), 5% horse serum, and 1% penicillin/streptomycin in 96-well plates, 6-well plates, or 10-cm dishes. The neurons were maintained at 37° C. with 5% CO2. All experiments were conducted 24 hours after plating.
- In Vitro ICH Model:
- Ferroptosis is a type of programmed cell death that is dependent on iron, and is characterized by the accumulation of lipid peroxides. Ferroptosis is genetically and biochemically distinct from other forms of regulated cell death such as apoptosis. Ferroptosis is initiated by the failure of the glutathione-dependent antioxidant defenses, resulting in unchecked lipid peroxidation and eventual cell death.
- Cell death was induced in primary cortical neurons by treating the neurons with hemin, a blood breakdown product. For the neuroprotection studies, cells were treated with hemin (100 μM) in the presence of NAC (0.1 mM to 1 mM), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox; 0.1 μM to 100 μM), β-carotene (0.1 μM to 100 μM), α-lipoic acid (0.01 mM to 2 mM), glutathione ethyl ester (1 mM to 10 mM), oxothiazolidine-4-carboxylate (1 mM to 10 mM), cystamine (0.1 μM to 10 μM), or nordihydroguaiaretic acid (0.1 μM to 10 μM). Cell viability was analyzed 24 h after treatment. The cells were rinsed with warm phosphate-buffered saline (PBS) and assessed using an MTT assay. The fidelity of the MTT assays in measuring viability was verified by calcein-AM/ethidium homodimer-1 staining (Live/Dead assay).
- In Vivo Collagenase-Induced Mouse Model of ICH:
- Male C57BL/6 mice (8 to 10 weeks of age) or mice (10 to 12 weeks of age) were anesthetized with isoflurane (2% to 5%) and placed on a stereotaxic frame. During the procedure, the animal's body temperature was maintained at 37° C. with a homeothermic blanket. 1 mL of collagenase (0.075 IU) was infused into the right striatum at a flow rate of 0.120 μL/min using a Nanomite® syringe pump and a syringe. Relative to the bregma point, the stereotaxic coordinates of the injection were: lateral, −0.20; anteroposterior, 0.62; and dorsoventral, −0.40. In control animals, 1 mL of saline was infused. The treatment group received NAC (75 mg/kg or 300 mg/kg in normal saline, I.P.) once a day for 7 days starting at 2 h after collagenase infusion. For combinatorial studies, NAC (40 mg/kg, I.P.) and PGE2 (10 μM, ICV) were administered to the
mice 2 h after the collagenase injection, and then NAC (40 mg/kg) was administered once daily for 7 days. The control groups received the vehicle (normal saline) alone. The animals were randomized to sham or ICH groups. The identities of the mice that received vehicle or NAC were masked to surgeons who performed the experiments. The identities of the animals were revealed after collection of the data. Proper postoperative care was provided until the animals recovered completely. - Behavioral Analysis:
- The corner task assessed integrated sensorimotor function in the stimulation of vibrissae (sensory neglect) and rearing (motor response). Mice were placed between two cardboard pieces that formed a corner with a 30° angle. While maintaining the 30° angle, the boards were gradually moved toward the mouse until the mouse approached the corner, reared upward, and turned 180° to face the open end. The direction (left or right) in which the mouse turned was recorded for each trial. Ten trials were performed for each mouse.
- For the sensory neglect task (adhesive tape removal task), adhesive tape was placed on the planter region of the forward paw (right and left) of each mouse. The time from which the tape was applied to when the mouse successfully removed the tape was recorded for each paw. A maximum of 300 s for each paw was allowed.
- Fluoro-Jade® B Staining:
- Neurodegeneration of cells was assessed in mice with collagenase-induced ICH using Fluoro-Jade® B staining. 40 μM brain sections were mounted on gelatin-coated slides and dried at room temperature overnight. The sections were immersed in a graded series of alcohol solutions before being immersed in a 0.06% potassium permanganate (KMnO4) solution for 15 min. Sections were washed with water before being immersed in a 0.001% Fluoro-Jade® staining solution with gentle shaking in the dark for 30 min. The sections were then washed with water and dried overnight at room temperature in the dark before being dehydrated and coverslipped with DPX. Fluoro-Jade® B staining was examined within perihematoma or hematoma regions using a fluorescence microscope. Quantification of Fluoro-Jade® B staining was performed using three brain sections (anterior to posterior of hematoma) using Metamorph analysis.
- In Vivo Metal Distribution Imaging Analysis by X-Ray Fluorescence:
- Seven days following collagenase-induced ICH, mice were euthanized and perfused with trace metal-free PBS. The brains were removed from the mice and flash frozen. Tissue samples were cut into 20 μm-thick sections and deposited onto 4 μm-thick Ultralene® films. The iron and zinc contents of the tissue samples were imaged using X-ray fluorescence microscopy (XFM). X-ray fluorescence spectra were collected using an X-ray excitation energy of 11 keV and a beam size of 9 μm (vertical)×17 μm (horizontal) in 15-μm steps, with an integration time of 7 sec/pixel. The intensity for each metal was quantified by integrating the area under the curve for the respective peak in the XRF spectrum (iron Kα=6405 eV and zinc Kα=8637 eV).
- National Institute of Standards and Technology thin film standard reference materials 1832 and 1833 were used to calculate concentrations and to normalize for any differences between the multiple beam time runs required to collect the data. Molar concentrations were determined by dividing the μm/cm2 values by the product of the volume of X-ray beam on the sample (area×thickness of the sample), the density of tissue (estimated to be 0.9 g/cm3), and the molecular weight of the element.
- Transcriptomic Analysis:
- Weighted Gene Coexpression Network Analysis (WGCNA) was performed using R software. Correlation coefficients were constructed between expression levels of genes, and a connectivity measure (topological overlap, TO) was calculated for each gene by summing the connection strength of a gene with other genes. The genes were then clustered based on the TO values, and groups of co-expressed genes (modules) were identified. Each module was assigned a color. The first principal component (eigengene) of a module was extracted from the module and considered to be representative of the gene expression profiles in a module. The phenotypic trait of interest was then regressed on the eigengene to examine the presence of a statistically significant relationship between the module and the trait. For modules that showed a statistically significant relationship with a phenotypic trait of interest (presence of ICH), gene ontology and pathway analyses were examined using Enrichr. Corrected p-values were used. The independent list of coexpressed genes was obtained from COEXPRESdb, version 6.0.
- Quantitative Real-Time PCR:
- Total RNA was prepared using a NucleoSpin® RNA II kit. Duplex real-time PCR reactions were performed with gene expression assays using 6-carboxyfluorescein-labeled probes for ALOX5 (Mm 01182747_m1) and ALOX5AP (Mm 01218551_m1). Expression levels were normalized to β-actin gene expression levels, which were determined with a VIC™-labeled probe. All experiments were performed using a real-time PCR system.
- Lipoxygenase UV/Vis-Based IC50 Assay:
- Inhibition potencies were determined by following the formation of conjugated diene products, 5-HpETE [ε=27000 M−1 cm−1 for AA turnover) at 234 nm using a UV/Vis spectrophotometer. All reaction mixtures were 2 mL in volume, and the reaction mixtures were constantly stirred using a magnetic stir bar at room temperature (23° C.). All reactions were carried out in a buffer containing 200 μM ATP and 10 μM AA. The AA concentration of a sample was verified by full turnover with soybean-1 lipoxygenase and quantifying the product concentration. Inhibitors were stored in DMSO at −20° C. Enzymatic reactions were initiated by adding approximately 100 nM-300 nM ammonium sulfate-precipitated wildtype enzyme. IC50 values were obtained by determining the enzymatic rate at a minimum of five inhibitor concentrations, plotting the enzymatic rate against inhibitor concentration, and performing a hyperbolic saturation curve fit. Inhibitor concentrations were assayed in duplicate or triplicate.
- Statistical Analyses:
- Data are reported as means±SEM of multiple individual experiments each carried out in triplicate. A two-tailed t test was used to compare two groups. A one-way ANOVA with Bonferroni's multiple comparisons post hoc test was used if more than two groups were compared. A two-way ANOVA with Bonferroni's post hoc test was used to compare two independent variables.
- The ability of NAC to protect cells was investigated in a hemin model of hemorrhagic stroke. The in vitro model of ICH involved the administration of hemin, a breakdown product of hemoglobin from lysed blood, to trigger cell death. Treatment of primary cortical neurons with 100 μM hemin induced widespread cell death through a ferroptotic mechanism, which was quantified with MTT and qualitatively observed using live/dead staining. Living cells were labeled with calcein-AM, and dead cells were labeled with ethidium homodimer.
FIG. 1 shows representative live/dead images of primarycortical neurons 24 h after treatment with saline (Ctrl), NAC (1 mM), hemin (100 μM) and hemin (100 μM)+NAC (1 mM). Scale bars: 100 μm. - Treatment with NAC abrogated hemin-induced ferroptosis (EC50=500 μM). To verify that NAC protected against hemin-induced toxicity in primary mouse neurons, primary cortical neurons were treated with various concentrations of NAC (100 nM-1 mM) alone or with hemin. Cell survival was assessed using MTT.
FIG. 2 shows that NAC protected primary cortical neurons from hemin-induced toxicity in a concentration dependent manner. Cell death was analyzed 24 h after hemin treatment with or without NAC, and cell death was determined by monitoring MTT reduction. Significance was determined by two-way ANOVA and Bonferroni's post hoc test. The graph shows mean±SEM. The data show that NAC reduced cell death toxicity by hemin in primary neurons. - The ability of NAC treatment (300 mg/kg) to improve behavioral outcomes in an in vivo ICH model of hemorrhagic stroke was tested. The enzyme collagenase dissolves components of the extracellular matrix and basal lamina of blood vessels, leading to rupture of blood vessels and bleeding in the brain. Collagenase was injected into the mediolateral striatum of mice to break down the basal lamina and induce striatal brain bleeding. The collagenase model imitated the spontaneous rupture of an intra-parenchymal vessel with bleeding into the tissue over several hours.
- Neuronal loss from sections of mice treated with vehicle or NAC (300 mg/kg, I.P.), and the ability of NAC to improve behavioral outcomes was evaluated by initially delivering the vehicle or NAC to mice starting 2 h after the unilateral injection of collagenase into the mouse striatum. The vehicle or NAC was then administered daily up to 7 days following the ictus. Neuronal loss was determined using a non-specific marker of neurodegeneration, Fluoro-Jade® staining.
FIG. 3 shows a schematic of an experimental design for the delivery of NAC post-ICH in mice. Mouse behavior was assessed using a corner task (spatial neglect) and an adhesive tape removal task (sensory neglect). Mouse behavior was assessed onday - The correlation of NAC-induced behavioral improvements with a reduction in ICH-induced neuronal degeneration was investigated. Mouse brain samples were assessed on
day 7 using Fluoro-Jade® staining. NAC (300 mg/kg) reduced neuronal degeneration in perihematomal regions of the mouse brain.FIG. 4 shows that NAC reduced neuronal degeneration as monitored by Fluoro-Jade® staining in the perihematomal regions of the mouse brain. The white arrows highlight the increased numbers of degenerating neurons in the ICH-treated group (middle panel). Neuronal degeneration was reduced by treatment with NAC (right panel). Scale bar: 100 μm.FIG. 5 shows the quantification of Fluoro-Jade® staining of neurons, a non-specific marker of degeneration, in sham-infused mice and in collagenase-infused ICH mice with or without NAC treatment. Significance was determined by two-way ANOVA and Bonferroni's post hoc test. The graph shows mean±SEM. The data demonstrate that NAC reduced neuronal degeneration and improved sensorimotor deficits after ICH in a collagenase model. - The behavioral analysis, corner task (spatial neglect) and adhesive tape removal task (sensory neglect) were assessed on
days FIG. 6 shows the corner task scores on various experimental days for sham infused mice, collagenase-infused ICH mice without NAC treatment, and collagenase-infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg. The data show that administration of 300 mg/kg NAC significantly reduced spatial neglect associated with ICH. Significance was determined by two-way ANOVA and Bonferroni's post hoc test. The graph shows mean±SEM. - The tape removal task is behavior that represents a form of sensory neglect. Analysis of the tape removal task showed that sensory neglect of NAC-treated
mice FIG. 7 shows the results of an adhesive tape removal task on various experimental days for sham-infused mice, collagenase-infused ICH mice without NAC treatment, or collagenase-infused ICH mice with NAC treatment at 75 mg/kg or 300 mg/kg. Significance was determined by two-way ANOVA and Bonferroni's post hoc test. The graph shows mean±SEM. The data show that NAC enhances functional recovery in the collagenase ICH mouse model. - The data shows that NAC (300 mg/kg) reduced cell death in vitro and in vivo, and improved behavior after ICH in mice. Examination of NAC in an ICH model of rats showed that 40 mg/kg was the highest dose tolerated without toxicity. Higher doses that were effective in mice (300 mg/kg) caused significant toxicity in rats, including paralytic ileus and/or death. NAC delivered at 40 mg/kg or 75 mg/kg in
rats 2 h post-ICH was not effective in reducing lesion volume or improving functional recovery. - The collagenase-infused mouse model of ICH was used to study the mechanism of NAC protection in vivo. The mechanism of NAC protection in hemorrhagic stroke was investigated by verifying that the protective effects of NAC did not result from NAC's influence on collagenase enzyme activity, which was used to induce brain hemorrhage. The collagenase model for human brain ICH used collagenase to degrade the basal lamina of mice, generating hemorrhage that evolved in a way similar to that found in humans. The efficacy of NAC as a therapeutic to prevent death and enhance functional recovery was studied.
- Mice were injected with
NAC 2 h post-ICH induction, and the mice were sacrificed after 24 h. The hematoma volumes of the mice were assessed.FIG. 8 shows a schematic of an experimental design investigating the effect of NAC in a collagenase-infused mouse model of ICH. Measurements ofhematoma size 24 h after collagenase injection verified that NAC (300 mg/kg) did not inhibit or affect collagenase activity. The data demonstrate that the significant behavioral benefits could not be attributed to the suppression of collagenase activity by NAC. -
FIG. 9 shows a panel of serial brain sections from saline-treated mice and ICH mice with or without NAC treatment.FIG. 10 shows a graph quantifying hematoma size by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC. No significant difference was observed between the control group and the NAC treated groups. Significance was determined by one-way ANOVA followed by Dunnett's comparison test, for vehicle-treated mice and ICH mice with or without NAC treatment. The graph shows mean±SEM.FIG. 11 shows a graph showing percentage of swelling (brain edema) by light microscopy in saline-infused mice, in untreated collagenase-infused ICH mice, and in collagenase-infused ICH mice treated with 75 mg/kg or 300 mg/kg of NAC. Significance was determined by one-way ANOVA followed by Dunnett's comparison test, for vehicle-treated mice and ICH mice with or without NAC treatment. The graph shows mean±SEM. - The ability of NAC to affect total metal levels in the brain was evaluated. Total iron levels in brain sections from saline-treated and NAC-treated ICH mice were monitored at 7 days using X-ray fluorescence spectroscopy.
FIG. 12 shows a schematic of an experimental design for evaluating the total concentrations of iron in the brain following ICH in vehicle-treated and NAC-treated mice. Pseudo coloring in the coronal sections of collagenase-induced ICH mice after 7 days denotes total iron. - ICH dramatically increased iron levels in the brain. No difference was observed in the apparent distribution or total levels of iron between the brain sections of saline-treated and NAC-treated ICH mice. NAC had no effect on iron levels or iron distribution following ICH. The data show that NAC acted to protect ICH independently from NAC's effects on total iron levels or iron distribution in the CNS.
FIG. 13 PANEL A shows X-ray fluorescence spectroscopy images from coronal sections in collagenase-infused ICH mice with or without NAC treatment after 7 days.FIG. 13 PANEL B shows total iron levels in the cortex, intrahematomal, and perihematomal regions of the brain of collagenase-infused ICH mice with or without NAC treatment. Significance was determined by one-way ANOVA followed by Dunnett's comparison test, for vehicle-treated mice and ICH mice with or without NAC treatment. The graph shows mean±SEM. The data show that NAC enhanced functional recovery without influencing collagenase activity in vivo or total levels of iron in the brain after ICH. - The ability of NAC to synergize with antioxidants was evaluated. A lack of synergy would suggest target congruence between the antioxidant with a known target of action and NAC. Trolox is a water soluble analogue of vitamin E and a scavenger of lipid peroxyl radicals. α-Lipoic acid is a thiol-active compound that acts as a cofactor for mitochondrial enzymes, reducing mitochondrial superoxide production. The effects of NAC, trolox, and α-lipoic acid individually and in combination were studied in mouse cortical neurons exposed to hemin. Treatment of NAC or trolox individually abrogated hemin-induced toxicity in a dose-dependent manner. α-Lipoic acid failed to prevent hemin toxicity at any dose examined.
FIG. 14 PANEL A shows the effect of NAC, trolox (TRO), and α-lipoic acid (LA) in preventing hemin-induced ferroptosis in primary cortical neurons as measured by MTT assay. - To determine the synergistic effects of NAC with trolox and α-lipoic acid, sub-threshold concentrations of NAC and the compounds were administered together in a hemin model. All combinations of the cocktail of antioxidants failed to provide any synergistic protection against hemin toxicity in primary cortical neurons, which was consistent with a convergent mechanism at the level of lipid peroxidation.
FIG. 14 PANEL B shows that combinations of non-protective concentrations of NAC, TRO, or LA failed to synergize in preventing hemin-induced ferroptosis in primary cortical neurons. - Reactive lipid oxidants can be produced enzymatically via specific enzymes, or non-enzymatically via direct oxidant modification. Structurally diverse, but well characterized pharmacological tools were used to understand how hemin kills neurons. Neuronal membranes are composed of phospholipid bilayers where arachidonic acid (AA) is esterified into phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. Following brain injury, AA is liberated by increases in calcium-dependent, phospholipase A2, or phospholipase C activity. Released AA can be oxidized non-enzymatically by oxidants or enzymatically by cyclooxygenase, lipoxygenase, or epoxygenase enzymes to produce bioactive lipid mediators, such as isoprostanes, hydroxynonenol, malondialdehyde, hydroxy-PUFAs (HETEs), epoxy-PUFAs (EETs), prostaglandins, and leukotrienes, which regulate homeostatic and inflammatory processes.
- A systematic pharmacological screening of oxidized lipid species inhibitors in the context of hemin-induced cell death was performed in primary cortical neurons. Primary cortical neurons were co-treated with hemin and a non-specific or enzymatic lipid peroxidation inhibitor. The MTT assays were performed 18 h following the co-treatment. The screening identified the non-specific inhibitor β-carotene and selective 5-lipoxigenase (5-LOX) inhibitors as agents that protected against hemin-induced toxicity in primary cortical neurons.
- A systematic characterization of AA-metabolizing enzymes involved in hemin-induced toxicity was conducted using a cassette of known, diverse chemical inhibitors. Selective inhibitors of epoxygenases (MS-PPOH), COX-1 (aspirin), COX-2 (celecoxib, Indomethacin), 12-LOX (NCTT-956), or 15-LOX (PD146176) failed to protect against hemin toxicity. Structurally diverse ALOX5 inhibitors (Zileuton, EC50=7 μM; BW B70, EC50=μM and BW 4AC, EC50=5 μM) significantly reduced hemin-induced toxicity in primary cortical neurons.
- NAC protection in an in vitro model of ICH was mimicked by structurally diverse inhibitors of ALOX5. TABLE 1 shows that structurally diverse inhibitors of 5-lipoxygenase, but not inhibitors of other arachidonate metabolizing enzymes, prevented hemin-induced ferroptosis in primary cortical neurons.
-
TABLE 1 % In vitro model of hemorrhagic stroke Viability Hemin-induced toxicity in neurons Vehicle 100.00 100 μM hemin 50.14 Lipid Pharmacological % peroxidation Subcategory inhibitor Target viability Phospholipids Phospholipases U 73122 Phospholipase C and A2 47.37 Non-specific Nonesterified Antioxidants β-carotene Oxidants 88.12 arachidonic acid Enzymatic Epoxygenases Epox MS-PPOH Epoxygenases 61.3 Cyclooxygenases COX1 Aspirin Cycloxygenases 1 50.20 COX2 Celecoxib Cycloxygenases 2 45.3 Indomethacin Cycloxygenases 2 54.9 Lipoxygenases 5 LOX Zileuton 5 lipoxygenases 93.70 BW B70 5 lipoxygenases 90.20 BW A4C 5 lipoxygenases 86.70 12 LOX NCTT-956 12 lipoxygenases 63.5 15 LOX PD146176 15 lipoxygenases 59.3 FLAP MK 561 5 lipoxygenase-activating protein - Test tube assays involving recombinant ALOX5 verified that each of the inhibitors inhibited ALOX5 activity with high potency. NAC and β-carotene, which were protective, did not inhibit ALOX5 activity.
FIG. 15 PANEL A shows that Zileuton was effective in inhibiting ALOX5.FIG. 15 PANEL B shows that BW-4AC was effective in inhibiting ALOX5.FIG. 15 PANEL C shows that NAC was not effective at inhibiting ALOX5. Significance was determined by two-way ANOVA and Bonferroni's post hoc test. - The data show that 5-lipoxygenase-derived lipid metabolites are necessary for hemin-induced ferroptosis in vitro. The data also show NAC, trolox, and β-carotene may act to neutralize the toxic metabolic products of ALOX5 activity rather than ALOX5 activity itself. Inhibitors of arachidonate-5-lipoxygenase activating protein (FLAP), an integral membrane protein within the nuclear envelope, which serves to recruit ALOX5 to the membrane, may also be protective. TABLE 1 shows that a chemical FLAP inhibitor (MK 561) significantly reduced hemin-induced death.
- The pharmacological data demonstrated that ALOX5 mediated cell death in vitro by localizing to the nuclear envelope via interactions with FLAP. The ability of ICH to induce ALOX5 levels in the cytoplasm or nucleus was determined. Increases in ALOX5-derived AA species following ICH were assayed.
FIG. 16 illustrates a schematic model of ALOX5 pathway activation in ICH. - Protein levels of ALOX5 in the nucleus after ICH were analyzed. Immunoblot analysis of the cytosolic and nuclear fraction after ICH revealed that ALOX5 increased in the nucleus.
FIG. 17 shows that ICH increased ALOX5 protein levels in nuclear fractions, as verified by immunoblot analysis. - ALOX5 metabolizes AA to produce 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which forms the inflammatory mediators leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs, including LTC4, LTD4, and LTE4). The metabolites of ALOX5 were monitored using gas chromatography/negative ion chemical ionization mass spectrometry (GC/MS) to assess the activation of ALOX5 in a rodent model of ICH. GC/MS analysis of ICH striatum showed a significant time-dependent increase in the ALOX5 products: 5-HETE, LTB4, and LTE4. The increase in ALOX5-derived lipid species after ICH in rats (n=4) was compared to sham. Data from sham control brains from each time point was pooled for the analysis.
FIG. 18 PANEL A shows the increase in ALOX-derived 5-HETE after ICH in rats.FIG. 18 PANEL B shows the increase in ALOX-derived LTB4 after induction of ICH in rats.FIG. 18 PANEL C shows the increase in ALOX-derived LTE4 after induction of ICH in rats. The data were consistent with transcriptomic analyses of brain tissues from human ICH patients that identified an increased expression of mRNAs encoding ALOX5 and 5-LOX-activating protein FLAP (ALOX5AP). The increases in ALOX5 metabolites after ICH in mice and rats showed that toxic factors downstream of hemorrhage also produced reactive lipid species in vivo. - To explore the network of transcripts co-expressed with ALOX5, human gene expression data were analyzed using 8 control samples and 6 samples obtained from patients with ICH. Weighted Gene Coexpression Network Analysis (WGCNA) was used to identify networks of co-expressed genes in relation to phenotypic data. WGCNA identified 21 groups of co-expressed genes/modules. ALOX5 was included in the greenyellow module, a group of 302 transcripts overall upregulated in ICH.
FIG. 19 shows the results of the transcriptomic analysis of brain tissues obtained from control (n=8) and ICH (n=6) patients. Significance was determined by one-way ANOVA and Dunnet's multiple comparison test. All graphs are mean±SEM. - The top 100 transcripts correlated with ALOX5 were extracted from a large transcriptional database (COEXPRESdb). Functional annotation of the module revealed over-representation of genes involved in inflammation in general and neutrophil degranulation. Functional annotation of the transcripts revealed similar ontology terms. Fifteen of the 100 transcripts were included in the WGCNA greenyellow module, and a significant overlap (p=8×10E-9, hypergeometric test) provided independent validation of the WGCNA analysis. The findings demonstrated that ICH induced accumulation of ALOX5 in the nucleus to increase ALOX5-derived lipid species, which triggered cell death and/or represented a signal sent from the nuclear envelope of dead cells to trigger inflammation.
FIG. 20 shows that WGCNA revealed transcripts most closely co-regulated with ALOX5. - The abilities of hemin and NAC to induce increases in ALOX5 and ALOX AP mRNA levels were examined. RT-PCR analysis revealed that toxic levels of hemin increased ALOX5 and ALOX AP levels in primary neurons. Consistent with the protein data (
FIG. 17 ), hemin induced increases in ALOX AP and ALOX5 mRNA levels in a time-dependent manner. Protective doses of NAC (1 mM) blocked the expression of ALOX5 and ALOX AP in primary cortical neurons.FIG. 21 PANEL A shows that hemin increased ALOX5 levels in a time-dependent manner, while NAC blocked the expression of ALOX5 in primary cortical neurons.FIG. 21 PANEL B shows that hemin increased ALOX AP levels in a time-dependent manner, while NAC blocked the expression of ALOX AP in primary cortical neurons. - NAC, trolox, and more selective ALOX5 inhibitors can inhibit the incorporation of ALOX5-derived reactive lipids into proteins. Electrophilic attack by ALOX5 products could alter cellular protein-mediated signaling to trigger cell death. Arachidonic acid (AA) tagged with biotin (Bt-AA) was used to monitor the formation of covalent protein adducts. To test whether hemin was sufficient to catalyze the formation of protein-reactive lipid species, primary neurons were treated with hemin at concentrations of 5 μM-50 μM for 4 h. Lipid protein adducts were detected by Western blots probed with Streptavidin-HRP. Bt-AA incorporation into protein increased with increasing concentrations of hemin, and significant lipid protein adducts were detected at 50 μM hemin.
FIG. 22 shows an image of a Western blot probed with streptavidin-HRP for detection of lipid protein adducts in primary cortical neurons treated with hemin at concentrations of 0, 5, 10, 25, and 50 μM for 4 h. NAC treatment decreased hemin-induced ALOX5 gene expression and the generation of hemin-induced oxidized lipid species. - Non-protective doses of NAC (0.1 mM), vitamin E (1 μM), and zileuton (ALOX5 inhibitor, 1 μM) did not decrease AA-protein adduct formation. Protective doses of NAC (1 mM), vitamin E (10 μM), and zileuton (10 μM) decreased lipid protein adduct formation.
FIG. 23 shows an image of lipid protein adducts probed with streptavidin-HRP, demonstrating that NAC (1 mM), a-tocopherol (10 μM) and zileuton (10 μM) attenuated formation of hemin-induced oxidized lipid protein adducts. The blot is representative from replicates of three experiments. The arrow indicates the decrease in lipid protein adduct formation. The data show that AA reacted with protein following the induction of ICH in vitro, and the interaction of proteins and reactive lipids was blocked by chemical ALOX5 inhibition, a non-selective lipid peroxidation inhibitor (vitamin E), or NAC. - Quantification of the intensity of the experimental bands revealed that NAC, vitamin E, and zileuton inhibited lipid protein adduct formation.
FIG. 24 shows quantification of the bands shown inFIG. 17 , revealing a reduction in oxidized lipid protein adducts. The bands that were evident in the control wells were the endogenous biotin-containing carboxylases, and the bands confirmed equal gel loading between the groups. The results showed that the reactive lipids that were incorporated into proteins were abrogated by ALOX5 inhibitors (NAC or vitamin E). - The data were consistent with the ability of ALOX5 metabolites to incorporate into proteins to induce changes in signaling or dysfunction, and to induce cell death. The catalytic action of ALOX5 involved the formation of site-specific alkyl and lipid peroxyl radicals, generally not released from the enzyme and are inaccessible to lipid radical scavenging agents (e.g., vitamin E), which blocked access to the catalytic site of the enzyme. Low levels of the lipid radicals could exit the active site, which could initiate lipid peroxidation and be quenched by selective ALOX5 inhibitors or chain-breaking antioxidants, such as vitamin or NAC.
- Cysteine is the rate-limiting precursor for the synthesis of glutathione with γ-glutamylcysteine synthetase and glutathione synthetase. NAC undergoes hydrolysis to liberate cysteine, which is transported by the alanine-serine cysteine (ASC) system. To determine whether NAC-induced protection from heme requires glutathione, glutathione synthesis was inhibited using buthionine sulfoximine (BSO), a selective inhibitor of γ-glutamylcysteine synthetase, the rate limiting step in glutathione synthesis. The necessity of a NAC-induced increase in glutathione, and whether NAC-induced protection could be abrogated were evaluated. A reduction in glutathione levels was measured using HPLC. NAC dose-dependently increased the total glutathione levels in the presence or absence of hemin. In the presence of hemin, the absolute levels of glutathione were reduced.
FIG. 25 shows the total glutathione levels determined by HPLC analysis in neurons treated with 0 (“Con,” vehicle), 0.1, or 1.0 mM NAC in the presence or absence of hemin. The data show that NAC increased glutathione levels, and hemin blocked the increase of glutathione levels. Significance was determined by two-way ANOVA followed by Bonferroni's comparison test, from three independent experiments. - The ability of reduced total glutathione levels in blocking NAC-induced neuroprotection was evaluated. Cells were co-treated with NAC and BSO. Treatment of cells with BSO reversed NAC-induced protection, which was consistent with a model in which reduced glutathione nullifies reactive lipid species by interacting with glutathione-dependent enzymes.
FIG. 26 shows the survival rates of neurons treated with 0 mM, 0.1 mM, 0.25 mM, 0.5 mM, 0.75 mM, or 1.0 mM NAC in the presence of vehicle (Con), hemin, BSO, or BSO+hemin. The data show that the pharmacological inhibition of γ-glutamylcysteine synthetase blocked the ability of NAC to prevent hemin toxicity in primary cortical neurons. Significance was determined by two-way ANOVA followed by Bonferroni's comparison test, from three independent experiments. - Increasing glutathione levels with (1) a membrane permeable form of glutathione (glutathione ethyl ester); (2) the cysteine prodrug L-oxothiazolidine decarboxylate; or (3) glial Nrf2 activator cystamine or nordihydroguaiaretic acid (NDGA), prevented hemin-induced death as effectively as NAC in vitro. The data suggest that NAC acted to increase glutathione to prevent ALOX5-induced ferroptosis.
- TABLE 2 shows that strategies to increase glutathione levels in neurons or glia prevented hemin-induced ferroptosis. Glutathione ethyl ester, a membrane permeable form of glutathione; L-oxothiazolidine-4-carboxylate (OTC), a cysteine donor; Nrf2 activators cystamine and nordihydroguaiaretic acid (NGDA), which increases glutathione synthesis and glutathione-dependent detoxification enzymes, abrogated hemin-induced ferroptosis in primary cortical neurons as measured by an MTT assay. The effects of NAC were mimicked by other agents known to increase cysteine, such as OTC or glutathione ethyl ester. The Nrf2 activators (cystamine and NDGA), which induced glutathione synthesis and glutathione detoxification enzymes transcriptionally, also prevented hemin toxicity.
-
TABLE 2 Pharmacological agents Mechanism EC50 % Viability Vehicle 100.00 Hemin 100 μM 50.14 Glutathione ethyl ester Glutathione prodrug 2.5 mM 83.70 Oxothiazolidine-4- Cysteine donor 2.5 mM 99.40 carboxylate Cystamine Nrf2 activator 7.5 μM 95.20 Nordihydroguaiaretic Nrf2 activator 5.0 μM 82.70 acid - As cysteine is the rate-limiting precursor for glutathione synthesis, increasing cysteine with NAC or OTC increased glutathione levels. Activation of Nrf-2 increased transcriptional levels of cysteine transporters, glutathione synthesizing enzymes, and glutathione-related enzymes involved in suppression of lipid peroxidation.
- The requirement of increased glutathione levels for NAC efficacy was evaluated. The ability of the enzymatic lipid peroxidation inhibitor glutathione S-transferase A4 (GSTA4) to mimic NAC protection was also evaluated.
FIG. 27 illustrates the neutralization of oxidized lipid species by GSTA4. Adenoviral overexpression of GSTA4 protected cells from hemin-induced toxicity.FIG. 28 shows the effects of adenovirus-mediated overexpression of GFP (Ad GFP) and GST (Ad GST) on the survival of neurons with or without hemin treatment. The data show that adenoviral overexpression of GSTA4 protected cells from hemin-induced ferroptosis. Significance was determined by two-way ANOVA followed by Bonferroni's comparison test, from three independent experiments. The observations were consistent with a model in which reduced glutathione nullified reactive lipid species by interacting with glutathione-dependent enzymes. Glutathione prodrugs and enzymatic inhibitors of oxidized lipid species protected primary cortical neurons from hemin toxicity. NAC protection against hemin toxicity in vitro was dependent on glutathione levels or flux, indicating that direct scavenging or reactions with electrophiles were not required for NAC's beneficial effects. - Total glutathione levels were unchanged after NAC treatment in ICH mice. The specific action of ATF4-regulated Chac1 a γ-glutamyl cyclotransferases to degrade GSH was decreased after NAC treatment.
FIG. 29 illustrates an experimental design to study the effect of NAC on total glutathione levels in the striatum of a collagenase infusion mouse model of ICH.FIG. 30 shows total glutathione levels by HPLC analysis in the striatum of sham injected mice with or without NAC treatment, and in collagenase-infused ICH mice with or without NAC treatment. The data show that total glutathione levels in NAC-treated brains were unchanged. -
FIG. 31 illustrates that ICH-induced ATF4 dependent Chac1 degraded glutathione to 5-oxoproline.FIG. 32 shows the relative Chac1 gene expression levels as measured by quantitative RT-PCR in neurons of sham-injected mice with or without NAC treatment, and of collagenase-infused ICH mice with or without NAC treatment. The data show that ATF4-dependent Chad was significantly induced by NAC. ATF4-dependent Chad induction was significantly reduced in ICH mice. The data demonstrate that NAC reduced nuclear 5-lipoxigenase accumulation in ICH or hemin-treated neurons. - Expected increases of ALOX5 metabolites in rats following ICH were observed in vivo. A targeted lipidomic approach was used to address which lipid species are altered in ICH, and to analyze the eicosanoid levels at different time intervals in ICH brains using GC/MS analysis.
FIG. 33 illustrates an experimental design for analyzing eicosanoid levels post-ICH in mice. - The GC/MS analysis from rats revealed that ICH-induced COX-dependent lipid species. ICH induced the cyclooxygenase-dependent lipid species PGE2 significantly at 12 h.
FIG. 34 PANEL A shows F2 isoprostane levels in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. The data show that F2 isoprostanes levels were unchanged.FIG. 34 PANEL B shows prostaglandin E2 (PGE2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. A significant increase in prostaglandin PGE2 levels was observed 12 h post-ICH.FIG. 34 PANEL C shows prostaglandin D2 (PGD2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. An increase in PGD2 levels was observed 12 h post-ICH.FIG. 34 PANEL D shows prostaglandin F2 (PGF2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. An increase in PGF2 levels was observed 12 h post-ICH. -
FIG. 34 PANEL E shows 6-keto-prostaglandin F2 (6-keto PGF2) levels as determined by GC/MS analysis in sham-injected mice and in collagenase-infused ICH mice over time following collagenase injection. A significant increase in prostaglandin 6-keto-PGF2 levels was observed 12 h post-ICH. Data from sham control brains from each time point was pooled for the analysis. Significance was determined by one-way ANOVA and Dunnet's multiple comparison test. All graphs are mean±SEM. - The data suggest that AA metabolites downstream of ALOX5 and COX increased following ICH, whereas the non-enzymatic lipid species F2 isoprostane levels were not increased following ICH. The results were consistent with the observation that COX-2 and downstream metabolic enzymes are induced following ICH. COX inhibitors, which would be expected to diminish PEG2, did not worsen heminOinduced death in mixed neuronal-glia cultures (data not shown). The data demonstrate that a cell type other than neurons or glia (e.g., microglia or macrophages) may be relevant for producing PEG2 in ICH, which were not present in the in vitro cultures.
- The ability of the PGE2-mediated adaptive response to synergize with NAC protection in vitro was evaluated. Secondary injury in ICH was modeled using exogenous exposure of cultured neurons to hemin or heme. Exposure to either hemin or heme led to cell death of neurons within 24 hours. Neurons were treated with a sub-threshold dose of 16,16-dimethyl PGE2 (dmPGE2, a long-acting analogue of PGE2) (10 μM) and with different concentrations of NAC with hemin. Cell survival was assessed using MTT. Treatment with NAC or dmPGE2 dose-dependently abrogated hemin-induced toxicity. Despite modest protection from hemin-induced ferroptosis by dmPGE2 in cortical neurons, treatment of NAC (100 μM) and dmPGE2 (10 μM) provided synergistic protection.
-
FIG. 35 shows survival rates of primary cortical neurons treated with vehicle (Con) or with various concentrations of NAC, mPGE2, or mPGE2+NAC. The data show that NAC+PGE2 provided synergy against hemin-induced toxicity in primary cortical neurons. The results showed that combinatorial treatment of dmPGE2 and NAC reduced the concentration of NAC required for protection by 10-fold in vitro. - The ability of NAC and PGE2 to provide a synergistic effect on functional recovery after ICH was evaluated in vivo. NAC (40 mg/kg; i.p., a dose ineffective in mice and rats) and dmPGE2 (10 μM; ICV) were delivered 2 h post-injury.
NAC 40 mg/kg was then administered intraperitoneally once daily for seven days.FIG. 36 illustrates a schematic of an experimental design for combinatorial delivery of NAC and PGE2 after ICH. - The combination treatment of neurons with low dose NAC and dmPGE2 reduced neuronal degeneration as monitored by Fluoro-Jade® staining in the perihematomal regions of the mouse brain after ICH.
FIG. 37 shows photographs showing Fluoro-Jade® staining of neurons in sham injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC or NAC+PGE2. The data show that the combination of low doses of NAC and PGE2 reduced neuronal degeneration in the perihematomal regions of the mouse brain after ICH. NAC or dmPGE2 alone had no significant effect.FIG. 38 quantifies the Fluoro-Jade® staining of neurons in sham injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC or NAC+PGE2. - Behavioral studies following ICH showed that the combination of NAC+dmPGE2 significantly improved behavioral deficits induced by ICH. Behavioral analysis using the corner task (spatial neglect) and adhesive tape removal task (sensory neglect) was performed on
days FIG. 39 PANEL A shows behavioral analysis results for the corner task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE2, or NAC+PGE2.FIG. 39 PANEL B shows behavioral analysis results for the adhesive tape removal task in saline-injected mice, untreated collagenase-injected ICH mice, and collagenase-injected ICH mice treated with NAC, PGE2, or NAC+PGE2. - The combination of NAC+PGE2 improved spatial neglect (corner task) and sensory neglect (adhesive tape removal task) behavioral deficits induced by ICH. Treatment with NAC or PGE2 alone had no effect on spatial neglect (corner task) and sensory neglect (adhesive tape removal task) behavioral deficits induced by ICH. Observations from the behavioral analysis show that targeted lipidomics in an ICH context has identified that PGE2 provides a synergistic protective effect with NAC in both an in vitro hemin model and an in vivo collagenase model of ICH. These findings demonstrate that combinatorial administration of NAC and PGE2 can synergistically protect the brain, and reduce the concentration of NAC required to improve functional recovery following ICH in mice.
- ALOX5 inhibitors did not synergize with PEG2 (data not shown). NAC may alter PEG2 signaling directly rather than via its effects on ALOX5-derived products.
- A college athlete suffers a concussion and is diagnosed with a concussion using standard evaluation, such as CogScreen, ImPACT v2, or SCAT3. The athlete is given a dose of NAC of 1 mg/kg-10 mg/kg intranasally three hours after the concussion, and a similar dose on each of the following fourteen days. The athlete's scores on the evaluations are monitored.
- A college athlete suffers a concussion and is diagnosed with a concussion using standard evaluation, such as CogScreen, ImPACT v2, or SCAT3. The athlete is given a dose of NAC of 1 mg/kg-10 mg/kg and PGE2 dose intranasally three hours after the concussion, and a similar dose on each of the following fourteen days. The athlete's scores on the evaluations are monitored.
- The following non-limiting embodiments provide illustrative examples of the invention, but do not limit the scope of the invention.
- A method of treating a central nervous system condition comprising administering to a subject in need thereof a therapeutically-effective amount of a 5-lipoxygenase activating protein (FLAP) inhibitor.
- The method of
embodiment 1, wherein the FLAP inhibitor is N-acetylcysteine or a pharmaceutically-acceptable salt thereof. - The method of
embodiment 1, wherein the FLAP inhibitor is an N-acetylcysteine prodrug or a pharmaceutically-acceptable salt thereof. - The method of
embodiment 1, wherein the FLAP inhibitor is N-acetylcysteine amide or a pharmaceutically-acceptable salt thereof. - The method of
embodiment 1, wherein the FLAP inhibitor is cystamine or a pharmaceutically-acceptable salt thereof. - The method of
embodiment 1, wherein the FLAP inhibitor is nordihydroguaiaretic acid or a pharmaceutically-acceptable salt thereof. - The method of any one of embodiments 1-6, wherein the administering is intranasal.
- The method of any one of embodiments 1-7, wherein the central nervous system condition is a brain injury.
- The method of any one of embodiments 1-8, wherein the brain injury is a stroke.
- The method of any one of embodiments 1-9, wherein the stroke is intracerebral hemorrhagic stroke.
- The method of any one of embodiments 1-8, wherein the brain injury is subarachnoid hemorrhage.
- The method of any one of embodiments 1-7, wherein the central nervous system condition is a neuropsychiatric disorder.
- The method of any one of embodiments 1-7 or 12, wherein the neuropsychiatric disorder is schizophrenia.
- The method of any one of embodiments 1-7 or 12, wherein the neuropsychiatric disorder is bipolar disorder.
- The method of any one of embodiments 1-7 or 12, wherein the neuropsychiatric disorder is depression.
- The method of any one of embodiments 1-7, wherein the central nervous system condition is spinal cord injury.
- The method of any one of embodiments 1-7, wherein the central nervous system condition is associated with oxidative stress.
- The method of any one of embodiments 1-7, wherein the central nervous system condition is associated with endoplasmic reticulum stress.
- The method of any one of embodiments 1-7, wherein the central nervous system condition is associated with excitotoxic stress.
- The method of any one of embodiments 1-19, wherein the therapeutically-effective amount is about 1 mg/kg to about 10 mg/kg.
- The method of any one of embodiments 1-20, wherein the subject is human.
Claims (21)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/968,355 US20180344678A1 (en) | 2017-05-02 | 2018-05-01 | Use of n-acetylcysteine to treat cns disorders |
US16/700,588 US11660278B2 (en) | 2017-05-02 | 2019-12-02 | Use of N-acetylcysteine to treat central nervous system disorders |
US18/154,550 US11963939B2 (en) | 2017-05-02 | 2023-01-13 | Use of N-acetylcysteine to treat central nervous system disorders |
US18/509,935 US20240115533A1 (en) | 2017-05-02 | 2023-11-15 | Use of n-acetylcysteine to treat cns disorders |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762500381P | 2017-05-02 | 2017-05-02 | |
US15/968,355 US20180344678A1 (en) | 2017-05-02 | 2018-05-01 | Use of n-acetylcysteine to treat cns disorders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/700,588 Continuation US11660278B2 (en) | 2017-05-02 | 2019-12-02 | Use of N-acetylcysteine to treat central nervous system disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180344678A1 true US20180344678A1 (en) | 2018-12-06 |
Family
ID=64016708
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/968,355 Abandoned US20180344678A1 (en) | 2017-05-02 | 2018-05-01 | Use of n-acetylcysteine to treat cns disorders |
US16/700,588 Active US11660278B2 (en) | 2017-05-02 | 2019-12-02 | Use of N-acetylcysteine to treat central nervous system disorders |
US18/154,550 Active US11963939B2 (en) | 2017-05-02 | 2023-01-13 | Use of N-acetylcysteine to treat central nervous system disorders |
US18/509,935 Pending US20240115533A1 (en) | 2017-05-02 | 2023-11-15 | Use of n-acetylcysteine to treat cns disorders |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/700,588 Active US11660278B2 (en) | 2017-05-02 | 2019-12-02 | Use of N-acetylcysteine to treat central nervous system disorders |
US18/154,550 Active US11963939B2 (en) | 2017-05-02 | 2023-01-13 | Use of N-acetylcysteine to treat central nervous system disorders |
US18/509,935 Pending US20240115533A1 (en) | 2017-05-02 | 2023-11-15 | Use of n-acetylcysteine to treat cns disorders |
Country Status (3)
Country | Link |
---|---|
US (4) | US20180344678A1 (en) |
EP (1) | EP3618824A4 (en) |
WO (1) | WO2018204393A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021099241A1 (en) * | 2019-11-18 | 2021-05-27 | Société des Produits Nestlé S.A. | Compositions and methods for glutathione enhancement for use in brain health |
WO2021127541A1 (en) * | 2019-12-18 | 2021-06-24 | Neuronasal, Inc. | Methods of treating brain disorders |
WO2022040584A1 (en) * | 2020-08-21 | 2022-02-24 | Neuronasal, Inc. | Methods of administering glutathione precursors |
WO2022204221A1 (en) * | 2021-03-23 | 2022-09-29 | Nacuity Pharmaceuticals, Inc. | Treatment of ferroptosis |
US11612642B2 (en) | 2017-10-27 | 2023-03-28 | Beyond Barriers Therapeutics, Inc. | Enhanced delivery of antioxidants for treatment of central nervous system disorders involving oxidative stress |
US11963939B2 (en) | 2017-05-02 | 2024-04-23 | Neuronasal, Inc. | Use of N-acetylcysteine to treat central nervous system disorders |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023500360A (en) * | 2019-11-04 | 2023-01-05 | ニューロネイザル, インコーポレイテッド | Using magnetic resonance spectroscopy to calibrate and select doses, formulations, and devices for intranasal administration of N-acetylcysteine |
WO2023150392A1 (en) * | 2022-02-07 | 2023-08-10 | Neuronasal, Inc. | Intranasal administration of n-acetylcysteine and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150035586A1 (en) * | 2013-08-02 | 2015-02-05 | Infineon Technologies Dresden Gmbh | Solid-state switching device having a high-voltage switching transistor and a low-voltage driver transistor |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2594694B3 (en) * | 1986-02-21 | 1988-06-10 | Bouchara Sa | COMBINATION CONTAINING, AS ACTIVE INGREDIENTS, A MUCOLYTIC AGENT AND ADENOSINE TRIPHOSPHORIC ACID OR A SALT THEREOF |
US7618615B2 (en) | 2004-08-13 | 2009-11-17 | Healthpartners Research Foundation | Methods for providing neuroprotection for the animal central nervous system against neurodegeneration caused by ischemia |
WO2006060027A2 (en) * | 2004-09-20 | 2006-06-08 | Corus Pharma, Inc. | A method for improvement of tolerance for therapeutically effective agents delivered by inhalation |
US8993627B2 (en) * | 2005-04-21 | 2015-03-31 | Sentient Lifesciences, Inc. | N-acetylcysteine amide (NAC amide) for the treatment of diseases and conditions associated with oxidative stress |
WO2011011092A1 (en) * | 2009-07-22 | 2011-01-27 | University Of Massachusetts | Methods and compositions to reduce oxidative stress |
CA2809666C (en) * | 2010-08-30 | 2020-09-22 | Michael M. Lipp | Dry powder formulations and methods for treating pulmonary diseases |
US9200046B2 (en) * | 2011-06-29 | 2015-12-01 | Cornell University | Reporter system for high throughput screening of compounds and uses thereof |
WO2015006569A2 (en) * | 2013-07-10 | 2015-01-15 | Sentient Lifesciences, Inc. | Use of n-acetylcysteine amide in the treatment of penetrating head injury |
WO2015112724A1 (en) * | 2014-01-24 | 2015-07-30 | Brighton Biotech, Inc. | Naca for the treatment of chronic or acute cognitive dysfunction |
CA2938879C (en) * | 2014-02-04 | 2023-05-09 | Bioscience Pharma Partners, Llc | Use of flap inhibitors to reduce neuroinflammation mediated injury in the central nervous system |
US20180344678A1 (en) | 2017-05-02 | 2018-12-06 | Burke Medical Research Institute | Use of n-acetylcysteine to treat cns disorders |
WO2019084543A1 (en) * | 2017-10-27 | 2019-05-02 | Beyond Barriers Therapeutics, Inc. | Enhanced delivery of antioxidants for treatment of central nervous system disorders involving oxidative stress |
JP2023500360A (en) * | 2019-11-04 | 2023-01-05 | ニューロネイザル, インコーポレイテッド | Using magnetic resonance spectroscopy to calibrate and select doses, formulations, and devices for intranasal administration of N-acetylcysteine |
-
2018
- 2018-05-01 US US15/968,355 patent/US20180344678A1/en not_active Abandoned
- 2018-05-01 EP EP18793795.8A patent/EP3618824A4/en active Pending
- 2018-05-01 WO PCT/US2018/030499 patent/WO2018204393A1/en unknown
-
2019
- 2019-12-02 US US16/700,588 patent/US11660278B2/en active Active
-
2023
- 2023-01-13 US US18/154,550 patent/US11963939B2/en active Active
- 2023-11-15 US US18/509,935 patent/US20240115533A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150035586A1 (en) * | 2013-08-02 | 2015-02-05 | Infineon Technologies Dresden Gmbh | Solid-state switching device having a high-voltage switching transistor and a low-voltage driver transistor |
Non-Patent Citations (1)
Title |
---|
Schewellenbach, Alleged traumatic brain injury research misconduct investigated by the Pentagon, July 30, 2010. (Year: 2010) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11963939B2 (en) | 2017-05-02 | 2024-04-23 | Neuronasal, Inc. | Use of N-acetylcysteine to treat central nervous system disorders |
US11612642B2 (en) | 2017-10-27 | 2023-03-28 | Beyond Barriers Therapeutics, Inc. | Enhanced delivery of antioxidants for treatment of central nervous system disorders involving oxidative stress |
US12257292B2 (en) | 2017-10-27 | 2025-03-25 | Beyond Barriers Therapeutics, Inc. | Enhanced delivery of antioxidants for treatment of central nervous system disorders involving oxidative stress |
WO2021099241A1 (en) * | 2019-11-18 | 2021-05-27 | Société des Produits Nestlé S.A. | Compositions and methods for glutathione enhancement for use in brain health |
WO2021127541A1 (en) * | 2019-12-18 | 2021-06-24 | Neuronasal, Inc. | Methods of treating brain disorders |
CN115484945A (en) * | 2019-12-18 | 2022-12-16 | 纽罗内泽尔公司 | Methods of treating brain disorders |
US12090130B2 (en) | 2019-12-18 | 2024-09-17 | Neuronasal, Inc. | Methods of treating brain disorders |
WO2022040584A1 (en) * | 2020-08-21 | 2022-02-24 | Neuronasal, Inc. | Methods of administering glutathione precursors |
WO2022204221A1 (en) * | 2021-03-23 | 2022-09-29 | Nacuity Pharmaceuticals, Inc. | Treatment of ferroptosis |
Also Published As
Publication number | Publication date |
---|---|
EP3618824A4 (en) | 2021-06-23 |
EP3618824A1 (en) | 2020-03-11 |
WO2018204393A1 (en) | 2018-11-08 |
US20200360327A1 (en) | 2020-11-19 |
US20230414548A1 (en) | 2023-12-28 |
US11660278B2 (en) | 2023-05-30 |
US20240115533A1 (en) | 2024-04-11 |
US11963939B2 (en) | 2024-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11963939B2 (en) | Use of N-acetylcysteine to treat central nervous system disorders | |
US20220062211A1 (en) | Use of cannabinoids in the treatment of epilepsy | |
JP6591748B2 (en) | Methods and compositions for the treatment of autism | |
Tang et al. | Neuroprotective actions of a histidine analogue in models of ischemic stroke | |
US20100222282A1 (en) | Method of diagnosis and method of treatment | |
Jhang et al. | Norepinephrine provides short-term neuroprotection against Aβ1–42 by reducing oxidative stress independent of Nrf2 activation | |
WO2021164210A1 (en) | Application of gallic acid derivative in prevention and treatment of atherosclerosis disease | |
Zhang et al. | Treatment with carnosine reduces hypoxia-ischemia brain damage in a neonatal rat model | |
Wu et al. | Astaxanthin targets IL-6 and alleviates the LPS-induced adverse inflammatory response of macrophages | |
EP3706867B1 (en) | Combination of baclofen and chlorzoxazone for treatment of cerebellar ataxia | |
Srebro et al. | Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels | |
JP2004537494A5 (en) | ||
Nogueira et al. | Carotid body removal normalizes arterial blood pressure and respiratory frequency in offspring of protein-restricted mothers | |
US20200000752A1 (en) | Method for Treating Epilepsy | |
AHLATCI | Investıgatıon of The Amelıoratıve Effects of Gallic Acid Agaınst Neurotoxicity Caused by Glutamate in C6 Cells: Effect of gallic acid on Glutamate-Induced neurotoxicity | |
Nakanishi et al. | Inhibitory effects of NMDA receptor antagonists on hypoxia-induced seizures in dietary Mg2+-deficient mice | |
EP4349822A1 (en) | Antidepressant and anxiolytic substituted cinnamamide compound | |
Çağlayan et al. | Investigation of the effects of apilarnil and imatinib use on liver and kidney tissues in rats via PI3K/AKT/mTOR and JAK2/STAT3 pathways | |
Bramanti et al. | Effects of felbamate on brain polyamine changes following transient cerebral ischemia in the Mongolian gerbil | |
de Oliveira | The Effects of Resveratrol on the Brain Mitochondria | |
KR20220107430A (en) | Composition for preventing or treating parkinson's disease comprising evernic acid | |
Kakoolaki et al. | Oral Presentation No. 17 | |
Kaler | Small copper complexes for treatment of acquired and inherited copper deficiency syndromes | |
Radenovic et al. | Glutamate Neurotoxicity | |
Brownlow et al. | The type II inositol 1, 4, 5-trisphosphate receptor couples to hTrp1 rapidly enough to account for the activation of store-mediated calcium entry in human platelets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: BURKE MEDICAL RESEARCH INSTITUTE, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RATAN, RAJIV R.;KARUPPAGOUNDER, SARAVANAN;REEL/FRAME:048912/0664 Effective date: 20190415 Owner name: NEURONASAL, LLC, PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRADSHAW, THOMAS;REEL/FRAME:048912/0682 Effective date: 20190417 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |